]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched_rt.c
[TCP]: Fix a bug in strategy_allowed_congestion_control
[net-next-2.6.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
4fd29176 6#ifdef CONFIG_SMP
84de4274 7
637f5085 8static inline int rt_overloaded(struct rq *rq)
4fd29176 9{
637f5085 10 return atomic_read(&rq->rd->rto_count);
4fd29176 11}
84de4274 12
4fd29176
SR
13static inline void rt_set_overload(struct rq *rq)
14{
637f5085 15 cpu_set(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
16 /*
17 * Make sure the mask is visible before we set
18 * the overload count. That is checked to determine
19 * if we should look at the mask. It would be a shame
20 * if we looked at the mask, but the mask was not
21 * updated yet.
22 */
23 wmb();
637f5085 24 atomic_inc(&rq->rd->rto_count);
4fd29176 25}
84de4274 26
4fd29176
SR
27static inline void rt_clear_overload(struct rq *rq)
28{
29 /* the order here really doesn't matter */
637f5085
GH
30 atomic_dec(&rq->rd->rto_count);
31 cpu_clear(rq->cpu, rq->rd->rto_mask);
4fd29176 32}
73fe6aae
GH
33
34static void update_rt_migration(struct rq *rq)
35{
637f5085 36 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
cdc8eb98
GH
37 if (!rq->rt.overloaded) {
38 rt_set_overload(rq);
39 rq->rt.overloaded = 1;
40 }
41 } else if (rq->rt.overloaded) {
73fe6aae 42 rt_clear_overload(rq);
637f5085
GH
43 rq->rt.overloaded = 0;
44 }
73fe6aae 45}
4fd29176
SR
46#endif /* CONFIG_SMP */
47
6f505b16 48static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
fa85ae24 49{
6f505b16
PZ
50 return container_of(rt_se, struct task_struct, rt);
51}
52
53static inline int on_rt_rq(struct sched_rt_entity *rt_se)
54{
55 return !list_empty(&rt_se->run_list);
56}
57
58#ifdef CONFIG_FAIR_GROUP_SCHED
59
60static inline unsigned int sched_rt_ratio(struct rt_rq *rt_rq)
61{
62 if (!rt_rq->tg)
63 return SCHED_RT_FRAC;
64
65 return rt_rq->tg->rt_ratio;
66}
67
68#define for_each_leaf_rt_rq(rt_rq, rq) \
69 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
70
71static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
72{
73 return rt_rq->rq;
74}
75
76static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
77{
78 return rt_se->rt_rq;
79}
80
81#define for_each_sched_rt_entity(rt_se) \
82 for (; rt_se; rt_se = rt_se->parent)
83
84static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
85{
86 return rt_se->my_q;
87}
88
89static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
90static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
91
92static void sched_rt_ratio_enqueue(struct rt_rq *rt_rq)
93{
94 struct sched_rt_entity *rt_se = rt_rq->rt_se;
95
96 if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
1020387f
PZ
97 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
98
6f505b16 99 enqueue_rt_entity(rt_se);
1020387f
PZ
100 if (rt_rq->highest_prio < curr->prio)
101 resched_task(curr);
6f505b16
PZ
102 }
103}
104
105static void sched_rt_ratio_dequeue(struct rt_rq *rt_rq)
106{
107 struct sched_rt_entity *rt_se = rt_rq->rt_se;
108
109 if (rt_se && on_rt_rq(rt_se))
110 dequeue_rt_entity(rt_se);
111}
112
113#else
114
115static inline unsigned int sched_rt_ratio(struct rt_rq *rt_rq)
116{
117 return sysctl_sched_rt_ratio;
118}
119
120#define for_each_leaf_rt_rq(rt_rq, rq) \
121 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
122
123static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
124{
125 return container_of(rt_rq, struct rq, rt);
126}
127
128static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
129{
130 struct task_struct *p = rt_task_of(rt_se);
131 struct rq *rq = task_rq(p);
132
133 return &rq->rt;
134}
135
136#define for_each_sched_rt_entity(rt_se) \
137 for (; rt_se; rt_se = NULL)
138
139static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
140{
141 return NULL;
142}
143
144static inline void sched_rt_ratio_enqueue(struct rt_rq *rt_rq)
145{
146}
147
148static inline void sched_rt_ratio_dequeue(struct rt_rq *rt_rq)
149{
150}
151
152#endif
153
154static inline int rt_se_prio(struct sched_rt_entity *rt_se)
155{
156#ifdef CONFIG_FAIR_GROUP_SCHED
157 struct rt_rq *rt_rq = group_rt_rq(rt_se);
158
159 if (rt_rq)
160 return rt_rq->highest_prio;
161#endif
162
163 return rt_task_of(rt_se)->prio;
164}
165
166static int sched_rt_ratio_exceeded(struct rt_rq *rt_rq)
167{
168 unsigned int rt_ratio = sched_rt_ratio(rt_rq);
fa85ae24
PZ
169 u64 period, ratio;
170
6f505b16 171 if (rt_ratio == SCHED_RT_FRAC)
fa85ae24
PZ
172 return 0;
173
174 if (rt_rq->rt_throttled)
175 return 1;
176
177 period = (u64)sysctl_sched_rt_period * NSEC_PER_MSEC;
6f505b16 178 ratio = (period * rt_ratio) >> SCHED_RT_FRAC_SHIFT;
fa85ae24
PZ
179
180 if (rt_rq->rt_time > ratio) {
48d5e258
PZ
181 struct rq *rq = rq_of_rt_rq(rt_rq);
182
183 rq->rt_throttled = 1;
6f505b16 184 rt_rq->rt_throttled = 1;
48d5e258 185
6f505b16 186 sched_rt_ratio_dequeue(rt_rq);
fa85ae24
PZ
187 return 1;
188 }
189
190 return 0;
191}
192
193static void update_sched_rt_period(struct rq *rq)
194{
6f505b16
PZ
195 struct rt_rq *rt_rq;
196 u64 period;
fa85ae24 197
6f505b16 198 while (rq->clock > rq->rt_period_expire) {
fa85ae24 199 period = (u64)sysctl_sched_rt_period * NSEC_PER_MSEC;
fa85ae24 200 rq->rt_period_expire += period;
fa85ae24 201
48d5e258
PZ
202 for_each_leaf_rt_rq(rt_rq, rq) {
203 unsigned long rt_ratio = sched_rt_ratio(rt_rq);
204 u64 ratio = (period * rt_ratio) >> SCHED_RT_FRAC_SHIFT;
205
206 rt_rq->rt_time -= min(rt_rq->rt_time, ratio);
207 if (rt_rq->rt_throttled) {
208 rt_rq->rt_throttled = 0;
209 sched_rt_ratio_enqueue(rt_rq);
210 }
211 }
212
213 rq->rt_throttled = 0;
fa85ae24
PZ
214 }
215}
216
bb44e5d1
IM
217/*
218 * Update the current task's runtime statistics. Skip current tasks that
219 * are not in our scheduling class.
220 */
a9957449 221static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
222{
223 struct task_struct *curr = rq->curr;
6f505b16
PZ
224 struct sched_rt_entity *rt_se = &curr->rt;
225 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
226 u64 delta_exec;
227
228 if (!task_has_rt_policy(curr))
229 return;
230
d281918d 231 delta_exec = rq->clock - curr->se.exec_start;
bb44e5d1
IM
232 if (unlikely((s64)delta_exec < 0))
233 delta_exec = 0;
6cfb0d5d
IM
234
235 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
bb44e5d1
IM
236
237 curr->se.sum_exec_runtime += delta_exec;
d281918d 238 curr->se.exec_start = rq->clock;
d842de87 239 cpuacct_charge(curr, delta_exec);
fa85ae24 240
6f505b16
PZ
241 rt_rq->rt_time += delta_exec;
242 /*
243 * might make it a tad more accurate:
244 *
245 * update_sched_rt_period(rq);
246 */
247 if (sched_rt_ratio_exceeded(rt_rq))
fa85ae24 248 resched_task(curr);
bb44e5d1
IM
249}
250
6f505b16
PZ
251static inline
252void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 253{
6f505b16
PZ
254 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
255 rt_rq->rt_nr_running++;
256#if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
257 if (rt_se_prio(rt_se) < rt_rq->highest_prio)
258 rt_rq->highest_prio = rt_se_prio(rt_se);
259#endif
764a9d6f 260#ifdef CONFIG_SMP
6f505b16
PZ
261 if (rt_se->nr_cpus_allowed > 1) {
262 struct rq *rq = rq_of_rt_rq(rt_rq);
73fe6aae 263 rq->rt.rt_nr_migratory++;
6f505b16 264 }
73fe6aae 265
6f505b16
PZ
266 update_rt_migration(rq_of_rt_rq(rt_rq));
267#endif
63489e45
SR
268}
269
6f505b16
PZ
270static inline
271void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 272{
6f505b16
PZ
273 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
274 WARN_ON(!rt_rq->rt_nr_running);
275 rt_rq->rt_nr_running--;
276#if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
277 if (rt_rq->rt_nr_running) {
764a9d6f
SR
278 struct rt_prio_array *array;
279
6f505b16
PZ
280 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
281 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
764a9d6f 282 /* recalculate */
6f505b16
PZ
283 array = &rt_rq->active;
284 rt_rq->highest_prio =
764a9d6f
SR
285 sched_find_first_bit(array->bitmap);
286 } /* otherwise leave rq->highest prio alone */
287 } else
6f505b16
PZ
288 rt_rq->highest_prio = MAX_RT_PRIO;
289#endif
290#ifdef CONFIG_SMP
291 if (rt_se->nr_cpus_allowed > 1) {
292 struct rq *rq = rq_of_rt_rq(rt_rq);
73fe6aae 293 rq->rt.rt_nr_migratory--;
6f505b16 294 }
73fe6aae 295
6f505b16 296 update_rt_migration(rq_of_rt_rq(rt_rq));
764a9d6f 297#endif /* CONFIG_SMP */
63489e45
SR
298}
299
6f505b16 300static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
bb44e5d1 301{
6f505b16
PZ
302 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
303 struct rt_prio_array *array = &rt_rq->active;
304 struct rt_rq *group_rq = group_rt_rq(rt_se);
bb44e5d1 305
6f505b16
PZ
306 if (group_rq && group_rq->rt_throttled)
307 return;
63489e45 308
6f505b16
PZ
309 list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
310 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 311
6f505b16
PZ
312 inc_rt_tasks(rt_se, rt_rq);
313}
314
315static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
316{
317 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
318 struct rt_prio_array *array = &rt_rq->active;
319
320 list_del_init(&rt_se->run_list);
321 if (list_empty(array->queue + rt_se_prio(rt_se)))
322 __clear_bit(rt_se_prio(rt_se), array->bitmap);
323
324 dec_rt_tasks(rt_se, rt_rq);
325}
326
327/*
328 * Because the prio of an upper entry depends on the lower
329 * entries, we must remove entries top - down.
330 *
331 * XXX: O(1/2 h^2) because we can only walk up, not down the chain.
332 * doesn't matter much for now, as h=2 for GROUP_SCHED.
333 */
334static void dequeue_rt_stack(struct task_struct *p)
335{
336 struct sched_rt_entity *rt_se, *top_se;
337
338 /*
339 * dequeue all, top - down.
340 */
341 do {
342 rt_se = &p->rt;
343 top_se = NULL;
344 for_each_sched_rt_entity(rt_se) {
345 if (on_rt_rq(rt_se))
346 top_se = rt_se;
347 }
348 if (top_se)
349 dequeue_rt_entity(top_se);
350 } while (top_se);
bb44e5d1
IM
351}
352
353/*
354 * Adding/removing a task to/from a priority array:
355 */
6f505b16
PZ
356static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
357{
358 struct sched_rt_entity *rt_se = &p->rt;
359
360 if (wakeup)
361 rt_se->timeout = 0;
362
363 dequeue_rt_stack(p);
364
365 /*
366 * enqueue everybody, bottom - up.
367 */
368 for_each_sched_rt_entity(rt_se)
369 enqueue_rt_entity(rt_se);
370
371 inc_cpu_load(rq, p->se.load.weight);
372}
373
f02231e5 374static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
bb44e5d1 375{
6f505b16
PZ
376 struct sched_rt_entity *rt_se = &p->rt;
377 struct rt_rq *rt_rq;
bb44e5d1 378
f1e14ef6 379 update_curr_rt(rq);
bb44e5d1 380
6f505b16
PZ
381 dequeue_rt_stack(p);
382
383 /*
384 * re-enqueue all non-empty rt_rq entities.
385 */
386 for_each_sched_rt_entity(rt_se) {
387 rt_rq = group_rt_rq(rt_se);
388 if (rt_rq && rt_rq->rt_nr_running)
389 enqueue_rt_entity(rt_se);
390 }
63489e45 391
6f505b16 392 dec_cpu_load(rq, p->se.load.weight);
bb44e5d1
IM
393}
394
395/*
396 * Put task to the end of the run list without the overhead of dequeue
397 * followed by enqueue.
398 */
6f505b16
PZ
399static
400void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
401{
402 struct rt_prio_array *array = &rt_rq->active;
403
404 list_move_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
405}
406
bb44e5d1
IM
407static void requeue_task_rt(struct rq *rq, struct task_struct *p)
408{
6f505b16
PZ
409 struct sched_rt_entity *rt_se = &p->rt;
410 struct rt_rq *rt_rq;
bb44e5d1 411
6f505b16
PZ
412 for_each_sched_rt_entity(rt_se) {
413 rt_rq = rt_rq_of_se(rt_se);
414 requeue_rt_entity(rt_rq, rt_se);
415 }
bb44e5d1
IM
416}
417
6f505b16 418static void yield_task_rt(struct rq *rq)
bb44e5d1 419{
4530d7ab 420 requeue_task_rt(rq, rq->curr);
bb44e5d1
IM
421}
422
e7693a36 423#ifdef CONFIG_SMP
318e0893
GH
424static int find_lowest_rq(struct task_struct *task);
425
e7693a36
GH
426static int select_task_rq_rt(struct task_struct *p, int sync)
427{
318e0893
GH
428 struct rq *rq = task_rq(p);
429
430 /*
e1f47d89
SR
431 * If the current task is an RT task, then
432 * try to see if we can wake this RT task up on another
433 * runqueue. Otherwise simply start this RT task
434 * on its current runqueue.
435 *
436 * We want to avoid overloading runqueues. Even if
437 * the RT task is of higher priority than the current RT task.
438 * RT tasks behave differently than other tasks. If
439 * one gets preempted, we try to push it off to another queue.
440 * So trying to keep a preempting RT task on the same
441 * cache hot CPU will force the running RT task to
442 * a cold CPU. So we waste all the cache for the lower
443 * RT task in hopes of saving some of a RT task
444 * that is just being woken and probably will have
445 * cold cache anyway.
318e0893 446 */
17b3279b 447 if (unlikely(rt_task(rq->curr)) &&
6f505b16 448 (p->rt.nr_cpus_allowed > 1)) {
318e0893
GH
449 int cpu = find_lowest_rq(p);
450
451 return (cpu == -1) ? task_cpu(p) : cpu;
452 }
453
454 /*
455 * Otherwise, just let it ride on the affined RQ and the
456 * post-schedule router will push the preempted task away
457 */
e7693a36
GH
458 return task_cpu(p);
459}
460#endif /* CONFIG_SMP */
461
bb44e5d1
IM
462/*
463 * Preempt the current task with a newly woken task if needed:
464 */
465static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
466{
467 if (p->prio < rq->curr->prio)
468 resched_task(rq->curr);
469}
470
6f505b16
PZ
471static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
472 struct rt_rq *rt_rq)
bb44e5d1 473{
6f505b16
PZ
474 struct rt_prio_array *array = &rt_rq->active;
475 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
476 struct list_head *queue;
477 int idx;
478
479 idx = sched_find_first_bit(array->bitmap);
6f505b16 480 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
481
482 queue = array->queue + idx;
6f505b16 483 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 484
6f505b16
PZ
485 return next;
486}
bb44e5d1 487
6f505b16
PZ
488static struct task_struct *pick_next_task_rt(struct rq *rq)
489{
490 struct sched_rt_entity *rt_se;
491 struct task_struct *p;
492 struct rt_rq *rt_rq;
bb44e5d1 493
6f505b16
PZ
494 rt_rq = &rq->rt;
495
496 if (unlikely(!rt_rq->rt_nr_running))
497 return NULL;
498
499 if (sched_rt_ratio_exceeded(rt_rq))
500 return NULL;
501
502 do {
503 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 504 BUG_ON(!rt_se);
6f505b16
PZ
505 rt_rq = group_rt_rq(rt_se);
506 } while (rt_rq);
507
508 p = rt_task_of(rt_se);
509 p->se.exec_start = rq->clock;
510 return p;
bb44e5d1
IM
511}
512
31ee529c 513static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 514{
f1e14ef6 515 update_curr_rt(rq);
bb44e5d1
IM
516 p->se.exec_start = 0;
517}
518
681f3e68 519#ifdef CONFIG_SMP
6f505b16 520
e8fa1362
SR
521/* Only try algorithms three times */
522#define RT_MAX_TRIES 3
523
524static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
525static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
526
f65eda4f
SR
527static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
528{
529 if (!task_running(rq, p) &&
73fe6aae 530 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
6f505b16 531 (p->rt.nr_cpus_allowed > 1))
f65eda4f
SR
532 return 1;
533 return 0;
534}
535
e8fa1362 536/* Return the second highest RT task, NULL otherwise */
79064fbf 537static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362 538{
6f505b16
PZ
539 struct task_struct *next = NULL;
540 struct sched_rt_entity *rt_se;
541 struct rt_prio_array *array;
542 struct rt_rq *rt_rq;
e8fa1362
SR
543 int idx;
544
6f505b16
PZ
545 for_each_leaf_rt_rq(rt_rq, rq) {
546 array = &rt_rq->active;
547 idx = sched_find_first_bit(array->bitmap);
548 next_idx:
549 if (idx >= MAX_RT_PRIO)
550 continue;
551 if (next && next->prio < idx)
552 continue;
553 list_for_each_entry(rt_se, array->queue + idx, run_list) {
554 struct task_struct *p = rt_task_of(rt_se);
555 if (pick_rt_task(rq, p, cpu)) {
556 next = p;
557 break;
558 }
559 }
560 if (!next) {
561 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
562 goto next_idx;
563 }
f65eda4f
SR
564 }
565
e8fa1362
SR
566 return next;
567}
568
569static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
570
6e1254d2 571static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
e8fa1362 572{
6e1254d2 573 int lowest_prio = -1;
610bf056 574 int lowest_cpu = -1;
06f90dbd 575 int count = 0;
610bf056 576 int cpu;
e8fa1362 577
637f5085 578 cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed);
e8fa1362 579
07b4032c
GH
580 /*
581 * Scan each rq for the lowest prio.
582 */
610bf056 583 for_each_cpu_mask(cpu, *lowest_mask) {
07b4032c 584 struct rq *rq = cpu_rq(cpu);
e8fa1362 585
07b4032c
GH
586 /* We look for lowest RT prio or non-rt CPU */
587 if (rq->rt.highest_prio >= MAX_RT_PRIO) {
610bf056
SR
588 /*
589 * if we already found a low RT queue
590 * and now we found this non-rt queue
591 * clear the mask and set our bit.
592 * Otherwise just return the queue as is
593 * and the count==1 will cause the algorithm
594 * to use the first bit found.
595 */
596 if (lowest_cpu != -1) {
6e1254d2 597 cpus_clear(*lowest_mask);
610bf056
SR
598 cpu_set(rq->cpu, *lowest_mask);
599 }
6e1254d2 600 return 1;
07b4032c
GH
601 }
602
603 /* no locking for now */
6e1254d2
GH
604 if ((rq->rt.highest_prio > task->prio)
605 && (rq->rt.highest_prio >= lowest_prio)) {
606 if (rq->rt.highest_prio > lowest_prio) {
607 /* new low - clear old data */
608 lowest_prio = rq->rt.highest_prio;
610bf056
SR
609 lowest_cpu = cpu;
610 count = 0;
6e1254d2 611 }
06f90dbd 612 count++;
610bf056
SR
613 } else
614 cpu_clear(cpu, *lowest_mask);
615 }
616
617 /*
618 * Clear out all the set bits that represent
619 * runqueues that were of higher prio than
620 * the lowest_prio.
621 */
622 if (lowest_cpu > 0) {
623 /*
624 * Perhaps we could add another cpumask op to
625 * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
626 * Then that could be optimized to use memset and such.
627 */
628 for_each_cpu_mask(cpu, *lowest_mask) {
629 if (cpu >= lowest_cpu)
630 break;
631 cpu_clear(cpu, *lowest_mask);
e8fa1362 632 }
07b4032c
GH
633 }
634
06f90dbd 635 return count;
6e1254d2
GH
636}
637
638static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
639{
640 int first;
641
642 /* "this_cpu" is cheaper to preempt than a remote processor */
643 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
644 return this_cpu;
645
646 first = first_cpu(*mask);
647 if (first != NR_CPUS)
648 return first;
649
650 return -1;
651}
652
653static int find_lowest_rq(struct task_struct *task)
654{
655 struct sched_domain *sd;
656 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
657 int this_cpu = smp_processor_id();
658 int cpu = task_cpu(task);
06f90dbd
GH
659 int count = find_lowest_cpus(task, lowest_mask);
660
661 if (!count)
662 return -1; /* No targets found */
6e1254d2 663
06f90dbd
GH
664 /*
665 * There is no sense in performing an optimal search if only one
666 * target is found.
667 */
668 if (count == 1)
669 return first_cpu(*lowest_mask);
6e1254d2
GH
670
671 /*
672 * At this point we have built a mask of cpus representing the
673 * lowest priority tasks in the system. Now we want to elect
674 * the best one based on our affinity and topology.
675 *
676 * We prioritize the last cpu that the task executed on since
677 * it is most likely cache-hot in that location.
678 */
679 if (cpu_isset(cpu, *lowest_mask))
680 return cpu;
681
682 /*
683 * Otherwise, we consult the sched_domains span maps to figure
684 * out which cpu is logically closest to our hot cache data.
685 */
686 if (this_cpu == cpu)
687 this_cpu = -1; /* Skip this_cpu opt if the same */
688
689 for_each_domain(cpu, sd) {
690 if (sd->flags & SD_WAKE_AFFINE) {
691 cpumask_t domain_mask;
692 int best_cpu;
693
694 cpus_and(domain_mask, sd->span, *lowest_mask);
695
696 best_cpu = pick_optimal_cpu(this_cpu,
697 &domain_mask);
698 if (best_cpu != -1)
699 return best_cpu;
700 }
701 }
702
703 /*
704 * And finally, if there were no matches within the domains
705 * just give the caller *something* to work with from the compatible
706 * locations.
707 */
708 return pick_optimal_cpu(this_cpu, lowest_mask);
07b4032c
GH
709}
710
711/* Will lock the rq it finds */
4df64c0b 712static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
713{
714 struct rq *lowest_rq = NULL;
07b4032c 715 int tries;
4df64c0b 716 int cpu;
e8fa1362 717
07b4032c
GH
718 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
719 cpu = find_lowest_rq(task);
720
2de0b463 721 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
722 break;
723
07b4032c
GH
724 lowest_rq = cpu_rq(cpu);
725
e8fa1362 726 /* if the prio of this runqueue changed, try again */
07b4032c 727 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
728 /*
729 * We had to unlock the run queue. In
730 * the mean time, task could have
731 * migrated already or had its affinity changed.
732 * Also make sure that it wasn't scheduled on its rq.
733 */
07b4032c 734 if (unlikely(task_rq(task) != rq ||
4df64c0b
IM
735 !cpu_isset(lowest_rq->cpu,
736 task->cpus_allowed) ||
07b4032c 737 task_running(rq, task) ||
e8fa1362 738 !task->se.on_rq)) {
4df64c0b 739
e8fa1362
SR
740 spin_unlock(&lowest_rq->lock);
741 lowest_rq = NULL;
742 break;
743 }
744 }
745
746 /* If this rq is still suitable use it. */
747 if (lowest_rq->rt.highest_prio > task->prio)
748 break;
749
750 /* try again */
751 spin_unlock(&lowest_rq->lock);
752 lowest_rq = NULL;
753 }
754
755 return lowest_rq;
756}
757
758/*
759 * If the current CPU has more than one RT task, see if the non
760 * running task can migrate over to a CPU that is running a task
761 * of lesser priority.
762 */
697f0a48 763static int push_rt_task(struct rq *rq)
e8fa1362
SR
764{
765 struct task_struct *next_task;
766 struct rq *lowest_rq;
767 int ret = 0;
768 int paranoid = RT_MAX_TRIES;
769
a22d7fc1
GH
770 if (!rq->rt.overloaded)
771 return 0;
772
697f0a48 773 next_task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
774 if (!next_task)
775 return 0;
776
777 retry:
697f0a48 778 if (unlikely(next_task == rq->curr)) {
f65eda4f 779 WARN_ON(1);
e8fa1362 780 return 0;
f65eda4f 781 }
e8fa1362
SR
782
783 /*
784 * It's possible that the next_task slipped in of
785 * higher priority than current. If that's the case
786 * just reschedule current.
787 */
697f0a48
GH
788 if (unlikely(next_task->prio < rq->curr->prio)) {
789 resched_task(rq->curr);
e8fa1362
SR
790 return 0;
791 }
792
697f0a48 793 /* We might release rq lock */
e8fa1362
SR
794 get_task_struct(next_task);
795
796 /* find_lock_lowest_rq locks the rq if found */
697f0a48 797 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
798 if (!lowest_rq) {
799 struct task_struct *task;
800 /*
697f0a48 801 * find lock_lowest_rq releases rq->lock
e8fa1362
SR
802 * so it is possible that next_task has changed.
803 * If it has, then try again.
804 */
697f0a48 805 task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
806 if (unlikely(task != next_task) && task && paranoid--) {
807 put_task_struct(next_task);
808 next_task = task;
809 goto retry;
810 }
811 goto out;
812 }
813
697f0a48 814 deactivate_task(rq, next_task, 0);
e8fa1362
SR
815 set_task_cpu(next_task, lowest_rq->cpu);
816 activate_task(lowest_rq, next_task, 0);
817
818 resched_task(lowest_rq->curr);
819
820 spin_unlock(&lowest_rq->lock);
821
822 ret = 1;
823out:
824 put_task_struct(next_task);
825
826 return ret;
827}
828
829/*
830 * TODO: Currently we just use the second highest prio task on
831 * the queue, and stop when it can't migrate (or there's
832 * no more RT tasks). There may be a case where a lower
833 * priority RT task has a different affinity than the
834 * higher RT task. In this case the lower RT task could
835 * possibly be able to migrate where as the higher priority
836 * RT task could not. We currently ignore this issue.
837 * Enhancements are welcome!
838 */
839static void push_rt_tasks(struct rq *rq)
840{
841 /* push_rt_task will return true if it moved an RT */
842 while (push_rt_task(rq))
843 ;
844}
845
f65eda4f
SR
846static int pull_rt_task(struct rq *this_rq)
847{
80bf3171
IM
848 int this_cpu = this_rq->cpu, ret = 0, cpu;
849 struct task_struct *p, *next;
f65eda4f 850 struct rq *src_rq;
f65eda4f 851
637f5085 852 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
853 return 0;
854
855 next = pick_next_task_rt(this_rq);
856
637f5085 857 for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
858 if (this_cpu == cpu)
859 continue;
860
861 src_rq = cpu_rq(cpu);
f65eda4f
SR
862 /*
863 * We can potentially drop this_rq's lock in
864 * double_lock_balance, and another CPU could
865 * steal our next task - hence we must cause
866 * the caller to recalculate the next task
867 * in that case:
868 */
869 if (double_lock_balance(this_rq, src_rq)) {
870 struct task_struct *old_next = next;
80bf3171 871
f65eda4f
SR
872 next = pick_next_task_rt(this_rq);
873 if (next != old_next)
874 ret = 1;
875 }
876
877 /*
878 * Are there still pullable RT tasks?
879 */
614ee1f6
MG
880 if (src_rq->rt.rt_nr_running <= 1)
881 goto skip;
f65eda4f 882
f65eda4f
SR
883 p = pick_next_highest_task_rt(src_rq, this_cpu);
884
885 /*
886 * Do we have an RT task that preempts
887 * the to-be-scheduled task?
888 */
889 if (p && (!next || (p->prio < next->prio))) {
890 WARN_ON(p == src_rq->curr);
891 WARN_ON(!p->se.on_rq);
892
893 /*
894 * There's a chance that p is higher in priority
895 * than what's currently running on its cpu.
896 * This is just that p is wakeing up and hasn't
897 * had a chance to schedule. We only pull
898 * p if it is lower in priority than the
899 * current task on the run queue or
900 * this_rq next task is lower in prio than
901 * the current task on that rq.
902 */
903 if (p->prio < src_rq->curr->prio ||
904 (next && next->prio < src_rq->curr->prio))
614ee1f6 905 goto skip;
f65eda4f
SR
906
907 ret = 1;
908
909 deactivate_task(src_rq, p, 0);
910 set_task_cpu(p, this_cpu);
911 activate_task(this_rq, p, 0);
912 /*
913 * We continue with the search, just in
914 * case there's an even higher prio task
915 * in another runqueue. (low likelyhood
916 * but possible)
80bf3171 917 *
f65eda4f
SR
918 * Update next so that we won't pick a task
919 * on another cpu with a priority lower (or equal)
920 * than the one we just picked.
921 */
922 next = p;
923
924 }
614ee1f6 925 skip:
f65eda4f
SR
926 spin_unlock(&src_rq->lock);
927 }
928
929 return ret;
930}
931
9a897c5a 932static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
933{
934 /* Try to pull RT tasks here if we lower this rq's prio */
7f51f298 935 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
f65eda4f
SR
936 pull_rt_task(rq);
937}
938
9a897c5a 939static void post_schedule_rt(struct rq *rq)
e8fa1362
SR
940{
941 /*
942 * If we have more than one rt_task queued, then
943 * see if we can push the other rt_tasks off to other CPUS.
944 * Note we may release the rq lock, and since
945 * the lock was owned by prev, we need to release it
946 * first via finish_lock_switch and then reaquire it here.
947 */
a22d7fc1 948 if (unlikely(rq->rt.overloaded)) {
e8fa1362
SR
949 spin_lock_irq(&rq->lock);
950 push_rt_tasks(rq);
951 spin_unlock_irq(&rq->lock);
952 }
953}
954
4642dafd 955
9a897c5a 956static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
4642dafd 957{
9a897c5a 958 if (!task_running(rq, p) &&
a22d7fc1
GH
959 (p->prio >= rq->rt.highest_prio) &&
960 rq->rt.overloaded)
4642dafd
SR
961 push_rt_tasks(rq);
962}
963
43010659 964static unsigned long
bb44e5d1 965load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f
PW
966 unsigned long max_load_move,
967 struct sched_domain *sd, enum cpu_idle_type idle,
968 int *all_pinned, int *this_best_prio)
bb44e5d1 969{
c7a1e46a
SR
970 /* don't touch RT tasks */
971 return 0;
e1d1484f
PW
972}
973
974static int
975move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
976 struct sched_domain *sd, enum cpu_idle_type idle)
977{
c7a1e46a
SR
978 /* don't touch RT tasks */
979 return 0;
bb44e5d1 980}
deeeccd4 981
73fe6aae
GH
982static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
983{
984 int weight = cpus_weight(*new_mask);
985
986 BUG_ON(!rt_task(p));
987
988 /*
989 * Update the migration status of the RQ if we have an RT task
990 * which is running AND changing its weight value.
991 */
6f505b16 992 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
73fe6aae
GH
993 struct rq *rq = task_rq(p);
994
6f505b16 995 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
73fe6aae 996 rq->rt.rt_nr_migratory++;
6f505b16 997 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
73fe6aae
GH
998 BUG_ON(!rq->rt.rt_nr_migratory);
999 rq->rt.rt_nr_migratory--;
1000 }
1001
1002 update_rt_migration(rq);
1003 }
1004
1005 p->cpus_allowed = *new_mask;
6f505b16 1006 p->rt.nr_cpus_allowed = weight;
73fe6aae 1007}
deeeccd4 1008
bdd7c81b
IM
1009/* Assumes rq->lock is held */
1010static void join_domain_rt(struct rq *rq)
1011{
1012 if (rq->rt.overloaded)
1013 rt_set_overload(rq);
1014}
1015
1016/* Assumes rq->lock is held */
1017static void leave_domain_rt(struct rq *rq)
1018{
1019 if (rq->rt.overloaded)
1020 rt_clear_overload(rq);
1021}
cb469845
SR
1022
1023/*
1024 * When switch from the rt queue, we bring ourselves to a position
1025 * that we might want to pull RT tasks from other runqueues.
1026 */
1027static void switched_from_rt(struct rq *rq, struct task_struct *p,
1028 int running)
1029{
1030 /*
1031 * If there are other RT tasks then we will reschedule
1032 * and the scheduling of the other RT tasks will handle
1033 * the balancing. But if we are the last RT task
1034 * we may need to handle the pulling of RT tasks
1035 * now.
1036 */
1037 if (!rq->rt.rt_nr_running)
1038 pull_rt_task(rq);
1039}
1040#endif /* CONFIG_SMP */
1041
1042/*
1043 * When switching a task to RT, we may overload the runqueue
1044 * with RT tasks. In this case we try to push them off to
1045 * other runqueues.
1046 */
1047static void switched_to_rt(struct rq *rq, struct task_struct *p,
1048 int running)
1049{
1050 int check_resched = 1;
1051
1052 /*
1053 * If we are already running, then there's nothing
1054 * that needs to be done. But if we are not running
1055 * we may need to preempt the current running task.
1056 * If that current running task is also an RT task
1057 * then see if we can move to another run queue.
1058 */
1059 if (!running) {
1060#ifdef CONFIG_SMP
1061 if (rq->rt.overloaded && push_rt_task(rq) &&
1062 /* Don't resched if we changed runqueues */
1063 rq != task_rq(p))
1064 check_resched = 0;
1065#endif /* CONFIG_SMP */
1066 if (check_resched && p->prio < rq->curr->prio)
1067 resched_task(rq->curr);
1068 }
1069}
1070
1071/*
1072 * Priority of the task has changed. This may cause
1073 * us to initiate a push or pull.
1074 */
1075static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1076 int oldprio, int running)
1077{
1078 if (running) {
1079#ifdef CONFIG_SMP
1080 /*
1081 * If our priority decreases while running, we
1082 * may need to pull tasks to this runqueue.
1083 */
1084 if (oldprio < p->prio)
1085 pull_rt_task(rq);
1086 /*
1087 * If there's a higher priority task waiting to run
1088 * then reschedule.
1089 */
1090 if (p->prio > rq->rt.highest_prio)
1091 resched_task(p);
1092#else
1093 /* For UP simply resched on drop of prio */
1094 if (oldprio < p->prio)
1095 resched_task(p);
e8fa1362 1096#endif /* CONFIG_SMP */
cb469845
SR
1097 } else {
1098 /*
1099 * This task is not running, but if it is
1100 * greater than the current running task
1101 * then reschedule.
1102 */
1103 if (p->prio < rq->curr->prio)
1104 resched_task(rq->curr);
1105 }
1106}
1107
78f2c7db
PZ
1108static void watchdog(struct rq *rq, struct task_struct *p)
1109{
1110 unsigned long soft, hard;
1111
1112 if (!p->signal)
1113 return;
1114
1115 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1116 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1117
1118 if (soft != RLIM_INFINITY) {
1119 unsigned long next;
1120
1121 p->rt.timeout++;
1122 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1123 if (p->rt.timeout > next)
78f2c7db
PZ
1124 p->it_sched_expires = p->se.sum_exec_runtime;
1125 }
1126}
bb44e5d1 1127
8f4d37ec 1128static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1129{
67e2be02
PZ
1130 update_curr_rt(rq);
1131
78f2c7db
PZ
1132 watchdog(rq, p);
1133
bb44e5d1
IM
1134 /*
1135 * RR tasks need a special form of timeslice management.
1136 * FIFO tasks have no timeslices.
1137 */
1138 if (p->policy != SCHED_RR)
1139 return;
1140
fa717060 1141 if (--p->rt.time_slice)
bb44e5d1
IM
1142 return;
1143
fa717060 1144 p->rt.time_slice = DEF_TIMESLICE;
bb44e5d1 1145
98fbc798
DA
1146 /*
1147 * Requeue to the end of queue if we are not the only element
1148 * on the queue:
1149 */
fa717060 1150 if (p->rt.run_list.prev != p->rt.run_list.next) {
98fbc798
DA
1151 requeue_task_rt(rq, p);
1152 set_tsk_need_resched(p);
1153 }
bb44e5d1
IM
1154}
1155
83b699ed
SV
1156static void set_curr_task_rt(struct rq *rq)
1157{
1158 struct task_struct *p = rq->curr;
1159
1160 p->se.exec_start = rq->clock;
1161}
1162
5522d5d5
IM
1163const struct sched_class rt_sched_class = {
1164 .next = &fair_sched_class,
bb44e5d1
IM
1165 .enqueue_task = enqueue_task_rt,
1166 .dequeue_task = dequeue_task_rt,
1167 .yield_task = yield_task_rt,
e7693a36
GH
1168#ifdef CONFIG_SMP
1169 .select_task_rq = select_task_rq_rt,
1170#endif /* CONFIG_SMP */
bb44e5d1
IM
1171
1172 .check_preempt_curr = check_preempt_curr_rt,
1173
1174 .pick_next_task = pick_next_task_rt,
1175 .put_prev_task = put_prev_task_rt,
1176
681f3e68 1177#ifdef CONFIG_SMP
bb44e5d1 1178 .load_balance = load_balance_rt,
e1d1484f 1179 .move_one_task = move_one_task_rt,
73fe6aae 1180 .set_cpus_allowed = set_cpus_allowed_rt,
bdd7c81b
IM
1181 .join_domain = join_domain_rt,
1182 .leave_domain = leave_domain_rt,
9a897c5a
SR
1183 .pre_schedule = pre_schedule_rt,
1184 .post_schedule = post_schedule_rt,
1185 .task_wake_up = task_wake_up_rt,
cb469845 1186 .switched_from = switched_from_rt,
681f3e68 1187#endif
bb44e5d1 1188
83b699ed 1189 .set_curr_task = set_curr_task_rt,
bb44e5d1 1190 .task_tick = task_tick_rt,
cb469845
SR
1191
1192 .prio_changed = prio_changed_rt,
1193 .switched_to = switched_to_rt,
bb44e5d1 1194};