]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched_rt.c
sched: rework of "prioritize non-migratable tasks over migratable ones"
[net-next-2.6.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
4fd29176 6#ifdef CONFIG_SMP
84de4274 7
637f5085 8static inline int rt_overloaded(struct rq *rq)
4fd29176 9{
637f5085 10 return atomic_read(&rq->rd->rto_count);
4fd29176 11}
84de4274 12
4fd29176
SR
13static inline void rt_set_overload(struct rq *rq)
14{
1f11eb6a
GH
15 if (!rq->online)
16 return;
17
637f5085 18 cpu_set(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
19 /*
20 * Make sure the mask is visible before we set
21 * the overload count. That is checked to determine
22 * if we should look at the mask. It would be a shame
23 * if we looked at the mask, but the mask was not
24 * updated yet.
25 */
26 wmb();
637f5085 27 atomic_inc(&rq->rd->rto_count);
4fd29176 28}
84de4274 29
4fd29176
SR
30static inline void rt_clear_overload(struct rq *rq)
31{
1f11eb6a
GH
32 if (!rq->online)
33 return;
34
4fd29176 35 /* the order here really doesn't matter */
637f5085
GH
36 atomic_dec(&rq->rd->rto_count);
37 cpu_clear(rq->cpu, rq->rd->rto_mask);
4fd29176 38}
73fe6aae
GH
39
40static void update_rt_migration(struct rq *rq)
41{
637f5085 42 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
cdc8eb98
GH
43 if (!rq->rt.overloaded) {
44 rt_set_overload(rq);
45 rq->rt.overloaded = 1;
46 }
47 } else if (rq->rt.overloaded) {
73fe6aae 48 rt_clear_overload(rq);
637f5085
GH
49 rq->rt.overloaded = 0;
50 }
73fe6aae 51}
4fd29176
SR
52#endif /* CONFIG_SMP */
53
6f505b16 54static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
fa85ae24 55{
6f505b16
PZ
56 return container_of(rt_se, struct task_struct, rt);
57}
58
59static inline int on_rt_rq(struct sched_rt_entity *rt_se)
60{
61 return !list_empty(&rt_se->run_list);
62}
63
052f1dc7 64#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 65
9f0c1e56 66static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
67{
68 if (!rt_rq->tg)
9f0c1e56 69 return RUNTIME_INF;
6f505b16 70
ac086bc2
PZ
71 return rt_rq->rt_runtime;
72}
73
74static inline u64 sched_rt_period(struct rt_rq *rt_rq)
75{
76 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
77}
78
79#define for_each_leaf_rt_rq(rt_rq, rq) \
80 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
81
82static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
83{
84 return rt_rq->rq;
85}
86
87static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
88{
89 return rt_se->rt_rq;
90}
91
92#define for_each_sched_rt_entity(rt_se) \
93 for (; rt_se; rt_se = rt_se->parent)
94
95static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
96{
97 return rt_se->my_q;
98}
99
100static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
101static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
102
9f0c1e56 103static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16
PZ
104{
105 struct sched_rt_entity *rt_se = rt_rq->rt_se;
106
107 if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
1020387f
PZ
108 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
109
6f505b16 110 enqueue_rt_entity(rt_se);
1020387f
PZ
111 if (rt_rq->highest_prio < curr->prio)
112 resched_task(curr);
6f505b16
PZ
113 }
114}
115
9f0c1e56 116static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
117{
118 struct sched_rt_entity *rt_se = rt_rq->rt_se;
119
120 if (rt_se && on_rt_rq(rt_se))
121 dequeue_rt_entity(rt_se);
122}
123
23b0fdfc
PZ
124static inline int rt_rq_throttled(struct rt_rq *rt_rq)
125{
126 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
127}
128
129static int rt_se_boosted(struct sched_rt_entity *rt_se)
130{
131 struct rt_rq *rt_rq = group_rt_rq(rt_se);
132 struct task_struct *p;
133
134 if (rt_rq)
135 return !!rt_rq->rt_nr_boosted;
136
137 p = rt_task_of(rt_se);
138 return p->prio != p->normal_prio;
139}
140
d0b27fa7
PZ
141#ifdef CONFIG_SMP
142static inline cpumask_t sched_rt_period_mask(void)
143{
144 return cpu_rq(smp_processor_id())->rd->span;
145}
6f505b16 146#else
d0b27fa7
PZ
147static inline cpumask_t sched_rt_period_mask(void)
148{
149 return cpu_online_map;
150}
151#endif
6f505b16 152
d0b27fa7
PZ
153static inline
154struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 155{
d0b27fa7
PZ
156 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
157}
9f0c1e56 158
ac086bc2
PZ
159static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
160{
161 return &rt_rq->tg->rt_bandwidth;
162}
163
d0b27fa7
PZ
164#else
165
166static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
167{
ac086bc2
PZ
168 return rt_rq->rt_runtime;
169}
170
171static inline u64 sched_rt_period(struct rt_rq *rt_rq)
172{
173 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
174}
175
176#define for_each_leaf_rt_rq(rt_rq, rq) \
177 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
178
179static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
180{
181 return container_of(rt_rq, struct rq, rt);
182}
183
184static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
185{
186 struct task_struct *p = rt_task_of(rt_se);
187 struct rq *rq = task_rq(p);
188
189 return &rq->rt;
190}
191
192#define for_each_sched_rt_entity(rt_se) \
193 for (; rt_se; rt_se = NULL)
194
195static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
196{
197 return NULL;
198}
199
9f0c1e56 200static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16
PZ
201{
202}
203
9f0c1e56 204static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
205{
206}
207
23b0fdfc
PZ
208static inline int rt_rq_throttled(struct rt_rq *rt_rq)
209{
210 return rt_rq->rt_throttled;
211}
d0b27fa7
PZ
212
213static inline cpumask_t sched_rt_period_mask(void)
214{
215 return cpu_online_map;
216}
217
218static inline
219struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
220{
221 return &cpu_rq(cpu)->rt;
222}
223
ac086bc2
PZ
224static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
225{
226 return &def_rt_bandwidth;
227}
228
6f505b16
PZ
229#endif
230
d0b27fa7
PZ
231static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
232{
233 int i, idle = 1;
234 cpumask_t span;
235
236 if (rt_b->rt_runtime == RUNTIME_INF)
237 return 1;
238
239 span = sched_rt_period_mask();
240 for_each_cpu_mask(i, span) {
241 int enqueue = 0;
242 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
243 struct rq *rq = rq_of_rt_rq(rt_rq);
244
245 spin_lock(&rq->lock);
246 if (rt_rq->rt_time) {
ac086bc2 247 u64 runtime;
d0b27fa7 248
ac086bc2
PZ
249 spin_lock(&rt_rq->rt_runtime_lock);
250 runtime = rt_rq->rt_runtime;
d0b27fa7
PZ
251 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
252 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
253 rt_rq->rt_throttled = 0;
254 enqueue = 1;
255 }
256 if (rt_rq->rt_time || rt_rq->rt_nr_running)
257 idle = 0;
ac086bc2 258 spin_unlock(&rt_rq->rt_runtime_lock);
d0b27fa7
PZ
259 }
260
261 if (enqueue)
262 sched_rt_rq_enqueue(rt_rq);
263 spin_unlock(&rq->lock);
264 }
265
266 return idle;
267}
268
ac086bc2
PZ
269#ifdef CONFIG_SMP
270static int balance_runtime(struct rt_rq *rt_rq)
271{
272 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
273 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
274 int i, weight, more = 0;
275 u64 rt_period;
276
277 weight = cpus_weight(rd->span);
278
279 spin_lock(&rt_b->rt_runtime_lock);
280 rt_period = ktime_to_ns(rt_b->rt_period);
281 for_each_cpu_mask(i, rd->span) {
282 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
283 s64 diff;
284
285 if (iter == rt_rq)
286 continue;
287
288 spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
289 if (iter->rt_runtime == RUNTIME_INF)
290 goto next;
291
ac086bc2
PZ
292 diff = iter->rt_runtime - iter->rt_time;
293 if (diff > 0) {
294 do_div(diff, weight);
295 if (rt_rq->rt_runtime + diff > rt_period)
296 diff = rt_period - rt_rq->rt_runtime;
297 iter->rt_runtime -= diff;
298 rt_rq->rt_runtime += diff;
299 more = 1;
300 if (rt_rq->rt_runtime == rt_period) {
301 spin_unlock(&iter->rt_runtime_lock);
302 break;
303 }
304 }
7def2be1 305next:
ac086bc2
PZ
306 spin_unlock(&iter->rt_runtime_lock);
307 }
308 spin_unlock(&rt_b->rt_runtime_lock);
309
310 return more;
311}
7def2be1
PZ
312
313static void __disable_runtime(struct rq *rq)
314{
315 struct root_domain *rd = rq->rd;
316 struct rt_rq *rt_rq;
317
318 if (unlikely(!scheduler_running))
319 return;
320
321 for_each_leaf_rt_rq(rt_rq, rq) {
322 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
323 s64 want;
324 int i;
325
326 spin_lock(&rt_b->rt_runtime_lock);
327 spin_lock(&rt_rq->rt_runtime_lock);
328 if (rt_rq->rt_runtime == RUNTIME_INF ||
329 rt_rq->rt_runtime == rt_b->rt_runtime)
330 goto balanced;
331 spin_unlock(&rt_rq->rt_runtime_lock);
332
333 want = rt_b->rt_runtime - rt_rq->rt_runtime;
334
335 for_each_cpu_mask(i, rd->span) {
336 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
337 s64 diff;
338
339 if (iter == rt_rq)
340 continue;
341
342 spin_lock(&iter->rt_runtime_lock);
343 if (want > 0) {
344 diff = min_t(s64, iter->rt_runtime, want);
345 iter->rt_runtime -= diff;
346 want -= diff;
347 } else {
348 iter->rt_runtime -= want;
349 want -= want;
350 }
351 spin_unlock(&iter->rt_runtime_lock);
352
353 if (!want)
354 break;
355 }
356
357 spin_lock(&rt_rq->rt_runtime_lock);
358 BUG_ON(want);
359balanced:
360 rt_rq->rt_runtime = RUNTIME_INF;
361 spin_unlock(&rt_rq->rt_runtime_lock);
362 spin_unlock(&rt_b->rt_runtime_lock);
363 }
364}
365
366static void disable_runtime(struct rq *rq)
367{
368 unsigned long flags;
369
370 spin_lock_irqsave(&rq->lock, flags);
371 __disable_runtime(rq);
372 spin_unlock_irqrestore(&rq->lock, flags);
373}
374
375static void __enable_runtime(struct rq *rq)
376{
377 struct root_domain *rd = rq->rd;
378 struct rt_rq *rt_rq;
379
380 if (unlikely(!scheduler_running))
381 return;
382
383 for_each_leaf_rt_rq(rt_rq, rq) {
384 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
385
386 spin_lock(&rt_b->rt_runtime_lock);
387 spin_lock(&rt_rq->rt_runtime_lock);
388 rt_rq->rt_runtime = rt_b->rt_runtime;
389 rt_rq->rt_time = 0;
390 spin_unlock(&rt_rq->rt_runtime_lock);
391 spin_unlock(&rt_b->rt_runtime_lock);
392 }
393}
394
395static void enable_runtime(struct rq *rq)
396{
397 unsigned long flags;
398
399 spin_lock_irqsave(&rq->lock, flags);
400 __enable_runtime(rq);
401 spin_unlock_irqrestore(&rq->lock, flags);
402}
403
ac086bc2
PZ
404#endif
405
6f505b16
PZ
406static inline int rt_se_prio(struct sched_rt_entity *rt_se)
407{
052f1dc7 408#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
409 struct rt_rq *rt_rq = group_rt_rq(rt_se);
410
411 if (rt_rq)
412 return rt_rq->highest_prio;
413#endif
414
415 return rt_task_of(rt_se)->prio;
416}
417
9f0c1e56 418static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 419{
9f0c1e56 420 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 421
9f0c1e56 422 if (runtime == RUNTIME_INF)
fa85ae24
PZ
423 return 0;
424
425 if (rt_rq->rt_throttled)
23b0fdfc 426 return rt_rq_throttled(rt_rq);
fa85ae24 427
ac086bc2
PZ
428 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
429 return 0;
430
431#ifdef CONFIG_SMP
432 if (rt_rq->rt_time > runtime) {
ac086bc2 433 spin_unlock(&rt_rq->rt_runtime_lock);
7def2be1 434 balance_runtime(rt_rq);
ac086bc2
PZ
435 spin_lock(&rt_rq->rt_runtime_lock);
436
7def2be1
PZ
437 runtime = sched_rt_runtime(rt_rq);
438 if (runtime == RUNTIME_INF)
439 return 0;
ac086bc2
PZ
440 }
441#endif
442
9f0c1e56 443 if (rt_rq->rt_time > runtime) {
6f505b16 444 rt_rq->rt_throttled = 1;
23b0fdfc 445 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 446 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
447 return 1;
448 }
fa85ae24
PZ
449 }
450
451 return 0;
452}
453
bb44e5d1
IM
454/*
455 * Update the current task's runtime statistics. Skip current tasks that
456 * are not in our scheduling class.
457 */
a9957449 458static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
459{
460 struct task_struct *curr = rq->curr;
6f505b16
PZ
461 struct sched_rt_entity *rt_se = &curr->rt;
462 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
463 u64 delta_exec;
464
465 if (!task_has_rt_policy(curr))
466 return;
467
d281918d 468 delta_exec = rq->clock - curr->se.exec_start;
bb44e5d1
IM
469 if (unlikely((s64)delta_exec < 0))
470 delta_exec = 0;
6cfb0d5d
IM
471
472 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
bb44e5d1
IM
473
474 curr->se.sum_exec_runtime += delta_exec;
d281918d 475 curr->se.exec_start = rq->clock;
d842de87 476 cpuacct_charge(curr, delta_exec);
fa85ae24 477
354d60c2
DG
478 for_each_sched_rt_entity(rt_se) {
479 rt_rq = rt_rq_of_se(rt_se);
480
481 spin_lock(&rt_rq->rt_runtime_lock);
482 rt_rq->rt_time += delta_exec;
483 if (sched_rt_runtime_exceeded(rt_rq))
484 resched_task(curr);
485 spin_unlock(&rt_rq->rt_runtime_lock);
486 }
bb44e5d1
IM
487}
488
6f505b16
PZ
489static inline
490void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 491{
6f505b16
PZ
492 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
493 rt_rq->rt_nr_running++;
052f1dc7 494#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6e0534f2
GH
495 if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
496 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 497
1100ac91
IM
498 rt_rq->highest_prio = rt_se_prio(rt_se);
499#ifdef CONFIG_SMP
1f11eb6a
GH
500 if (rq->online)
501 cpupri_set(&rq->rd->cpupri, rq->cpu,
502 rt_se_prio(rt_se));
1100ac91 503#endif
6e0534f2 504 }
6f505b16 505#endif
764a9d6f 506#ifdef CONFIG_SMP
6f505b16
PZ
507 if (rt_se->nr_cpus_allowed > 1) {
508 struct rq *rq = rq_of_rt_rq(rt_rq);
1100ac91 509
73fe6aae 510 rq->rt.rt_nr_migratory++;
6f505b16 511 }
73fe6aae 512
6f505b16
PZ
513 update_rt_migration(rq_of_rt_rq(rt_rq));
514#endif
052f1dc7 515#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
516 if (rt_se_boosted(rt_se))
517 rt_rq->rt_nr_boosted++;
d0b27fa7
PZ
518
519 if (rt_rq->tg)
520 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
521#else
522 start_rt_bandwidth(&def_rt_bandwidth);
23b0fdfc 523#endif
63489e45
SR
524}
525
6f505b16
PZ
526static inline
527void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 528{
6e0534f2
GH
529#ifdef CONFIG_SMP
530 int highest_prio = rt_rq->highest_prio;
531#endif
532
6f505b16
PZ
533 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
534 WARN_ON(!rt_rq->rt_nr_running);
535 rt_rq->rt_nr_running--;
052f1dc7 536#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16 537 if (rt_rq->rt_nr_running) {
764a9d6f
SR
538 struct rt_prio_array *array;
539
6f505b16
PZ
540 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
541 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
764a9d6f 542 /* recalculate */
6f505b16
PZ
543 array = &rt_rq->active;
544 rt_rq->highest_prio =
764a9d6f
SR
545 sched_find_first_bit(array->bitmap);
546 } /* otherwise leave rq->highest prio alone */
547 } else
6f505b16
PZ
548 rt_rq->highest_prio = MAX_RT_PRIO;
549#endif
550#ifdef CONFIG_SMP
551 if (rt_se->nr_cpus_allowed > 1) {
552 struct rq *rq = rq_of_rt_rq(rt_rq);
73fe6aae 553 rq->rt.rt_nr_migratory--;
6f505b16 554 }
73fe6aae 555
6e0534f2
GH
556 if (rt_rq->highest_prio != highest_prio) {
557 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a
GH
558
559 if (rq->online)
560 cpupri_set(&rq->rd->cpupri, rq->cpu,
561 rt_rq->highest_prio);
6e0534f2
GH
562 }
563
6f505b16 564 update_rt_migration(rq_of_rt_rq(rt_rq));
764a9d6f 565#endif /* CONFIG_SMP */
052f1dc7 566#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
567 if (rt_se_boosted(rt_se))
568 rt_rq->rt_nr_boosted--;
569
570 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
571#endif
63489e45
SR
572}
573
6f505b16 574static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
bb44e5d1 575{
6f505b16
PZ
576 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
577 struct rt_prio_array *array = &rt_rq->active;
578 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 579 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 580
23b0fdfc 581 if (group_rq && rt_rq_throttled(group_rq))
6f505b16 582 return;
63489e45 583
45c01e82 584 if (rt_se->nr_cpus_allowed == 1)
20b6331b 585 list_add(&rt_se->run_list, queue);
45c01e82 586 else
20b6331b 587 list_add_tail(&rt_se->run_list, queue);
45c01e82 588
6f505b16 589 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 590
6f505b16
PZ
591 inc_rt_tasks(rt_se, rt_rq);
592}
593
594static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
595{
596 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
597 struct rt_prio_array *array = &rt_rq->active;
598
599 list_del_init(&rt_se->run_list);
20b6331b 600 if (list_empty(array->queue + rt_se_prio(rt_se)))
6f505b16
PZ
601 __clear_bit(rt_se_prio(rt_se), array->bitmap);
602
603 dec_rt_tasks(rt_se, rt_rq);
604}
605
606/*
607 * Because the prio of an upper entry depends on the lower
608 * entries, we must remove entries top - down.
6f505b16
PZ
609 */
610static void dequeue_rt_stack(struct task_struct *p)
611{
58d6c2d7 612 struct sched_rt_entity *rt_se, *back = NULL;
6f505b16 613
58d6c2d7
PZ
614 rt_se = &p->rt;
615 for_each_sched_rt_entity(rt_se) {
616 rt_se->back = back;
617 back = rt_se;
618 }
619
620 for (rt_se = back; rt_se; rt_se = rt_se->back) {
621 if (on_rt_rq(rt_se))
622 dequeue_rt_entity(rt_se);
623 }
bb44e5d1
IM
624}
625
626/*
627 * Adding/removing a task to/from a priority array:
628 */
6f505b16
PZ
629static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
630{
631 struct sched_rt_entity *rt_se = &p->rt;
632
633 if (wakeup)
634 rt_se->timeout = 0;
635
636 dequeue_rt_stack(p);
637
638 /*
639 * enqueue everybody, bottom - up.
640 */
641 for_each_sched_rt_entity(rt_se)
642 enqueue_rt_entity(rt_se);
6f505b16
PZ
643}
644
f02231e5 645static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
bb44e5d1 646{
6f505b16
PZ
647 struct sched_rt_entity *rt_se = &p->rt;
648 struct rt_rq *rt_rq;
bb44e5d1 649
f1e14ef6 650 update_curr_rt(rq);
bb44e5d1 651
6f505b16
PZ
652 dequeue_rt_stack(p);
653
654 /*
655 * re-enqueue all non-empty rt_rq entities.
656 */
657 for_each_sched_rt_entity(rt_se) {
658 rt_rq = group_rt_rq(rt_se);
659 if (rt_rq && rt_rq->rt_nr_running)
660 enqueue_rt_entity(rt_se);
661 }
bb44e5d1
IM
662}
663
664/*
665 * Put task to the end of the run list without the overhead of dequeue
666 * followed by enqueue.
667 */
6f505b16
PZ
668static
669void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
670{
671 struct rt_prio_array *array = &rt_rq->active;
672
45c01e82 673 list_del_init(&rt_se->run_list);
20b6331b 674 list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
6f505b16
PZ
675}
676
bb44e5d1
IM
677static void requeue_task_rt(struct rq *rq, struct task_struct *p)
678{
6f505b16
PZ
679 struct sched_rt_entity *rt_se = &p->rt;
680 struct rt_rq *rt_rq;
bb44e5d1 681
6f505b16
PZ
682 for_each_sched_rt_entity(rt_se) {
683 rt_rq = rt_rq_of_se(rt_se);
684 requeue_rt_entity(rt_rq, rt_se);
685 }
bb44e5d1
IM
686}
687
6f505b16 688static void yield_task_rt(struct rq *rq)
bb44e5d1 689{
4530d7ab 690 requeue_task_rt(rq, rq->curr);
bb44e5d1
IM
691}
692
e7693a36 693#ifdef CONFIG_SMP
318e0893
GH
694static int find_lowest_rq(struct task_struct *task);
695
e7693a36
GH
696static int select_task_rq_rt(struct task_struct *p, int sync)
697{
318e0893
GH
698 struct rq *rq = task_rq(p);
699
700 /*
e1f47d89
SR
701 * If the current task is an RT task, then
702 * try to see if we can wake this RT task up on another
703 * runqueue. Otherwise simply start this RT task
704 * on its current runqueue.
705 *
706 * We want to avoid overloading runqueues. Even if
707 * the RT task is of higher priority than the current RT task.
708 * RT tasks behave differently than other tasks. If
709 * one gets preempted, we try to push it off to another queue.
710 * So trying to keep a preempting RT task on the same
711 * cache hot CPU will force the running RT task to
712 * a cold CPU. So we waste all the cache for the lower
713 * RT task in hopes of saving some of a RT task
714 * that is just being woken and probably will have
715 * cold cache anyway.
318e0893 716 */
17b3279b 717 if (unlikely(rt_task(rq->curr)) &&
6f505b16 718 (p->rt.nr_cpus_allowed > 1)) {
318e0893
GH
719 int cpu = find_lowest_rq(p);
720
721 return (cpu == -1) ? task_cpu(p) : cpu;
722 }
723
724 /*
725 * Otherwise, just let it ride on the affined RQ and the
726 * post-schedule router will push the preempted task away
727 */
e7693a36
GH
728 return task_cpu(p);
729}
730#endif /* CONFIG_SMP */
731
bb44e5d1
IM
732/*
733 * Preempt the current task with a newly woken task if needed:
734 */
735static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
736{
45c01e82 737 if (p->prio < rq->curr->prio) {
bb44e5d1 738 resched_task(rq->curr);
45c01e82
GH
739 return;
740 }
741
742#ifdef CONFIG_SMP
743 /*
744 * If:
745 *
746 * - the newly woken task is of equal priority to the current task
747 * - the newly woken task is non-migratable while current is migratable
748 * - current will be preempted on the next reschedule
749 *
750 * we should check to see if current can readily move to a different
751 * cpu. If so, we will reschedule to allow the push logic to try
752 * to move current somewhere else, making room for our non-migratable
753 * task.
754 */
755 if((p->prio == rq->curr->prio)
756 && p->rt.nr_cpus_allowed == 1
20b6331b 757 && rq->curr->rt.nr_cpus_allowed != 1) {
45c01e82
GH
758 cpumask_t mask;
759
760 if (cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
761 /*
762 * There appears to be other cpus that can accept
763 * current, so lets reschedule to try and push it away
764 */
765 resched_task(rq->curr);
766 }
767#endif
bb44e5d1
IM
768}
769
6f505b16
PZ
770static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
771 struct rt_rq *rt_rq)
bb44e5d1 772{
6f505b16
PZ
773 struct rt_prio_array *array = &rt_rq->active;
774 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
775 struct list_head *queue;
776 int idx;
777
778 idx = sched_find_first_bit(array->bitmap);
6f505b16 779 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1 780
20b6331b
DA
781 queue = array->queue + idx;
782 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 783
6f505b16
PZ
784 return next;
785}
bb44e5d1 786
6f505b16
PZ
787static struct task_struct *pick_next_task_rt(struct rq *rq)
788{
789 struct sched_rt_entity *rt_se;
790 struct task_struct *p;
791 struct rt_rq *rt_rq;
bb44e5d1 792
6f505b16
PZ
793 rt_rq = &rq->rt;
794
795 if (unlikely(!rt_rq->rt_nr_running))
796 return NULL;
797
23b0fdfc 798 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
799 return NULL;
800
801 do {
802 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 803 BUG_ON(!rt_se);
6f505b16
PZ
804 rt_rq = group_rt_rq(rt_se);
805 } while (rt_rq);
806
807 p = rt_task_of(rt_se);
808 p->se.exec_start = rq->clock;
809 return p;
bb44e5d1
IM
810}
811
31ee529c 812static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 813{
f1e14ef6 814 update_curr_rt(rq);
bb44e5d1
IM
815 p->se.exec_start = 0;
816}
817
681f3e68 818#ifdef CONFIG_SMP
6f505b16 819
e8fa1362
SR
820/* Only try algorithms three times */
821#define RT_MAX_TRIES 3
822
823static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
824static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
825
f65eda4f
SR
826static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
827{
828 if (!task_running(rq, p) &&
73fe6aae 829 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
6f505b16 830 (p->rt.nr_cpus_allowed > 1))
f65eda4f
SR
831 return 1;
832 return 0;
833}
834
e8fa1362 835/* Return the second highest RT task, NULL otherwise */
79064fbf 836static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362 837{
6f505b16
PZ
838 struct task_struct *next = NULL;
839 struct sched_rt_entity *rt_se;
840 struct rt_prio_array *array;
841 struct rt_rq *rt_rq;
e8fa1362
SR
842 int idx;
843
6f505b16
PZ
844 for_each_leaf_rt_rq(rt_rq, rq) {
845 array = &rt_rq->active;
846 idx = sched_find_first_bit(array->bitmap);
847 next_idx:
848 if (idx >= MAX_RT_PRIO)
849 continue;
850 if (next && next->prio < idx)
851 continue;
20b6331b 852 list_for_each_entry(rt_se, array->queue + idx, run_list) {
6f505b16
PZ
853 struct task_struct *p = rt_task_of(rt_se);
854 if (pick_rt_task(rq, p, cpu)) {
855 next = p;
856 break;
857 }
858 }
859 if (!next) {
860 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
861 goto next_idx;
862 }
f65eda4f
SR
863 }
864
e8fa1362
SR
865 return next;
866}
867
868static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
869
6e1254d2
GH
870static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
871{
872 int first;
873
874 /* "this_cpu" is cheaper to preempt than a remote processor */
875 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
876 return this_cpu;
877
878 first = first_cpu(*mask);
879 if (first != NR_CPUS)
880 return first;
881
882 return -1;
883}
884
885static int find_lowest_rq(struct task_struct *task)
886{
887 struct sched_domain *sd;
888 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
889 int this_cpu = smp_processor_id();
890 int cpu = task_cpu(task);
06f90dbd 891
6e0534f2
GH
892 if (task->rt.nr_cpus_allowed == 1)
893 return -1; /* No other targets possible */
6e1254d2 894
6e0534f2
GH
895 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
896 return -1; /* No targets found */
6e1254d2
GH
897
898 /*
899 * At this point we have built a mask of cpus representing the
900 * lowest priority tasks in the system. Now we want to elect
901 * the best one based on our affinity and topology.
902 *
903 * We prioritize the last cpu that the task executed on since
904 * it is most likely cache-hot in that location.
905 */
906 if (cpu_isset(cpu, *lowest_mask))
907 return cpu;
908
909 /*
910 * Otherwise, we consult the sched_domains span maps to figure
911 * out which cpu is logically closest to our hot cache data.
912 */
913 if (this_cpu == cpu)
914 this_cpu = -1; /* Skip this_cpu opt if the same */
915
916 for_each_domain(cpu, sd) {
917 if (sd->flags & SD_WAKE_AFFINE) {
918 cpumask_t domain_mask;
919 int best_cpu;
920
921 cpus_and(domain_mask, sd->span, *lowest_mask);
922
923 best_cpu = pick_optimal_cpu(this_cpu,
924 &domain_mask);
925 if (best_cpu != -1)
926 return best_cpu;
927 }
928 }
929
930 /*
931 * And finally, if there were no matches within the domains
932 * just give the caller *something* to work with from the compatible
933 * locations.
934 */
935 return pick_optimal_cpu(this_cpu, lowest_mask);
07b4032c
GH
936}
937
938/* Will lock the rq it finds */
4df64c0b 939static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
940{
941 struct rq *lowest_rq = NULL;
07b4032c 942 int tries;
4df64c0b 943 int cpu;
e8fa1362 944
07b4032c
GH
945 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
946 cpu = find_lowest_rq(task);
947
2de0b463 948 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
949 break;
950
07b4032c
GH
951 lowest_rq = cpu_rq(cpu);
952
e8fa1362 953 /* if the prio of this runqueue changed, try again */
07b4032c 954 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
955 /*
956 * We had to unlock the run queue. In
957 * the mean time, task could have
958 * migrated already or had its affinity changed.
959 * Also make sure that it wasn't scheduled on its rq.
960 */
07b4032c 961 if (unlikely(task_rq(task) != rq ||
4df64c0b
IM
962 !cpu_isset(lowest_rq->cpu,
963 task->cpus_allowed) ||
07b4032c 964 task_running(rq, task) ||
e8fa1362 965 !task->se.on_rq)) {
4df64c0b 966
e8fa1362
SR
967 spin_unlock(&lowest_rq->lock);
968 lowest_rq = NULL;
969 break;
970 }
971 }
972
973 /* If this rq is still suitable use it. */
974 if (lowest_rq->rt.highest_prio > task->prio)
975 break;
976
977 /* try again */
978 spin_unlock(&lowest_rq->lock);
979 lowest_rq = NULL;
980 }
981
982 return lowest_rq;
983}
984
985/*
986 * If the current CPU has more than one RT task, see if the non
987 * running task can migrate over to a CPU that is running a task
988 * of lesser priority.
989 */
697f0a48 990static int push_rt_task(struct rq *rq)
e8fa1362
SR
991{
992 struct task_struct *next_task;
993 struct rq *lowest_rq;
994 int ret = 0;
995 int paranoid = RT_MAX_TRIES;
996
a22d7fc1
GH
997 if (!rq->rt.overloaded)
998 return 0;
999
697f0a48 1000 next_task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
1001 if (!next_task)
1002 return 0;
1003
1004 retry:
697f0a48 1005 if (unlikely(next_task == rq->curr)) {
f65eda4f 1006 WARN_ON(1);
e8fa1362 1007 return 0;
f65eda4f 1008 }
e8fa1362
SR
1009
1010 /*
1011 * It's possible that the next_task slipped in of
1012 * higher priority than current. If that's the case
1013 * just reschedule current.
1014 */
697f0a48
GH
1015 if (unlikely(next_task->prio < rq->curr->prio)) {
1016 resched_task(rq->curr);
e8fa1362
SR
1017 return 0;
1018 }
1019
697f0a48 1020 /* We might release rq lock */
e8fa1362
SR
1021 get_task_struct(next_task);
1022
1023 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1024 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1025 if (!lowest_rq) {
1026 struct task_struct *task;
1027 /*
697f0a48 1028 * find lock_lowest_rq releases rq->lock
e8fa1362
SR
1029 * so it is possible that next_task has changed.
1030 * If it has, then try again.
1031 */
697f0a48 1032 task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
1033 if (unlikely(task != next_task) && task && paranoid--) {
1034 put_task_struct(next_task);
1035 next_task = task;
1036 goto retry;
1037 }
1038 goto out;
1039 }
1040
697f0a48 1041 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1042 set_task_cpu(next_task, lowest_rq->cpu);
1043 activate_task(lowest_rq, next_task, 0);
1044
1045 resched_task(lowest_rq->curr);
1046
1047 spin_unlock(&lowest_rq->lock);
1048
1049 ret = 1;
1050out:
1051 put_task_struct(next_task);
1052
1053 return ret;
1054}
1055
1056/*
1057 * TODO: Currently we just use the second highest prio task on
1058 * the queue, and stop when it can't migrate (or there's
1059 * no more RT tasks). There may be a case where a lower
1060 * priority RT task has a different affinity than the
1061 * higher RT task. In this case the lower RT task could
1062 * possibly be able to migrate where as the higher priority
1063 * RT task could not. We currently ignore this issue.
1064 * Enhancements are welcome!
1065 */
1066static void push_rt_tasks(struct rq *rq)
1067{
1068 /* push_rt_task will return true if it moved an RT */
1069 while (push_rt_task(rq))
1070 ;
1071}
1072
f65eda4f
SR
1073static int pull_rt_task(struct rq *this_rq)
1074{
80bf3171
IM
1075 int this_cpu = this_rq->cpu, ret = 0, cpu;
1076 struct task_struct *p, *next;
f65eda4f 1077 struct rq *src_rq;
f65eda4f 1078
637f5085 1079 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1080 return 0;
1081
1082 next = pick_next_task_rt(this_rq);
1083
637f5085 1084 for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1085 if (this_cpu == cpu)
1086 continue;
1087
1088 src_rq = cpu_rq(cpu);
f65eda4f
SR
1089 /*
1090 * We can potentially drop this_rq's lock in
1091 * double_lock_balance, and another CPU could
1092 * steal our next task - hence we must cause
1093 * the caller to recalculate the next task
1094 * in that case:
1095 */
1096 if (double_lock_balance(this_rq, src_rq)) {
1097 struct task_struct *old_next = next;
80bf3171 1098
f65eda4f
SR
1099 next = pick_next_task_rt(this_rq);
1100 if (next != old_next)
1101 ret = 1;
1102 }
1103
1104 /*
1105 * Are there still pullable RT tasks?
1106 */
614ee1f6
MG
1107 if (src_rq->rt.rt_nr_running <= 1)
1108 goto skip;
f65eda4f 1109
f65eda4f
SR
1110 p = pick_next_highest_task_rt(src_rq, this_cpu);
1111
1112 /*
1113 * Do we have an RT task that preempts
1114 * the to-be-scheduled task?
1115 */
1116 if (p && (!next || (p->prio < next->prio))) {
1117 WARN_ON(p == src_rq->curr);
1118 WARN_ON(!p->se.on_rq);
1119
1120 /*
1121 * There's a chance that p is higher in priority
1122 * than what's currently running on its cpu.
1123 * This is just that p is wakeing up and hasn't
1124 * had a chance to schedule. We only pull
1125 * p if it is lower in priority than the
1126 * current task on the run queue or
1127 * this_rq next task is lower in prio than
1128 * the current task on that rq.
1129 */
1130 if (p->prio < src_rq->curr->prio ||
1131 (next && next->prio < src_rq->curr->prio))
614ee1f6 1132 goto skip;
f65eda4f
SR
1133
1134 ret = 1;
1135
1136 deactivate_task(src_rq, p, 0);
1137 set_task_cpu(p, this_cpu);
1138 activate_task(this_rq, p, 0);
1139 /*
1140 * We continue with the search, just in
1141 * case there's an even higher prio task
1142 * in another runqueue. (low likelyhood
1143 * but possible)
80bf3171 1144 *
f65eda4f
SR
1145 * Update next so that we won't pick a task
1146 * on another cpu with a priority lower (or equal)
1147 * than the one we just picked.
1148 */
1149 next = p;
1150
1151 }
614ee1f6 1152 skip:
f65eda4f
SR
1153 spin_unlock(&src_rq->lock);
1154 }
1155
1156 return ret;
1157}
1158
9a897c5a 1159static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
1160{
1161 /* Try to pull RT tasks here if we lower this rq's prio */
7f51f298 1162 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
f65eda4f
SR
1163 pull_rt_task(rq);
1164}
1165
9a897c5a 1166static void post_schedule_rt(struct rq *rq)
e8fa1362
SR
1167{
1168 /*
1169 * If we have more than one rt_task queued, then
1170 * see if we can push the other rt_tasks off to other CPUS.
1171 * Note we may release the rq lock, and since
1172 * the lock was owned by prev, we need to release it
1173 * first via finish_lock_switch and then reaquire it here.
1174 */
a22d7fc1 1175 if (unlikely(rq->rt.overloaded)) {
e8fa1362
SR
1176 spin_lock_irq(&rq->lock);
1177 push_rt_tasks(rq);
1178 spin_unlock_irq(&rq->lock);
1179 }
1180}
1181
8ae121ac
GH
1182/*
1183 * If we are not running and we are not going to reschedule soon, we should
1184 * try to push tasks away now
1185 */
9a897c5a 1186static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
4642dafd 1187{
9a897c5a 1188 if (!task_running(rq, p) &&
8ae121ac 1189 !test_tsk_need_resched(rq->curr) &&
a22d7fc1 1190 rq->rt.overloaded)
4642dafd
SR
1191 push_rt_tasks(rq);
1192}
1193
43010659 1194static unsigned long
bb44e5d1 1195load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f
PW
1196 unsigned long max_load_move,
1197 struct sched_domain *sd, enum cpu_idle_type idle,
1198 int *all_pinned, int *this_best_prio)
bb44e5d1 1199{
c7a1e46a
SR
1200 /* don't touch RT tasks */
1201 return 0;
e1d1484f
PW
1202}
1203
1204static int
1205move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1206 struct sched_domain *sd, enum cpu_idle_type idle)
1207{
c7a1e46a
SR
1208 /* don't touch RT tasks */
1209 return 0;
bb44e5d1 1210}
deeeccd4 1211
cd8ba7cd
MT
1212static void set_cpus_allowed_rt(struct task_struct *p,
1213 const cpumask_t *new_mask)
73fe6aae
GH
1214{
1215 int weight = cpus_weight(*new_mask);
1216
1217 BUG_ON(!rt_task(p));
1218
1219 /*
1220 * Update the migration status of the RQ if we have an RT task
1221 * which is running AND changing its weight value.
1222 */
6f505b16 1223 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
73fe6aae
GH
1224 struct rq *rq = task_rq(p);
1225
6f505b16 1226 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
73fe6aae 1227 rq->rt.rt_nr_migratory++;
6f505b16 1228 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
73fe6aae
GH
1229 BUG_ON(!rq->rt.rt_nr_migratory);
1230 rq->rt.rt_nr_migratory--;
1231 }
1232
1233 update_rt_migration(rq);
1234 }
1235
1236 p->cpus_allowed = *new_mask;
6f505b16 1237 p->rt.nr_cpus_allowed = weight;
73fe6aae 1238}
deeeccd4 1239
bdd7c81b 1240/* Assumes rq->lock is held */
1f11eb6a 1241static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1242{
1243 if (rq->rt.overloaded)
1244 rt_set_overload(rq);
6e0534f2 1245
7def2be1
PZ
1246 __enable_runtime(rq);
1247
6e0534f2 1248 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
bdd7c81b
IM
1249}
1250
1251/* Assumes rq->lock is held */
1f11eb6a 1252static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1253{
1254 if (rq->rt.overloaded)
1255 rt_clear_overload(rq);
6e0534f2 1256
7def2be1
PZ
1257 __disable_runtime(rq);
1258
6e0534f2 1259 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1260}
cb469845
SR
1261
1262/*
1263 * When switch from the rt queue, we bring ourselves to a position
1264 * that we might want to pull RT tasks from other runqueues.
1265 */
1266static void switched_from_rt(struct rq *rq, struct task_struct *p,
1267 int running)
1268{
1269 /*
1270 * If there are other RT tasks then we will reschedule
1271 * and the scheduling of the other RT tasks will handle
1272 * the balancing. But if we are the last RT task
1273 * we may need to handle the pulling of RT tasks
1274 * now.
1275 */
1276 if (!rq->rt.rt_nr_running)
1277 pull_rt_task(rq);
1278}
1279#endif /* CONFIG_SMP */
1280
1281/*
1282 * When switching a task to RT, we may overload the runqueue
1283 * with RT tasks. In this case we try to push them off to
1284 * other runqueues.
1285 */
1286static void switched_to_rt(struct rq *rq, struct task_struct *p,
1287 int running)
1288{
1289 int check_resched = 1;
1290
1291 /*
1292 * If we are already running, then there's nothing
1293 * that needs to be done. But if we are not running
1294 * we may need to preempt the current running task.
1295 * If that current running task is also an RT task
1296 * then see if we can move to another run queue.
1297 */
1298 if (!running) {
1299#ifdef CONFIG_SMP
1300 if (rq->rt.overloaded && push_rt_task(rq) &&
1301 /* Don't resched if we changed runqueues */
1302 rq != task_rq(p))
1303 check_resched = 0;
1304#endif /* CONFIG_SMP */
1305 if (check_resched && p->prio < rq->curr->prio)
1306 resched_task(rq->curr);
1307 }
1308}
1309
1310/*
1311 * Priority of the task has changed. This may cause
1312 * us to initiate a push or pull.
1313 */
1314static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1315 int oldprio, int running)
1316{
1317 if (running) {
1318#ifdef CONFIG_SMP
1319 /*
1320 * If our priority decreases while running, we
1321 * may need to pull tasks to this runqueue.
1322 */
1323 if (oldprio < p->prio)
1324 pull_rt_task(rq);
1325 /*
1326 * If there's a higher priority task waiting to run
6fa46fa5
SR
1327 * then reschedule. Note, the above pull_rt_task
1328 * can release the rq lock and p could migrate.
1329 * Only reschedule if p is still on the same runqueue.
cb469845 1330 */
6fa46fa5 1331 if (p->prio > rq->rt.highest_prio && rq->curr == p)
cb469845
SR
1332 resched_task(p);
1333#else
1334 /* For UP simply resched on drop of prio */
1335 if (oldprio < p->prio)
1336 resched_task(p);
e8fa1362 1337#endif /* CONFIG_SMP */
cb469845
SR
1338 } else {
1339 /*
1340 * This task is not running, but if it is
1341 * greater than the current running task
1342 * then reschedule.
1343 */
1344 if (p->prio < rq->curr->prio)
1345 resched_task(rq->curr);
1346 }
1347}
1348
78f2c7db
PZ
1349static void watchdog(struct rq *rq, struct task_struct *p)
1350{
1351 unsigned long soft, hard;
1352
1353 if (!p->signal)
1354 return;
1355
1356 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1357 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1358
1359 if (soft != RLIM_INFINITY) {
1360 unsigned long next;
1361
1362 p->rt.timeout++;
1363 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1364 if (p->rt.timeout > next)
78f2c7db
PZ
1365 p->it_sched_expires = p->se.sum_exec_runtime;
1366 }
1367}
bb44e5d1 1368
8f4d37ec 1369static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1370{
67e2be02
PZ
1371 update_curr_rt(rq);
1372
78f2c7db
PZ
1373 watchdog(rq, p);
1374
bb44e5d1
IM
1375 /*
1376 * RR tasks need a special form of timeslice management.
1377 * FIFO tasks have no timeslices.
1378 */
1379 if (p->policy != SCHED_RR)
1380 return;
1381
fa717060 1382 if (--p->rt.time_slice)
bb44e5d1
IM
1383 return;
1384
fa717060 1385 p->rt.time_slice = DEF_TIMESLICE;
bb44e5d1 1386
98fbc798
DA
1387 /*
1388 * Requeue to the end of queue if we are not the only element
1389 * on the queue:
1390 */
fa717060 1391 if (p->rt.run_list.prev != p->rt.run_list.next) {
98fbc798
DA
1392 requeue_task_rt(rq, p);
1393 set_tsk_need_resched(p);
1394 }
bb44e5d1
IM
1395}
1396
83b699ed
SV
1397static void set_curr_task_rt(struct rq *rq)
1398{
1399 struct task_struct *p = rq->curr;
1400
1401 p->se.exec_start = rq->clock;
1402}
1403
2abdad0a 1404static const struct sched_class rt_sched_class = {
5522d5d5 1405 .next = &fair_sched_class,
bb44e5d1
IM
1406 .enqueue_task = enqueue_task_rt,
1407 .dequeue_task = dequeue_task_rt,
1408 .yield_task = yield_task_rt,
e7693a36
GH
1409#ifdef CONFIG_SMP
1410 .select_task_rq = select_task_rq_rt,
1411#endif /* CONFIG_SMP */
bb44e5d1
IM
1412
1413 .check_preempt_curr = check_preempt_curr_rt,
1414
1415 .pick_next_task = pick_next_task_rt,
1416 .put_prev_task = put_prev_task_rt,
1417
681f3e68 1418#ifdef CONFIG_SMP
bb44e5d1 1419 .load_balance = load_balance_rt,
e1d1484f 1420 .move_one_task = move_one_task_rt,
73fe6aae 1421 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
1422 .rq_online = rq_online_rt,
1423 .rq_offline = rq_offline_rt,
9a897c5a
SR
1424 .pre_schedule = pre_schedule_rt,
1425 .post_schedule = post_schedule_rt,
1426 .task_wake_up = task_wake_up_rt,
cb469845 1427 .switched_from = switched_from_rt,
681f3e68 1428#endif
bb44e5d1 1429
83b699ed 1430 .set_curr_task = set_curr_task_rt,
bb44e5d1 1431 .task_tick = task_tick_rt,
cb469845
SR
1432
1433 .prio_changed = prio_changed_rt,
1434 .switched_to = switched_to_rt,
bb44e5d1 1435};