]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
[PATCH] lockdep: annotate timer base locks
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
c59ede7b 30#include <linux/capability.h>
1da177e4
LT
31#include <linux/completion.h>
32#include <linux/kernel_stat.h>
9a11b49a 33#include <linux/debug_locks.h>
1da177e4
LT
34#include <linux/security.h>
35#include <linux/notifier.h>
36#include <linux/profile.h>
37#include <linux/suspend.h>
198e2f18 38#include <linux/vmalloc.h>
1da177e4
LT
39#include <linux/blkdev.h>
40#include <linux/delay.h>
41#include <linux/smp.h>
42#include <linux/threads.h>
43#include <linux/timer.h>
44#include <linux/rcupdate.h>
45#include <linux/cpu.h>
46#include <linux/cpuset.h>
47#include <linux/percpu.h>
48#include <linux/kthread.h>
49#include <linux/seq_file.h>
50#include <linux/syscalls.h>
51#include <linux/times.h>
52#include <linux/acct.h>
c6fd91f0 53#include <linux/kprobes.h>
1da177e4
LT
54#include <asm/tlb.h>
55
56#include <asm/unistd.h>
57
58/*
59 * Convert user-nice values [ -20 ... 0 ... 19 ]
60 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
61 * and back.
62 */
63#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
64#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
65#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
66
67/*
68 * 'User priority' is the nice value converted to something we
69 * can work with better when scaling various scheduler parameters,
70 * it's a [ 0 ... 39 ] range.
71 */
72#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
73#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
74#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
75
76/*
77 * Some helpers for converting nanosecond timing to jiffy resolution
78 */
79#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
80#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
81
82/*
83 * These are the 'tuning knobs' of the scheduler:
84 *
85 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
86 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
87 * Timeslices get refilled after they expire.
88 */
89#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
90#define DEF_TIMESLICE (100 * HZ / 1000)
91#define ON_RUNQUEUE_WEIGHT 30
92#define CHILD_PENALTY 95
93#define PARENT_PENALTY 100
94#define EXIT_WEIGHT 3
95#define PRIO_BONUS_RATIO 25
96#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
97#define INTERACTIVE_DELTA 2
98#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
99#define STARVATION_LIMIT (MAX_SLEEP_AVG)
100#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
101
102/*
103 * If a task is 'interactive' then we reinsert it in the active
104 * array after it has expired its current timeslice. (it will not
105 * continue to run immediately, it will still roundrobin with
106 * other interactive tasks.)
107 *
108 * This part scales the interactivity limit depending on niceness.
109 *
110 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
111 * Here are a few examples of different nice levels:
112 *
113 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
114 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
115 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
116 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
117 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
118 *
119 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
120 * priority range a task can explore, a value of '1' means the
121 * task is rated interactive.)
122 *
123 * Ie. nice +19 tasks can never get 'interactive' enough to be
124 * reinserted into the active array. And only heavily CPU-hog nice -20
125 * tasks will be expired. Default nice 0 tasks are somewhere between,
126 * it takes some effort for them to get interactive, but it's not
127 * too hard.
128 */
129
130#define CURRENT_BONUS(p) \
131 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
132 MAX_SLEEP_AVG)
133
134#define GRANULARITY (10 * HZ / 1000 ? : 1)
135
136#ifdef CONFIG_SMP
137#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
139 num_online_cpus())
140#else
141#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
142 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
143#endif
144
145#define SCALE(v1,v1_max,v2_max) \
146 (v1) * (v2_max) / (v1_max)
147
148#define DELTA(p) \
013d3868
MA
149 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
150 INTERACTIVE_DELTA)
1da177e4
LT
151
152#define TASK_INTERACTIVE(p) \
153 ((p)->prio <= (p)->static_prio - DELTA(p))
154
155#define INTERACTIVE_SLEEP(p) \
156 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
157 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
158
159#define TASK_PREEMPTS_CURR(p, rq) \
160 ((p)->prio < (rq)->curr->prio)
161
162/*
163 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
164 * to time slice values: [800ms ... 100ms ... 5ms]
165 *
166 * The higher a thread's priority, the bigger timeslices
167 * it gets during one round of execution. But even the lowest
168 * priority thread gets MIN_TIMESLICE worth of execution time.
169 */
170
171#define SCALE_PRIO(x, prio) \
2dd73a4f 172 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
1da177e4 173
2dd73a4f 174static unsigned int static_prio_timeslice(int static_prio)
1da177e4 175{
2dd73a4f
PW
176 if (static_prio < NICE_TO_PRIO(0))
177 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
1da177e4 178 else
2dd73a4f 179 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
1da177e4 180}
2dd73a4f
PW
181
182static inline unsigned int task_timeslice(task_t *p)
183{
184 return static_prio_timeslice(p->static_prio);
185}
186
1da177e4
LT
187#define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
188 < (long long) (sd)->cache_hot_time)
189
190/*
191 * These are the runqueue data structures:
192 */
193
1da177e4
LT
194typedef struct runqueue runqueue_t;
195
196struct prio_array {
197 unsigned int nr_active;
d444886e 198 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
1da177e4
LT
199 struct list_head queue[MAX_PRIO];
200};
201
202/*
203 * This is the main, per-CPU runqueue data structure.
204 *
205 * Locking rule: those places that want to lock multiple runqueues
206 * (such as the load balancing or the thread migration code), lock
207 * acquire operations must be ordered by ascending &runqueue.
208 */
209struct runqueue {
210 spinlock_t lock;
211
212 /*
213 * nr_running and cpu_load should be in the same cacheline because
214 * remote CPUs use both these fields when doing load calculation.
215 */
216 unsigned long nr_running;
2dd73a4f 217 unsigned long raw_weighted_load;
1da177e4 218#ifdef CONFIG_SMP
7897986b 219 unsigned long cpu_load[3];
1da177e4
LT
220#endif
221 unsigned long long nr_switches;
222
223 /*
224 * This is part of a global counter where only the total sum
225 * over all CPUs matters. A task can increase this counter on
226 * one CPU and if it got migrated afterwards it may decrease
227 * it on another CPU. Always updated under the runqueue lock:
228 */
229 unsigned long nr_uninterruptible;
230
231 unsigned long expired_timestamp;
232 unsigned long long timestamp_last_tick;
233 task_t *curr, *idle;
234 struct mm_struct *prev_mm;
235 prio_array_t *active, *expired, arrays[2];
236 int best_expired_prio;
237 atomic_t nr_iowait;
238
239#ifdef CONFIG_SMP
240 struct sched_domain *sd;
241
242 /* For active balancing */
243 int active_balance;
244 int push_cpu;
245
246 task_t *migration_thread;
247 struct list_head migration_queue;
248#endif
249
250#ifdef CONFIG_SCHEDSTATS
251 /* latency stats */
252 struct sched_info rq_sched_info;
253
254 /* sys_sched_yield() stats */
255 unsigned long yld_exp_empty;
256 unsigned long yld_act_empty;
257 unsigned long yld_both_empty;
258 unsigned long yld_cnt;
259
260 /* schedule() stats */
261 unsigned long sched_switch;
262 unsigned long sched_cnt;
263 unsigned long sched_goidle;
264
265 /* try_to_wake_up() stats */
266 unsigned long ttwu_cnt;
267 unsigned long ttwu_local;
268#endif
269};
270
271static DEFINE_PER_CPU(struct runqueue, runqueues);
272
674311d5
NP
273/*
274 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 275 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
276 *
277 * The domain tree of any CPU may only be accessed from within
278 * preempt-disabled sections.
279 */
1da177e4 280#define for_each_domain(cpu, domain) \
674311d5 281for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
1da177e4
LT
282
283#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
284#define this_rq() (&__get_cpu_var(runqueues))
285#define task_rq(p) cpu_rq(task_cpu(p))
286#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
287
1da177e4 288#ifndef prepare_arch_switch
4866cde0
NP
289# define prepare_arch_switch(next) do { } while (0)
290#endif
291#ifndef finish_arch_switch
292# define finish_arch_switch(prev) do { } while (0)
293#endif
294
295#ifndef __ARCH_WANT_UNLOCKED_CTXSW
296static inline int task_running(runqueue_t *rq, task_t *p)
297{
298 return rq->curr == p;
299}
300
301static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
302{
303}
304
305static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
306{
da04c035
IM
307#ifdef CONFIG_DEBUG_SPINLOCK
308 /* this is a valid case when another task releases the spinlock */
309 rq->lock.owner = current;
310#endif
8a25d5de
IM
311 /*
312 * If we are tracking spinlock dependencies then we have to
313 * fix up the runqueue lock - which gets 'carried over' from
314 * prev into current:
315 */
316 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
317
4866cde0
NP
318 spin_unlock_irq(&rq->lock);
319}
320
321#else /* __ARCH_WANT_UNLOCKED_CTXSW */
322static inline int task_running(runqueue_t *rq, task_t *p)
323{
324#ifdef CONFIG_SMP
325 return p->oncpu;
326#else
327 return rq->curr == p;
328#endif
329}
330
331static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
332{
333#ifdef CONFIG_SMP
334 /*
335 * We can optimise this out completely for !SMP, because the
336 * SMP rebalancing from interrupt is the only thing that cares
337 * here.
338 */
339 next->oncpu = 1;
340#endif
341#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
342 spin_unlock_irq(&rq->lock);
343#else
344 spin_unlock(&rq->lock);
345#endif
346}
347
348static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
349{
350#ifdef CONFIG_SMP
351 /*
352 * After ->oncpu is cleared, the task can be moved to a different CPU.
353 * We must ensure this doesn't happen until the switch is completely
354 * finished.
355 */
356 smp_wmb();
357 prev->oncpu = 0;
358#endif
359#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
360 local_irq_enable();
1da177e4 361#endif
4866cde0
NP
362}
363#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 364
b29739f9
IM
365/*
366 * __task_rq_lock - lock the runqueue a given task resides on.
367 * Must be called interrupts disabled.
368 */
369static inline runqueue_t *__task_rq_lock(task_t *p)
370 __acquires(rq->lock)
371{
372 struct runqueue *rq;
373
374repeat_lock_task:
375 rq = task_rq(p);
376 spin_lock(&rq->lock);
377 if (unlikely(rq != task_rq(p))) {
378 spin_unlock(&rq->lock);
379 goto repeat_lock_task;
380 }
381 return rq;
382}
383
1da177e4
LT
384/*
385 * task_rq_lock - lock the runqueue a given task resides on and disable
386 * interrupts. Note the ordering: we can safely lookup the task_rq without
387 * explicitly disabling preemption.
388 */
9fea80e4 389static runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
1da177e4
LT
390 __acquires(rq->lock)
391{
392 struct runqueue *rq;
393
394repeat_lock_task:
395 local_irq_save(*flags);
396 rq = task_rq(p);
397 spin_lock(&rq->lock);
398 if (unlikely(rq != task_rq(p))) {
399 spin_unlock_irqrestore(&rq->lock, *flags);
400 goto repeat_lock_task;
401 }
402 return rq;
403}
404
b29739f9
IM
405static inline void __task_rq_unlock(runqueue_t *rq)
406 __releases(rq->lock)
407{
408 spin_unlock(&rq->lock);
409}
410
1da177e4
LT
411static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
412 __releases(rq->lock)
413{
414 spin_unlock_irqrestore(&rq->lock, *flags);
415}
416
417#ifdef CONFIG_SCHEDSTATS
418/*
419 * bump this up when changing the output format or the meaning of an existing
420 * format, so that tools can adapt (or abort)
421 */
68767a0a 422#define SCHEDSTAT_VERSION 12
1da177e4
LT
423
424static int show_schedstat(struct seq_file *seq, void *v)
425{
426 int cpu;
427
428 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
429 seq_printf(seq, "timestamp %lu\n", jiffies);
430 for_each_online_cpu(cpu) {
431 runqueue_t *rq = cpu_rq(cpu);
432#ifdef CONFIG_SMP
433 struct sched_domain *sd;
434 int dcnt = 0;
435#endif
436
437 /* runqueue-specific stats */
438 seq_printf(seq,
439 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
440 cpu, rq->yld_both_empty,
441 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
442 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
443 rq->ttwu_cnt, rq->ttwu_local,
444 rq->rq_sched_info.cpu_time,
445 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
446
447 seq_printf(seq, "\n");
448
449#ifdef CONFIG_SMP
450 /* domain-specific stats */
674311d5 451 preempt_disable();
1da177e4
LT
452 for_each_domain(cpu, sd) {
453 enum idle_type itype;
454 char mask_str[NR_CPUS];
455
456 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
457 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
458 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
459 itype++) {
460 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
461 sd->lb_cnt[itype],
462 sd->lb_balanced[itype],
463 sd->lb_failed[itype],
464 sd->lb_imbalance[itype],
465 sd->lb_gained[itype],
466 sd->lb_hot_gained[itype],
467 sd->lb_nobusyq[itype],
468 sd->lb_nobusyg[itype]);
469 }
68767a0a 470 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
1da177e4 471 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
68767a0a
NP
472 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
473 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
1da177e4
LT
474 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
475 }
674311d5 476 preempt_enable();
1da177e4
LT
477#endif
478 }
479 return 0;
480}
481
482static int schedstat_open(struct inode *inode, struct file *file)
483{
484 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
485 char *buf = kmalloc(size, GFP_KERNEL);
486 struct seq_file *m;
487 int res;
488
489 if (!buf)
490 return -ENOMEM;
491 res = single_open(file, show_schedstat, NULL);
492 if (!res) {
493 m = file->private_data;
494 m->buf = buf;
495 m->size = size;
496 } else
497 kfree(buf);
498 return res;
499}
500
501struct file_operations proc_schedstat_operations = {
502 .open = schedstat_open,
503 .read = seq_read,
504 .llseek = seq_lseek,
505 .release = single_release,
506};
507
508# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
509# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
510#else /* !CONFIG_SCHEDSTATS */
511# define schedstat_inc(rq, field) do { } while (0)
512# define schedstat_add(rq, field, amt) do { } while (0)
513#endif
514
515/*
516 * rq_lock - lock a given runqueue and disable interrupts.
517 */
518static inline runqueue_t *this_rq_lock(void)
519 __acquires(rq->lock)
520{
521 runqueue_t *rq;
522
523 local_irq_disable();
524 rq = this_rq();
525 spin_lock(&rq->lock);
526
527 return rq;
528}
529
1da177e4
LT
530#ifdef CONFIG_SCHEDSTATS
531/*
532 * Called when a process is dequeued from the active array and given
533 * the cpu. We should note that with the exception of interactive
534 * tasks, the expired queue will become the active queue after the active
535 * queue is empty, without explicitly dequeuing and requeuing tasks in the
536 * expired queue. (Interactive tasks may be requeued directly to the
537 * active queue, thus delaying tasks in the expired queue from running;
538 * see scheduler_tick()).
539 *
540 * This function is only called from sched_info_arrive(), rather than
541 * dequeue_task(). Even though a task may be queued and dequeued multiple
542 * times as it is shuffled about, we're really interested in knowing how
543 * long it was from the *first* time it was queued to the time that it
544 * finally hit a cpu.
545 */
546static inline void sched_info_dequeued(task_t *t)
547{
548 t->sched_info.last_queued = 0;
549}
550
551/*
552 * Called when a task finally hits the cpu. We can now calculate how
553 * long it was waiting to run. We also note when it began so that we
554 * can keep stats on how long its timeslice is.
555 */
858119e1 556static void sched_info_arrive(task_t *t)
1da177e4
LT
557{
558 unsigned long now = jiffies, diff = 0;
559 struct runqueue *rq = task_rq(t);
560
561 if (t->sched_info.last_queued)
562 diff = now - t->sched_info.last_queued;
563 sched_info_dequeued(t);
564 t->sched_info.run_delay += diff;
565 t->sched_info.last_arrival = now;
566 t->sched_info.pcnt++;
567
568 if (!rq)
569 return;
570
571 rq->rq_sched_info.run_delay += diff;
572 rq->rq_sched_info.pcnt++;
573}
574
575/*
576 * Called when a process is queued into either the active or expired
577 * array. The time is noted and later used to determine how long we
578 * had to wait for us to reach the cpu. Since the expired queue will
579 * become the active queue after active queue is empty, without dequeuing
580 * and requeuing any tasks, we are interested in queuing to either. It
581 * is unusual but not impossible for tasks to be dequeued and immediately
582 * requeued in the same or another array: this can happen in sched_yield(),
583 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
584 * to runqueue.
585 *
586 * This function is only called from enqueue_task(), but also only updates
587 * the timestamp if it is already not set. It's assumed that
588 * sched_info_dequeued() will clear that stamp when appropriate.
589 */
590static inline void sched_info_queued(task_t *t)
591{
592 if (!t->sched_info.last_queued)
593 t->sched_info.last_queued = jiffies;
594}
595
596/*
597 * Called when a process ceases being the active-running process, either
598 * voluntarily or involuntarily. Now we can calculate how long we ran.
599 */
600static inline void sched_info_depart(task_t *t)
601{
602 struct runqueue *rq = task_rq(t);
603 unsigned long diff = jiffies - t->sched_info.last_arrival;
604
605 t->sched_info.cpu_time += diff;
606
607 if (rq)
608 rq->rq_sched_info.cpu_time += diff;
609}
610
611/*
612 * Called when tasks are switched involuntarily due, typically, to expiring
613 * their time slice. (This may also be called when switching to or from
614 * the idle task.) We are only called when prev != next.
615 */
616static inline void sched_info_switch(task_t *prev, task_t *next)
617{
618 struct runqueue *rq = task_rq(prev);
619
620 /*
621 * prev now departs the cpu. It's not interesting to record
622 * stats about how efficient we were at scheduling the idle
623 * process, however.
624 */
625 if (prev != rq->idle)
626 sched_info_depart(prev);
627
628 if (next != rq->idle)
629 sched_info_arrive(next);
630}
631#else
632#define sched_info_queued(t) do { } while (0)
633#define sched_info_switch(t, next) do { } while (0)
634#endif /* CONFIG_SCHEDSTATS */
635
636/*
637 * Adding/removing a task to/from a priority array:
638 */
639static void dequeue_task(struct task_struct *p, prio_array_t *array)
640{
641 array->nr_active--;
642 list_del(&p->run_list);
643 if (list_empty(array->queue + p->prio))
644 __clear_bit(p->prio, array->bitmap);
645}
646
647static void enqueue_task(struct task_struct *p, prio_array_t *array)
648{
649 sched_info_queued(p);
650 list_add_tail(&p->run_list, array->queue + p->prio);
651 __set_bit(p->prio, array->bitmap);
652 array->nr_active++;
653 p->array = array;
654}
655
656/*
657 * Put task to the end of the run list without the overhead of dequeue
658 * followed by enqueue.
659 */
660static void requeue_task(struct task_struct *p, prio_array_t *array)
661{
662 list_move_tail(&p->run_list, array->queue + p->prio);
663}
664
665static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
666{
667 list_add(&p->run_list, array->queue + p->prio);
668 __set_bit(p->prio, array->bitmap);
669 array->nr_active++;
670 p->array = array;
671}
672
673/*
b29739f9 674 * __normal_prio - return the priority that is based on the static
1da177e4
LT
675 * priority but is modified by bonuses/penalties.
676 *
677 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
678 * into the -5 ... 0 ... +5 bonus/penalty range.
679 *
680 * We use 25% of the full 0...39 priority range so that:
681 *
682 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
683 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
684 *
685 * Both properties are important to certain workloads.
686 */
b29739f9
IM
687
688static inline int __normal_prio(task_t *p)
1da177e4
LT
689{
690 int bonus, prio;
691
1da177e4
LT
692 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
693
694 prio = p->static_prio - bonus;
695 if (prio < MAX_RT_PRIO)
696 prio = MAX_RT_PRIO;
697 if (prio > MAX_PRIO-1)
698 prio = MAX_PRIO-1;
699 return prio;
700}
701
2dd73a4f
PW
702/*
703 * To aid in avoiding the subversion of "niceness" due to uneven distribution
704 * of tasks with abnormal "nice" values across CPUs the contribution that
705 * each task makes to its run queue's load is weighted according to its
706 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
707 * scaled version of the new time slice allocation that they receive on time
708 * slice expiry etc.
709 */
710
711/*
712 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
713 * If static_prio_timeslice() is ever changed to break this assumption then
714 * this code will need modification
715 */
716#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
717#define LOAD_WEIGHT(lp) \
718 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
719#define PRIO_TO_LOAD_WEIGHT(prio) \
720 LOAD_WEIGHT(static_prio_timeslice(prio))
721#define RTPRIO_TO_LOAD_WEIGHT(rp) \
722 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
723
724static void set_load_weight(task_t *p)
725{
b29739f9 726 if (has_rt_policy(p)) {
2dd73a4f
PW
727#ifdef CONFIG_SMP
728 if (p == task_rq(p)->migration_thread)
729 /*
730 * The migration thread does the actual balancing.
731 * Giving its load any weight will skew balancing
732 * adversely.
733 */
734 p->load_weight = 0;
735 else
736#endif
737 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
738 } else
739 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
740}
741
742static inline void inc_raw_weighted_load(runqueue_t *rq, const task_t *p)
743{
744 rq->raw_weighted_load += p->load_weight;
745}
746
747static inline void dec_raw_weighted_load(runqueue_t *rq, const task_t *p)
748{
749 rq->raw_weighted_load -= p->load_weight;
750}
751
752static inline void inc_nr_running(task_t *p, runqueue_t *rq)
753{
754 rq->nr_running++;
755 inc_raw_weighted_load(rq, p);
756}
757
758static inline void dec_nr_running(task_t *p, runqueue_t *rq)
759{
760 rq->nr_running--;
761 dec_raw_weighted_load(rq, p);
762}
763
b29739f9
IM
764/*
765 * Calculate the expected normal priority: i.e. priority
766 * without taking RT-inheritance into account. Might be
767 * boosted by interactivity modifiers. Changes upon fork,
768 * setprio syscalls, and whenever the interactivity
769 * estimator recalculates.
770 */
771static inline int normal_prio(task_t *p)
772{
773 int prio;
774
775 if (has_rt_policy(p))
776 prio = MAX_RT_PRIO-1 - p->rt_priority;
777 else
778 prio = __normal_prio(p);
779 return prio;
780}
781
782/*
783 * Calculate the current priority, i.e. the priority
784 * taken into account by the scheduler. This value might
785 * be boosted by RT tasks, or might be boosted by
786 * interactivity modifiers. Will be RT if the task got
787 * RT-boosted. If not then it returns p->normal_prio.
788 */
789static int effective_prio(task_t *p)
790{
791 p->normal_prio = normal_prio(p);
792 /*
793 * If we are RT tasks or we were boosted to RT priority,
794 * keep the priority unchanged. Otherwise, update priority
795 * to the normal priority:
796 */
797 if (!rt_prio(p->prio))
798 return p->normal_prio;
799 return p->prio;
800}
801
1da177e4
LT
802/*
803 * __activate_task - move a task to the runqueue.
804 */
d425b274 805static void __activate_task(task_t *p, runqueue_t *rq)
1da177e4 806{
d425b274
CK
807 prio_array_t *target = rq->active;
808
f1adad78 809 if (batch_task(p))
d425b274
CK
810 target = rq->expired;
811 enqueue_task(p, target);
2dd73a4f 812 inc_nr_running(p, rq);
1da177e4
LT
813}
814
815/*
816 * __activate_idle_task - move idle task to the _front_ of runqueue.
817 */
818static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
819{
820 enqueue_task_head(p, rq->active);
2dd73a4f 821 inc_nr_running(p, rq);
1da177e4
LT
822}
823
b29739f9
IM
824/*
825 * Recalculate p->normal_prio and p->prio after having slept,
826 * updating the sleep-average too:
827 */
a3464a10 828static int recalc_task_prio(task_t *p, unsigned long long now)
1da177e4
LT
829{
830 /* Caller must always ensure 'now >= p->timestamp' */
72d2854d 831 unsigned long sleep_time = now - p->timestamp;
1da177e4 832
d425b274 833 if (batch_task(p))
b0a9499c 834 sleep_time = 0;
1da177e4
LT
835
836 if (likely(sleep_time > 0)) {
837 /*
72d2854d
CK
838 * This ceiling is set to the lowest priority that would allow
839 * a task to be reinserted into the active array on timeslice
840 * completion.
1da177e4 841 */
72d2854d 842 unsigned long ceiling = INTERACTIVE_SLEEP(p);
e72ff0bb 843
72d2854d
CK
844 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
845 /*
846 * Prevents user tasks from achieving best priority
847 * with one single large enough sleep.
848 */
849 p->sleep_avg = ceiling;
850 /*
851 * Using INTERACTIVE_SLEEP() as a ceiling places a
852 * nice(0) task 1ms sleep away from promotion, and
853 * gives it 700ms to round-robin with no chance of
854 * being demoted. This is more than generous, so
855 * mark this sleep as non-interactive to prevent the
856 * on-runqueue bonus logic from intervening should
857 * this task not receive cpu immediately.
858 */
859 p->sleep_type = SLEEP_NONINTERACTIVE;
1da177e4 860 } else {
1da177e4
LT
861 /*
862 * Tasks waking from uninterruptible sleep are
863 * limited in their sleep_avg rise as they
864 * are likely to be waiting on I/O
865 */
3dee386e 866 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
72d2854d 867 if (p->sleep_avg >= ceiling)
1da177e4
LT
868 sleep_time = 0;
869 else if (p->sleep_avg + sleep_time >=
72d2854d
CK
870 ceiling) {
871 p->sleep_avg = ceiling;
872 sleep_time = 0;
1da177e4
LT
873 }
874 }
875
876 /*
877 * This code gives a bonus to interactive tasks.
878 *
879 * The boost works by updating the 'average sleep time'
880 * value here, based on ->timestamp. The more time a
881 * task spends sleeping, the higher the average gets -
882 * and the higher the priority boost gets as well.
883 */
884 p->sleep_avg += sleep_time;
885
1da177e4 886 }
72d2854d
CK
887 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
888 p->sleep_avg = NS_MAX_SLEEP_AVG;
1da177e4
LT
889 }
890
a3464a10 891 return effective_prio(p);
1da177e4
LT
892}
893
894/*
895 * activate_task - move a task to the runqueue and do priority recalculation
896 *
897 * Update all the scheduling statistics stuff. (sleep average
898 * calculation, priority modifiers, etc.)
899 */
900static void activate_task(task_t *p, runqueue_t *rq, int local)
901{
902 unsigned long long now;
903
904 now = sched_clock();
905#ifdef CONFIG_SMP
906 if (!local) {
907 /* Compensate for drifting sched_clock */
908 runqueue_t *this_rq = this_rq();
909 now = (now - this_rq->timestamp_last_tick)
910 + rq->timestamp_last_tick;
911 }
912#endif
913
a47ab937
KC
914 if (!rt_task(p))
915 p->prio = recalc_task_prio(p, now);
1da177e4
LT
916
917 /*
918 * This checks to make sure it's not an uninterruptible task
919 * that is now waking up.
920 */
3dee386e 921 if (p->sleep_type == SLEEP_NORMAL) {
1da177e4
LT
922 /*
923 * Tasks which were woken up by interrupts (ie. hw events)
924 * are most likely of interactive nature. So we give them
925 * the credit of extending their sleep time to the period
926 * of time they spend on the runqueue, waiting for execution
927 * on a CPU, first time around:
928 */
929 if (in_interrupt())
3dee386e 930 p->sleep_type = SLEEP_INTERRUPTED;
1da177e4
LT
931 else {
932 /*
933 * Normal first-time wakeups get a credit too for
934 * on-runqueue time, but it will be weighted down:
935 */
3dee386e 936 p->sleep_type = SLEEP_INTERACTIVE;
1da177e4
LT
937 }
938 }
939 p->timestamp = now;
940
941 __activate_task(p, rq);
942}
943
944/*
945 * deactivate_task - remove a task from the runqueue.
946 */
947static void deactivate_task(struct task_struct *p, runqueue_t *rq)
948{
2dd73a4f 949 dec_nr_running(p, rq);
1da177e4
LT
950 dequeue_task(p, p->array);
951 p->array = NULL;
952}
953
954/*
955 * resched_task - mark a task 'to be rescheduled now'.
956 *
957 * On UP this means the setting of the need_resched flag, on SMP it
958 * might also involve a cross-CPU call to trigger the scheduler on
959 * the target CPU.
960 */
961#ifdef CONFIG_SMP
495ab9c0
AK
962
963#ifndef tsk_is_polling
964#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
965#endif
966
1da177e4
LT
967static void resched_task(task_t *p)
968{
64c7c8f8 969 int cpu;
1da177e4
LT
970
971 assert_spin_locked(&task_rq(p)->lock);
972
64c7c8f8
NP
973 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
974 return;
975
976 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1da177e4 977
64c7c8f8
NP
978 cpu = task_cpu(p);
979 if (cpu == smp_processor_id())
980 return;
981
495ab9c0 982 /* NEED_RESCHED must be visible before we test polling */
64c7c8f8 983 smp_mb();
495ab9c0 984 if (!tsk_is_polling(p))
64c7c8f8 985 smp_send_reschedule(cpu);
1da177e4
LT
986}
987#else
988static inline void resched_task(task_t *p)
989{
64c7c8f8 990 assert_spin_locked(&task_rq(p)->lock);
1da177e4
LT
991 set_tsk_need_resched(p);
992}
993#endif
994
995/**
996 * task_curr - is this task currently executing on a CPU?
997 * @p: the task in question.
998 */
999inline int task_curr(const task_t *p)
1000{
1001 return cpu_curr(task_cpu(p)) == p;
1002}
1003
2dd73a4f
PW
1004/* Used instead of source_load when we know the type == 0 */
1005unsigned long weighted_cpuload(const int cpu)
1006{
1007 return cpu_rq(cpu)->raw_weighted_load;
1008}
1009
1da177e4 1010#ifdef CONFIG_SMP
1da177e4
LT
1011typedef struct {
1012 struct list_head list;
1da177e4 1013
1da177e4
LT
1014 task_t *task;
1015 int dest_cpu;
1016
1da177e4
LT
1017 struct completion done;
1018} migration_req_t;
1019
1020/*
1021 * The task's runqueue lock must be held.
1022 * Returns true if you have to wait for migration thread.
1023 */
1024static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
1025{
1026 runqueue_t *rq = task_rq(p);
1027
1028 /*
1029 * If the task is not on a runqueue (and not running), then
1030 * it is sufficient to simply update the task's cpu field.
1031 */
1032 if (!p->array && !task_running(rq, p)) {
1033 set_task_cpu(p, dest_cpu);
1034 return 0;
1035 }
1036
1037 init_completion(&req->done);
1da177e4
LT
1038 req->task = p;
1039 req->dest_cpu = dest_cpu;
1040 list_add(&req->list, &rq->migration_queue);
1041 return 1;
1042}
1043
1044/*
1045 * wait_task_inactive - wait for a thread to unschedule.
1046 *
1047 * The caller must ensure that the task *will* unschedule sometime soon,
1048 * else this function might spin for a *long* time. This function can't
1049 * be called with interrupts off, or it may introduce deadlock with
1050 * smp_call_function() if an IPI is sent by the same process we are
1051 * waiting to become inactive.
1052 */
95cdf3b7 1053void wait_task_inactive(task_t *p)
1da177e4
LT
1054{
1055 unsigned long flags;
1056 runqueue_t *rq;
1057 int preempted;
1058
1059repeat:
1060 rq = task_rq_lock(p, &flags);
1061 /* Must be off runqueue entirely, not preempted. */
1062 if (unlikely(p->array || task_running(rq, p))) {
1063 /* If it's preempted, we yield. It could be a while. */
1064 preempted = !task_running(rq, p);
1065 task_rq_unlock(rq, &flags);
1066 cpu_relax();
1067 if (preempted)
1068 yield();
1069 goto repeat;
1070 }
1071 task_rq_unlock(rq, &flags);
1072}
1073
1074/***
1075 * kick_process - kick a running thread to enter/exit the kernel
1076 * @p: the to-be-kicked thread
1077 *
1078 * Cause a process which is running on another CPU to enter
1079 * kernel-mode, without any delay. (to get signals handled.)
1080 *
1081 * NOTE: this function doesnt have to take the runqueue lock,
1082 * because all it wants to ensure is that the remote task enters
1083 * the kernel. If the IPI races and the task has been migrated
1084 * to another CPU then no harm is done and the purpose has been
1085 * achieved as well.
1086 */
1087void kick_process(task_t *p)
1088{
1089 int cpu;
1090
1091 preempt_disable();
1092 cpu = task_cpu(p);
1093 if ((cpu != smp_processor_id()) && task_curr(p))
1094 smp_send_reschedule(cpu);
1095 preempt_enable();
1096}
1097
1098/*
2dd73a4f
PW
1099 * Return a low guess at the load of a migration-source cpu weighted
1100 * according to the scheduling class and "nice" value.
1da177e4
LT
1101 *
1102 * We want to under-estimate the load of migration sources, to
1103 * balance conservatively.
1104 */
a2000572 1105static inline unsigned long source_load(int cpu, int type)
1da177e4
LT
1106{
1107 runqueue_t *rq = cpu_rq(cpu);
2dd73a4f 1108
3b0bd9bc 1109 if (type == 0)
2dd73a4f 1110 return rq->raw_weighted_load;
b910472d 1111
2dd73a4f 1112 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
1da177e4
LT
1113}
1114
1115/*
2dd73a4f
PW
1116 * Return a high guess at the load of a migration-target cpu weighted
1117 * according to the scheduling class and "nice" value.
1da177e4 1118 */
a2000572 1119static inline unsigned long target_load(int cpu, int type)
1da177e4
LT
1120{
1121 runqueue_t *rq = cpu_rq(cpu);
2dd73a4f 1122
7897986b 1123 if (type == 0)
2dd73a4f 1124 return rq->raw_weighted_load;
3b0bd9bc 1125
2dd73a4f
PW
1126 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1127}
1128
1129/*
1130 * Return the average load per task on the cpu's run queue
1131 */
1132static inline unsigned long cpu_avg_load_per_task(int cpu)
1133{
1134 runqueue_t *rq = cpu_rq(cpu);
1135 unsigned long n = rq->nr_running;
1136
1137 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
1da177e4
LT
1138}
1139
147cbb4b
NP
1140/*
1141 * find_idlest_group finds and returns the least busy CPU group within the
1142 * domain.
1143 */
1144static struct sched_group *
1145find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1146{
1147 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1148 unsigned long min_load = ULONG_MAX, this_load = 0;
1149 int load_idx = sd->forkexec_idx;
1150 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1151
1152 do {
1153 unsigned long load, avg_load;
1154 int local_group;
1155 int i;
1156
da5a5522
BD
1157 /* Skip over this group if it has no CPUs allowed */
1158 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1159 goto nextgroup;
1160
147cbb4b 1161 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1162
1163 /* Tally up the load of all CPUs in the group */
1164 avg_load = 0;
1165
1166 for_each_cpu_mask(i, group->cpumask) {
1167 /* Bias balancing toward cpus of our domain */
1168 if (local_group)
1169 load = source_load(i, load_idx);
1170 else
1171 load = target_load(i, load_idx);
1172
1173 avg_load += load;
1174 }
1175
1176 /* Adjust by relative CPU power of the group */
1177 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1178
1179 if (local_group) {
1180 this_load = avg_load;
1181 this = group;
1182 } else if (avg_load < min_load) {
1183 min_load = avg_load;
1184 idlest = group;
1185 }
da5a5522 1186nextgroup:
147cbb4b
NP
1187 group = group->next;
1188 } while (group != sd->groups);
1189
1190 if (!idlest || 100*this_load < imbalance*min_load)
1191 return NULL;
1192 return idlest;
1193}
1194
1195/*
1196 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1197 */
95cdf3b7
IM
1198static int
1199find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1200{
da5a5522 1201 cpumask_t tmp;
147cbb4b
NP
1202 unsigned long load, min_load = ULONG_MAX;
1203 int idlest = -1;
1204 int i;
1205
da5a5522
BD
1206 /* Traverse only the allowed CPUs */
1207 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1208
1209 for_each_cpu_mask(i, tmp) {
2dd73a4f 1210 load = weighted_cpuload(i);
147cbb4b
NP
1211
1212 if (load < min_load || (load == min_load && i == this_cpu)) {
1213 min_load = load;
1214 idlest = i;
1215 }
1216 }
1217
1218 return idlest;
1219}
1220
476d139c
NP
1221/*
1222 * sched_balance_self: balance the current task (running on cpu) in domains
1223 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1224 * SD_BALANCE_EXEC.
1225 *
1226 * Balance, ie. select the least loaded group.
1227 *
1228 * Returns the target CPU number, or the same CPU if no balancing is needed.
1229 *
1230 * preempt must be disabled.
1231 */
1232static int sched_balance_self(int cpu, int flag)
1233{
1234 struct task_struct *t = current;
1235 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1236
c96d145e 1237 for_each_domain(cpu, tmp) {
5c45bf27
SS
1238 /*
1239 * If power savings logic is enabled for a domain, stop there.
1240 */
1241 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1242 break;
476d139c
NP
1243 if (tmp->flags & flag)
1244 sd = tmp;
c96d145e 1245 }
476d139c
NP
1246
1247 while (sd) {
1248 cpumask_t span;
1249 struct sched_group *group;
1250 int new_cpu;
1251 int weight;
1252
1253 span = sd->span;
1254 group = find_idlest_group(sd, t, cpu);
1255 if (!group)
1256 goto nextlevel;
1257
da5a5522 1258 new_cpu = find_idlest_cpu(group, t, cpu);
476d139c
NP
1259 if (new_cpu == -1 || new_cpu == cpu)
1260 goto nextlevel;
1261
1262 /* Now try balancing at a lower domain level */
1263 cpu = new_cpu;
1264nextlevel:
1265 sd = NULL;
1266 weight = cpus_weight(span);
1267 for_each_domain(cpu, tmp) {
1268 if (weight <= cpus_weight(tmp->span))
1269 break;
1270 if (tmp->flags & flag)
1271 sd = tmp;
1272 }
1273 /* while loop will break here if sd == NULL */
1274 }
1275
1276 return cpu;
1277}
1278
1279#endif /* CONFIG_SMP */
1da177e4
LT
1280
1281/*
1282 * wake_idle() will wake a task on an idle cpu if task->cpu is
1283 * not idle and an idle cpu is available. The span of cpus to
1284 * search starts with cpus closest then further out as needed,
1285 * so we always favor a closer, idle cpu.
1286 *
1287 * Returns the CPU we should wake onto.
1288 */
1289#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1290static int wake_idle(int cpu, task_t *p)
1291{
1292 cpumask_t tmp;
1293 struct sched_domain *sd;
1294 int i;
1295
1296 if (idle_cpu(cpu))
1297 return cpu;
1298
1299 for_each_domain(cpu, sd) {
1300 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1301 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1302 for_each_cpu_mask(i, tmp) {
1303 if (idle_cpu(i))
1304 return i;
1305 }
1306 }
e0f364f4
NP
1307 else
1308 break;
1da177e4
LT
1309 }
1310 return cpu;
1311}
1312#else
1313static inline int wake_idle(int cpu, task_t *p)
1314{
1315 return cpu;
1316}
1317#endif
1318
1319/***
1320 * try_to_wake_up - wake up a thread
1321 * @p: the to-be-woken-up thread
1322 * @state: the mask of task states that can be woken
1323 * @sync: do a synchronous wakeup?
1324 *
1325 * Put it on the run-queue if it's not already there. The "current"
1326 * thread is always on the run-queue (except when the actual
1327 * re-schedule is in progress), and as such you're allowed to do
1328 * the simpler "current->state = TASK_RUNNING" to mark yourself
1329 * runnable without the overhead of this.
1330 *
1331 * returns failure only if the task is already active.
1332 */
95cdf3b7 1333static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1da177e4
LT
1334{
1335 int cpu, this_cpu, success = 0;
1336 unsigned long flags;
1337 long old_state;
1338 runqueue_t *rq;
1339#ifdef CONFIG_SMP
1340 unsigned long load, this_load;
7897986b 1341 struct sched_domain *sd, *this_sd = NULL;
1da177e4
LT
1342 int new_cpu;
1343#endif
1344
1345 rq = task_rq_lock(p, &flags);
1346 old_state = p->state;
1347 if (!(old_state & state))
1348 goto out;
1349
1350 if (p->array)
1351 goto out_running;
1352
1353 cpu = task_cpu(p);
1354 this_cpu = smp_processor_id();
1355
1356#ifdef CONFIG_SMP
1357 if (unlikely(task_running(rq, p)))
1358 goto out_activate;
1359
7897986b
NP
1360 new_cpu = cpu;
1361
1da177e4
LT
1362 schedstat_inc(rq, ttwu_cnt);
1363 if (cpu == this_cpu) {
1364 schedstat_inc(rq, ttwu_local);
7897986b
NP
1365 goto out_set_cpu;
1366 }
1367
1368 for_each_domain(this_cpu, sd) {
1369 if (cpu_isset(cpu, sd->span)) {
1370 schedstat_inc(sd, ttwu_wake_remote);
1371 this_sd = sd;
1372 break;
1da177e4
LT
1373 }
1374 }
1da177e4 1375
7897986b 1376 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1377 goto out_set_cpu;
1378
1da177e4 1379 /*
7897986b 1380 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1381 */
7897986b
NP
1382 if (this_sd) {
1383 int idx = this_sd->wake_idx;
1384 unsigned int imbalance;
1da177e4 1385
a3f21bce
NP
1386 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1387
7897986b
NP
1388 load = source_load(cpu, idx);
1389 this_load = target_load(this_cpu, idx);
1da177e4 1390
7897986b
NP
1391 new_cpu = this_cpu; /* Wake to this CPU if we can */
1392
a3f21bce
NP
1393 if (this_sd->flags & SD_WAKE_AFFINE) {
1394 unsigned long tl = this_load;
2dd73a4f
PW
1395 unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu);
1396
1da177e4 1397 /*
a3f21bce
NP
1398 * If sync wakeup then subtract the (maximum possible)
1399 * effect of the currently running task from the load
1400 * of the current CPU:
1da177e4 1401 */
a3f21bce 1402 if (sync)
2dd73a4f 1403 tl -= current->load_weight;
a3f21bce
NP
1404
1405 if ((tl <= load &&
2dd73a4f
PW
1406 tl + target_load(cpu, idx) <= tl_per_task) ||
1407 100*(tl + p->load_weight) <= imbalance*load) {
a3f21bce
NP
1408 /*
1409 * This domain has SD_WAKE_AFFINE and
1410 * p is cache cold in this domain, and
1411 * there is no bad imbalance.
1412 */
1413 schedstat_inc(this_sd, ttwu_move_affine);
1414 goto out_set_cpu;
1415 }
1416 }
1417
1418 /*
1419 * Start passive balancing when half the imbalance_pct
1420 * limit is reached.
1421 */
1422 if (this_sd->flags & SD_WAKE_BALANCE) {
1423 if (imbalance*this_load <= 100*load) {
1424 schedstat_inc(this_sd, ttwu_move_balance);
1425 goto out_set_cpu;
1426 }
1da177e4
LT
1427 }
1428 }
1429
1430 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1431out_set_cpu:
1432 new_cpu = wake_idle(new_cpu, p);
1433 if (new_cpu != cpu) {
1434 set_task_cpu(p, new_cpu);
1435 task_rq_unlock(rq, &flags);
1436 /* might preempt at this point */
1437 rq = task_rq_lock(p, &flags);
1438 old_state = p->state;
1439 if (!(old_state & state))
1440 goto out;
1441 if (p->array)
1442 goto out_running;
1443
1444 this_cpu = smp_processor_id();
1445 cpu = task_cpu(p);
1446 }
1447
1448out_activate:
1449#endif /* CONFIG_SMP */
1450 if (old_state == TASK_UNINTERRUPTIBLE) {
1451 rq->nr_uninterruptible--;
1452 /*
1453 * Tasks on involuntary sleep don't earn
1454 * sleep_avg beyond just interactive state.
1455 */
3dee386e 1456 p->sleep_type = SLEEP_NONINTERACTIVE;
e7c38cb4 1457 } else
1da177e4 1458
d79fc0fc
IM
1459 /*
1460 * Tasks that have marked their sleep as noninteractive get
e7c38cb4
CK
1461 * woken up with their sleep average not weighted in an
1462 * interactive way.
d79fc0fc 1463 */
e7c38cb4
CK
1464 if (old_state & TASK_NONINTERACTIVE)
1465 p->sleep_type = SLEEP_NONINTERACTIVE;
1466
1467
1468 activate_task(p, rq, cpu == this_cpu);
1da177e4
LT
1469 /*
1470 * Sync wakeups (i.e. those types of wakeups where the waker
1471 * has indicated that it will leave the CPU in short order)
1472 * don't trigger a preemption, if the woken up task will run on
1473 * this cpu. (in this case the 'I will reschedule' promise of
1474 * the waker guarantees that the freshly woken up task is going
1475 * to be considered on this CPU.)
1476 */
1da177e4
LT
1477 if (!sync || cpu != this_cpu) {
1478 if (TASK_PREEMPTS_CURR(p, rq))
1479 resched_task(rq->curr);
1480 }
1481 success = 1;
1482
1483out_running:
1484 p->state = TASK_RUNNING;
1485out:
1486 task_rq_unlock(rq, &flags);
1487
1488 return success;
1489}
1490
95cdf3b7 1491int fastcall wake_up_process(task_t *p)
1da177e4
LT
1492{
1493 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1494 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1495}
1496
1497EXPORT_SYMBOL(wake_up_process);
1498
1499int fastcall wake_up_state(task_t *p, unsigned int state)
1500{
1501 return try_to_wake_up(p, state, 0);
1502}
1503
1da177e4
LT
1504/*
1505 * Perform scheduler related setup for a newly forked process p.
1506 * p is forked by current.
1507 */
476d139c 1508void fastcall sched_fork(task_t *p, int clone_flags)
1da177e4 1509{
476d139c
NP
1510 int cpu = get_cpu();
1511
1512#ifdef CONFIG_SMP
1513 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1514#endif
1515 set_task_cpu(p, cpu);
1516
1da177e4
LT
1517 /*
1518 * We mark the process as running here, but have not actually
1519 * inserted it onto the runqueue yet. This guarantees that
1520 * nobody will actually run it, and a signal or other external
1521 * event cannot wake it up and insert it on the runqueue either.
1522 */
1523 p->state = TASK_RUNNING;
b29739f9
IM
1524
1525 /*
1526 * Make sure we do not leak PI boosting priority to the child:
1527 */
1528 p->prio = current->normal_prio;
1529
1da177e4
LT
1530 INIT_LIST_HEAD(&p->run_list);
1531 p->array = NULL;
1da177e4
LT
1532#ifdef CONFIG_SCHEDSTATS
1533 memset(&p->sched_info, 0, sizeof(p->sched_info));
1534#endif
d6077cb8 1535#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1536 p->oncpu = 0;
1537#endif
1da177e4 1538#ifdef CONFIG_PREEMPT
4866cde0 1539 /* Want to start with kernel preemption disabled. */
a1261f54 1540 task_thread_info(p)->preempt_count = 1;
1da177e4
LT
1541#endif
1542 /*
1543 * Share the timeslice between parent and child, thus the
1544 * total amount of pending timeslices in the system doesn't change,
1545 * resulting in more scheduling fairness.
1546 */
1547 local_irq_disable();
1548 p->time_slice = (current->time_slice + 1) >> 1;
1549 /*
1550 * The remainder of the first timeslice might be recovered by
1551 * the parent if the child exits early enough.
1552 */
1553 p->first_time_slice = 1;
1554 current->time_slice >>= 1;
1555 p->timestamp = sched_clock();
1556 if (unlikely(!current->time_slice)) {
1557 /*
1558 * This case is rare, it happens when the parent has only
1559 * a single jiffy left from its timeslice. Taking the
1560 * runqueue lock is not a problem.
1561 */
1562 current->time_slice = 1;
1da177e4 1563 scheduler_tick();
476d139c
NP
1564 }
1565 local_irq_enable();
1566 put_cpu();
1da177e4
LT
1567}
1568
1569/*
1570 * wake_up_new_task - wake up a newly created task for the first time.
1571 *
1572 * This function will do some initial scheduler statistics housekeeping
1573 * that must be done for every newly created context, then puts the task
1574 * on the runqueue and wakes it.
1575 */
95cdf3b7 1576void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1da177e4
LT
1577{
1578 unsigned long flags;
1579 int this_cpu, cpu;
1580 runqueue_t *rq, *this_rq;
1581
1582 rq = task_rq_lock(p, &flags);
147cbb4b 1583 BUG_ON(p->state != TASK_RUNNING);
1da177e4 1584 this_cpu = smp_processor_id();
147cbb4b 1585 cpu = task_cpu(p);
1da177e4 1586
1da177e4
LT
1587 /*
1588 * We decrease the sleep average of forking parents
1589 * and children as well, to keep max-interactive tasks
1590 * from forking tasks that are max-interactive. The parent
1591 * (current) is done further down, under its lock.
1592 */
1593 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1594 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1595
1596 p->prio = effective_prio(p);
1597
1598 if (likely(cpu == this_cpu)) {
1599 if (!(clone_flags & CLONE_VM)) {
1600 /*
1601 * The VM isn't cloned, so we're in a good position to
1602 * do child-runs-first in anticipation of an exec. This
1603 * usually avoids a lot of COW overhead.
1604 */
1605 if (unlikely(!current->array))
1606 __activate_task(p, rq);
1607 else {
1608 p->prio = current->prio;
b29739f9 1609 p->normal_prio = current->normal_prio;
1da177e4
LT
1610 list_add_tail(&p->run_list, &current->run_list);
1611 p->array = current->array;
1612 p->array->nr_active++;
2dd73a4f 1613 inc_nr_running(p, rq);
1da177e4
LT
1614 }
1615 set_need_resched();
1616 } else
1617 /* Run child last */
1618 __activate_task(p, rq);
1619 /*
1620 * We skip the following code due to cpu == this_cpu
1621 *
1622 * task_rq_unlock(rq, &flags);
1623 * this_rq = task_rq_lock(current, &flags);
1624 */
1625 this_rq = rq;
1626 } else {
1627 this_rq = cpu_rq(this_cpu);
1628
1629 /*
1630 * Not the local CPU - must adjust timestamp. This should
1631 * get optimised away in the !CONFIG_SMP case.
1632 */
1633 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1634 + rq->timestamp_last_tick;
1635 __activate_task(p, rq);
1636 if (TASK_PREEMPTS_CURR(p, rq))
1637 resched_task(rq->curr);
1638
1639 /*
1640 * Parent and child are on different CPUs, now get the
1641 * parent runqueue to update the parent's ->sleep_avg:
1642 */
1643 task_rq_unlock(rq, &flags);
1644 this_rq = task_rq_lock(current, &flags);
1645 }
1646 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1647 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1648 task_rq_unlock(this_rq, &flags);
1649}
1650
1651/*
1652 * Potentially available exiting-child timeslices are
1653 * retrieved here - this way the parent does not get
1654 * penalized for creating too many threads.
1655 *
1656 * (this cannot be used to 'generate' timeslices
1657 * artificially, because any timeslice recovered here
1658 * was given away by the parent in the first place.)
1659 */
95cdf3b7 1660void fastcall sched_exit(task_t *p)
1da177e4
LT
1661{
1662 unsigned long flags;
1663 runqueue_t *rq;
1664
1665 /*
1666 * If the child was a (relative-) CPU hog then decrease
1667 * the sleep_avg of the parent as well.
1668 */
1669 rq = task_rq_lock(p->parent, &flags);
889dfafe 1670 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1da177e4
LT
1671 p->parent->time_slice += p->time_slice;
1672 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1673 p->parent->time_slice = task_timeslice(p);
1674 }
1675 if (p->sleep_avg < p->parent->sleep_avg)
1676 p->parent->sleep_avg = p->parent->sleep_avg /
1677 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1678 (EXIT_WEIGHT + 1);
1679 task_rq_unlock(rq, &flags);
1680}
1681
4866cde0
NP
1682/**
1683 * prepare_task_switch - prepare to switch tasks
1684 * @rq: the runqueue preparing to switch
1685 * @next: the task we are going to switch to.
1686 *
1687 * This is called with the rq lock held and interrupts off. It must
1688 * be paired with a subsequent finish_task_switch after the context
1689 * switch.
1690 *
1691 * prepare_task_switch sets up locking and calls architecture specific
1692 * hooks.
1693 */
1694static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1695{
1696 prepare_lock_switch(rq, next);
1697 prepare_arch_switch(next);
1698}
1699
1da177e4
LT
1700/**
1701 * finish_task_switch - clean up after a task-switch
344babaa 1702 * @rq: runqueue associated with task-switch
1da177e4
LT
1703 * @prev: the thread we just switched away from.
1704 *
4866cde0
NP
1705 * finish_task_switch must be called after the context switch, paired
1706 * with a prepare_task_switch call before the context switch.
1707 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1708 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1709 *
1710 * Note that we may have delayed dropping an mm in context_switch(). If
1711 * so, we finish that here outside of the runqueue lock. (Doing it
1712 * with the lock held can cause deadlocks; see schedule() for
1713 * details.)
1714 */
4866cde0 1715static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1da177e4
LT
1716 __releases(rq->lock)
1717{
1da177e4
LT
1718 struct mm_struct *mm = rq->prev_mm;
1719 unsigned long prev_task_flags;
1720
1721 rq->prev_mm = NULL;
1722
1723 /*
1724 * A task struct has one reference for the use as "current".
1725 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1726 * calls schedule one last time. The schedule call will never return,
1727 * and the scheduled task must drop that reference.
1728 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1729 * still held, otherwise prev could be scheduled on another cpu, die
1730 * there before we look at prev->state, and then the reference would
1731 * be dropped twice.
1732 * Manfred Spraul <manfred@colorfullife.com>
1733 */
1734 prev_task_flags = prev->flags;
4866cde0
NP
1735 finish_arch_switch(prev);
1736 finish_lock_switch(rq, prev);
1da177e4
LT
1737 if (mm)
1738 mmdrop(mm);
c6fd91f0 1739 if (unlikely(prev_task_flags & PF_DEAD)) {
1740 /*
1741 * Remove function-return probe instances associated with this
1742 * task and put them back on the free list.
1743 */
1744 kprobe_flush_task(prev);
1da177e4 1745 put_task_struct(prev);
c6fd91f0 1746 }
1da177e4
LT
1747}
1748
1749/**
1750 * schedule_tail - first thing a freshly forked thread must call.
1751 * @prev: the thread we just switched away from.
1752 */
1753asmlinkage void schedule_tail(task_t *prev)
1754 __releases(rq->lock)
1755{
4866cde0
NP
1756 runqueue_t *rq = this_rq();
1757 finish_task_switch(rq, prev);
1758#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1759 /* In this case, finish_task_switch does not reenable preemption */
1760 preempt_enable();
1761#endif
1da177e4
LT
1762 if (current->set_child_tid)
1763 put_user(current->pid, current->set_child_tid);
1764}
1765
1766/*
1767 * context_switch - switch to the new MM and the new
1768 * thread's register state.
1769 */
1770static inline
1771task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1772{
1773 struct mm_struct *mm = next->mm;
1774 struct mm_struct *oldmm = prev->active_mm;
1775
1776 if (unlikely(!mm)) {
1777 next->active_mm = oldmm;
1778 atomic_inc(&oldmm->mm_count);
1779 enter_lazy_tlb(oldmm, next);
1780 } else
1781 switch_mm(oldmm, mm, next);
1782
1783 if (unlikely(!prev->mm)) {
1784 prev->active_mm = NULL;
1785 WARN_ON(rq->prev_mm);
1786 rq->prev_mm = oldmm;
1787 }
8a25d5de 1788 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
1789
1790 /* Here we just switch the register state and the stack. */
1791 switch_to(prev, next, prev);
1792
1793 return prev;
1794}
1795
1796/*
1797 * nr_running, nr_uninterruptible and nr_context_switches:
1798 *
1799 * externally visible scheduler statistics: current number of runnable
1800 * threads, current number of uninterruptible-sleeping threads, total
1801 * number of context switches performed since bootup.
1802 */
1803unsigned long nr_running(void)
1804{
1805 unsigned long i, sum = 0;
1806
1807 for_each_online_cpu(i)
1808 sum += cpu_rq(i)->nr_running;
1809
1810 return sum;
1811}
1812
1813unsigned long nr_uninterruptible(void)
1814{
1815 unsigned long i, sum = 0;
1816
0a945022 1817 for_each_possible_cpu(i)
1da177e4
LT
1818 sum += cpu_rq(i)->nr_uninterruptible;
1819
1820 /*
1821 * Since we read the counters lockless, it might be slightly
1822 * inaccurate. Do not allow it to go below zero though:
1823 */
1824 if (unlikely((long)sum < 0))
1825 sum = 0;
1826
1827 return sum;
1828}
1829
1830unsigned long long nr_context_switches(void)
1831{
cc94abfc
SR
1832 int i;
1833 unsigned long long sum = 0;
1da177e4 1834
0a945022 1835 for_each_possible_cpu(i)
1da177e4
LT
1836 sum += cpu_rq(i)->nr_switches;
1837
1838 return sum;
1839}
1840
1841unsigned long nr_iowait(void)
1842{
1843 unsigned long i, sum = 0;
1844
0a945022 1845 for_each_possible_cpu(i)
1da177e4
LT
1846 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1847
1848 return sum;
1849}
1850
db1b1fef
JS
1851unsigned long nr_active(void)
1852{
1853 unsigned long i, running = 0, uninterruptible = 0;
1854
1855 for_each_online_cpu(i) {
1856 running += cpu_rq(i)->nr_running;
1857 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1858 }
1859
1860 if (unlikely((long)uninterruptible < 0))
1861 uninterruptible = 0;
1862
1863 return running + uninterruptible;
1864}
1865
1da177e4
LT
1866#ifdef CONFIG_SMP
1867
1868/*
1869 * double_rq_lock - safely lock two runqueues
1870 *
1871 * Note this does not disable interrupts like task_rq_lock,
1872 * you need to do so manually before calling.
1873 */
1874static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1875 __acquires(rq1->lock)
1876 __acquires(rq2->lock)
1877{
1878 if (rq1 == rq2) {
1879 spin_lock(&rq1->lock);
1880 __acquire(rq2->lock); /* Fake it out ;) */
1881 } else {
c96d145e 1882 if (rq1 < rq2) {
1da177e4
LT
1883 spin_lock(&rq1->lock);
1884 spin_lock(&rq2->lock);
1885 } else {
1886 spin_lock(&rq2->lock);
1887 spin_lock(&rq1->lock);
1888 }
1889 }
1890}
1891
1892/*
1893 * double_rq_unlock - safely unlock two runqueues
1894 *
1895 * Note this does not restore interrupts like task_rq_unlock,
1896 * you need to do so manually after calling.
1897 */
1898static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1899 __releases(rq1->lock)
1900 __releases(rq2->lock)
1901{
1902 spin_unlock(&rq1->lock);
1903 if (rq1 != rq2)
1904 spin_unlock(&rq2->lock);
1905 else
1906 __release(rq2->lock);
1907}
1908
1909/*
1910 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1911 */
1912static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1913 __releases(this_rq->lock)
1914 __acquires(busiest->lock)
1915 __acquires(this_rq->lock)
1916{
1917 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 1918 if (busiest < this_rq) {
1da177e4
LT
1919 spin_unlock(&this_rq->lock);
1920 spin_lock(&busiest->lock);
1921 spin_lock(&this_rq->lock);
1922 } else
1923 spin_lock(&busiest->lock);
1924 }
1925}
1926
1da177e4
LT
1927/*
1928 * If dest_cpu is allowed for this process, migrate the task to it.
1929 * This is accomplished by forcing the cpu_allowed mask to only
1930 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1931 * the cpu_allowed mask is restored.
1932 */
1933static void sched_migrate_task(task_t *p, int dest_cpu)
1934{
1935 migration_req_t req;
1936 runqueue_t *rq;
1937 unsigned long flags;
1938
1939 rq = task_rq_lock(p, &flags);
1940 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1941 || unlikely(cpu_is_offline(dest_cpu)))
1942 goto out;
1943
1944 /* force the process onto the specified CPU */
1945 if (migrate_task(p, dest_cpu, &req)) {
1946 /* Need to wait for migration thread (might exit: take ref). */
1947 struct task_struct *mt = rq->migration_thread;
1948 get_task_struct(mt);
1949 task_rq_unlock(rq, &flags);
1950 wake_up_process(mt);
1951 put_task_struct(mt);
1952 wait_for_completion(&req.done);
1953 return;
1954 }
1955out:
1956 task_rq_unlock(rq, &flags);
1957}
1958
1959/*
476d139c
NP
1960 * sched_exec - execve() is a valuable balancing opportunity, because at
1961 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
1962 */
1963void sched_exec(void)
1964{
1da177e4 1965 int new_cpu, this_cpu = get_cpu();
476d139c 1966 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 1967 put_cpu();
476d139c
NP
1968 if (new_cpu != this_cpu)
1969 sched_migrate_task(current, new_cpu);
1da177e4
LT
1970}
1971
1972/*
1973 * pull_task - move a task from a remote runqueue to the local runqueue.
1974 * Both runqueues must be locked.
1975 */
858119e1 1976static
1da177e4
LT
1977void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1978 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1979{
1980 dequeue_task(p, src_array);
2dd73a4f 1981 dec_nr_running(p, src_rq);
1da177e4 1982 set_task_cpu(p, this_cpu);
2dd73a4f 1983 inc_nr_running(p, this_rq);
1da177e4
LT
1984 enqueue_task(p, this_array);
1985 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1986 + this_rq->timestamp_last_tick;
1987 /*
1988 * Note that idle threads have a prio of MAX_PRIO, for this test
1989 * to be always true for them.
1990 */
1991 if (TASK_PREEMPTS_CURR(p, this_rq))
1992 resched_task(this_rq->curr);
1993}
1994
1995/*
1996 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1997 */
858119e1 1998static
1da177e4 1999int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
95cdf3b7
IM
2000 struct sched_domain *sd, enum idle_type idle,
2001 int *all_pinned)
1da177e4
LT
2002{
2003 /*
2004 * We do not migrate tasks that are:
2005 * 1) running (obviously), or
2006 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2007 * 3) are cache-hot on their current CPU.
2008 */
1da177e4
LT
2009 if (!cpu_isset(this_cpu, p->cpus_allowed))
2010 return 0;
81026794
NP
2011 *all_pinned = 0;
2012
2013 if (task_running(rq, p))
2014 return 0;
1da177e4
LT
2015
2016 /*
2017 * Aggressive migration if:
cafb20c1 2018 * 1) task is cache cold, or
1da177e4
LT
2019 * 2) too many balance attempts have failed.
2020 */
2021
cafb20c1 2022 if (sd->nr_balance_failed > sd->cache_nice_tries)
1da177e4
LT
2023 return 1;
2024
2025 if (task_hot(p, rq->timestamp_last_tick, sd))
81026794 2026 return 0;
1da177e4
LT
2027 return 1;
2028}
2029
615052dc 2030#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
1da177e4 2031/*
2dd73a4f
PW
2032 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2033 * load from busiest to this_rq, as part of a balancing operation within
2034 * "domain". Returns the number of tasks moved.
1da177e4
LT
2035 *
2036 * Called with both runqueues locked.
2037 */
2038static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
2dd73a4f
PW
2039 unsigned long max_nr_move, unsigned long max_load_move,
2040 struct sched_domain *sd, enum idle_type idle,
2041 int *all_pinned)
1da177e4
LT
2042{
2043 prio_array_t *array, *dst_array;
2044 struct list_head *head, *curr;
615052dc
PW
2045 int idx, pulled = 0, pinned = 0, this_best_prio, busiest_best_prio;
2046 int busiest_best_prio_seen;
2047 int skip_for_load; /* skip the task based on weighted load issues */
2dd73a4f 2048 long rem_load_move;
1da177e4
LT
2049 task_t *tmp;
2050
2dd73a4f 2051 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2052 goto out;
2053
2dd73a4f 2054 rem_load_move = max_load_move;
81026794 2055 pinned = 1;
615052dc
PW
2056 this_best_prio = rq_best_prio(this_rq);
2057 busiest_best_prio = rq_best_prio(busiest);
2058 /*
2059 * Enable handling of the case where there is more than one task
2060 * with the best priority. If the current running task is one
2061 * of those with prio==busiest_best_prio we know it won't be moved
2062 * and therefore it's safe to override the skip (based on load) of
2063 * any task we find with that prio.
2064 */
2065 busiest_best_prio_seen = busiest_best_prio == busiest->curr->prio;
81026794 2066
1da177e4
LT
2067 /*
2068 * We first consider expired tasks. Those will likely not be
2069 * executed in the near future, and they are most likely to
2070 * be cache-cold, thus switching CPUs has the least effect
2071 * on them.
2072 */
2073 if (busiest->expired->nr_active) {
2074 array = busiest->expired;
2075 dst_array = this_rq->expired;
2076 } else {
2077 array = busiest->active;
2078 dst_array = this_rq->active;
2079 }
2080
2081new_array:
2082 /* Start searching at priority 0: */
2083 idx = 0;
2084skip_bitmap:
2085 if (!idx)
2086 idx = sched_find_first_bit(array->bitmap);
2087 else
2088 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2089 if (idx >= MAX_PRIO) {
2090 if (array == busiest->expired && busiest->active->nr_active) {
2091 array = busiest->active;
2092 dst_array = this_rq->active;
2093 goto new_array;
2094 }
2095 goto out;
2096 }
2097
2098 head = array->queue + idx;
2099 curr = head->prev;
2100skip_queue:
2101 tmp = list_entry(curr, task_t, run_list);
2102
2103 curr = curr->prev;
2104
50ddd969
PW
2105 /*
2106 * To help distribute high priority tasks accross CPUs we don't
2107 * skip a task if it will be the highest priority task (i.e. smallest
2108 * prio value) on its new queue regardless of its load weight
2109 */
615052dc
PW
2110 skip_for_load = tmp->load_weight > rem_load_move;
2111 if (skip_for_load && idx < this_best_prio)
2112 skip_for_load = !busiest_best_prio_seen && idx == busiest_best_prio;
2113 if (skip_for_load ||
2dd73a4f 2114 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
615052dc 2115 busiest_best_prio_seen |= idx == busiest_best_prio;
1da177e4
LT
2116 if (curr != head)
2117 goto skip_queue;
2118 idx++;
2119 goto skip_bitmap;
2120 }
2121
2122#ifdef CONFIG_SCHEDSTATS
2123 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
2124 schedstat_inc(sd, lb_hot_gained[idle]);
2125#endif
2126
2127 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2128 pulled++;
2dd73a4f 2129 rem_load_move -= tmp->load_weight;
1da177e4 2130
2dd73a4f
PW
2131 /*
2132 * We only want to steal up to the prescribed number of tasks
2133 * and the prescribed amount of weighted load.
2134 */
2135 if (pulled < max_nr_move && rem_load_move > 0) {
615052dc
PW
2136 if (idx < this_best_prio)
2137 this_best_prio = idx;
1da177e4
LT
2138 if (curr != head)
2139 goto skip_queue;
2140 idx++;
2141 goto skip_bitmap;
2142 }
2143out:
2144 /*
2145 * Right now, this is the only place pull_task() is called,
2146 * so we can safely collect pull_task() stats here rather than
2147 * inside pull_task().
2148 */
2149 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2150
2151 if (all_pinned)
2152 *all_pinned = pinned;
1da177e4
LT
2153 return pulled;
2154}
2155
2156/*
2157 * find_busiest_group finds and returns the busiest CPU group within the
2dd73a4f 2158 * domain. It calculates and returns the amount of weighted load which should be
1da177e4
LT
2159 * moved to restore balance via the imbalance parameter.
2160 */
2161static struct sched_group *
2162find_busiest_group(struct sched_domain *sd, int this_cpu,
5969fe06 2163 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1da177e4
LT
2164{
2165 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2166 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2167 unsigned long max_pull;
2dd73a4f
PW
2168 unsigned long busiest_load_per_task, busiest_nr_running;
2169 unsigned long this_load_per_task, this_nr_running;
7897986b 2170 int load_idx;
5c45bf27
SS
2171#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2172 int power_savings_balance = 1;
2173 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2174 unsigned long min_nr_running = ULONG_MAX;
2175 struct sched_group *group_min = NULL, *group_leader = NULL;
2176#endif
1da177e4
LT
2177
2178 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2179 busiest_load_per_task = busiest_nr_running = 0;
2180 this_load_per_task = this_nr_running = 0;
7897986b
NP
2181 if (idle == NOT_IDLE)
2182 load_idx = sd->busy_idx;
2183 else if (idle == NEWLY_IDLE)
2184 load_idx = sd->newidle_idx;
2185 else
2186 load_idx = sd->idle_idx;
1da177e4
LT
2187
2188 do {
5c45bf27 2189 unsigned long load, group_capacity;
1da177e4
LT
2190 int local_group;
2191 int i;
2dd73a4f 2192 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2193
2194 local_group = cpu_isset(this_cpu, group->cpumask);
2195
2196 /* Tally up the load of all CPUs in the group */
2dd73a4f 2197 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2198
2199 for_each_cpu_mask(i, group->cpumask) {
2dd73a4f
PW
2200 runqueue_t *rq = cpu_rq(i);
2201
5969fe06
NP
2202 if (*sd_idle && !idle_cpu(i))
2203 *sd_idle = 0;
2204
1da177e4
LT
2205 /* Bias balancing toward cpus of our domain */
2206 if (local_group)
a2000572 2207 load = target_load(i, load_idx);
1da177e4 2208 else
a2000572 2209 load = source_load(i, load_idx);
1da177e4
LT
2210
2211 avg_load += load;
2dd73a4f
PW
2212 sum_nr_running += rq->nr_running;
2213 sum_weighted_load += rq->raw_weighted_load;
1da177e4
LT
2214 }
2215
2216 total_load += avg_load;
2217 total_pwr += group->cpu_power;
2218
2219 /* Adjust by relative CPU power of the group */
2220 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2221
5c45bf27
SS
2222 group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
2223
1da177e4
LT
2224 if (local_group) {
2225 this_load = avg_load;
2226 this = group;
2dd73a4f
PW
2227 this_nr_running = sum_nr_running;
2228 this_load_per_task = sum_weighted_load;
2229 } else if (avg_load > max_load &&
5c45bf27 2230 sum_nr_running > group_capacity) {
1da177e4
LT
2231 max_load = avg_load;
2232 busiest = group;
2dd73a4f
PW
2233 busiest_nr_running = sum_nr_running;
2234 busiest_load_per_task = sum_weighted_load;
1da177e4 2235 }
5c45bf27
SS
2236
2237#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2238 /*
2239 * Busy processors will not participate in power savings
2240 * balance.
2241 */
2242 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2243 goto group_next;
2244
2245 /*
2246 * If the local group is idle or completely loaded
2247 * no need to do power savings balance at this domain
2248 */
2249 if (local_group && (this_nr_running >= group_capacity ||
2250 !this_nr_running))
2251 power_savings_balance = 0;
2252
2253 /*
2254 * If a group is already running at full capacity or idle,
2255 * don't include that group in power savings calculations
2256 */
2257 if (!power_savings_balance || sum_nr_running >= group_capacity
2258 || !sum_nr_running)
2259 goto group_next;
2260
2261 /*
2262 * Calculate the group which has the least non-idle load.
2263 * This is the group from where we need to pick up the load
2264 * for saving power
2265 */
2266 if ((sum_nr_running < min_nr_running) ||
2267 (sum_nr_running == min_nr_running &&
2268 first_cpu(group->cpumask) <
2269 first_cpu(group_min->cpumask))) {
2270 group_min = group;
2271 min_nr_running = sum_nr_running;
2272 min_load_per_task = sum_weighted_load /
2273 sum_nr_running;
2274 }
2275
2276 /*
2277 * Calculate the group which is almost near its
2278 * capacity but still has some space to pick up some load
2279 * from other group and save more power
2280 */
2281 if (sum_nr_running <= group_capacity - 1)
2282 if (sum_nr_running > leader_nr_running ||
2283 (sum_nr_running == leader_nr_running &&
2284 first_cpu(group->cpumask) >
2285 first_cpu(group_leader->cpumask))) {
2286 group_leader = group;
2287 leader_nr_running = sum_nr_running;
2288 }
2289
2290group_next:
2291#endif
1da177e4
LT
2292 group = group->next;
2293 } while (group != sd->groups);
2294
2dd73a4f 2295 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2296 goto out_balanced;
2297
2298 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2299
2300 if (this_load >= avg_load ||
2301 100*max_load <= sd->imbalance_pct*this_load)
2302 goto out_balanced;
2303
2dd73a4f 2304 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2305 /*
2306 * We're trying to get all the cpus to the average_load, so we don't
2307 * want to push ourselves above the average load, nor do we wish to
2308 * reduce the max loaded cpu below the average load, as either of these
2309 * actions would just result in more rebalancing later, and ping-pong
2310 * tasks around. Thus we look for the minimum possible imbalance.
2311 * Negative imbalances (*we* are more loaded than anyone else) will
2312 * be counted as no imbalance for these purposes -- we can't fix that
2313 * by pulling tasks to us. Be careful of negative numbers as they'll
2314 * appear as very large values with unsigned longs.
2315 */
2dd73a4f
PW
2316 if (max_load <= busiest_load_per_task)
2317 goto out_balanced;
2318
2319 /*
2320 * In the presence of smp nice balancing, certain scenarios can have
2321 * max load less than avg load(as we skip the groups at or below
2322 * its cpu_power, while calculating max_load..)
2323 */
2324 if (max_load < avg_load) {
2325 *imbalance = 0;
2326 goto small_imbalance;
2327 }
0c117f1b
SS
2328
2329 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2330 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2331
1da177e4 2332 /* How much load to actually move to equalise the imbalance */
0c117f1b 2333 *imbalance = min(max_pull * busiest->cpu_power,
1da177e4
LT
2334 (avg_load - this_load) * this->cpu_power)
2335 / SCHED_LOAD_SCALE;
2336
2dd73a4f
PW
2337 /*
2338 * if *imbalance is less than the average load per runnable task
2339 * there is no gaurantee that any tasks will be moved so we'll have
2340 * a think about bumping its value to force at least one task to be
2341 * moved
2342 */
2343 if (*imbalance < busiest_load_per_task) {
2344 unsigned long pwr_now, pwr_move;
1da177e4 2345 unsigned long tmp;
2dd73a4f
PW
2346 unsigned int imbn;
2347
2348small_imbalance:
2349 pwr_move = pwr_now = 0;
2350 imbn = 2;
2351 if (this_nr_running) {
2352 this_load_per_task /= this_nr_running;
2353 if (busiest_load_per_task > this_load_per_task)
2354 imbn = 1;
2355 } else
2356 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2357
2dd73a4f
PW
2358 if (max_load - this_load >= busiest_load_per_task * imbn) {
2359 *imbalance = busiest_load_per_task;
1da177e4
LT
2360 return busiest;
2361 }
2362
2363 /*
2364 * OK, we don't have enough imbalance to justify moving tasks,
2365 * however we may be able to increase total CPU power used by
2366 * moving them.
2367 */
2368
2dd73a4f
PW
2369 pwr_now += busiest->cpu_power *
2370 min(busiest_load_per_task, max_load);
2371 pwr_now += this->cpu_power *
2372 min(this_load_per_task, this_load);
1da177e4
LT
2373 pwr_now /= SCHED_LOAD_SCALE;
2374
2375 /* Amount of load we'd subtract */
2dd73a4f 2376 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power;
1da177e4 2377 if (max_load > tmp)
2dd73a4f
PW
2378 pwr_move += busiest->cpu_power *
2379 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2380
2381 /* Amount of load we'd add */
2382 if (max_load*busiest->cpu_power <
2dd73a4f 2383 busiest_load_per_task*SCHED_LOAD_SCALE)
1da177e4
LT
2384 tmp = max_load*busiest->cpu_power/this->cpu_power;
2385 else
2dd73a4f
PW
2386 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power;
2387 pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp);
1da177e4
LT
2388 pwr_move /= SCHED_LOAD_SCALE;
2389
2390 /* Move if we gain throughput */
2391 if (pwr_move <= pwr_now)
2392 goto out_balanced;
2393
2dd73a4f 2394 *imbalance = busiest_load_per_task;
1da177e4
LT
2395 }
2396
1da177e4
LT
2397 return busiest;
2398
2399out_balanced:
5c45bf27
SS
2400#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2401 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2402 goto ret;
1da177e4 2403
5c45bf27
SS
2404 if (this == group_leader && group_leader != group_min) {
2405 *imbalance = min_load_per_task;
2406 return group_min;
2407 }
2408ret:
2409#endif
1da177e4
LT
2410 *imbalance = 0;
2411 return NULL;
2412}
2413
2414/*
2415 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2416 */
b910472d 2417static runqueue_t *find_busiest_queue(struct sched_group *group,
2dd73a4f 2418 enum idle_type idle, unsigned long imbalance)
1da177e4 2419{
2dd73a4f
PW
2420 unsigned long max_load = 0;
2421 runqueue_t *busiest = NULL, *rqi;
1da177e4
LT
2422 int i;
2423
2424 for_each_cpu_mask(i, group->cpumask) {
2dd73a4f
PW
2425 rqi = cpu_rq(i);
2426
2427 if (rqi->nr_running == 1 && rqi->raw_weighted_load > imbalance)
2428 continue;
1da177e4 2429
2dd73a4f
PW
2430 if (rqi->raw_weighted_load > max_load) {
2431 max_load = rqi->raw_weighted_load;
2432 busiest = rqi;
1da177e4
LT
2433 }
2434 }
2435
2436 return busiest;
2437}
2438
77391d71
NP
2439/*
2440 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2441 * so long as it is large enough.
2442 */
2443#define MAX_PINNED_INTERVAL 512
2444
2dd73a4f 2445#define minus_1_or_zero(n) ((n) > 0 ? (n) - 1 : 0)
1da177e4
LT
2446/*
2447 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2448 * tasks if there is an imbalance.
2449 *
2450 * Called with this_rq unlocked.
2451 */
2452static int load_balance(int this_cpu, runqueue_t *this_rq,
2453 struct sched_domain *sd, enum idle_type idle)
2454{
2455 struct sched_group *group;
2456 runqueue_t *busiest;
2457 unsigned long imbalance;
77391d71 2458 int nr_moved, all_pinned = 0;
81026794 2459 int active_balance = 0;
5969fe06
NP
2460 int sd_idle = 0;
2461
5c45bf27
SS
2462 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2463 !sched_smt_power_savings)
5969fe06 2464 sd_idle = 1;
1da177e4 2465
1da177e4
LT
2466 schedstat_inc(sd, lb_cnt[idle]);
2467
5969fe06 2468 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
1da177e4
LT
2469 if (!group) {
2470 schedstat_inc(sd, lb_nobusyg[idle]);
2471 goto out_balanced;
2472 }
2473
2dd73a4f 2474 busiest = find_busiest_queue(group, idle, imbalance);
1da177e4
LT
2475 if (!busiest) {
2476 schedstat_inc(sd, lb_nobusyq[idle]);
2477 goto out_balanced;
2478 }
2479
db935dbd 2480 BUG_ON(busiest == this_rq);
1da177e4
LT
2481
2482 schedstat_add(sd, lb_imbalance[idle], imbalance);
2483
2484 nr_moved = 0;
2485 if (busiest->nr_running > 1) {
2486 /*
2487 * Attempt to move tasks. If find_busiest_group has found
2488 * an imbalance but busiest->nr_running <= 1, the group is
2489 * still unbalanced. nr_moved simply stays zero, so it is
2490 * correctly treated as an imbalance.
2491 */
e17224bf 2492 double_rq_lock(this_rq, busiest);
1da177e4 2493 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2dd73a4f 2494 minus_1_or_zero(busiest->nr_running),
d6d5cfaf 2495 imbalance, sd, idle, &all_pinned);
e17224bf 2496 double_rq_unlock(this_rq, busiest);
81026794
NP
2497
2498 /* All tasks on this runqueue were pinned by CPU affinity */
2499 if (unlikely(all_pinned))
2500 goto out_balanced;
1da177e4 2501 }
81026794 2502
1da177e4
LT
2503 if (!nr_moved) {
2504 schedstat_inc(sd, lb_failed[idle]);
2505 sd->nr_balance_failed++;
2506
2507 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4
LT
2508
2509 spin_lock(&busiest->lock);
fa3b6ddc
SS
2510
2511 /* don't kick the migration_thread, if the curr
2512 * task on busiest cpu can't be moved to this_cpu
2513 */
2514 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2515 spin_unlock(&busiest->lock);
2516 all_pinned = 1;
2517 goto out_one_pinned;
2518 }
2519
1da177e4
LT
2520 if (!busiest->active_balance) {
2521 busiest->active_balance = 1;
2522 busiest->push_cpu = this_cpu;
81026794 2523 active_balance = 1;
1da177e4
LT
2524 }
2525 spin_unlock(&busiest->lock);
81026794 2526 if (active_balance)
1da177e4
LT
2527 wake_up_process(busiest->migration_thread);
2528
2529 /*
2530 * We've kicked active balancing, reset the failure
2531 * counter.
2532 */
39507451 2533 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2534 }
81026794 2535 } else
1da177e4
LT
2536 sd->nr_balance_failed = 0;
2537
81026794 2538 if (likely(!active_balance)) {
1da177e4
LT
2539 /* We were unbalanced, so reset the balancing interval */
2540 sd->balance_interval = sd->min_interval;
81026794
NP
2541 } else {
2542 /*
2543 * If we've begun active balancing, start to back off. This
2544 * case may not be covered by the all_pinned logic if there
2545 * is only 1 task on the busy runqueue (because we don't call
2546 * move_tasks).
2547 */
2548 if (sd->balance_interval < sd->max_interval)
2549 sd->balance_interval *= 2;
1da177e4
LT
2550 }
2551
5c45bf27
SS
2552 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2553 !sched_smt_power_savings)
5969fe06 2554 return -1;
1da177e4
LT
2555 return nr_moved;
2556
2557out_balanced:
1da177e4
LT
2558 schedstat_inc(sd, lb_balanced[idle]);
2559
16cfb1c0 2560 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2561
2562out_one_pinned:
1da177e4 2563 /* tune up the balancing interval */
77391d71
NP
2564 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2565 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2566 sd->balance_interval *= 2;
2567
5c45bf27 2568 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)
5969fe06 2569 return -1;
1da177e4
LT
2570 return 0;
2571}
2572
2573/*
2574 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2575 * tasks if there is an imbalance.
2576 *
2577 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2578 * this_rq is locked.
2579 */
2580static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2581 struct sched_domain *sd)
2582{
2583 struct sched_group *group;
2584 runqueue_t *busiest = NULL;
2585 unsigned long imbalance;
2586 int nr_moved = 0;
5969fe06
NP
2587 int sd_idle = 0;
2588
5c45bf27 2589 if (sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)
5969fe06 2590 sd_idle = 1;
1da177e4
LT
2591
2592 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
5969fe06 2593 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
1da177e4 2594 if (!group) {
1da177e4 2595 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
16cfb1c0 2596 goto out_balanced;
1da177e4
LT
2597 }
2598
2dd73a4f 2599 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance);
db935dbd 2600 if (!busiest) {
1da177e4 2601 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
16cfb1c0 2602 goto out_balanced;
1da177e4
LT
2603 }
2604
db935dbd
NP
2605 BUG_ON(busiest == this_rq);
2606
1da177e4 2607 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
d6d5cfaf
NP
2608
2609 nr_moved = 0;
2610 if (busiest->nr_running > 1) {
2611 /* Attempt to move tasks */
2612 double_lock_balance(this_rq, busiest);
2613 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2dd73a4f 2614 minus_1_or_zero(busiest->nr_running),
81026794 2615 imbalance, sd, NEWLY_IDLE, NULL);
d6d5cfaf
NP
2616 spin_unlock(&busiest->lock);
2617 }
2618
5969fe06 2619 if (!nr_moved) {
1da177e4 2620 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
5969fe06
NP
2621 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2622 return -1;
2623 } else
16cfb1c0 2624 sd->nr_balance_failed = 0;
1da177e4 2625
1da177e4 2626 return nr_moved;
16cfb1c0
NP
2627
2628out_balanced:
2629 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
5c45bf27 2630 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)
5969fe06 2631 return -1;
16cfb1c0
NP
2632 sd->nr_balance_failed = 0;
2633 return 0;
1da177e4
LT
2634}
2635
2636/*
2637 * idle_balance is called by schedule() if this_cpu is about to become
2638 * idle. Attempts to pull tasks from other CPUs.
2639 */
858119e1 2640static void idle_balance(int this_cpu, runqueue_t *this_rq)
1da177e4
LT
2641{
2642 struct sched_domain *sd;
2643
2644 for_each_domain(this_cpu, sd) {
2645 if (sd->flags & SD_BALANCE_NEWIDLE) {
2646 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2647 /* We've pulled tasks over so stop searching */
2648 break;
2649 }
2650 }
2651 }
2652}
2653
2654/*
2655 * active_load_balance is run by migration threads. It pushes running tasks
2656 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2657 * running on each physical CPU where possible, and avoids physical /
2658 * logical imbalances.
2659 *
2660 * Called with busiest_rq locked.
2661 */
2662static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2663{
2664 struct sched_domain *sd;
1da177e4 2665 runqueue_t *target_rq;
39507451
NP
2666 int target_cpu = busiest_rq->push_cpu;
2667
2668 if (busiest_rq->nr_running <= 1)
2669 /* no task to move */
2670 return;
2671
2672 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2673
2674 /*
39507451
NP
2675 * This condition is "impossible", if it occurs
2676 * we need to fix it. Originally reported by
2677 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2678 */
39507451 2679 BUG_ON(busiest_rq == target_rq);
1da177e4 2680
39507451
NP
2681 /* move a task from busiest_rq to target_rq */
2682 double_lock_balance(busiest_rq, target_rq);
2683
2684 /* Search for an sd spanning us and the target CPU. */
c96d145e 2685 for_each_domain(target_cpu, sd) {
39507451
NP
2686 if ((sd->flags & SD_LOAD_BALANCE) &&
2687 cpu_isset(busiest_cpu, sd->span))
2688 break;
c96d145e 2689 }
39507451
NP
2690
2691 if (unlikely(sd == NULL))
2692 goto out;
2693
2694 schedstat_inc(sd, alb_cnt);
2695
2dd73a4f
PW
2696 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2697 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE, NULL))
39507451
NP
2698 schedstat_inc(sd, alb_pushed);
2699 else
2700 schedstat_inc(sd, alb_failed);
2701out:
2702 spin_unlock(&target_rq->lock);
1da177e4
LT
2703}
2704
2705/*
2706 * rebalance_tick will get called every timer tick, on every CPU.
2707 *
2708 * It checks each scheduling domain to see if it is due to be balanced,
2709 * and initiates a balancing operation if so.
2710 *
2711 * Balancing parameters are set up in arch_init_sched_domains.
2712 */
2713
2714/* Don't have all balancing operations going off at once */
2715#define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2716
2717static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2718 enum idle_type idle)
2719{
2720 unsigned long old_load, this_load;
2721 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2722 struct sched_domain *sd;
7897986b 2723 int i;
1da177e4 2724
2dd73a4f 2725 this_load = this_rq->raw_weighted_load;
7897986b
NP
2726 /* Update our load */
2727 for (i = 0; i < 3; i++) {
2728 unsigned long new_load = this_load;
2729 int scale = 1 << i;
2730 old_load = this_rq->cpu_load[i];
2731 /*
2732 * Round up the averaging division if load is increasing. This
2733 * prevents us from getting stuck on 9 if the load is 10, for
2734 * example.
2735 */
2736 if (new_load > old_load)
2737 new_load += scale-1;
2738 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2739 }
1da177e4
LT
2740
2741 for_each_domain(this_cpu, sd) {
2742 unsigned long interval;
2743
2744 if (!(sd->flags & SD_LOAD_BALANCE))
2745 continue;
2746
2747 interval = sd->balance_interval;
2748 if (idle != SCHED_IDLE)
2749 interval *= sd->busy_factor;
2750
2751 /* scale ms to jiffies */
2752 interval = msecs_to_jiffies(interval);
2753 if (unlikely(!interval))
2754 interval = 1;
2755
2756 if (j - sd->last_balance >= interval) {
2757 if (load_balance(this_cpu, this_rq, sd, idle)) {
fa3b6ddc
SS
2758 /*
2759 * We've pulled tasks over so either we're no
5969fe06
NP
2760 * longer idle, or one of our SMT siblings is
2761 * not idle.
2762 */
1da177e4
LT
2763 idle = NOT_IDLE;
2764 }
2765 sd->last_balance += interval;
2766 }
2767 }
2768}
2769#else
2770/*
2771 * on UP we do not need to balance between CPUs:
2772 */
2773static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2774{
2775}
2776static inline void idle_balance(int cpu, runqueue_t *rq)
2777{
2778}
2779#endif
2780
2781static inline int wake_priority_sleeper(runqueue_t *rq)
2782{
2783 int ret = 0;
2784#ifdef CONFIG_SCHED_SMT
2785 spin_lock(&rq->lock);
2786 /*
2787 * If an SMT sibling task has been put to sleep for priority
2788 * reasons reschedule the idle task to see if it can now run.
2789 */
2790 if (rq->nr_running) {
2791 resched_task(rq->idle);
2792 ret = 1;
2793 }
2794 spin_unlock(&rq->lock);
2795#endif
2796 return ret;
2797}
2798
2799DEFINE_PER_CPU(struct kernel_stat, kstat);
2800
2801EXPORT_PER_CPU_SYMBOL(kstat);
2802
2803/*
2804 * This is called on clock ticks and on context switches.
2805 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2806 */
2807static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2808 unsigned long long now)
2809{
2810 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2811 p->sched_time += now - last;
2812}
2813
2814/*
2815 * Return current->sched_time plus any more ns on the sched_clock
2816 * that have not yet been banked.
2817 */
2818unsigned long long current_sched_time(const task_t *tsk)
2819{
2820 unsigned long long ns;
2821 unsigned long flags;
2822 local_irq_save(flags);
2823 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2824 ns = tsk->sched_time + (sched_clock() - ns);
2825 local_irq_restore(flags);
2826 return ns;
2827}
2828
f1adad78
LT
2829/*
2830 * We place interactive tasks back into the active array, if possible.
2831 *
2832 * To guarantee that this does not starve expired tasks we ignore the
2833 * interactivity of a task if the first expired task had to wait more
2834 * than a 'reasonable' amount of time. This deadline timeout is
2835 * load-dependent, as the frequency of array switched decreases with
2836 * increasing number of running tasks. We also ignore the interactivity
2837 * if a better static_prio task has expired:
2838 */
2839#define EXPIRED_STARVING(rq) \
2840 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2841 (jiffies - (rq)->expired_timestamp >= \
2842 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2843 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2844
1da177e4
LT
2845/*
2846 * Account user cpu time to a process.
2847 * @p: the process that the cpu time gets accounted to
2848 * @hardirq_offset: the offset to subtract from hardirq_count()
2849 * @cputime: the cpu time spent in user space since the last update
2850 */
2851void account_user_time(struct task_struct *p, cputime_t cputime)
2852{
2853 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2854 cputime64_t tmp;
2855
2856 p->utime = cputime_add(p->utime, cputime);
2857
2858 /* Add user time to cpustat. */
2859 tmp = cputime_to_cputime64(cputime);
2860 if (TASK_NICE(p) > 0)
2861 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2862 else
2863 cpustat->user = cputime64_add(cpustat->user, tmp);
2864}
2865
2866/*
2867 * Account system cpu time to a process.
2868 * @p: the process that the cpu time gets accounted to
2869 * @hardirq_offset: the offset to subtract from hardirq_count()
2870 * @cputime: the cpu time spent in kernel space since the last update
2871 */
2872void account_system_time(struct task_struct *p, int hardirq_offset,
2873 cputime_t cputime)
2874{
2875 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2876 runqueue_t *rq = this_rq();
2877 cputime64_t tmp;
2878
2879 p->stime = cputime_add(p->stime, cputime);
2880
2881 /* Add system time to cpustat. */
2882 tmp = cputime_to_cputime64(cputime);
2883 if (hardirq_count() - hardirq_offset)
2884 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2885 else if (softirq_count())
2886 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2887 else if (p != rq->idle)
2888 cpustat->system = cputime64_add(cpustat->system, tmp);
2889 else if (atomic_read(&rq->nr_iowait) > 0)
2890 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2891 else
2892 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2893 /* Account for system time used */
2894 acct_update_integrals(p);
1da177e4
LT
2895}
2896
2897/*
2898 * Account for involuntary wait time.
2899 * @p: the process from which the cpu time has been stolen
2900 * @steal: the cpu time spent in involuntary wait
2901 */
2902void account_steal_time(struct task_struct *p, cputime_t steal)
2903{
2904 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2905 cputime64_t tmp = cputime_to_cputime64(steal);
2906 runqueue_t *rq = this_rq();
2907
2908 if (p == rq->idle) {
2909 p->stime = cputime_add(p->stime, steal);
2910 if (atomic_read(&rq->nr_iowait) > 0)
2911 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2912 else
2913 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2914 } else
2915 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2916}
2917
2918/*
2919 * This function gets called by the timer code, with HZ frequency.
2920 * We call it with interrupts disabled.
2921 *
2922 * It also gets called by the fork code, when changing the parent's
2923 * timeslices.
2924 */
2925void scheduler_tick(void)
2926{
2927 int cpu = smp_processor_id();
2928 runqueue_t *rq = this_rq();
2929 task_t *p = current;
2930 unsigned long long now = sched_clock();
2931
2932 update_cpu_clock(p, rq, now);
2933
2934 rq->timestamp_last_tick = now;
2935
2936 if (p == rq->idle) {
2937 if (wake_priority_sleeper(rq))
2938 goto out;
2939 rebalance_tick(cpu, rq, SCHED_IDLE);
2940 return;
2941 }
2942
2943 /* Task might have expired already, but not scheduled off yet */
2944 if (p->array != rq->active) {
2945 set_tsk_need_resched(p);
2946 goto out;
2947 }
2948 spin_lock(&rq->lock);
2949 /*
2950 * The task was running during this tick - update the
2951 * time slice counter. Note: we do not update a thread's
2952 * priority until it either goes to sleep or uses up its
2953 * timeslice. This makes it possible for interactive tasks
2954 * to use up their timeslices at their highest priority levels.
2955 */
2956 if (rt_task(p)) {
2957 /*
2958 * RR tasks need a special form of timeslice management.
2959 * FIFO tasks have no timeslices.
2960 */
2961 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2962 p->time_slice = task_timeslice(p);
2963 p->first_time_slice = 0;
2964 set_tsk_need_resched(p);
2965
2966 /* put it at the end of the queue: */
2967 requeue_task(p, rq->active);
2968 }
2969 goto out_unlock;
2970 }
2971 if (!--p->time_slice) {
2972 dequeue_task(p, rq->active);
2973 set_tsk_need_resched(p);
2974 p->prio = effective_prio(p);
2975 p->time_slice = task_timeslice(p);
2976 p->first_time_slice = 0;
2977
2978 if (!rq->expired_timestamp)
2979 rq->expired_timestamp = jiffies;
f1adad78 2980 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
1da177e4
LT
2981 enqueue_task(p, rq->expired);
2982 if (p->static_prio < rq->best_expired_prio)
2983 rq->best_expired_prio = p->static_prio;
2984 } else
2985 enqueue_task(p, rq->active);
2986 } else {
2987 /*
2988 * Prevent a too long timeslice allowing a task to monopolize
2989 * the CPU. We do this by splitting up the timeslice into
2990 * smaller pieces.
2991 *
2992 * Note: this does not mean the task's timeslices expire or
2993 * get lost in any way, they just might be preempted by
2994 * another task of equal priority. (one with higher
2995 * priority would have preempted this task already.) We
2996 * requeue this task to the end of the list on this priority
2997 * level, which is in essence a round-robin of tasks with
2998 * equal priority.
2999 *
3000 * This only applies to tasks in the interactive
3001 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3002 */
3003 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3004 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3005 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3006 (p->array == rq->active)) {
3007
3008 requeue_task(p, rq->active);
3009 set_tsk_need_resched(p);
3010 }
3011 }
3012out_unlock:
3013 spin_unlock(&rq->lock);
3014out:
3015 rebalance_tick(cpu, rq, NOT_IDLE);
3016}
3017
3018#ifdef CONFIG_SCHED_SMT
fc38ed75
CK
3019static inline void wakeup_busy_runqueue(runqueue_t *rq)
3020{
3021 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
3022 if (rq->curr == rq->idle && rq->nr_running)
3023 resched_task(rq->idle);
3024}
3025
c96d145e
KC
3026/*
3027 * Called with interrupt disabled and this_rq's runqueue locked.
3028 */
3029static void wake_sleeping_dependent(int this_cpu)
1da177e4 3030{
41c7ce9a 3031 struct sched_domain *tmp, *sd = NULL;
1da177e4
LT
3032 int i;
3033
c96d145e
KC
3034 for_each_domain(this_cpu, tmp) {
3035 if (tmp->flags & SD_SHARE_CPUPOWER) {
41c7ce9a 3036 sd = tmp;
c96d145e
KC
3037 break;
3038 }
3039 }
41c7ce9a
NP
3040
3041 if (!sd)
1da177e4
LT
3042 return;
3043
c96d145e 3044 for_each_cpu_mask(i, sd->span) {
1da177e4
LT
3045 runqueue_t *smt_rq = cpu_rq(i);
3046
c96d145e
KC
3047 if (i == this_cpu)
3048 continue;
3049 if (unlikely(!spin_trylock(&smt_rq->lock)))
3050 continue;
3051
fc38ed75 3052 wakeup_busy_runqueue(smt_rq);
c96d145e 3053 spin_unlock(&smt_rq->lock);
1da177e4 3054 }
1da177e4
LT
3055}
3056
67f9a619
IM
3057/*
3058 * number of 'lost' timeslices this task wont be able to fully
3059 * utilize, if another task runs on a sibling. This models the
3060 * slowdown effect of other tasks running on siblings:
3061 */
3062static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
3063{
3064 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
3065}
3066
c96d145e
KC
3067/*
3068 * To minimise lock contention and not have to drop this_rq's runlock we only
3069 * trylock the sibling runqueues and bypass those runqueues if we fail to
3070 * acquire their lock. As we only trylock the normal locking order does not
3071 * need to be obeyed.
3072 */
3073static int dependent_sleeper(int this_cpu, runqueue_t *this_rq, task_t *p)
1da177e4 3074{
41c7ce9a 3075 struct sched_domain *tmp, *sd = NULL;
1da177e4 3076 int ret = 0, i;
1da177e4 3077
c96d145e
KC
3078 /* kernel/rt threads do not participate in dependent sleeping */
3079 if (!p->mm || rt_task(p))
3080 return 0;
3081
3082 for_each_domain(this_cpu, tmp) {
3083 if (tmp->flags & SD_SHARE_CPUPOWER) {
41c7ce9a 3084 sd = tmp;
c96d145e
KC
3085 break;
3086 }
3087 }
41c7ce9a
NP
3088
3089 if (!sd)
1da177e4
LT
3090 return 0;
3091
c96d145e
KC
3092 for_each_cpu_mask(i, sd->span) {
3093 runqueue_t *smt_rq;
3094 task_t *smt_curr;
1da177e4 3095
c96d145e
KC
3096 if (i == this_cpu)
3097 continue;
1da177e4 3098
c96d145e
KC
3099 smt_rq = cpu_rq(i);
3100 if (unlikely(!spin_trylock(&smt_rq->lock)))
3101 continue;
1da177e4 3102
c96d145e 3103 smt_curr = smt_rq->curr;
1da177e4 3104
c96d145e
KC
3105 if (!smt_curr->mm)
3106 goto unlock;
fc38ed75 3107
1da177e4
LT
3108 /*
3109 * If a user task with lower static priority than the
3110 * running task on the SMT sibling is trying to schedule,
3111 * delay it till there is proportionately less timeslice
3112 * left of the sibling task to prevent a lower priority
3113 * task from using an unfair proportion of the
3114 * physical cpu's resources. -ck
3115 */
fc38ed75
CK
3116 if (rt_task(smt_curr)) {
3117 /*
3118 * With real time tasks we run non-rt tasks only
3119 * per_cpu_gain% of the time.
3120 */
3121 if ((jiffies % DEF_TIMESLICE) >
3122 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
3123 ret = 1;
c96d145e 3124 } else {
67f9a619
IM
3125 if (smt_curr->static_prio < p->static_prio &&
3126 !TASK_PREEMPTS_CURR(p, smt_rq) &&
3127 smt_slice(smt_curr, sd) > task_timeslice(p))
fc38ed75 3128 ret = 1;
fc38ed75 3129 }
c96d145e
KC
3130unlock:
3131 spin_unlock(&smt_rq->lock);
1da177e4 3132 }
1da177e4
LT
3133 return ret;
3134}
3135#else
c96d145e 3136static inline void wake_sleeping_dependent(int this_cpu)
1da177e4
LT
3137{
3138}
3139
c96d145e
KC
3140static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq,
3141 task_t *p)
1da177e4
LT
3142{
3143 return 0;
3144}
3145#endif
3146
3147#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3148
3149void fastcall add_preempt_count(int val)
3150{
3151 /*
3152 * Underflow?
3153 */
9a11b49a
IM
3154 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3155 return;
1da177e4
LT
3156 preempt_count() += val;
3157 /*
3158 * Spinlock count overflowing soon?
3159 */
9a11b49a 3160 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
1da177e4
LT
3161}
3162EXPORT_SYMBOL(add_preempt_count);
3163
3164void fastcall sub_preempt_count(int val)
3165{
3166 /*
3167 * Underflow?
3168 */
9a11b49a
IM
3169 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3170 return;
1da177e4
LT
3171 /*
3172 * Is the spinlock portion underflowing?
3173 */
9a11b49a
IM
3174 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3175 !(preempt_count() & PREEMPT_MASK)))
3176 return;
3177
1da177e4
LT
3178 preempt_count() -= val;
3179}
3180EXPORT_SYMBOL(sub_preempt_count);
3181
3182#endif
3183
3dee386e
CK
3184static inline int interactive_sleep(enum sleep_type sleep_type)
3185{
3186 return (sleep_type == SLEEP_INTERACTIVE ||
3187 sleep_type == SLEEP_INTERRUPTED);
3188}
3189
1da177e4
LT
3190/*
3191 * schedule() is the main scheduler function.
3192 */
3193asmlinkage void __sched schedule(void)
3194{
3195 long *switch_count;
3196 task_t *prev, *next;
3197 runqueue_t *rq;
3198 prio_array_t *array;
3199 struct list_head *queue;
3200 unsigned long long now;
3201 unsigned long run_time;
a3464a10 3202 int cpu, idx, new_prio;
1da177e4
LT
3203
3204 /*
3205 * Test if we are atomic. Since do_exit() needs to call into
3206 * schedule() atomically, we ignore that path for now.
3207 * Otherwise, whine if we are scheduling when we should not be.
3208 */
77e4bfbc
AM
3209 if (unlikely(in_atomic() && !current->exit_state)) {
3210 printk(KERN_ERR "BUG: scheduling while atomic: "
3211 "%s/0x%08x/%d\n",
3212 current->comm, preempt_count(), current->pid);
3213 dump_stack();
1da177e4
LT
3214 }
3215 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3216
3217need_resched:
3218 preempt_disable();
3219 prev = current;
3220 release_kernel_lock(prev);
3221need_resched_nonpreemptible:
3222 rq = this_rq();
3223
3224 /*
3225 * The idle thread is not allowed to schedule!
3226 * Remove this check after it has been exercised a bit.
3227 */
3228 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3229 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3230 dump_stack();
3231 }
3232
3233 schedstat_inc(rq, sched_cnt);
3234 now = sched_clock();
238628ed 3235 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
1da177e4 3236 run_time = now - prev->timestamp;
238628ed 3237 if (unlikely((long long)(now - prev->timestamp) < 0))
1da177e4
LT
3238 run_time = 0;
3239 } else
3240 run_time = NS_MAX_SLEEP_AVG;
3241
3242 /*
3243 * Tasks charged proportionately less run_time at high sleep_avg to
3244 * delay them losing their interactive status
3245 */
3246 run_time /= (CURRENT_BONUS(prev) ? : 1);
3247
3248 spin_lock_irq(&rq->lock);
3249
3250 if (unlikely(prev->flags & PF_DEAD))
3251 prev->state = EXIT_DEAD;
3252
3253 switch_count = &prev->nivcsw;
3254 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3255 switch_count = &prev->nvcsw;
3256 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3257 unlikely(signal_pending(prev))))
3258 prev->state = TASK_RUNNING;
3259 else {
3260 if (prev->state == TASK_UNINTERRUPTIBLE)
3261 rq->nr_uninterruptible++;
3262 deactivate_task(prev, rq);
3263 }
3264 }
3265
3266 cpu = smp_processor_id();
3267 if (unlikely(!rq->nr_running)) {
1da177e4
LT
3268 idle_balance(cpu, rq);
3269 if (!rq->nr_running) {
3270 next = rq->idle;
3271 rq->expired_timestamp = 0;
c96d145e 3272 wake_sleeping_dependent(cpu);
1da177e4
LT
3273 goto switch_tasks;
3274 }
1da177e4
LT
3275 }
3276
3277 array = rq->active;
3278 if (unlikely(!array->nr_active)) {
3279 /*
3280 * Switch the active and expired arrays.
3281 */
3282 schedstat_inc(rq, sched_switch);
3283 rq->active = rq->expired;
3284 rq->expired = array;
3285 array = rq->active;
3286 rq->expired_timestamp = 0;
3287 rq->best_expired_prio = MAX_PRIO;
3288 }
3289
3290 idx = sched_find_first_bit(array->bitmap);
3291 queue = array->queue + idx;
3292 next = list_entry(queue->next, task_t, run_list);
3293
3dee386e 3294 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
1da177e4 3295 unsigned long long delta = now - next->timestamp;
238628ed 3296 if (unlikely((long long)(now - next->timestamp) < 0))
1da177e4
LT
3297 delta = 0;
3298
3dee386e 3299 if (next->sleep_type == SLEEP_INTERACTIVE)
1da177e4
LT
3300 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3301
3302 array = next->array;
a3464a10
CS
3303 new_prio = recalc_task_prio(next, next->timestamp + delta);
3304
3305 if (unlikely(next->prio != new_prio)) {
3306 dequeue_task(next, array);
3307 next->prio = new_prio;
3308 enqueue_task(next, array);
7c4bb1f9 3309 }
1da177e4 3310 }
3dee386e 3311 next->sleep_type = SLEEP_NORMAL;
c96d145e
KC
3312 if (dependent_sleeper(cpu, rq, next))
3313 next = rq->idle;
1da177e4
LT
3314switch_tasks:
3315 if (next == rq->idle)
3316 schedstat_inc(rq, sched_goidle);
3317 prefetch(next);
383f2835 3318 prefetch_stack(next);
1da177e4
LT
3319 clear_tsk_need_resched(prev);
3320 rcu_qsctr_inc(task_cpu(prev));
3321
3322 update_cpu_clock(prev, rq, now);
3323
3324 prev->sleep_avg -= run_time;
3325 if ((long)prev->sleep_avg <= 0)
3326 prev->sleep_avg = 0;
3327 prev->timestamp = prev->last_ran = now;
3328
3329 sched_info_switch(prev, next);
3330 if (likely(prev != next)) {
3331 next->timestamp = now;
3332 rq->nr_switches++;
3333 rq->curr = next;
3334 ++*switch_count;
3335
4866cde0 3336 prepare_task_switch(rq, next);
1da177e4
LT
3337 prev = context_switch(rq, prev, next);
3338 barrier();
4866cde0
NP
3339 /*
3340 * this_rq must be evaluated again because prev may have moved
3341 * CPUs since it called schedule(), thus the 'rq' on its stack
3342 * frame will be invalid.
3343 */
3344 finish_task_switch(this_rq(), prev);
1da177e4
LT
3345 } else
3346 spin_unlock_irq(&rq->lock);
3347
3348 prev = current;
3349 if (unlikely(reacquire_kernel_lock(prev) < 0))
3350 goto need_resched_nonpreemptible;
3351 preempt_enable_no_resched();
3352 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3353 goto need_resched;
3354}
3355
3356EXPORT_SYMBOL(schedule);
3357
3358#ifdef CONFIG_PREEMPT
3359/*
3360 * this is is the entry point to schedule() from in-kernel preemption
3361 * off of preempt_enable. Kernel preemptions off return from interrupt
3362 * occur there and call schedule directly.
3363 */
3364asmlinkage void __sched preempt_schedule(void)
3365{
3366 struct thread_info *ti = current_thread_info();
3367#ifdef CONFIG_PREEMPT_BKL
3368 struct task_struct *task = current;
3369 int saved_lock_depth;
3370#endif
3371 /*
3372 * If there is a non-zero preempt_count or interrupts are disabled,
3373 * we do not want to preempt the current task. Just return..
3374 */
3375 if (unlikely(ti->preempt_count || irqs_disabled()))
3376 return;
3377
3378need_resched:
3379 add_preempt_count(PREEMPT_ACTIVE);
3380 /*
3381 * We keep the big kernel semaphore locked, but we
3382 * clear ->lock_depth so that schedule() doesnt
3383 * auto-release the semaphore:
3384 */
3385#ifdef CONFIG_PREEMPT_BKL
3386 saved_lock_depth = task->lock_depth;
3387 task->lock_depth = -1;
3388#endif
3389 schedule();
3390#ifdef CONFIG_PREEMPT_BKL
3391 task->lock_depth = saved_lock_depth;
3392#endif
3393 sub_preempt_count(PREEMPT_ACTIVE);
3394
3395 /* we could miss a preemption opportunity between schedule and now */
3396 barrier();
3397 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3398 goto need_resched;
3399}
3400
3401EXPORT_SYMBOL(preempt_schedule);
3402
3403/*
3404 * this is is the entry point to schedule() from kernel preemption
3405 * off of irq context.
3406 * Note, that this is called and return with irqs disabled. This will
3407 * protect us against recursive calling from irq.
3408 */
3409asmlinkage void __sched preempt_schedule_irq(void)
3410{
3411 struct thread_info *ti = current_thread_info();
3412#ifdef CONFIG_PREEMPT_BKL
3413 struct task_struct *task = current;
3414 int saved_lock_depth;
3415#endif
3416 /* Catch callers which need to be fixed*/
3417 BUG_ON(ti->preempt_count || !irqs_disabled());
3418
3419need_resched:
3420 add_preempt_count(PREEMPT_ACTIVE);
3421 /*
3422 * We keep the big kernel semaphore locked, but we
3423 * clear ->lock_depth so that schedule() doesnt
3424 * auto-release the semaphore:
3425 */
3426#ifdef CONFIG_PREEMPT_BKL
3427 saved_lock_depth = task->lock_depth;
3428 task->lock_depth = -1;
3429#endif
3430 local_irq_enable();
3431 schedule();
3432 local_irq_disable();
3433#ifdef CONFIG_PREEMPT_BKL
3434 task->lock_depth = saved_lock_depth;
3435#endif
3436 sub_preempt_count(PREEMPT_ACTIVE);
3437
3438 /* we could miss a preemption opportunity between schedule and now */
3439 barrier();
3440 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3441 goto need_resched;
3442}
3443
3444#endif /* CONFIG_PREEMPT */
3445
95cdf3b7
IM
3446int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3447 void *key)
1da177e4 3448{
c43dc2fd 3449 task_t *p = curr->private;
1da177e4
LT
3450 return try_to_wake_up(p, mode, sync);
3451}
3452
3453EXPORT_SYMBOL(default_wake_function);
3454
3455/*
3456 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3457 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3458 * number) then we wake all the non-exclusive tasks and one exclusive task.
3459 *
3460 * There are circumstances in which we can try to wake a task which has already
3461 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3462 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3463 */
3464static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3465 int nr_exclusive, int sync, void *key)
3466{
3467 struct list_head *tmp, *next;
3468
3469 list_for_each_safe(tmp, next, &q->task_list) {
3470 wait_queue_t *curr;
3471 unsigned flags;
3472 curr = list_entry(tmp, wait_queue_t, task_list);
3473 flags = curr->flags;
3474 if (curr->func(curr, mode, sync, key) &&
3475 (flags & WQ_FLAG_EXCLUSIVE) &&
3476 !--nr_exclusive)
3477 break;
3478 }
3479}
3480
3481/**
3482 * __wake_up - wake up threads blocked on a waitqueue.
3483 * @q: the waitqueue
3484 * @mode: which threads
3485 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3486 * @key: is directly passed to the wakeup function
1da177e4
LT
3487 */
3488void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3489 int nr_exclusive, void *key)
1da177e4
LT
3490{
3491 unsigned long flags;
3492
3493 spin_lock_irqsave(&q->lock, flags);
3494 __wake_up_common(q, mode, nr_exclusive, 0, key);
3495 spin_unlock_irqrestore(&q->lock, flags);
3496}
3497
3498EXPORT_SYMBOL(__wake_up);
3499
3500/*
3501 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3502 */
3503void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3504{
3505 __wake_up_common(q, mode, 1, 0, NULL);
3506}
3507
3508/**
67be2dd1 3509 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3510 * @q: the waitqueue
3511 * @mode: which threads
3512 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3513 *
3514 * The sync wakeup differs that the waker knows that it will schedule
3515 * away soon, so while the target thread will be woken up, it will not
3516 * be migrated to another CPU - ie. the two threads are 'synchronized'
3517 * with each other. This can prevent needless bouncing between CPUs.
3518 *
3519 * On UP it can prevent extra preemption.
3520 */
95cdf3b7
IM
3521void fastcall
3522__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3523{
3524 unsigned long flags;
3525 int sync = 1;
3526
3527 if (unlikely(!q))
3528 return;
3529
3530 if (unlikely(!nr_exclusive))
3531 sync = 0;
3532
3533 spin_lock_irqsave(&q->lock, flags);
3534 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3535 spin_unlock_irqrestore(&q->lock, flags);
3536}
3537EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3538
3539void fastcall complete(struct completion *x)
3540{
3541 unsigned long flags;
3542
3543 spin_lock_irqsave(&x->wait.lock, flags);
3544 x->done++;
3545 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3546 1, 0, NULL);
3547 spin_unlock_irqrestore(&x->wait.lock, flags);
3548}
3549EXPORT_SYMBOL(complete);
3550
3551void fastcall complete_all(struct completion *x)
3552{
3553 unsigned long flags;
3554
3555 spin_lock_irqsave(&x->wait.lock, flags);
3556 x->done += UINT_MAX/2;
3557 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3558 0, 0, NULL);
3559 spin_unlock_irqrestore(&x->wait.lock, flags);
3560}
3561EXPORT_SYMBOL(complete_all);
3562
3563void fastcall __sched wait_for_completion(struct completion *x)
3564{
3565 might_sleep();
3566 spin_lock_irq(&x->wait.lock);
3567 if (!x->done) {
3568 DECLARE_WAITQUEUE(wait, current);
3569
3570 wait.flags |= WQ_FLAG_EXCLUSIVE;
3571 __add_wait_queue_tail(&x->wait, &wait);
3572 do {
3573 __set_current_state(TASK_UNINTERRUPTIBLE);
3574 spin_unlock_irq(&x->wait.lock);
3575 schedule();
3576 spin_lock_irq(&x->wait.lock);
3577 } while (!x->done);
3578 __remove_wait_queue(&x->wait, &wait);
3579 }
3580 x->done--;
3581 spin_unlock_irq(&x->wait.lock);
3582}
3583EXPORT_SYMBOL(wait_for_completion);
3584
3585unsigned long fastcall __sched
3586wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3587{
3588 might_sleep();
3589
3590 spin_lock_irq(&x->wait.lock);
3591 if (!x->done) {
3592 DECLARE_WAITQUEUE(wait, current);
3593
3594 wait.flags |= WQ_FLAG_EXCLUSIVE;
3595 __add_wait_queue_tail(&x->wait, &wait);
3596 do {
3597 __set_current_state(TASK_UNINTERRUPTIBLE);
3598 spin_unlock_irq(&x->wait.lock);
3599 timeout = schedule_timeout(timeout);
3600 spin_lock_irq(&x->wait.lock);
3601 if (!timeout) {
3602 __remove_wait_queue(&x->wait, &wait);
3603 goto out;
3604 }
3605 } while (!x->done);
3606 __remove_wait_queue(&x->wait, &wait);
3607 }
3608 x->done--;
3609out:
3610 spin_unlock_irq(&x->wait.lock);
3611 return timeout;
3612}
3613EXPORT_SYMBOL(wait_for_completion_timeout);
3614
3615int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3616{
3617 int ret = 0;
3618
3619 might_sleep();
3620
3621 spin_lock_irq(&x->wait.lock);
3622 if (!x->done) {
3623 DECLARE_WAITQUEUE(wait, current);
3624
3625 wait.flags |= WQ_FLAG_EXCLUSIVE;
3626 __add_wait_queue_tail(&x->wait, &wait);
3627 do {
3628 if (signal_pending(current)) {
3629 ret = -ERESTARTSYS;
3630 __remove_wait_queue(&x->wait, &wait);
3631 goto out;
3632 }
3633 __set_current_state(TASK_INTERRUPTIBLE);
3634 spin_unlock_irq(&x->wait.lock);
3635 schedule();
3636 spin_lock_irq(&x->wait.lock);
3637 } while (!x->done);
3638 __remove_wait_queue(&x->wait, &wait);
3639 }
3640 x->done--;
3641out:
3642 spin_unlock_irq(&x->wait.lock);
3643
3644 return ret;
3645}
3646EXPORT_SYMBOL(wait_for_completion_interruptible);
3647
3648unsigned long fastcall __sched
3649wait_for_completion_interruptible_timeout(struct completion *x,
3650 unsigned long timeout)
3651{
3652 might_sleep();
3653
3654 spin_lock_irq(&x->wait.lock);
3655 if (!x->done) {
3656 DECLARE_WAITQUEUE(wait, current);
3657
3658 wait.flags |= WQ_FLAG_EXCLUSIVE;
3659 __add_wait_queue_tail(&x->wait, &wait);
3660 do {
3661 if (signal_pending(current)) {
3662 timeout = -ERESTARTSYS;
3663 __remove_wait_queue(&x->wait, &wait);
3664 goto out;
3665 }
3666 __set_current_state(TASK_INTERRUPTIBLE);
3667 spin_unlock_irq(&x->wait.lock);
3668 timeout = schedule_timeout(timeout);
3669 spin_lock_irq(&x->wait.lock);
3670 if (!timeout) {
3671 __remove_wait_queue(&x->wait, &wait);
3672 goto out;
3673 }
3674 } while (!x->done);
3675 __remove_wait_queue(&x->wait, &wait);
3676 }
3677 x->done--;
3678out:
3679 spin_unlock_irq(&x->wait.lock);
3680 return timeout;
3681}
3682EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3683
3684
3685#define SLEEP_ON_VAR \
3686 unsigned long flags; \
3687 wait_queue_t wait; \
3688 init_waitqueue_entry(&wait, current);
3689
3690#define SLEEP_ON_HEAD \
3691 spin_lock_irqsave(&q->lock,flags); \
3692 __add_wait_queue(q, &wait); \
3693 spin_unlock(&q->lock);
3694
3695#define SLEEP_ON_TAIL \
3696 spin_lock_irq(&q->lock); \
3697 __remove_wait_queue(q, &wait); \
3698 spin_unlock_irqrestore(&q->lock, flags);
3699
3700void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3701{
3702 SLEEP_ON_VAR
3703
3704 current->state = TASK_INTERRUPTIBLE;
3705
3706 SLEEP_ON_HEAD
3707 schedule();
3708 SLEEP_ON_TAIL
3709}
3710
3711EXPORT_SYMBOL(interruptible_sleep_on);
3712
95cdf3b7
IM
3713long fastcall __sched
3714interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4
LT
3715{
3716 SLEEP_ON_VAR
3717
3718 current->state = TASK_INTERRUPTIBLE;
3719
3720 SLEEP_ON_HEAD
3721 timeout = schedule_timeout(timeout);
3722 SLEEP_ON_TAIL
3723
3724 return timeout;
3725}
3726
3727EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3728
3729void fastcall __sched sleep_on(wait_queue_head_t *q)
3730{
3731 SLEEP_ON_VAR
3732
3733 current->state = TASK_UNINTERRUPTIBLE;
3734
3735 SLEEP_ON_HEAD
3736 schedule();
3737 SLEEP_ON_TAIL
3738}
3739
3740EXPORT_SYMBOL(sleep_on);
3741
3742long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3743{
3744 SLEEP_ON_VAR
3745
3746 current->state = TASK_UNINTERRUPTIBLE;
3747
3748 SLEEP_ON_HEAD
3749 timeout = schedule_timeout(timeout);
3750 SLEEP_ON_TAIL
3751
3752 return timeout;
3753}
3754
3755EXPORT_SYMBOL(sleep_on_timeout);
3756
b29739f9
IM
3757#ifdef CONFIG_RT_MUTEXES
3758
3759/*
3760 * rt_mutex_setprio - set the current priority of a task
3761 * @p: task
3762 * @prio: prio value (kernel-internal form)
3763 *
3764 * This function changes the 'effective' priority of a task. It does
3765 * not touch ->normal_prio like __setscheduler().
3766 *
3767 * Used by the rt_mutex code to implement priority inheritance logic.
3768 */
3769void rt_mutex_setprio(task_t *p, int prio)
3770{
3771 unsigned long flags;
3772 prio_array_t *array;
3773 runqueue_t *rq;
3774 int oldprio;
3775
3776 BUG_ON(prio < 0 || prio > MAX_PRIO);
3777
3778 rq = task_rq_lock(p, &flags);
3779
3780 oldprio = p->prio;
3781 array = p->array;
3782 if (array)
3783 dequeue_task(p, array);
3784 p->prio = prio;
3785
3786 if (array) {
3787 /*
3788 * If changing to an RT priority then queue it
3789 * in the active array!
3790 */
3791 if (rt_task(p))
3792 array = rq->active;
3793 enqueue_task(p, array);
3794 /*
3795 * Reschedule if we are currently running on this runqueue and
3796 * our priority decreased, or if we are not currently running on
3797 * this runqueue and our priority is higher than the current's
3798 */
3799 if (task_running(rq, p)) {
3800 if (p->prio > oldprio)
3801 resched_task(rq->curr);
3802 } else if (TASK_PREEMPTS_CURR(p, rq))
3803 resched_task(rq->curr);
3804 }
3805 task_rq_unlock(rq, &flags);
3806}
3807
3808#endif
3809
1da177e4
LT
3810void set_user_nice(task_t *p, long nice)
3811{
3812 unsigned long flags;
3813 prio_array_t *array;
3814 runqueue_t *rq;
b29739f9 3815 int old_prio, delta;
1da177e4
LT
3816
3817 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3818 return;
3819 /*
3820 * We have to be careful, if called from sys_setpriority(),
3821 * the task might be in the middle of scheduling on another CPU.
3822 */
3823 rq = task_rq_lock(p, &flags);
3824 /*
3825 * The RT priorities are set via sched_setscheduler(), but we still
3826 * allow the 'normal' nice value to be set - but as expected
3827 * it wont have any effect on scheduling until the task is
b0a9499c 3828 * not SCHED_NORMAL/SCHED_BATCH:
1da177e4 3829 */
b29739f9 3830 if (has_rt_policy(p)) {
1da177e4
LT
3831 p->static_prio = NICE_TO_PRIO(nice);
3832 goto out_unlock;
3833 }
3834 array = p->array;
2dd73a4f 3835 if (array) {
1da177e4 3836 dequeue_task(p, array);
2dd73a4f
PW
3837 dec_raw_weighted_load(rq, p);
3838 }
1da177e4 3839
1da177e4 3840 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3841 set_load_weight(p);
b29739f9
IM
3842 old_prio = p->prio;
3843 p->prio = effective_prio(p);
3844 delta = p->prio - old_prio;
1da177e4
LT
3845
3846 if (array) {
3847 enqueue_task(p, array);
2dd73a4f 3848 inc_raw_weighted_load(rq, p);
1da177e4
LT
3849 /*
3850 * If the task increased its priority or is running and
3851 * lowered its priority, then reschedule its CPU:
3852 */
3853 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3854 resched_task(rq->curr);
3855 }
3856out_unlock:
3857 task_rq_unlock(rq, &flags);
3858}
1da177e4
LT
3859EXPORT_SYMBOL(set_user_nice);
3860
e43379f1
MM
3861/*
3862 * can_nice - check if a task can reduce its nice value
3863 * @p: task
3864 * @nice: nice value
3865 */
3866int can_nice(const task_t *p, const int nice)
3867{
024f4747
MM
3868 /* convert nice value [19,-20] to rlimit style value [1,40] */
3869 int nice_rlim = 20 - nice;
e43379f1
MM
3870 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3871 capable(CAP_SYS_NICE));
3872}
3873
1da177e4
LT
3874#ifdef __ARCH_WANT_SYS_NICE
3875
3876/*
3877 * sys_nice - change the priority of the current process.
3878 * @increment: priority increment
3879 *
3880 * sys_setpriority is a more generic, but much slower function that
3881 * does similar things.
3882 */
3883asmlinkage long sys_nice(int increment)
3884{
3885 int retval;
3886 long nice;
3887
3888 /*
3889 * Setpriority might change our priority at the same moment.
3890 * We don't have to worry. Conceptually one call occurs first
3891 * and we have a single winner.
3892 */
e43379f1
MM
3893 if (increment < -40)
3894 increment = -40;
1da177e4
LT
3895 if (increment > 40)
3896 increment = 40;
3897
3898 nice = PRIO_TO_NICE(current->static_prio) + increment;
3899 if (nice < -20)
3900 nice = -20;
3901 if (nice > 19)
3902 nice = 19;
3903
e43379f1
MM
3904 if (increment < 0 && !can_nice(current, nice))
3905 return -EPERM;
3906
1da177e4
LT
3907 retval = security_task_setnice(current, nice);
3908 if (retval)
3909 return retval;
3910
3911 set_user_nice(current, nice);
3912 return 0;
3913}
3914
3915#endif
3916
3917/**
3918 * task_prio - return the priority value of a given task.
3919 * @p: the task in question.
3920 *
3921 * This is the priority value as seen by users in /proc.
3922 * RT tasks are offset by -200. Normal tasks are centered
3923 * around 0, value goes from -16 to +15.
3924 */
3925int task_prio(const task_t *p)
3926{
3927 return p->prio - MAX_RT_PRIO;
3928}
3929
3930/**
3931 * task_nice - return the nice value of a given task.
3932 * @p: the task in question.
3933 */
3934int task_nice(const task_t *p)
3935{
3936 return TASK_NICE(p);
3937}
1da177e4 3938EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
3939
3940/**
3941 * idle_cpu - is a given cpu idle currently?
3942 * @cpu: the processor in question.
3943 */
3944int idle_cpu(int cpu)
3945{
3946 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3947}
3948
1da177e4
LT
3949/**
3950 * idle_task - return the idle task for a given cpu.
3951 * @cpu: the processor in question.
3952 */
3953task_t *idle_task(int cpu)
3954{
3955 return cpu_rq(cpu)->idle;
3956}
3957
3958/**
3959 * find_process_by_pid - find a process with a matching PID value.
3960 * @pid: the pid in question.
3961 */
3962static inline task_t *find_process_by_pid(pid_t pid)
3963{
3964 return pid ? find_task_by_pid(pid) : current;
3965}
3966
3967/* Actually do priority change: must hold rq lock. */
3968static void __setscheduler(struct task_struct *p, int policy, int prio)
3969{
3970 BUG_ON(p->array);
3971 p->policy = policy;
3972 p->rt_priority = prio;
b29739f9
IM
3973 p->normal_prio = normal_prio(p);
3974 /* we are holding p->pi_lock already */
3975 p->prio = rt_mutex_getprio(p);
3976 /*
3977 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3978 */
3979 if (policy == SCHED_BATCH)
3980 p->sleep_avg = 0;
2dd73a4f 3981 set_load_weight(p);
1da177e4
LT
3982}
3983
3984/**
3985 * sched_setscheduler - change the scheduling policy and/or RT priority of
3986 * a thread.
3987 * @p: the task in question.
3988 * @policy: new policy.
3989 * @param: structure containing the new RT priority.
3990 */
95cdf3b7
IM
3991int sched_setscheduler(struct task_struct *p, int policy,
3992 struct sched_param *param)
1da177e4
LT
3993{
3994 int retval;
3995 int oldprio, oldpolicy = -1;
3996 prio_array_t *array;
3997 unsigned long flags;
3998 runqueue_t *rq;
3999
66e5393a
SR
4000 /* may grab non-irq protected spin_locks */
4001 BUG_ON(in_interrupt());
1da177e4
LT
4002recheck:
4003 /* double check policy once rq lock held */
4004 if (policy < 0)
4005 policy = oldpolicy = p->policy;
4006 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
b0a9499c
IM
4007 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4008 return -EINVAL;
1da177e4
LT
4009 /*
4010 * Valid priorities for SCHED_FIFO and SCHED_RR are
b0a9499c
IM
4011 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4012 * SCHED_BATCH is 0.
1da177e4
LT
4013 */
4014 if (param->sched_priority < 0 ||
95cdf3b7 4015 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4016 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4017 return -EINVAL;
b0a9499c
IM
4018 if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
4019 != (param->sched_priority == 0))
1da177e4
LT
4020 return -EINVAL;
4021
37e4ab3f
OC
4022 /*
4023 * Allow unprivileged RT tasks to decrease priority:
4024 */
4025 if (!capable(CAP_SYS_NICE)) {
b0a9499c
IM
4026 /*
4027 * can't change policy, except between SCHED_NORMAL
4028 * and SCHED_BATCH:
4029 */
4030 if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
4031 (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
4032 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
37e4ab3f
OC
4033 return -EPERM;
4034 /* can't increase priority */
b0a9499c 4035 if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
37e4ab3f
OC
4036 param->sched_priority > p->rt_priority &&
4037 param->sched_priority >
4038 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
4039 return -EPERM;
4040 /* can't change other user's priorities */
4041 if ((current->euid != p->euid) &&
4042 (current->euid != p->uid))
4043 return -EPERM;
4044 }
1da177e4
LT
4045
4046 retval = security_task_setscheduler(p, policy, param);
4047 if (retval)
4048 return retval;
b29739f9
IM
4049 /*
4050 * make sure no PI-waiters arrive (or leave) while we are
4051 * changing the priority of the task:
4052 */
4053 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4054 /*
4055 * To be able to change p->policy safely, the apropriate
4056 * runqueue lock must be held.
4057 */
b29739f9 4058 rq = __task_rq_lock(p);
1da177e4
LT
4059 /* recheck policy now with rq lock held */
4060 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4061 policy = oldpolicy = -1;
b29739f9
IM
4062 __task_rq_unlock(rq);
4063 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4064 goto recheck;
4065 }
4066 array = p->array;
4067 if (array)
4068 deactivate_task(p, rq);
4069 oldprio = p->prio;
4070 __setscheduler(p, policy, param->sched_priority);
4071 if (array) {
4072 __activate_task(p, rq);
4073 /*
4074 * Reschedule if we are currently running on this runqueue and
4075 * our priority decreased, or if we are not currently running on
4076 * this runqueue and our priority is higher than the current's
4077 */
4078 if (task_running(rq, p)) {
4079 if (p->prio > oldprio)
4080 resched_task(rq->curr);
4081 } else if (TASK_PREEMPTS_CURR(p, rq))
4082 resched_task(rq->curr);
4083 }
b29739f9
IM
4084 __task_rq_unlock(rq);
4085 spin_unlock_irqrestore(&p->pi_lock, flags);
4086
95e02ca9
TG
4087 rt_mutex_adjust_pi(p);
4088
1da177e4
LT
4089 return 0;
4090}
4091EXPORT_SYMBOL_GPL(sched_setscheduler);
4092
95cdf3b7
IM
4093static int
4094do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4
LT
4095{
4096 int retval;
4097 struct sched_param lparam;
4098 struct task_struct *p;
4099
4100 if (!param || pid < 0)
4101 return -EINVAL;
4102 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4103 return -EFAULT;
4104 read_lock_irq(&tasklist_lock);
4105 p = find_process_by_pid(pid);
4106 if (!p) {
4107 read_unlock_irq(&tasklist_lock);
4108 return -ESRCH;
4109 }
e74c69f4 4110 get_task_struct(p);
1da177e4 4111 read_unlock_irq(&tasklist_lock);
e74c69f4
TG
4112 retval = sched_setscheduler(p, policy, &lparam);
4113 put_task_struct(p);
1da177e4
LT
4114 return retval;
4115}
4116
4117/**
4118 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4119 * @pid: the pid in question.
4120 * @policy: new policy.
4121 * @param: structure containing the new RT priority.
4122 */
4123asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4124 struct sched_param __user *param)
4125{
c21761f1
JB
4126 /* negative values for policy are not valid */
4127 if (policy < 0)
4128 return -EINVAL;
4129
1da177e4
LT
4130 return do_sched_setscheduler(pid, policy, param);
4131}
4132
4133/**
4134 * sys_sched_setparam - set/change the RT priority of a thread
4135 * @pid: the pid in question.
4136 * @param: structure containing the new RT priority.
4137 */
4138asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4139{
4140 return do_sched_setscheduler(pid, -1, param);
4141}
4142
4143/**
4144 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4145 * @pid: the pid in question.
4146 */
4147asmlinkage long sys_sched_getscheduler(pid_t pid)
4148{
4149 int retval = -EINVAL;
4150 task_t *p;
4151
4152 if (pid < 0)
4153 goto out_nounlock;
4154
4155 retval = -ESRCH;
4156 read_lock(&tasklist_lock);
4157 p = find_process_by_pid(pid);
4158 if (p) {
4159 retval = security_task_getscheduler(p);
4160 if (!retval)
4161 retval = p->policy;
4162 }
4163 read_unlock(&tasklist_lock);
4164
4165out_nounlock:
4166 return retval;
4167}
4168
4169/**
4170 * sys_sched_getscheduler - get the RT priority of a thread
4171 * @pid: the pid in question.
4172 * @param: structure containing the RT priority.
4173 */
4174asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4175{
4176 struct sched_param lp;
4177 int retval = -EINVAL;
4178 task_t *p;
4179
4180 if (!param || pid < 0)
4181 goto out_nounlock;
4182
4183 read_lock(&tasklist_lock);
4184 p = find_process_by_pid(pid);
4185 retval = -ESRCH;
4186 if (!p)
4187 goto out_unlock;
4188
4189 retval = security_task_getscheduler(p);
4190 if (retval)
4191 goto out_unlock;
4192
4193 lp.sched_priority = p->rt_priority;
4194 read_unlock(&tasklist_lock);
4195
4196 /*
4197 * This one might sleep, we cannot do it with a spinlock held ...
4198 */
4199 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4200
4201out_nounlock:
4202 return retval;
4203
4204out_unlock:
4205 read_unlock(&tasklist_lock);
4206 return retval;
4207}
4208
4209long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4210{
4211 task_t *p;
4212 int retval;
4213 cpumask_t cpus_allowed;
4214
4215 lock_cpu_hotplug();
4216 read_lock(&tasklist_lock);
4217
4218 p = find_process_by_pid(pid);
4219 if (!p) {
4220 read_unlock(&tasklist_lock);
4221 unlock_cpu_hotplug();
4222 return -ESRCH;
4223 }
4224
4225 /*
4226 * It is not safe to call set_cpus_allowed with the
4227 * tasklist_lock held. We will bump the task_struct's
4228 * usage count and then drop tasklist_lock.
4229 */
4230 get_task_struct(p);
4231 read_unlock(&tasklist_lock);
4232
4233 retval = -EPERM;
4234 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4235 !capable(CAP_SYS_NICE))
4236 goto out_unlock;
4237
e7834f8f
DQ
4238 retval = security_task_setscheduler(p, 0, NULL);
4239 if (retval)
4240 goto out_unlock;
4241
1da177e4
LT
4242 cpus_allowed = cpuset_cpus_allowed(p);
4243 cpus_and(new_mask, new_mask, cpus_allowed);
4244 retval = set_cpus_allowed(p, new_mask);
4245
4246out_unlock:
4247 put_task_struct(p);
4248 unlock_cpu_hotplug();
4249 return retval;
4250}
4251
4252static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4253 cpumask_t *new_mask)
4254{
4255 if (len < sizeof(cpumask_t)) {
4256 memset(new_mask, 0, sizeof(cpumask_t));
4257 } else if (len > sizeof(cpumask_t)) {
4258 len = sizeof(cpumask_t);
4259 }
4260 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4261}
4262
4263/**
4264 * sys_sched_setaffinity - set the cpu affinity of a process
4265 * @pid: pid of the process
4266 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4267 * @user_mask_ptr: user-space pointer to the new cpu mask
4268 */
4269asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4270 unsigned long __user *user_mask_ptr)
4271{
4272 cpumask_t new_mask;
4273 int retval;
4274
4275 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4276 if (retval)
4277 return retval;
4278
4279 return sched_setaffinity(pid, new_mask);
4280}
4281
4282/*
4283 * Represents all cpu's present in the system
4284 * In systems capable of hotplug, this map could dynamically grow
4285 * as new cpu's are detected in the system via any platform specific
4286 * method, such as ACPI for e.g.
4287 */
4288
4cef0c61 4289cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4290EXPORT_SYMBOL(cpu_present_map);
4291
4292#ifndef CONFIG_SMP
4cef0c61
AK
4293cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4294cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
1da177e4
LT
4295#endif
4296
4297long sched_getaffinity(pid_t pid, cpumask_t *mask)
4298{
4299 int retval;
4300 task_t *p;
4301
4302 lock_cpu_hotplug();
4303 read_lock(&tasklist_lock);
4304
4305 retval = -ESRCH;
4306 p = find_process_by_pid(pid);
4307 if (!p)
4308 goto out_unlock;
4309
e7834f8f
DQ
4310 retval = security_task_getscheduler(p);
4311 if (retval)
4312 goto out_unlock;
4313
2f7016d9 4314 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4315
4316out_unlock:
4317 read_unlock(&tasklist_lock);
4318 unlock_cpu_hotplug();
4319 if (retval)
4320 return retval;
4321
4322 return 0;
4323}
4324
4325/**
4326 * sys_sched_getaffinity - get the cpu affinity of a process
4327 * @pid: pid of the process
4328 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4329 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4330 */
4331asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4332 unsigned long __user *user_mask_ptr)
4333{
4334 int ret;
4335 cpumask_t mask;
4336
4337 if (len < sizeof(cpumask_t))
4338 return -EINVAL;
4339
4340 ret = sched_getaffinity(pid, &mask);
4341 if (ret < 0)
4342 return ret;
4343
4344 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4345 return -EFAULT;
4346
4347 return sizeof(cpumask_t);
4348}
4349
4350/**
4351 * sys_sched_yield - yield the current processor to other threads.
4352 *
4353 * this function yields the current CPU by moving the calling thread
4354 * to the expired array. If there are no other threads running on this
4355 * CPU then this function will return.
4356 */
4357asmlinkage long sys_sched_yield(void)
4358{
4359 runqueue_t *rq = this_rq_lock();
4360 prio_array_t *array = current->array;
4361 prio_array_t *target = rq->expired;
4362
4363 schedstat_inc(rq, yld_cnt);
4364 /*
4365 * We implement yielding by moving the task into the expired
4366 * queue.
4367 *
4368 * (special rule: RT tasks will just roundrobin in the active
4369 * array.)
4370 */
4371 if (rt_task(current))
4372 target = rq->active;
4373
5927ad78 4374 if (array->nr_active == 1) {
1da177e4
LT
4375 schedstat_inc(rq, yld_act_empty);
4376 if (!rq->expired->nr_active)
4377 schedstat_inc(rq, yld_both_empty);
4378 } else if (!rq->expired->nr_active)
4379 schedstat_inc(rq, yld_exp_empty);
4380
4381 if (array != target) {
4382 dequeue_task(current, array);
4383 enqueue_task(current, target);
4384 } else
4385 /*
4386 * requeue_task is cheaper so perform that if possible.
4387 */
4388 requeue_task(current, array);
4389
4390 /*
4391 * Since we are going to call schedule() anyway, there's
4392 * no need to preempt or enable interrupts:
4393 */
4394 __release(rq->lock);
8a25d5de 4395 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4396 _raw_spin_unlock(&rq->lock);
4397 preempt_enable_no_resched();
4398
4399 schedule();
4400
4401 return 0;
4402}
4403
e7b38404
AM
4404static inline int __resched_legal(void)
4405{
4406 if (unlikely(preempt_count()))
4407 return 0;
4408 if (unlikely(system_state != SYSTEM_RUNNING))
4409 return 0;
4410 return 1;
4411}
4412
4413static void __cond_resched(void)
1da177e4 4414{
8e0a43d8
IM
4415#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4416 __might_sleep(__FILE__, __LINE__);
4417#endif
5bbcfd90
IM
4418 /*
4419 * The BKS might be reacquired before we have dropped
4420 * PREEMPT_ACTIVE, which could trigger a second
4421 * cond_resched() call.
4422 */
1da177e4
LT
4423 do {
4424 add_preempt_count(PREEMPT_ACTIVE);
4425 schedule();
4426 sub_preempt_count(PREEMPT_ACTIVE);
4427 } while (need_resched());
4428}
4429
4430int __sched cond_resched(void)
4431{
e7b38404 4432 if (need_resched() && __resched_legal()) {
1da177e4
LT
4433 __cond_resched();
4434 return 1;
4435 }
4436 return 0;
4437}
1da177e4
LT
4438EXPORT_SYMBOL(cond_resched);
4439
4440/*
4441 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4442 * call schedule, and on return reacquire the lock.
4443 *
4444 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4445 * operations here to prevent schedule() from being called twice (once via
4446 * spin_unlock(), once by hand).
4447 */
95cdf3b7 4448int cond_resched_lock(spinlock_t *lock)
1da177e4 4449{
6df3cecb
JK
4450 int ret = 0;
4451
1da177e4
LT
4452 if (need_lockbreak(lock)) {
4453 spin_unlock(lock);
4454 cpu_relax();
6df3cecb 4455 ret = 1;
1da177e4
LT
4456 spin_lock(lock);
4457 }
e7b38404 4458 if (need_resched() && __resched_legal()) {
8a25d5de 4459 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4460 _raw_spin_unlock(lock);
4461 preempt_enable_no_resched();
4462 __cond_resched();
6df3cecb 4463 ret = 1;
1da177e4 4464 spin_lock(lock);
1da177e4 4465 }
6df3cecb 4466 return ret;
1da177e4 4467}
1da177e4
LT
4468EXPORT_SYMBOL(cond_resched_lock);
4469
4470int __sched cond_resched_softirq(void)
4471{
4472 BUG_ON(!in_softirq());
4473
e7b38404 4474 if (need_resched() && __resched_legal()) {
de30a2b3
IM
4475 raw_local_irq_disable();
4476 _local_bh_enable();
4477 raw_local_irq_enable();
1da177e4
LT
4478 __cond_resched();
4479 local_bh_disable();
4480 return 1;
4481 }
4482 return 0;
4483}
1da177e4
LT
4484EXPORT_SYMBOL(cond_resched_softirq);
4485
1da177e4
LT
4486/**
4487 * yield - yield the current processor to other threads.
4488 *
4489 * this is a shortcut for kernel-space yielding - it marks the
4490 * thread runnable and calls sys_sched_yield().
4491 */
4492void __sched yield(void)
4493{
4494 set_current_state(TASK_RUNNING);
4495 sys_sched_yield();
4496}
4497
4498EXPORT_SYMBOL(yield);
4499
4500/*
4501 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4502 * that process accounting knows that this is a task in IO wait state.
4503 *
4504 * But don't do that if it is a deliberate, throttling IO wait (this task
4505 * has set its backing_dev_info: the queue against which it should throttle)
4506 */
4507void __sched io_schedule(void)
4508{
bfe5d834 4509 struct runqueue *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4510
4511 atomic_inc(&rq->nr_iowait);
4512 schedule();
4513 atomic_dec(&rq->nr_iowait);
4514}
4515
4516EXPORT_SYMBOL(io_schedule);
4517
4518long __sched io_schedule_timeout(long timeout)
4519{
bfe5d834 4520 struct runqueue *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4521 long ret;
4522
4523 atomic_inc(&rq->nr_iowait);
4524 ret = schedule_timeout(timeout);
4525 atomic_dec(&rq->nr_iowait);
4526 return ret;
4527}
4528
4529/**
4530 * sys_sched_get_priority_max - return maximum RT priority.
4531 * @policy: scheduling class.
4532 *
4533 * this syscall returns the maximum rt_priority that can be used
4534 * by a given scheduling class.
4535 */
4536asmlinkage long sys_sched_get_priority_max(int policy)
4537{
4538 int ret = -EINVAL;
4539
4540 switch (policy) {
4541 case SCHED_FIFO:
4542 case SCHED_RR:
4543 ret = MAX_USER_RT_PRIO-1;
4544 break;
4545 case SCHED_NORMAL:
b0a9499c 4546 case SCHED_BATCH:
1da177e4
LT
4547 ret = 0;
4548 break;
4549 }
4550 return ret;
4551}
4552
4553/**
4554 * sys_sched_get_priority_min - return minimum RT priority.
4555 * @policy: scheduling class.
4556 *
4557 * this syscall returns the minimum rt_priority that can be used
4558 * by a given scheduling class.
4559 */
4560asmlinkage long sys_sched_get_priority_min(int policy)
4561{
4562 int ret = -EINVAL;
4563
4564 switch (policy) {
4565 case SCHED_FIFO:
4566 case SCHED_RR:
4567 ret = 1;
4568 break;
4569 case SCHED_NORMAL:
b0a9499c 4570 case SCHED_BATCH:
1da177e4
LT
4571 ret = 0;
4572 }
4573 return ret;
4574}
4575
4576/**
4577 * sys_sched_rr_get_interval - return the default timeslice of a process.
4578 * @pid: pid of the process.
4579 * @interval: userspace pointer to the timeslice value.
4580 *
4581 * this syscall writes the default timeslice value of a given process
4582 * into the user-space timespec buffer. A value of '0' means infinity.
4583 */
4584asmlinkage
4585long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4586{
4587 int retval = -EINVAL;
4588 struct timespec t;
4589 task_t *p;
4590
4591 if (pid < 0)
4592 goto out_nounlock;
4593
4594 retval = -ESRCH;
4595 read_lock(&tasklist_lock);
4596 p = find_process_by_pid(pid);
4597 if (!p)
4598 goto out_unlock;
4599
4600 retval = security_task_getscheduler(p);
4601 if (retval)
4602 goto out_unlock;
4603
b78709cf 4604 jiffies_to_timespec(p->policy == SCHED_FIFO ?
1da177e4
LT
4605 0 : task_timeslice(p), &t);
4606 read_unlock(&tasklist_lock);
4607 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4608out_nounlock:
4609 return retval;
4610out_unlock:
4611 read_unlock(&tasklist_lock);
4612 return retval;
4613}
4614
4615static inline struct task_struct *eldest_child(struct task_struct *p)
4616{
4617 if (list_empty(&p->children)) return NULL;
4618 return list_entry(p->children.next,struct task_struct,sibling);
4619}
4620
4621static inline struct task_struct *older_sibling(struct task_struct *p)
4622{
4623 if (p->sibling.prev==&p->parent->children) return NULL;
4624 return list_entry(p->sibling.prev,struct task_struct,sibling);
4625}
4626
4627static inline struct task_struct *younger_sibling(struct task_struct *p)
4628{
4629 if (p->sibling.next==&p->parent->children) return NULL;
4630 return list_entry(p->sibling.next,struct task_struct,sibling);
4631}
4632
95cdf3b7 4633static void show_task(task_t *p)
1da177e4
LT
4634{
4635 task_t *relative;
4636 unsigned state;
4637 unsigned long free = 0;
4638 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4639
4640 printk("%-13.13s ", p->comm);
4641 state = p->state ? __ffs(p->state) + 1 : 0;
4642 if (state < ARRAY_SIZE(stat_nam))
4643 printk(stat_nam[state]);
4644 else
4645 printk("?");
4646#if (BITS_PER_LONG == 32)
4647 if (state == TASK_RUNNING)
4648 printk(" running ");
4649 else
4650 printk(" %08lX ", thread_saved_pc(p));
4651#else
4652 if (state == TASK_RUNNING)
4653 printk(" running task ");
4654 else
4655 printk(" %016lx ", thread_saved_pc(p));
4656#endif
4657#ifdef CONFIG_DEBUG_STACK_USAGE
4658 {
10ebffde 4659 unsigned long *n = end_of_stack(p);
1da177e4
LT
4660 while (!*n)
4661 n++;
10ebffde 4662 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4663 }
4664#endif
4665 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4666 if ((relative = eldest_child(p)))
4667 printk("%5d ", relative->pid);
4668 else
4669 printk(" ");
4670 if ((relative = younger_sibling(p)))
4671 printk("%7d", relative->pid);
4672 else
4673 printk(" ");
4674 if ((relative = older_sibling(p)))
4675 printk(" %5d", relative->pid);
4676 else
4677 printk(" ");
4678 if (!p->mm)
4679 printk(" (L-TLB)\n");
4680 else
4681 printk(" (NOTLB)\n");
4682
4683 if (state != TASK_RUNNING)
4684 show_stack(p, NULL);
4685}
4686
4687void show_state(void)
4688{
4689 task_t *g, *p;
4690
4691#if (BITS_PER_LONG == 32)
4692 printk("\n"
4693 " sibling\n");
4694 printk(" task PC pid father child younger older\n");
4695#else
4696 printk("\n"
4697 " sibling\n");
4698 printk(" task PC pid father child younger older\n");
4699#endif
4700 read_lock(&tasklist_lock);
4701 do_each_thread(g, p) {
4702 /*
4703 * reset the NMI-timeout, listing all files on a slow
4704 * console might take alot of time:
4705 */
4706 touch_nmi_watchdog();
4707 show_task(p);
4708 } while_each_thread(g, p);
4709
4710 read_unlock(&tasklist_lock);
9a11b49a 4711 debug_show_all_locks();
1da177e4
LT
4712}
4713
f340c0d1
IM
4714/**
4715 * init_idle - set up an idle thread for a given CPU
4716 * @idle: task in question
4717 * @cpu: cpu the idle task belongs to
4718 *
4719 * NOTE: this function does not set the idle thread's NEED_RESCHED
4720 * flag, to make booting more robust.
4721 */
1da177e4
LT
4722void __devinit init_idle(task_t *idle, int cpu)
4723{
4724 runqueue_t *rq = cpu_rq(cpu);
4725 unsigned long flags;
4726
81c29a85 4727 idle->timestamp = sched_clock();
1da177e4
LT
4728 idle->sleep_avg = 0;
4729 idle->array = NULL;
b29739f9 4730 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4
LT
4731 idle->state = TASK_RUNNING;
4732 idle->cpus_allowed = cpumask_of_cpu(cpu);
4733 set_task_cpu(idle, cpu);
4734
4735 spin_lock_irqsave(&rq->lock, flags);
4736 rq->curr = rq->idle = idle;
4866cde0
NP
4737#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4738 idle->oncpu = 1;
4739#endif
1da177e4
LT
4740 spin_unlock_irqrestore(&rq->lock, flags);
4741
4742 /* Set the preempt count _outside_ the spinlocks! */
4743#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4744 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4745#else
a1261f54 4746 task_thread_info(idle)->preempt_count = 0;
1da177e4
LT
4747#endif
4748}
4749
4750/*
4751 * In a system that switches off the HZ timer nohz_cpu_mask
4752 * indicates which cpus entered this state. This is used
4753 * in the rcu update to wait only for active cpus. For system
4754 * which do not switch off the HZ timer nohz_cpu_mask should
4755 * always be CPU_MASK_NONE.
4756 */
4757cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4758
4759#ifdef CONFIG_SMP
4760/*
4761 * This is how migration works:
4762 *
4763 * 1) we queue a migration_req_t structure in the source CPU's
4764 * runqueue and wake up that CPU's migration thread.
4765 * 2) we down() the locked semaphore => thread blocks.
4766 * 3) migration thread wakes up (implicitly it forces the migrated
4767 * thread off the CPU)
4768 * 4) it gets the migration request and checks whether the migrated
4769 * task is still in the wrong runqueue.
4770 * 5) if it's in the wrong runqueue then the migration thread removes
4771 * it and puts it into the right queue.
4772 * 6) migration thread up()s the semaphore.
4773 * 7) we wake up and the migration is done.
4774 */
4775
4776/*
4777 * Change a given task's CPU affinity. Migrate the thread to a
4778 * proper CPU and schedule it away if the CPU it's executing on
4779 * is removed from the allowed bitmask.
4780 *
4781 * NOTE: the caller must have a valid reference to the task, the
4782 * task must not exit() & deallocate itself prematurely. The
4783 * call is not atomic; no spinlocks may be held.
4784 */
4785int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4786{
4787 unsigned long flags;
4788 int ret = 0;
4789 migration_req_t req;
4790 runqueue_t *rq;
4791
4792 rq = task_rq_lock(p, &flags);
4793 if (!cpus_intersects(new_mask, cpu_online_map)) {
4794 ret = -EINVAL;
4795 goto out;
4796 }
4797
4798 p->cpus_allowed = new_mask;
4799 /* Can the task run on the task's current CPU? If so, we're done */
4800 if (cpu_isset(task_cpu(p), new_mask))
4801 goto out;
4802
4803 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4804 /* Need help from migration thread: drop lock and wait. */
4805 task_rq_unlock(rq, &flags);
4806 wake_up_process(rq->migration_thread);
4807 wait_for_completion(&req.done);
4808 tlb_migrate_finish(p->mm);
4809 return 0;
4810 }
4811out:
4812 task_rq_unlock(rq, &flags);
4813 return ret;
4814}
4815
4816EXPORT_SYMBOL_GPL(set_cpus_allowed);
4817
4818/*
4819 * Move (not current) task off this cpu, onto dest cpu. We're doing
4820 * this because either it can't run here any more (set_cpus_allowed()
4821 * away from this CPU, or CPU going down), or because we're
4822 * attempting to rebalance this task on exec (sched_exec).
4823 *
4824 * So we race with normal scheduler movements, but that's OK, as long
4825 * as the task is no longer on this CPU.
efc30814
KK
4826 *
4827 * Returns non-zero if task was successfully migrated.
1da177e4 4828 */
efc30814 4829static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4
LT
4830{
4831 runqueue_t *rq_dest, *rq_src;
efc30814 4832 int ret = 0;
1da177e4
LT
4833
4834 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4835 return ret;
1da177e4
LT
4836
4837 rq_src = cpu_rq(src_cpu);
4838 rq_dest = cpu_rq(dest_cpu);
4839
4840 double_rq_lock(rq_src, rq_dest);
4841 /* Already moved. */
4842 if (task_cpu(p) != src_cpu)
4843 goto out;
4844 /* Affinity changed (again). */
4845 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4846 goto out;
4847
4848 set_task_cpu(p, dest_cpu);
4849 if (p->array) {
4850 /*
4851 * Sync timestamp with rq_dest's before activating.
4852 * The same thing could be achieved by doing this step
4853 * afterwards, and pretending it was a local activate.
4854 * This way is cleaner and logically correct.
4855 */
4856 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4857 + rq_dest->timestamp_last_tick;
4858 deactivate_task(p, rq_src);
4859 activate_task(p, rq_dest, 0);
4860 if (TASK_PREEMPTS_CURR(p, rq_dest))
4861 resched_task(rq_dest->curr);
4862 }
efc30814 4863 ret = 1;
1da177e4
LT
4864out:
4865 double_rq_unlock(rq_src, rq_dest);
efc30814 4866 return ret;
1da177e4
LT
4867}
4868
4869/*
4870 * migration_thread - this is a highprio system thread that performs
4871 * thread migration by bumping thread off CPU then 'pushing' onto
4872 * another runqueue.
4873 */
95cdf3b7 4874static int migration_thread(void *data)
1da177e4
LT
4875{
4876 runqueue_t *rq;
4877 int cpu = (long)data;
4878
4879 rq = cpu_rq(cpu);
4880 BUG_ON(rq->migration_thread != current);
4881
4882 set_current_state(TASK_INTERRUPTIBLE);
4883 while (!kthread_should_stop()) {
4884 struct list_head *head;
4885 migration_req_t *req;
4886
3e1d1d28 4887 try_to_freeze();
1da177e4
LT
4888
4889 spin_lock_irq(&rq->lock);
4890
4891 if (cpu_is_offline(cpu)) {
4892 spin_unlock_irq(&rq->lock);
4893 goto wait_to_die;
4894 }
4895
4896 if (rq->active_balance) {
4897 active_load_balance(rq, cpu);
4898 rq->active_balance = 0;
4899 }
4900
4901 head = &rq->migration_queue;
4902
4903 if (list_empty(head)) {
4904 spin_unlock_irq(&rq->lock);
4905 schedule();
4906 set_current_state(TASK_INTERRUPTIBLE);
4907 continue;
4908 }
4909 req = list_entry(head->next, migration_req_t, list);
4910 list_del_init(head->next);
4911
674311d5
NP
4912 spin_unlock(&rq->lock);
4913 __migrate_task(req->task, cpu, req->dest_cpu);
4914 local_irq_enable();
1da177e4
LT
4915
4916 complete(&req->done);
4917 }
4918 __set_current_state(TASK_RUNNING);
4919 return 0;
4920
4921wait_to_die:
4922 /* Wait for kthread_stop */
4923 set_current_state(TASK_INTERRUPTIBLE);
4924 while (!kthread_should_stop()) {
4925 schedule();
4926 set_current_state(TASK_INTERRUPTIBLE);
4927 }
4928 __set_current_state(TASK_RUNNING);
4929 return 0;
4930}
4931
4932#ifdef CONFIG_HOTPLUG_CPU
4933/* Figure out where task on dead CPU should go, use force if neccessary. */
4934static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4935{
efc30814
KK
4936 runqueue_t *rq;
4937 unsigned long flags;
1da177e4
LT
4938 int dest_cpu;
4939 cpumask_t mask;
4940
efc30814 4941restart:
1da177e4
LT
4942 /* On same node? */
4943 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4944 cpus_and(mask, mask, tsk->cpus_allowed);
4945 dest_cpu = any_online_cpu(mask);
4946
4947 /* On any allowed CPU? */
4948 if (dest_cpu == NR_CPUS)
4949 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4950
4951 /* No more Mr. Nice Guy. */
4952 if (dest_cpu == NR_CPUS) {
efc30814 4953 rq = task_rq_lock(tsk, &flags);
b39c4fab 4954 cpus_setall(tsk->cpus_allowed);
1da177e4 4955 dest_cpu = any_online_cpu(tsk->cpus_allowed);
efc30814 4956 task_rq_unlock(rq, &flags);
1da177e4
LT
4957
4958 /*
4959 * Don't tell them about moving exiting tasks or
4960 * kernel threads (both mm NULL), since they never
4961 * leave kernel.
4962 */
4963 if (tsk->mm && printk_ratelimit())
4964 printk(KERN_INFO "process %d (%s) no "
4965 "longer affine to cpu%d\n",
4966 tsk->pid, tsk->comm, dead_cpu);
4967 }
efc30814
KK
4968 if (!__migrate_task(tsk, dead_cpu, dest_cpu))
4969 goto restart;
1da177e4
LT
4970}
4971
4972/*
4973 * While a dead CPU has no uninterruptible tasks queued at this point,
4974 * it might still have a nonzero ->nr_uninterruptible counter, because
4975 * for performance reasons the counter is not stricly tracking tasks to
4976 * their home CPUs. So we just add the counter to another CPU's counter,
4977 * to keep the global sum constant after CPU-down:
4978 */
4979static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4980{
4981 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4982 unsigned long flags;
4983
4984 local_irq_save(flags);
4985 double_rq_lock(rq_src, rq_dest);
4986 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4987 rq_src->nr_uninterruptible = 0;
4988 double_rq_unlock(rq_src, rq_dest);
4989 local_irq_restore(flags);
4990}
4991
4992/* Run through task list and migrate tasks from the dead cpu. */
4993static void migrate_live_tasks(int src_cpu)
4994{
4995 struct task_struct *tsk, *t;
4996
4997 write_lock_irq(&tasklist_lock);
4998
4999 do_each_thread(t, tsk) {
5000 if (tsk == current)
5001 continue;
5002
5003 if (task_cpu(tsk) == src_cpu)
5004 move_task_off_dead_cpu(src_cpu, tsk);
5005 } while_each_thread(t, tsk);
5006
5007 write_unlock_irq(&tasklist_lock);
5008}
5009
5010/* Schedules idle task to be the next runnable task on current CPU.
5011 * It does so by boosting its priority to highest possible and adding it to
5012 * the _front_ of runqueue. Used by CPU offline code.
5013 */
5014void sched_idle_next(void)
5015{
5016 int cpu = smp_processor_id();
5017 runqueue_t *rq = this_rq();
5018 struct task_struct *p = rq->idle;
5019 unsigned long flags;
5020
5021 /* cpu has to be offline */
5022 BUG_ON(cpu_online(cpu));
5023
5024 /* Strictly not necessary since rest of the CPUs are stopped by now
5025 * and interrupts disabled on current cpu.
5026 */
5027 spin_lock_irqsave(&rq->lock, flags);
5028
5029 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5030 /* Add idle task to _front_ of it's priority queue */
5031 __activate_idle_task(p, rq);
5032
5033 spin_unlock_irqrestore(&rq->lock, flags);
5034}
5035
5036/* Ensures that the idle task is using init_mm right before its cpu goes
5037 * offline.
5038 */
5039void idle_task_exit(void)
5040{
5041 struct mm_struct *mm = current->active_mm;
5042
5043 BUG_ON(cpu_online(smp_processor_id()));
5044
5045 if (mm != &init_mm)
5046 switch_mm(mm, &init_mm, current);
5047 mmdrop(mm);
5048}
5049
5050static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
5051{
5052 struct runqueue *rq = cpu_rq(dead_cpu);
5053
5054 /* Must be exiting, otherwise would be on tasklist. */
5055 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
5056
5057 /* Cannot have done final schedule yet: would have vanished. */
5058 BUG_ON(tsk->flags & PF_DEAD);
5059
5060 get_task_struct(tsk);
5061
5062 /*
5063 * Drop lock around migration; if someone else moves it,
5064 * that's OK. No task can be added to this CPU, so iteration is
5065 * fine.
5066 */
5067 spin_unlock_irq(&rq->lock);
5068 move_task_off_dead_cpu(dead_cpu, tsk);
5069 spin_lock_irq(&rq->lock);
5070
5071 put_task_struct(tsk);
5072}
5073
5074/* release_task() removes task from tasklist, so we won't find dead tasks. */
5075static void migrate_dead_tasks(unsigned int dead_cpu)
5076{
5077 unsigned arr, i;
5078 struct runqueue *rq = cpu_rq(dead_cpu);
5079
5080 for (arr = 0; arr < 2; arr++) {
5081 for (i = 0; i < MAX_PRIO; i++) {
5082 struct list_head *list = &rq->arrays[arr].queue[i];
5083 while (!list_empty(list))
5084 migrate_dead(dead_cpu,
5085 list_entry(list->next, task_t,
5086 run_list));
5087 }
5088 }
5089}
5090#endif /* CONFIG_HOTPLUG_CPU */
5091
5092/*
5093 * migration_call - callback that gets triggered when a CPU is added.
5094 * Here we can start up the necessary migration thread for the new CPU.
5095 */
26c2143b
CS
5096static int __cpuinit migration_call(struct notifier_block *nfb,
5097 unsigned long action,
5098 void *hcpu)
1da177e4
LT
5099{
5100 int cpu = (long)hcpu;
5101 struct task_struct *p;
5102 struct runqueue *rq;
5103 unsigned long flags;
5104
5105 switch (action) {
5106 case CPU_UP_PREPARE:
5107 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5108 if (IS_ERR(p))
5109 return NOTIFY_BAD;
5110 p->flags |= PF_NOFREEZE;
5111 kthread_bind(p, cpu);
5112 /* Must be high prio: stop_machine expects to yield to it. */
5113 rq = task_rq_lock(p, &flags);
5114 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5115 task_rq_unlock(rq, &flags);
5116 cpu_rq(cpu)->migration_thread = p;
5117 break;
5118 case CPU_ONLINE:
5119 /* Strictly unneccessary, as first user will wake it. */
5120 wake_up_process(cpu_rq(cpu)->migration_thread);
5121 break;
5122#ifdef CONFIG_HOTPLUG_CPU
5123 case CPU_UP_CANCELED:
fc75cdfa
HC
5124 if (!cpu_rq(cpu)->migration_thread)
5125 break;
1da177e4 5126 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5127 kthread_bind(cpu_rq(cpu)->migration_thread,
5128 any_online_cpu(cpu_online_map));
1da177e4
LT
5129 kthread_stop(cpu_rq(cpu)->migration_thread);
5130 cpu_rq(cpu)->migration_thread = NULL;
5131 break;
5132 case CPU_DEAD:
5133 migrate_live_tasks(cpu);
5134 rq = cpu_rq(cpu);
5135 kthread_stop(rq->migration_thread);
5136 rq->migration_thread = NULL;
5137 /* Idle task back to normal (off runqueue, low prio) */
5138 rq = task_rq_lock(rq->idle, &flags);
5139 deactivate_task(rq->idle, rq);
5140 rq->idle->static_prio = MAX_PRIO;
5141 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5142 migrate_dead_tasks(cpu);
5143 task_rq_unlock(rq, &flags);
5144 migrate_nr_uninterruptible(rq);
5145 BUG_ON(rq->nr_running != 0);
5146
5147 /* No need to migrate the tasks: it was best-effort if
5148 * they didn't do lock_cpu_hotplug(). Just wake up
5149 * the requestors. */
5150 spin_lock_irq(&rq->lock);
5151 while (!list_empty(&rq->migration_queue)) {
5152 migration_req_t *req;
5153 req = list_entry(rq->migration_queue.next,
5154 migration_req_t, list);
1da177e4
LT
5155 list_del_init(&req->list);
5156 complete(&req->done);
5157 }
5158 spin_unlock_irq(&rq->lock);
5159 break;
5160#endif
5161 }
5162 return NOTIFY_OK;
5163}
5164
5165/* Register at highest priority so that task migration (migrate_all_tasks)
5166 * happens before everything else.
5167 */
26c2143b 5168static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5169 .notifier_call = migration_call,
5170 .priority = 10
5171};
5172
5173int __init migration_init(void)
5174{
5175 void *cpu = (void *)(long)smp_processor_id();
5176 /* Start one for boot CPU. */
5177 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5178 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5179 register_cpu_notifier(&migration_notifier);
5180 return 0;
5181}
5182#endif
5183
5184#ifdef CONFIG_SMP
1a20ff27 5185#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
5186#ifdef SCHED_DOMAIN_DEBUG
5187static void sched_domain_debug(struct sched_domain *sd, int cpu)
5188{
5189 int level = 0;
5190
41c7ce9a
NP
5191 if (!sd) {
5192 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5193 return;
5194 }
5195
1da177e4
LT
5196 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5197
5198 do {
5199 int i;
5200 char str[NR_CPUS];
5201 struct sched_group *group = sd->groups;
5202 cpumask_t groupmask;
5203
5204 cpumask_scnprintf(str, NR_CPUS, sd->span);
5205 cpus_clear(groupmask);
5206
5207 printk(KERN_DEBUG);
5208 for (i = 0; i < level + 1; i++)
5209 printk(" ");
5210 printk("domain %d: ", level);
5211
5212 if (!(sd->flags & SD_LOAD_BALANCE)) {
5213 printk("does not load-balance\n");
5214 if (sd->parent)
5215 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
5216 break;
5217 }
5218
5219 printk("span %s\n", str);
5220
5221 if (!cpu_isset(cpu, sd->span))
5222 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
5223 if (!cpu_isset(cpu, group->cpumask))
5224 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
5225
5226 printk(KERN_DEBUG);
5227 for (i = 0; i < level + 2; i++)
5228 printk(" ");
5229 printk("groups:");
5230 do {
5231 if (!group) {
5232 printk("\n");
5233 printk(KERN_ERR "ERROR: group is NULL\n");
5234 break;
5235 }
5236
5237 if (!group->cpu_power) {
5238 printk("\n");
5239 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
5240 }
5241
5242 if (!cpus_weight(group->cpumask)) {
5243 printk("\n");
5244 printk(KERN_ERR "ERROR: empty group\n");
5245 }
5246
5247 if (cpus_intersects(groupmask, group->cpumask)) {
5248 printk("\n");
5249 printk(KERN_ERR "ERROR: repeated CPUs\n");
5250 }
5251
5252 cpus_or(groupmask, groupmask, group->cpumask);
5253
5254 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5255 printk(" %s", str);
5256
5257 group = group->next;
5258 } while (group != sd->groups);
5259 printk("\n");
5260
5261 if (!cpus_equal(sd->span, groupmask))
5262 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5263
5264 level++;
5265 sd = sd->parent;
5266
5267 if (sd) {
5268 if (!cpus_subset(groupmask, sd->span))
5269 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
5270 }
5271
5272 } while (sd);
5273}
5274#else
5275#define sched_domain_debug(sd, cpu) {}
5276#endif
5277
1a20ff27 5278static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5279{
5280 if (cpus_weight(sd->span) == 1)
5281 return 1;
5282
5283 /* Following flags need at least 2 groups */
5284 if (sd->flags & (SD_LOAD_BALANCE |
5285 SD_BALANCE_NEWIDLE |
5286 SD_BALANCE_FORK |
5287 SD_BALANCE_EXEC)) {
5288 if (sd->groups != sd->groups->next)
5289 return 0;
5290 }
5291
5292 /* Following flags don't use groups */
5293 if (sd->flags & (SD_WAKE_IDLE |
5294 SD_WAKE_AFFINE |
5295 SD_WAKE_BALANCE))
5296 return 0;
5297
5298 return 1;
5299}
5300
1a20ff27 5301static int sd_parent_degenerate(struct sched_domain *sd,
245af2c7
SS
5302 struct sched_domain *parent)
5303{
5304 unsigned long cflags = sd->flags, pflags = parent->flags;
5305
5306 if (sd_degenerate(parent))
5307 return 1;
5308
5309 if (!cpus_equal(sd->span, parent->span))
5310 return 0;
5311
5312 /* Does parent contain flags not in child? */
5313 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5314 if (cflags & SD_WAKE_AFFINE)
5315 pflags &= ~SD_WAKE_BALANCE;
5316 /* Flags needing groups don't count if only 1 group in parent */
5317 if (parent->groups == parent->groups->next) {
5318 pflags &= ~(SD_LOAD_BALANCE |
5319 SD_BALANCE_NEWIDLE |
5320 SD_BALANCE_FORK |
5321 SD_BALANCE_EXEC);
5322 }
5323 if (~cflags & pflags)
5324 return 0;
5325
5326 return 1;
5327}
5328
1da177e4
LT
5329/*
5330 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5331 * hold the hotplug lock.
5332 */
9c1cfda2 5333static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5334{
1da177e4 5335 runqueue_t *rq = cpu_rq(cpu);
245af2c7
SS
5336 struct sched_domain *tmp;
5337
5338 /* Remove the sched domains which do not contribute to scheduling. */
5339 for (tmp = sd; tmp; tmp = tmp->parent) {
5340 struct sched_domain *parent = tmp->parent;
5341 if (!parent)
5342 break;
5343 if (sd_parent_degenerate(tmp, parent))
5344 tmp->parent = parent->parent;
5345 }
5346
5347 if (sd && sd_degenerate(sd))
5348 sd = sd->parent;
1da177e4
LT
5349
5350 sched_domain_debug(sd, cpu);
5351
674311d5 5352 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5353}
5354
5355/* cpus with isolated domains */
9c1cfda2 5356static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5357
5358/* Setup the mask of cpus configured for isolated domains */
5359static int __init isolated_cpu_setup(char *str)
5360{
5361 int ints[NR_CPUS], i;
5362
5363 str = get_options(str, ARRAY_SIZE(ints), ints);
5364 cpus_clear(cpu_isolated_map);
5365 for (i = 1; i <= ints[0]; i++)
5366 if (ints[i] < NR_CPUS)
5367 cpu_set(ints[i], cpu_isolated_map);
5368 return 1;
5369}
5370
5371__setup ("isolcpus=", isolated_cpu_setup);
5372
5373/*
5374 * init_sched_build_groups takes an array of groups, the cpumask we wish
5375 * to span, and a pointer to a function which identifies what group a CPU
5376 * belongs to. The return value of group_fn must be a valid index into the
5377 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5378 * keep track of groups covered with a cpumask_t).
5379 *
5380 * init_sched_build_groups will build a circular linked list of the groups
5381 * covered by the given span, and will set each group's ->cpumask correctly,
5382 * and ->cpu_power to 0.
5383 */
9c1cfda2
JH
5384static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5385 int (*group_fn)(int cpu))
1da177e4
LT
5386{
5387 struct sched_group *first = NULL, *last = NULL;
5388 cpumask_t covered = CPU_MASK_NONE;
5389 int i;
5390
5391 for_each_cpu_mask(i, span) {
5392 int group = group_fn(i);
5393 struct sched_group *sg = &groups[group];
5394 int j;
5395
5396 if (cpu_isset(i, covered))
5397 continue;
5398
5399 sg->cpumask = CPU_MASK_NONE;
5400 sg->cpu_power = 0;
5401
5402 for_each_cpu_mask(j, span) {
5403 if (group_fn(j) != group)
5404 continue;
5405
5406 cpu_set(j, covered);
5407 cpu_set(j, sg->cpumask);
5408 }
5409 if (!first)
5410 first = sg;
5411 if (last)
5412 last->next = sg;
5413 last = sg;
5414 }
5415 last->next = first;
5416}
5417
9c1cfda2 5418#define SD_NODES_PER_DOMAIN 16
1da177e4 5419
198e2f18
AM
5420/*
5421 * Self-tuning task migration cost measurement between source and target CPUs.
5422 *
5423 * This is done by measuring the cost of manipulating buffers of varying
5424 * sizes. For a given buffer-size here are the steps that are taken:
5425 *
5426 * 1) the source CPU reads+dirties a shared buffer
5427 * 2) the target CPU reads+dirties the same shared buffer
5428 *
5429 * We measure how long they take, in the following 4 scenarios:
5430 *
5431 * - source: CPU1, target: CPU2 | cost1
5432 * - source: CPU2, target: CPU1 | cost2
5433 * - source: CPU1, target: CPU1 | cost3
5434 * - source: CPU2, target: CPU2 | cost4
5435 *
5436 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5437 * the cost of migration.
5438 *
5439 * We then start off from a small buffer-size and iterate up to larger
5440 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5441 * doing a maximum search for the cost. (The maximum cost for a migration
5442 * normally occurs when the working set size is around the effective cache
5443 * size.)
5444 */
5445#define SEARCH_SCOPE 2
5446#define MIN_CACHE_SIZE (64*1024U)
5447#define DEFAULT_CACHE_SIZE (5*1024*1024U)
70b4d63e 5448#define ITERATIONS 1
198e2f18
AM
5449#define SIZE_THRESH 130
5450#define COST_THRESH 130
5451
5452/*
5453 * The migration cost is a function of 'domain distance'. Domain
5454 * distance is the number of steps a CPU has to iterate down its
5455 * domain tree to share a domain with the other CPU. The farther
5456 * two CPUs are from each other, the larger the distance gets.
5457 *
5458 * Note that we use the distance only to cache measurement results,
5459 * the distance value is not used numerically otherwise. When two
5460 * CPUs have the same distance it is assumed that the migration
5461 * cost is the same. (this is a simplification but quite practical)
5462 */
5463#define MAX_DOMAIN_DISTANCE 32
5464
5465static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
4bbf39c2
IM
5466 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5467/*
5468 * Architectures may override the migration cost and thus avoid
5469 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5470 * virtualized hardware:
5471 */
5472#ifdef CONFIG_DEFAULT_MIGRATION_COST
5473 CONFIG_DEFAULT_MIGRATION_COST
5474#else
5475 -1LL
5476#endif
5477};
198e2f18
AM
5478
5479/*
5480 * Allow override of migration cost - in units of microseconds.
5481 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5482 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5483 */
5484static int __init migration_cost_setup(char *str)
5485{
5486 int ints[MAX_DOMAIN_DISTANCE+1], i;
5487
5488 str = get_options(str, ARRAY_SIZE(ints), ints);
5489
5490 printk("#ints: %d\n", ints[0]);
5491 for (i = 1; i <= ints[0]; i++) {
5492 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5493 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5494 }
5495 return 1;
5496}
5497
5498__setup ("migration_cost=", migration_cost_setup);
5499
5500/*
5501 * Global multiplier (divisor) for migration-cutoff values,
5502 * in percentiles. E.g. use a value of 150 to get 1.5 times
5503 * longer cache-hot cutoff times.
5504 *
5505 * (We scale it from 100 to 128 to long long handling easier.)
5506 */
5507
5508#define MIGRATION_FACTOR_SCALE 128
5509
5510static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5511
5512static int __init setup_migration_factor(char *str)
5513{
5514 get_option(&str, &migration_factor);
5515 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5516 return 1;
5517}
5518
5519__setup("migration_factor=", setup_migration_factor);
5520
5521/*
5522 * Estimated distance of two CPUs, measured via the number of domains
5523 * we have to pass for the two CPUs to be in the same span:
5524 */
5525static unsigned long domain_distance(int cpu1, int cpu2)
5526{
5527 unsigned long distance = 0;
5528 struct sched_domain *sd;
5529
5530 for_each_domain(cpu1, sd) {
5531 WARN_ON(!cpu_isset(cpu1, sd->span));
5532 if (cpu_isset(cpu2, sd->span))
5533 return distance;
5534 distance++;
5535 }
5536 if (distance >= MAX_DOMAIN_DISTANCE) {
5537 WARN_ON(1);
5538 distance = MAX_DOMAIN_DISTANCE-1;
5539 }
5540
5541 return distance;
5542}
5543
5544static unsigned int migration_debug;
5545
5546static int __init setup_migration_debug(char *str)
5547{
5548 get_option(&str, &migration_debug);
5549 return 1;
5550}
5551
5552__setup("migration_debug=", setup_migration_debug);
5553
5554/*
5555 * Maximum cache-size that the scheduler should try to measure.
5556 * Architectures with larger caches should tune this up during
5557 * bootup. Gets used in the domain-setup code (i.e. during SMP
5558 * bootup).
5559 */
5560unsigned int max_cache_size;
5561
5562static int __init setup_max_cache_size(char *str)
5563{
5564 get_option(&str, &max_cache_size);
5565 return 1;
5566}
5567
5568__setup("max_cache_size=", setup_max_cache_size);
5569
5570/*
5571 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5572 * is the operation that is timed, so we try to generate unpredictable
5573 * cachemisses that still end up filling the L2 cache:
5574 */
5575static void touch_cache(void *__cache, unsigned long __size)
5576{
5577 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5578 chunk2 = 2*size/3;
5579 unsigned long *cache = __cache;
5580 int i;
5581
5582 for (i = 0; i < size/6; i += 8) {
5583 switch (i % 6) {
5584 case 0: cache[i]++;
5585 case 1: cache[size-1-i]++;
5586 case 2: cache[chunk1-i]++;
5587 case 3: cache[chunk1+i]++;
5588 case 4: cache[chunk2-i]++;
5589 case 5: cache[chunk2+i]++;
5590 }
5591 }
5592}
5593
5594/*
5595 * Measure the cache-cost of one task migration. Returns in units of nsec.
5596 */
5597static unsigned long long measure_one(void *cache, unsigned long size,
5598 int source, int target)
5599{
5600 cpumask_t mask, saved_mask;
5601 unsigned long long t0, t1, t2, t3, cost;
5602
5603 saved_mask = current->cpus_allowed;
5604
5605 /*
5606 * Flush source caches to RAM and invalidate them:
5607 */
5608 sched_cacheflush();
5609
5610 /*
5611 * Migrate to the source CPU:
5612 */
5613 mask = cpumask_of_cpu(source);
5614 set_cpus_allowed(current, mask);
5615 WARN_ON(smp_processor_id() != source);
5616
5617 /*
5618 * Dirty the working set:
5619 */
5620 t0 = sched_clock();
5621 touch_cache(cache, size);
5622 t1 = sched_clock();
5623
5624 /*
5625 * Migrate to the target CPU, dirty the L2 cache and access
5626 * the shared buffer. (which represents the working set
5627 * of a migrated task.)
5628 */
5629 mask = cpumask_of_cpu(target);
5630 set_cpus_allowed(current, mask);
5631 WARN_ON(smp_processor_id() != target);
5632
5633 t2 = sched_clock();
5634 touch_cache(cache, size);
5635 t3 = sched_clock();
5636
5637 cost = t1-t0 + t3-t2;
5638
5639 if (migration_debug >= 2)
5640 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5641 source, target, t1-t0, t1-t0, t3-t2, cost);
5642 /*
5643 * Flush target caches to RAM and invalidate them:
5644 */
5645 sched_cacheflush();
5646
5647 set_cpus_allowed(current, saved_mask);
5648
5649 return cost;
5650}
5651
5652/*
5653 * Measure a series of task migrations and return the average
5654 * result. Since this code runs early during bootup the system
5655 * is 'undisturbed' and the average latency makes sense.
5656 *
5657 * The algorithm in essence auto-detects the relevant cache-size,
5658 * so it will properly detect different cachesizes for different
5659 * cache-hierarchies, depending on how the CPUs are connected.
5660 *
5661 * Architectures can prime the upper limit of the search range via
5662 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5663 */
5664static unsigned long long
5665measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5666{
5667 unsigned long long cost1, cost2;
5668 int i;
5669
5670 /*
5671 * Measure the migration cost of 'size' bytes, over an
5672 * average of 10 runs:
5673 *
5674 * (We perturb the cache size by a small (0..4k)
5675 * value to compensate size/alignment related artifacts.
5676 * We also subtract the cost of the operation done on
5677 * the same CPU.)
5678 */
5679 cost1 = 0;
5680
5681 /*
5682 * dry run, to make sure we start off cache-cold on cpu1,
5683 * and to get any vmalloc pagefaults in advance:
5684 */
5685 measure_one(cache, size, cpu1, cpu2);
5686 for (i = 0; i < ITERATIONS; i++)
5687 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5688
5689 measure_one(cache, size, cpu2, cpu1);
5690 for (i = 0; i < ITERATIONS; i++)
5691 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5692
5693 /*
5694 * (We measure the non-migrating [cached] cost on both
5695 * cpu1 and cpu2, to handle CPUs with different speeds)
5696 */
5697 cost2 = 0;
5698
5699 measure_one(cache, size, cpu1, cpu1);
5700 for (i = 0; i < ITERATIONS; i++)
5701 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5702
5703 measure_one(cache, size, cpu2, cpu2);
5704 for (i = 0; i < ITERATIONS; i++)
5705 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5706
5707 /*
5708 * Get the per-iteration migration cost:
5709 */
5710 do_div(cost1, 2*ITERATIONS);
5711 do_div(cost2, 2*ITERATIONS);
5712
5713 return cost1 - cost2;
5714}
5715
5716static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5717{
5718 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5719 unsigned int max_size, size, size_found = 0;
5720 long long cost = 0, prev_cost;
5721 void *cache;
5722
5723 /*
5724 * Search from max_cache_size*5 down to 64K - the real relevant
5725 * cachesize has to lie somewhere inbetween.
5726 */
5727 if (max_cache_size) {
5728 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5729 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5730 } else {
5731 /*
5732 * Since we have no estimation about the relevant
5733 * search range
5734 */
5735 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5736 size = MIN_CACHE_SIZE;
5737 }
5738
5739 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5740 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5741 return 0;
5742 }
5743
5744 /*
5745 * Allocate the working set:
5746 */
5747 cache = vmalloc(max_size);
5748 if (!cache) {
5749 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5750 return 1000000; // return 1 msec on very small boxen
5751 }
5752
5753 while (size <= max_size) {
5754 prev_cost = cost;
5755 cost = measure_cost(cpu1, cpu2, cache, size);
5756
5757 /*
5758 * Update the max:
5759 */
5760 if (cost > 0) {
5761 if (max_cost < cost) {
5762 max_cost = cost;
5763 size_found = size;
5764 }
5765 }
5766 /*
5767 * Calculate average fluctuation, we use this to prevent
5768 * noise from triggering an early break out of the loop:
5769 */
5770 fluct = abs(cost - prev_cost);
5771 avg_fluct = (avg_fluct + fluct)/2;
5772
5773 if (migration_debug)
5774 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5775 cpu1, cpu2, size,
5776 (long)cost / 1000000,
5777 ((long)cost / 100000) % 10,
5778 (long)max_cost / 1000000,
5779 ((long)max_cost / 100000) % 10,
5780 domain_distance(cpu1, cpu2),
5781 cost, avg_fluct);
5782
5783 /*
5784 * If we iterated at least 20% past the previous maximum,
5785 * and the cost has dropped by more than 20% already,
5786 * (taking fluctuations into account) then we assume to
5787 * have found the maximum and break out of the loop early:
5788 */
5789 if (size_found && (size*100 > size_found*SIZE_THRESH))
5790 if (cost+avg_fluct <= 0 ||
5791 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5792
5793 if (migration_debug)
5794 printk("-> found max.\n");
5795 break;
5796 }
5797 /*
70b4d63e 5798 * Increase the cachesize in 10% steps:
198e2f18 5799 */
70b4d63e 5800 size = size * 10 / 9;
198e2f18
AM
5801 }
5802
5803 if (migration_debug)
5804 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5805 cpu1, cpu2, size_found, max_cost);
5806
5807 vfree(cache);
5808
5809 /*
5810 * A task is considered 'cache cold' if at least 2 times
5811 * the worst-case cost of migration has passed.
5812 *
5813 * (this limit is only listened to if the load-balancing
5814 * situation is 'nice' - if there is a large imbalance we
5815 * ignore it for the sake of CPU utilization and
5816 * processing fairness.)
5817 */
5818 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5819}
5820
5821static void calibrate_migration_costs(const cpumask_t *cpu_map)
5822{
5823 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5824 unsigned long j0, j1, distance, max_distance = 0;
5825 struct sched_domain *sd;
5826
5827 j0 = jiffies;
5828
5829 /*
5830 * First pass - calculate the cacheflush times:
5831 */
5832 for_each_cpu_mask(cpu1, *cpu_map) {
5833 for_each_cpu_mask(cpu2, *cpu_map) {
5834 if (cpu1 == cpu2)
5835 continue;
5836 distance = domain_distance(cpu1, cpu2);
5837 max_distance = max(max_distance, distance);
5838 /*
5839 * No result cached yet?
5840 */
5841 if (migration_cost[distance] == -1LL)
5842 migration_cost[distance] =
5843 measure_migration_cost(cpu1, cpu2);
5844 }
5845 }
5846 /*
5847 * Second pass - update the sched domain hierarchy with
5848 * the new cache-hot-time estimations:
5849 */
5850 for_each_cpu_mask(cpu, *cpu_map) {
5851 distance = 0;
5852 for_each_domain(cpu, sd) {
5853 sd->cache_hot_time = migration_cost[distance];
5854 distance++;
5855 }
5856 }
5857 /*
5858 * Print the matrix:
5859 */
5860 if (migration_debug)
5861 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5862 max_cache_size,
5863#ifdef CONFIG_X86
5864 cpu_khz/1000
5865#else
5866 -1
5867#endif
5868 );
bd576c95
CE
5869 if (system_state == SYSTEM_BOOTING) {
5870 printk("migration_cost=");
5871 for (distance = 0; distance <= max_distance; distance++) {
5872 if (distance)
5873 printk(",");
5874 printk("%ld", (long)migration_cost[distance] / 1000);
5875 }
5876 printk("\n");
198e2f18 5877 }
198e2f18
AM
5878 j1 = jiffies;
5879 if (migration_debug)
5880 printk("migration: %ld seconds\n", (j1-j0)/HZ);
5881
5882 /*
5883 * Move back to the original CPU. NUMA-Q gets confused
5884 * if we migrate to another quad during bootup.
5885 */
5886 if (raw_smp_processor_id() != orig_cpu) {
5887 cpumask_t mask = cpumask_of_cpu(orig_cpu),
5888 saved_mask = current->cpus_allowed;
5889
5890 set_cpus_allowed(current, mask);
5891 set_cpus_allowed(current, saved_mask);
5892 }
5893}
5894
9c1cfda2 5895#ifdef CONFIG_NUMA
198e2f18 5896
9c1cfda2
JH
5897/**
5898 * find_next_best_node - find the next node to include in a sched_domain
5899 * @node: node whose sched_domain we're building
5900 * @used_nodes: nodes already in the sched_domain
5901 *
5902 * Find the next node to include in a given scheduling domain. Simply
5903 * finds the closest node not already in the @used_nodes map.
5904 *
5905 * Should use nodemask_t.
5906 */
5907static int find_next_best_node(int node, unsigned long *used_nodes)
5908{
5909 int i, n, val, min_val, best_node = 0;
5910
5911 min_val = INT_MAX;
5912
5913 for (i = 0; i < MAX_NUMNODES; i++) {
5914 /* Start at @node */
5915 n = (node + i) % MAX_NUMNODES;
5916
5917 if (!nr_cpus_node(n))
5918 continue;
5919
5920 /* Skip already used nodes */
5921 if (test_bit(n, used_nodes))
5922 continue;
5923
5924 /* Simple min distance search */
5925 val = node_distance(node, n);
5926
5927 if (val < min_val) {
5928 min_val = val;
5929 best_node = n;
5930 }
5931 }
5932
5933 set_bit(best_node, used_nodes);
5934 return best_node;
5935}
5936
5937/**
5938 * sched_domain_node_span - get a cpumask for a node's sched_domain
5939 * @node: node whose cpumask we're constructing
5940 * @size: number of nodes to include in this span
5941 *
5942 * Given a node, construct a good cpumask for its sched_domain to span. It
5943 * should be one that prevents unnecessary balancing, but also spreads tasks
5944 * out optimally.
5945 */
5946static cpumask_t sched_domain_node_span(int node)
5947{
5948 int i;
5949 cpumask_t span, nodemask;
5950 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5951
5952 cpus_clear(span);
5953 bitmap_zero(used_nodes, MAX_NUMNODES);
5954
5955 nodemask = node_to_cpumask(node);
5956 cpus_or(span, span, nodemask);
5957 set_bit(node, used_nodes);
5958
5959 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5960 int next_node = find_next_best_node(node, used_nodes);
5961 nodemask = node_to_cpumask(next_node);
5962 cpus_or(span, span, nodemask);
5963 }
5964
5965 return span;
5966}
5967#endif
5968
5c45bf27 5969int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
9c1cfda2
JH
5970/*
5971 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5972 * can switch it on easily if needed.
5973 */
1da177e4
LT
5974#ifdef CONFIG_SCHED_SMT
5975static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5976static struct sched_group sched_group_cpus[NR_CPUS];
1a20ff27 5977static int cpu_to_cpu_group(int cpu)
1da177e4
LT
5978{
5979 return cpu;
5980}
5981#endif
5982
1e9f28fa
SS
5983#ifdef CONFIG_SCHED_MC
5984static DEFINE_PER_CPU(struct sched_domain, core_domains);
36938169 5985static struct sched_group *sched_group_core_bycpu[NR_CPUS];
1e9f28fa
SS
5986#endif
5987
5988#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5989static int cpu_to_core_group(int cpu)
5990{
5991 return first_cpu(cpu_sibling_map[cpu]);
5992}
5993#elif defined(CONFIG_SCHED_MC)
5994static int cpu_to_core_group(int cpu)
5995{
5996 return cpu;
5997}
5998#endif
5999
1da177e4 6000static DEFINE_PER_CPU(struct sched_domain, phys_domains);
36938169 6001static struct sched_group *sched_group_phys_bycpu[NR_CPUS];
1a20ff27 6002static int cpu_to_phys_group(int cpu)
1da177e4 6003{
1e9f28fa
SS
6004#if defined(CONFIG_SCHED_MC)
6005 cpumask_t mask = cpu_coregroup_map(cpu);
6006 return first_cpu(mask);
6007#elif defined(CONFIG_SCHED_SMT)
1da177e4
LT
6008 return first_cpu(cpu_sibling_map[cpu]);
6009#else
6010 return cpu;
6011#endif
6012}
6013
6014#ifdef CONFIG_NUMA
1da177e4 6015/*
9c1cfda2
JH
6016 * The init_sched_build_groups can't handle what we want to do with node
6017 * groups, so roll our own. Now each node has its own list of groups which
6018 * gets dynamically allocated.
1da177e4 6019 */
9c1cfda2 6020static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6021static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6022
9c1cfda2 6023static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
d1b55138 6024static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
9c1cfda2
JH
6025
6026static int cpu_to_allnodes_group(int cpu)
6027{
6028 return cpu_to_node(cpu);
1da177e4 6029}
08069033
SS
6030static void init_numa_sched_groups_power(struct sched_group *group_head)
6031{
6032 struct sched_group *sg = group_head;
6033 int j;
6034
6035 if (!sg)
6036 return;
6037next_sg:
6038 for_each_cpu_mask(j, sg->cpumask) {
6039 struct sched_domain *sd;
6040
6041 sd = &per_cpu(phys_domains, j);
6042 if (j != first_cpu(sd->groups->cpumask)) {
6043 /*
6044 * Only add "power" once for each
6045 * physical package.
6046 */
6047 continue;
6048 }
6049
6050 sg->cpu_power += sd->groups->cpu_power;
6051 }
6052 sg = sg->next;
6053 if (sg != group_head)
6054 goto next_sg;
6055}
1da177e4
LT
6056#endif
6057
51888ca2
SV
6058/* Free memory allocated for various sched_group structures */
6059static void free_sched_groups(const cpumask_t *cpu_map)
6060{
36938169 6061 int cpu;
51888ca2
SV
6062#ifdef CONFIG_NUMA
6063 int i;
51888ca2
SV
6064
6065 for_each_cpu_mask(cpu, *cpu_map) {
6066 struct sched_group *sched_group_allnodes
6067 = sched_group_allnodes_bycpu[cpu];
6068 struct sched_group **sched_group_nodes
6069 = sched_group_nodes_bycpu[cpu];
6070
6071 if (sched_group_allnodes) {
6072 kfree(sched_group_allnodes);
6073 sched_group_allnodes_bycpu[cpu] = NULL;
6074 }
6075
6076 if (!sched_group_nodes)
6077 continue;
6078
6079 for (i = 0; i < MAX_NUMNODES; i++) {
6080 cpumask_t nodemask = node_to_cpumask(i);
6081 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6082
6083 cpus_and(nodemask, nodemask, *cpu_map);
6084 if (cpus_empty(nodemask))
6085 continue;
6086
6087 if (sg == NULL)
6088 continue;
6089 sg = sg->next;
6090next_sg:
6091 oldsg = sg;
6092 sg = sg->next;
6093 kfree(oldsg);
6094 if (oldsg != sched_group_nodes[i])
6095 goto next_sg;
6096 }
6097 kfree(sched_group_nodes);
6098 sched_group_nodes_bycpu[cpu] = NULL;
6099 }
6100#endif
36938169
SV
6101 for_each_cpu_mask(cpu, *cpu_map) {
6102 if (sched_group_phys_bycpu[cpu]) {
6103 kfree(sched_group_phys_bycpu[cpu]);
6104 sched_group_phys_bycpu[cpu] = NULL;
6105 }
6106#ifdef CONFIG_SCHED_MC
6107 if (sched_group_core_bycpu[cpu]) {
6108 kfree(sched_group_core_bycpu[cpu]);
6109 sched_group_core_bycpu[cpu] = NULL;
6110 }
6111#endif
6112 }
51888ca2
SV
6113}
6114
1da177e4 6115/*
1a20ff27
DG
6116 * Build sched domains for a given set of cpus and attach the sched domains
6117 * to the individual cpus
1da177e4 6118 */
51888ca2 6119static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6120{
6121 int i;
36938169
SV
6122 struct sched_group *sched_group_phys = NULL;
6123#ifdef CONFIG_SCHED_MC
6124 struct sched_group *sched_group_core = NULL;
6125#endif
d1b55138
JH
6126#ifdef CONFIG_NUMA
6127 struct sched_group **sched_group_nodes = NULL;
6128 struct sched_group *sched_group_allnodes = NULL;
6129
6130 /*
6131 * Allocate the per-node list of sched groups
6132 */
51888ca2 6133 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
d3a5aa98 6134 GFP_KERNEL);
d1b55138
JH
6135 if (!sched_group_nodes) {
6136 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6137 return -ENOMEM;
d1b55138
JH
6138 }
6139 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6140#endif
1da177e4
LT
6141
6142 /*
1a20ff27 6143 * Set up domains for cpus specified by the cpu_map.
1da177e4 6144 */
1a20ff27 6145 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6146 int group;
6147 struct sched_domain *sd = NULL, *p;
6148 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6149
1a20ff27 6150 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6151
6152#ifdef CONFIG_NUMA
d1b55138 6153 if (cpus_weight(*cpu_map)
9c1cfda2 6154 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
d1b55138
JH
6155 if (!sched_group_allnodes) {
6156 sched_group_allnodes
6157 = kmalloc(sizeof(struct sched_group)
6158 * MAX_NUMNODES,
6159 GFP_KERNEL);
6160 if (!sched_group_allnodes) {
6161 printk(KERN_WARNING
6162 "Can not alloc allnodes sched group\n");
51888ca2 6163 goto error;
d1b55138
JH
6164 }
6165 sched_group_allnodes_bycpu[i]
6166 = sched_group_allnodes;
6167 }
9c1cfda2
JH
6168 sd = &per_cpu(allnodes_domains, i);
6169 *sd = SD_ALLNODES_INIT;
6170 sd->span = *cpu_map;
6171 group = cpu_to_allnodes_group(i);
6172 sd->groups = &sched_group_allnodes[group];
6173 p = sd;
6174 } else
6175 p = NULL;
6176
1da177e4 6177 sd = &per_cpu(node_domains, i);
1da177e4 6178 *sd = SD_NODE_INIT;
9c1cfda2
JH
6179 sd->span = sched_domain_node_span(cpu_to_node(i));
6180 sd->parent = p;
6181 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6182#endif
6183
36938169
SV
6184 if (!sched_group_phys) {
6185 sched_group_phys
6186 = kmalloc(sizeof(struct sched_group) * NR_CPUS,
6187 GFP_KERNEL);
6188 if (!sched_group_phys) {
6189 printk (KERN_WARNING "Can not alloc phys sched"
6190 "group\n");
6191 goto error;
6192 }
6193 sched_group_phys_bycpu[i] = sched_group_phys;
6194 }
6195
1da177e4
LT
6196 p = sd;
6197 sd = &per_cpu(phys_domains, i);
6198 group = cpu_to_phys_group(i);
6199 *sd = SD_CPU_INIT;
6200 sd->span = nodemask;
6201 sd->parent = p;
6202 sd->groups = &sched_group_phys[group];
6203
1e9f28fa 6204#ifdef CONFIG_SCHED_MC
36938169
SV
6205 if (!sched_group_core) {
6206 sched_group_core
6207 = kmalloc(sizeof(struct sched_group) * NR_CPUS,
6208 GFP_KERNEL);
6209 if (!sched_group_core) {
6210 printk (KERN_WARNING "Can not alloc core sched"
6211 "group\n");
6212 goto error;
6213 }
6214 sched_group_core_bycpu[i] = sched_group_core;
6215 }
6216
1e9f28fa
SS
6217 p = sd;
6218 sd = &per_cpu(core_domains, i);
6219 group = cpu_to_core_group(i);
6220 *sd = SD_MC_INIT;
6221 sd->span = cpu_coregroup_map(i);
6222 cpus_and(sd->span, sd->span, *cpu_map);
6223 sd->parent = p;
6224 sd->groups = &sched_group_core[group];
6225#endif
6226
1da177e4
LT
6227#ifdef CONFIG_SCHED_SMT
6228 p = sd;
6229 sd = &per_cpu(cpu_domains, i);
6230 group = cpu_to_cpu_group(i);
6231 *sd = SD_SIBLING_INIT;
6232 sd->span = cpu_sibling_map[i];
1a20ff27 6233 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6234 sd->parent = p;
6235 sd->groups = &sched_group_cpus[group];
6236#endif
6237 }
6238
6239#ifdef CONFIG_SCHED_SMT
6240 /* Set up CPU (sibling) groups */
9c1cfda2 6241 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6242 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6243 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6244 if (i != first_cpu(this_sibling_map))
6245 continue;
6246
6247 init_sched_build_groups(sched_group_cpus, this_sibling_map,
6248 &cpu_to_cpu_group);
6249 }
6250#endif
6251
1e9f28fa
SS
6252#ifdef CONFIG_SCHED_MC
6253 /* Set up multi-core groups */
6254 for_each_cpu_mask(i, *cpu_map) {
6255 cpumask_t this_core_map = cpu_coregroup_map(i);
6256 cpus_and(this_core_map, this_core_map, *cpu_map);
6257 if (i != first_cpu(this_core_map))
6258 continue;
6259 init_sched_build_groups(sched_group_core, this_core_map,
6260 &cpu_to_core_group);
6261 }
6262#endif
6263
6264
1da177e4
LT
6265 /* Set up physical groups */
6266 for (i = 0; i < MAX_NUMNODES; i++) {
6267 cpumask_t nodemask = node_to_cpumask(i);
6268
1a20ff27 6269 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6270 if (cpus_empty(nodemask))
6271 continue;
6272
6273 init_sched_build_groups(sched_group_phys, nodemask,
6274 &cpu_to_phys_group);
6275 }
6276
6277#ifdef CONFIG_NUMA
6278 /* Set up node groups */
d1b55138
JH
6279 if (sched_group_allnodes)
6280 init_sched_build_groups(sched_group_allnodes, *cpu_map,
6281 &cpu_to_allnodes_group);
9c1cfda2
JH
6282
6283 for (i = 0; i < MAX_NUMNODES; i++) {
6284 /* Set up node groups */
6285 struct sched_group *sg, *prev;
6286 cpumask_t nodemask = node_to_cpumask(i);
6287 cpumask_t domainspan;
6288 cpumask_t covered = CPU_MASK_NONE;
6289 int j;
6290
6291 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6292 if (cpus_empty(nodemask)) {
6293 sched_group_nodes[i] = NULL;
9c1cfda2 6294 continue;
d1b55138 6295 }
9c1cfda2
JH
6296
6297 domainspan = sched_domain_node_span(i);
6298 cpus_and(domainspan, domainspan, *cpu_map);
6299
15f0b676 6300 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6301 if (!sg) {
6302 printk(KERN_WARNING "Can not alloc domain group for "
6303 "node %d\n", i);
6304 goto error;
6305 }
9c1cfda2
JH
6306 sched_group_nodes[i] = sg;
6307 for_each_cpu_mask(j, nodemask) {
6308 struct sched_domain *sd;
6309 sd = &per_cpu(node_domains, j);
6310 sd->groups = sg;
9c1cfda2
JH
6311 }
6312 sg->cpu_power = 0;
6313 sg->cpumask = nodemask;
51888ca2 6314 sg->next = sg;
9c1cfda2
JH
6315 cpus_or(covered, covered, nodemask);
6316 prev = sg;
6317
6318 for (j = 0; j < MAX_NUMNODES; j++) {
6319 cpumask_t tmp, notcovered;
6320 int n = (i + j) % MAX_NUMNODES;
6321
6322 cpus_complement(notcovered, covered);
6323 cpus_and(tmp, notcovered, *cpu_map);
6324 cpus_and(tmp, tmp, domainspan);
6325 if (cpus_empty(tmp))
6326 break;
6327
6328 nodemask = node_to_cpumask(n);
6329 cpus_and(tmp, tmp, nodemask);
6330 if (cpus_empty(tmp))
6331 continue;
6332
15f0b676
SV
6333 sg = kmalloc_node(sizeof(struct sched_group),
6334 GFP_KERNEL, i);
9c1cfda2
JH
6335 if (!sg) {
6336 printk(KERN_WARNING
6337 "Can not alloc domain group for node %d\n", j);
51888ca2 6338 goto error;
9c1cfda2
JH
6339 }
6340 sg->cpu_power = 0;
6341 sg->cpumask = tmp;
51888ca2 6342 sg->next = prev->next;
9c1cfda2
JH
6343 cpus_or(covered, covered, tmp);
6344 prev->next = sg;
6345 prev = sg;
6346 }
9c1cfda2 6347 }
1da177e4
LT
6348#endif
6349
6350 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6351#ifdef CONFIG_SCHED_SMT
1a20ff27 6352 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6353 struct sched_domain *sd;
1da177e4 6354 sd = &per_cpu(cpu_domains, i);
5c45bf27
SS
6355 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6356 }
1da177e4 6357#endif
1e9f28fa 6358#ifdef CONFIG_SCHED_MC
5c45bf27
SS
6359 for_each_cpu_mask(i, *cpu_map) {
6360 int power;
6361 struct sched_domain *sd;
1e9f28fa 6362 sd = &per_cpu(core_domains, i);
5c45bf27
SS
6363 if (sched_smt_power_savings)
6364 power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask);
6365 else
6366 power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
1e9f28fa
SS
6367 * SCHED_LOAD_SCALE / 10;
6368 sd->groups->cpu_power = power;
5c45bf27
SS
6369 }
6370#endif
1e9f28fa 6371
5c45bf27
SS
6372 for_each_cpu_mask(i, *cpu_map) {
6373 struct sched_domain *sd;
6374#ifdef CONFIG_SCHED_MC
1e9f28fa 6375 sd = &per_cpu(phys_domains, i);
5c45bf27
SS
6376 if (i != first_cpu(sd->groups->cpumask))
6377 continue;
1da177e4 6378
5c45bf27
SS
6379 sd->groups->cpu_power = 0;
6380 if (sched_mc_power_savings || sched_smt_power_savings) {
6381 int j;
6382
6383 for_each_cpu_mask(j, sd->groups->cpumask) {
6384 struct sched_domain *sd1;
6385 sd1 = &per_cpu(core_domains, j);
6386 /*
6387 * for each core we will add once
6388 * to the group in physical domain
6389 */
6390 if (j != first_cpu(sd1->groups->cpumask))
6391 continue;
6392
6393 if (sched_smt_power_savings)
6394 sd->groups->cpu_power += sd1->groups->cpu_power;
6395 else
6396 sd->groups->cpu_power += SCHED_LOAD_SCALE;
6397 }
6398 } else
6399 /*
6400 * This has to be < 2 * SCHED_LOAD_SCALE
6401 * Lets keep it SCHED_LOAD_SCALE, so that
6402 * while calculating NUMA group's cpu_power
6403 * we can simply do
6404 * numa_group->cpu_power += phys_group->cpu_power;
6405 *
6406 * See "only add power once for each physical pkg"
6407 * comment below
6408 */
6409 sd->groups->cpu_power = SCHED_LOAD_SCALE;
1e9f28fa 6410#else
5c45bf27 6411 int power;
1da177e4 6412 sd = &per_cpu(phys_domains, i);
5c45bf27
SS
6413 if (sched_smt_power_savings)
6414 power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask);
6415 else
6416 power = SCHED_LOAD_SCALE;
1da177e4 6417 sd->groups->cpu_power = power;
1e9f28fa 6418#endif
1da177e4
LT
6419 }
6420
9c1cfda2 6421#ifdef CONFIG_NUMA
08069033
SS
6422 for (i = 0; i < MAX_NUMNODES; i++)
6423 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6424
08069033 6425 init_numa_sched_groups_power(sched_group_allnodes);
9c1cfda2
JH
6426#endif
6427
1da177e4 6428 /* Attach the domains */
1a20ff27 6429 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6430 struct sched_domain *sd;
6431#ifdef CONFIG_SCHED_SMT
6432 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6433#elif defined(CONFIG_SCHED_MC)
6434 sd = &per_cpu(core_domains, i);
1da177e4
LT
6435#else
6436 sd = &per_cpu(phys_domains, i);
6437#endif
6438 cpu_attach_domain(sd, i);
6439 }
198e2f18
AM
6440 /*
6441 * Tune cache-hot values:
6442 */
6443 calibrate_migration_costs(cpu_map);
51888ca2
SV
6444
6445 return 0;
6446
51888ca2
SV
6447error:
6448 free_sched_groups(cpu_map);
6449 return -ENOMEM;
1da177e4 6450}
1a20ff27
DG
6451/*
6452 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6453 */
51888ca2 6454static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6455{
6456 cpumask_t cpu_default_map;
51888ca2 6457 int err;
1da177e4 6458
1a20ff27
DG
6459 /*
6460 * Setup mask for cpus without special case scheduling requirements.
6461 * For now this just excludes isolated cpus, but could be used to
6462 * exclude other special cases in the future.
6463 */
6464 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6465
51888ca2
SV
6466 err = build_sched_domains(&cpu_default_map);
6467
6468 return err;
1a20ff27
DG
6469}
6470
6471static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6472{
51888ca2 6473 free_sched_groups(cpu_map);
9c1cfda2 6474}
1da177e4 6475
1a20ff27
DG
6476/*
6477 * Detach sched domains from a group of cpus specified in cpu_map
6478 * These cpus will now be attached to the NULL domain
6479 */
858119e1 6480static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6481{
6482 int i;
6483
6484 for_each_cpu_mask(i, *cpu_map)
6485 cpu_attach_domain(NULL, i);
6486 synchronize_sched();
6487 arch_destroy_sched_domains(cpu_map);
6488}
6489
6490/*
6491 * Partition sched domains as specified by the cpumasks below.
6492 * This attaches all cpus from the cpumasks to the NULL domain,
6493 * waits for a RCU quiescent period, recalculates sched
6494 * domain information and then attaches them back to the
6495 * correct sched domains
6496 * Call with hotplug lock held
6497 */
51888ca2 6498int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6499{
6500 cpumask_t change_map;
51888ca2 6501 int err = 0;
1a20ff27
DG
6502
6503 cpus_and(*partition1, *partition1, cpu_online_map);
6504 cpus_and(*partition2, *partition2, cpu_online_map);
6505 cpus_or(change_map, *partition1, *partition2);
6506
6507 /* Detach sched domains from all of the affected cpus */
6508 detach_destroy_domains(&change_map);
6509 if (!cpus_empty(*partition1))
51888ca2
SV
6510 err = build_sched_domains(partition1);
6511 if (!err && !cpus_empty(*partition2))
6512 err = build_sched_domains(partition2);
6513
6514 return err;
1a20ff27
DG
6515}
6516
5c45bf27
SS
6517#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6518int arch_reinit_sched_domains(void)
6519{
6520 int err;
6521
6522 lock_cpu_hotplug();
6523 detach_destroy_domains(&cpu_online_map);
6524 err = arch_init_sched_domains(&cpu_online_map);
6525 unlock_cpu_hotplug();
6526
6527 return err;
6528}
6529
6530static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6531{
6532 int ret;
6533
6534 if (buf[0] != '0' && buf[0] != '1')
6535 return -EINVAL;
6536
6537 if (smt)
6538 sched_smt_power_savings = (buf[0] == '1');
6539 else
6540 sched_mc_power_savings = (buf[0] == '1');
6541
6542 ret = arch_reinit_sched_domains();
6543
6544 return ret ? ret : count;
6545}
6546
6547int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6548{
6549 int err = 0;
6550#ifdef CONFIG_SCHED_SMT
6551 if (smt_capable())
6552 err = sysfs_create_file(&cls->kset.kobj,
6553 &attr_sched_smt_power_savings.attr);
6554#endif
6555#ifdef CONFIG_SCHED_MC
6556 if (!err && mc_capable())
6557 err = sysfs_create_file(&cls->kset.kobj,
6558 &attr_sched_mc_power_savings.attr);
6559#endif
6560 return err;
6561}
6562#endif
6563
6564#ifdef CONFIG_SCHED_MC
6565static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6566{
6567 return sprintf(page, "%u\n", sched_mc_power_savings);
6568}
6569static ssize_t sched_mc_power_savings_store(struct sys_device *dev, const char *buf, size_t count)
6570{
6571 return sched_power_savings_store(buf, count, 0);
6572}
6573SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6574 sched_mc_power_savings_store);
6575#endif
6576
6577#ifdef CONFIG_SCHED_SMT
6578static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6579{
6580 return sprintf(page, "%u\n", sched_smt_power_savings);
6581}
6582static ssize_t sched_smt_power_savings_store(struct sys_device *dev, const char *buf, size_t count)
6583{
6584 return sched_power_savings_store(buf, count, 1);
6585}
6586SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6587 sched_smt_power_savings_store);
6588#endif
6589
6590
1da177e4
LT
6591#ifdef CONFIG_HOTPLUG_CPU
6592/*
6593 * Force a reinitialization of the sched domains hierarchy. The domains
6594 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6595 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6596 * which will prevent rebalancing while the sched domains are recalculated.
6597 */
6598static int update_sched_domains(struct notifier_block *nfb,
6599 unsigned long action, void *hcpu)
6600{
1da177e4
LT
6601 switch (action) {
6602 case CPU_UP_PREPARE:
6603 case CPU_DOWN_PREPARE:
1a20ff27 6604 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6605 return NOTIFY_OK;
6606
6607 case CPU_UP_CANCELED:
6608 case CPU_DOWN_FAILED:
6609 case CPU_ONLINE:
6610 case CPU_DEAD:
6611 /*
6612 * Fall through and re-initialise the domains.
6613 */
6614 break;
6615 default:
6616 return NOTIFY_DONE;
6617 }
6618
6619 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6620 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6621
6622 return NOTIFY_OK;
6623}
6624#endif
6625
6626void __init sched_init_smp(void)
6627{
6628 lock_cpu_hotplug();
1a20ff27 6629 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6630 unlock_cpu_hotplug();
6631 /* XXX: Theoretical race here - CPU may be hotplugged now */
6632 hotcpu_notifier(update_sched_domains, 0);
6633}
6634#else
6635void __init sched_init_smp(void)
6636{
6637}
6638#endif /* CONFIG_SMP */
6639
6640int in_sched_functions(unsigned long addr)
6641{
6642 /* Linker adds these: start and end of __sched functions */
6643 extern char __sched_text_start[], __sched_text_end[];
6644 return in_lock_functions(addr) ||
6645 (addr >= (unsigned long)__sched_text_start
6646 && addr < (unsigned long)__sched_text_end);
6647}
6648
6649void __init sched_init(void)
6650{
6651 runqueue_t *rq;
6652 int i, j, k;
6653
0a945022 6654 for_each_possible_cpu(i) {
1da177e4
LT
6655 prio_array_t *array;
6656
6657 rq = cpu_rq(i);
6658 spin_lock_init(&rq->lock);
7897986b 6659 rq->nr_running = 0;
1da177e4
LT
6660 rq->active = rq->arrays;
6661 rq->expired = rq->arrays + 1;
6662 rq->best_expired_prio = MAX_PRIO;
6663
6664#ifdef CONFIG_SMP
41c7ce9a 6665 rq->sd = NULL;
7897986b
NP
6666 for (j = 1; j < 3; j++)
6667 rq->cpu_load[j] = 0;
1da177e4
LT
6668 rq->active_balance = 0;
6669 rq->push_cpu = 0;
6670 rq->migration_thread = NULL;
6671 INIT_LIST_HEAD(&rq->migration_queue);
6672#endif
6673 atomic_set(&rq->nr_iowait, 0);
6674
6675 for (j = 0; j < 2; j++) {
6676 array = rq->arrays + j;
6677 for (k = 0; k < MAX_PRIO; k++) {
6678 INIT_LIST_HEAD(array->queue + k);
6679 __clear_bit(k, array->bitmap);
6680 }
6681 // delimiter for bitsearch
6682 __set_bit(MAX_PRIO, array->bitmap);
6683 }
6684 }
6685
2dd73a4f 6686 set_load_weight(&init_task);
1da177e4
LT
6687 /*
6688 * The boot idle thread does lazy MMU switching as well:
6689 */
6690 atomic_inc(&init_mm.mm_count);
6691 enter_lazy_tlb(&init_mm, current);
6692
6693 /*
6694 * Make us the idle thread. Technically, schedule() should not be
6695 * called from this thread, however somewhere below it might be,
6696 * but because we are the idle thread, we just pick up running again
6697 * when this runqueue becomes "idle".
6698 */
6699 init_idle(current, smp_processor_id());
6700}
6701
6702#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6703void __might_sleep(char *file, int line)
6704{
6705#if defined(in_atomic)
6706 static unsigned long prev_jiffy; /* ratelimiting */
6707
6708 if ((in_atomic() || irqs_disabled()) &&
6709 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6710 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6711 return;
6712 prev_jiffy = jiffies;
91368d73 6713 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6714 " context at %s:%d\n", file, line);
6715 printk("in_atomic():%d, irqs_disabled():%d\n",
6716 in_atomic(), irqs_disabled());
6717 dump_stack();
6718 }
6719#endif
6720}
6721EXPORT_SYMBOL(__might_sleep);
6722#endif
6723
6724#ifdef CONFIG_MAGIC_SYSRQ
6725void normalize_rt_tasks(void)
6726{
6727 struct task_struct *p;
6728 prio_array_t *array;
6729 unsigned long flags;
6730 runqueue_t *rq;
6731
6732 read_lock_irq(&tasklist_lock);
c96d145e 6733 for_each_process(p) {
1da177e4
LT
6734 if (!rt_task(p))
6735 continue;
6736
b29739f9
IM
6737 spin_lock_irqsave(&p->pi_lock, flags);
6738 rq = __task_rq_lock(p);
1da177e4
LT
6739
6740 array = p->array;
6741 if (array)
6742 deactivate_task(p, task_rq(p));
6743 __setscheduler(p, SCHED_NORMAL, 0);
6744 if (array) {
6745 __activate_task(p, task_rq(p));
6746 resched_task(rq->curr);
6747 }
6748
b29739f9
IM
6749 __task_rq_unlock(rq);
6750 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6751 }
6752 read_unlock_irq(&tasklist_lock);
6753}
6754
6755#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6756
6757#ifdef CONFIG_IA64
6758/*
6759 * These functions are only useful for the IA64 MCA handling.
6760 *
6761 * They can only be called when the whole system has been
6762 * stopped - every CPU needs to be quiescent, and no scheduling
6763 * activity can take place. Using them for anything else would
6764 * be a serious bug, and as a result, they aren't even visible
6765 * under any other configuration.
6766 */
6767
6768/**
6769 * curr_task - return the current task for a given cpu.
6770 * @cpu: the processor in question.
6771 *
6772 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6773 */
6774task_t *curr_task(int cpu)
6775{
6776 return cpu_curr(cpu);
6777}
6778
6779/**
6780 * set_curr_task - set the current task for a given cpu.
6781 * @cpu: the processor in question.
6782 * @p: the task pointer to set.
6783 *
6784 * Description: This function must only be used when non-maskable interrupts
6785 * are serviced on a separate stack. It allows the architecture to switch the
6786 * notion of the current task on a cpu in a non-blocking manner. This function
6787 * must be called with all CPU's synchronized, and interrupts disabled, the
6788 * and caller must save the original value of the current task (see
6789 * curr_task() above) and restore that value before reenabling interrupts and
6790 * re-starting the system.
6791 *
6792 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6793 */
6794void set_curr_task(int cpu, task_t *p)
6795{
6796 cpu_curr(cpu) = p;
6797}
6798
6799#endif