]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
[PATCH] sched: tweak affine wakeups
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
30#include <linux/completion.h>
31#include <linux/kernel_stat.h>
32#include <linux/security.h>
33#include <linux/notifier.h>
34#include <linux/profile.h>
35#include <linux/suspend.h>
36#include <linux/blkdev.h>
37#include <linux/delay.h>
38#include <linux/smp.h>
39#include <linux/threads.h>
40#include <linux/timer.h>
41#include <linux/rcupdate.h>
42#include <linux/cpu.h>
43#include <linux/cpuset.h>
44#include <linux/percpu.h>
45#include <linux/kthread.h>
46#include <linux/seq_file.h>
47#include <linux/syscalls.h>
48#include <linux/times.h>
49#include <linux/acct.h>
50#include <asm/tlb.h>
51
52#include <asm/unistd.h>
53
54/*
55 * Convert user-nice values [ -20 ... 0 ... 19 ]
56 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57 * and back.
58 */
59#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
60#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
61#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
62
63/*
64 * 'User priority' is the nice value converted to something we
65 * can work with better when scaling various scheduler parameters,
66 * it's a [ 0 ... 39 ] range.
67 */
68#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
69#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
70#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
71
72/*
73 * Some helpers for converting nanosecond timing to jiffy resolution
74 */
75#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
76#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
77
78/*
79 * These are the 'tuning knobs' of the scheduler:
80 *
81 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83 * Timeslices get refilled after they expire.
84 */
85#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
86#define DEF_TIMESLICE (100 * HZ / 1000)
87#define ON_RUNQUEUE_WEIGHT 30
88#define CHILD_PENALTY 95
89#define PARENT_PENALTY 100
90#define EXIT_WEIGHT 3
91#define PRIO_BONUS_RATIO 25
92#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93#define INTERACTIVE_DELTA 2
94#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
95#define STARVATION_LIMIT (MAX_SLEEP_AVG)
96#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98/*
99 * If a task is 'interactive' then we reinsert it in the active
100 * array after it has expired its current timeslice. (it will not
101 * continue to run immediately, it will still roundrobin with
102 * other interactive tasks.)
103 *
104 * This part scales the interactivity limit depending on niceness.
105 *
106 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107 * Here are a few examples of different nice levels:
108 *
109 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
112 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114 *
115 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116 * priority range a task can explore, a value of '1' means the
117 * task is rated interactive.)
118 *
119 * Ie. nice +19 tasks can never get 'interactive' enough to be
120 * reinserted into the active array. And only heavily CPU-hog nice -20
121 * tasks will be expired. Default nice 0 tasks are somewhere between,
122 * it takes some effort for them to get interactive, but it's not
123 * too hard.
124 */
125
126#define CURRENT_BONUS(p) \
127 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128 MAX_SLEEP_AVG)
129
130#define GRANULARITY (10 * HZ / 1000 ? : 1)
131
132#ifdef CONFIG_SMP
133#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
134 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135 num_online_cpus())
136#else
137#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139#endif
140
141#define SCALE(v1,v1_max,v2_max) \
142 (v1) * (v2_max) / (v1_max)
143
144#define DELTA(p) \
145 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147#define TASK_INTERACTIVE(p) \
148 ((p)->prio <= (p)->static_prio - DELTA(p))
149
150#define INTERACTIVE_SLEEP(p) \
151 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154#define TASK_PREEMPTS_CURR(p, rq) \
155 ((p)->prio < (rq)->curr->prio)
156
157/*
158 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159 * to time slice values: [800ms ... 100ms ... 5ms]
160 *
161 * The higher a thread's priority, the bigger timeslices
162 * it gets during one round of execution. But even the lowest
163 * priority thread gets MIN_TIMESLICE worth of execution time.
164 */
165
166#define SCALE_PRIO(x, prio) \
167 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
169static inline unsigned int task_timeslice(task_t *p)
170{
171 if (p->static_prio < NICE_TO_PRIO(0))
172 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173 else
174 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175}
176#define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
177 < (long long) (sd)->cache_hot_time)
178
179/*
180 * These are the runqueue data structures:
181 */
182
183#define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185typedef struct runqueue runqueue_t;
186
187struct prio_array {
188 unsigned int nr_active;
189 unsigned long bitmap[BITMAP_SIZE];
190 struct list_head queue[MAX_PRIO];
191};
192
193/*
194 * This is the main, per-CPU runqueue data structure.
195 *
196 * Locking rule: those places that want to lock multiple runqueues
197 * (such as the load balancing or the thread migration code), lock
198 * acquire operations must be ordered by ascending &runqueue.
199 */
200struct runqueue {
201 spinlock_t lock;
202
203 /*
204 * nr_running and cpu_load should be in the same cacheline because
205 * remote CPUs use both these fields when doing load calculation.
206 */
207 unsigned long nr_running;
208#ifdef CONFIG_SMP
7897986b 209 unsigned long cpu_load[3];
1da177e4
LT
210#endif
211 unsigned long long nr_switches;
212
213 /*
214 * This is part of a global counter where only the total sum
215 * over all CPUs matters. A task can increase this counter on
216 * one CPU and if it got migrated afterwards it may decrease
217 * it on another CPU. Always updated under the runqueue lock:
218 */
219 unsigned long nr_uninterruptible;
220
221 unsigned long expired_timestamp;
222 unsigned long long timestamp_last_tick;
223 task_t *curr, *idle;
224 struct mm_struct *prev_mm;
225 prio_array_t *active, *expired, arrays[2];
226 int best_expired_prio;
227 atomic_t nr_iowait;
228
229#ifdef CONFIG_SMP
230 struct sched_domain *sd;
231
232 /* For active balancing */
233 int active_balance;
234 int push_cpu;
235
236 task_t *migration_thread;
237 struct list_head migration_queue;
238#endif
239
240#ifdef CONFIG_SCHEDSTATS
241 /* latency stats */
242 struct sched_info rq_sched_info;
243
244 /* sys_sched_yield() stats */
245 unsigned long yld_exp_empty;
246 unsigned long yld_act_empty;
247 unsigned long yld_both_empty;
248 unsigned long yld_cnt;
249
250 /* schedule() stats */
251 unsigned long sched_switch;
252 unsigned long sched_cnt;
253 unsigned long sched_goidle;
254
255 /* try_to_wake_up() stats */
256 unsigned long ttwu_cnt;
257 unsigned long ttwu_local;
258#endif
259};
260
261static DEFINE_PER_CPU(struct runqueue, runqueues);
262
263#define for_each_domain(cpu, domain) \
264 for (domain = cpu_rq(cpu)->sd; domain; domain = domain->parent)
265
266#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
267#define this_rq() (&__get_cpu_var(runqueues))
268#define task_rq(p) cpu_rq(task_cpu(p))
269#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
270
271/*
272 * Default context-switch locking:
273 */
274#ifndef prepare_arch_switch
275# define prepare_arch_switch(rq, next) do { } while (0)
276# define finish_arch_switch(rq, next) spin_unlock_irq(&(rq)->lock)
277# define task_running(rq, p) ((rq)->curr == (p))
278#endif
279
280/*
281 * task_rq_lock - lock the runqueue a given task resides on and disable
282 * interrupts. Note the ordering: we can safely lookup the task_rq without
283 * explicitly disabling preemption.
284 */
285static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
286 __acquires(rq->lock)
287{
288 struct runqueue *rq;
289
290repeat_lock_task:
291 local_irq_save(*flags);
292 rq = task_rq(p);
293 spin_lock(&rq->lock);
294 if (unlikely(rq != task_rq(p))) {
295 spin_unlock_irqrestore(&rq->lock, *flags);
296 goto repeat_lock_task;
297 }
298 return rq;
299}
300
301static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
302 __releases(rq->lock)
303{
304 spin_unlock_irqrestore(&rq->lock, *flags);
305}
306
307#ifdef CONFIG_SCHEDSTATS
308/*
309 * bump this up when changing the output format or the meaning of an existing
310 * format, so that tools can adapt (or abort)
311 */
312#define SCHEDSTAT_VERSION 11
313
314static int show_schedstat(struct seq_file *seq, void *v)
315{
316 int cpu;
317
318 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
319 seq_printf(seq, "timestamp %lu\n", jiffies);
320 for_each_online_cpu(cpu) {
321 runqueue_t *rq = cpu_rq(cpu);
322#ifdef CONFIG_SMP
323 struct sched_domain *sd;
324 int dcnt = 0;
325#endif
326
327 /* runqueue-specific stats */
328 seq_printf(seq,
329 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
330 cpu, rq->yld_both_empty,
331 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
332 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
333 rq->ttwu_cnt, rq->ttwu_local,
334 rq->rq_sched_info.cpu_time,
335 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
336
337 seq_printf(seq, "\n");
338
339#ifdef CONFIG_SMP
340 /* domain-specific stats */
341 for_each_domain(cpu, sd) {
342 enum idle_type itype;
343 char mask_str[NR_CPUS];
344
345 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
346 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
347 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
348 itype++) {
349 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
350 sd->lb_cnt[itype],
351 sd->lb_balanced[itype],
352 sd->lb_failed[itype],
353 sd->lb_imbalance[itype],
354 sd->lb_gained[itype],
355 sd->lb_hot_gained[itype],
356 sd->lb_nobusyq[itype],
357 sd->lb_nobusyg[itype]);
358 }
359 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu\n",
360 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
361 sd->sbe_pushed, sd->sbe_attempts,
362 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
363 }
364#endif
365 }
366 return 0;
367}
368
369static int schedstat_open(struct inode *inode, struct file *file)
370{
371 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
372 char *buf = kmalloc(size, GFP_KERNEL);
373 struct seq_file *m;
374 int res;
375
376 if (!buf)
377 return -ENOMEM;
378 res = single_open(file, show_schedstat, NULL);
379 if (!res) {
380 m = file->private_data;
381 m->buf = buf;
382 m->size = size;
383 } else
384 kfree(buf);
385 return res;
386}
387
388struct file_operations proc_schedstat_operations = {
389 .open = schedstat_open,
390 .read = seq_read,
391 .llseek = seq_lseek,
392 .release = single_release,
393};
394
395# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
396# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
397#else /* !CONFIG_SCHEDSTATS */
398# define schedstat_inc(rq, field) do { } while (0)
399# define schedstat_add(rq, field, amt) do { } while (0)
400#endif
401
402/*
403 * rq_lock - lock a given runqueue and disable interrupts.
404 */
405static inline runqueue_t *this_rq_lock(void)
406 __acquires(rq->lock)
407{
408 runqueue_t *rq;
409
410 local_irq_disable();
411 rq = this_rq();
412 spin_lock(&rq->lock);
413
414 return rq;
415}
416
417#ifdef CONFIG_SCHED_SMT
418static int cpu_and_siblings_are_idle(int cpu)
419{
420 int sib;
421 for_each_cpu_mask(sib, cpu_sibling_map[cpu]) {
422 if (idle_cpu(sib))
423 continue;
424 return 0;
425 }
426
427 return 1;
428}
429#else
430#define cpu_and_siblings_are_idle(A) idle_cpu(A)
431#endif
432
433#ifdef CONFIG_SCHEDSTATS
434/*
435 * Called when a process is dequeued from the active array and given
436 * the cpu. We should note that with the exception of interactive
437 * tasks, the expired queue will become the active queue after the active
438 * queue is empty, without explicitly dequeuing and requeuing tasks in the
439 * expired queue. (Interactive tasks may be requeued directly to the
440 * active queue, thus delaying tasks in the expired queue from running;
441 * see scheduler_tick()).
442 *
443 * This function is only called from sched_info_arrive(), rather than
444 * dequeue_task(). Even though a task may be queued and dequeued multiple
445 * times as it is shuffled about, we're really interested in knowing how
446 * long it was from the *first* time it was queued to the time that it
447 * finally hit a cpu.
448 */
449static inline void sched_info_dequeued(task_t *t)
450{
451 t->sched_info.last_queued = 0;
452}
453
454/*
455 * Called when a task finally hits the cpu. We can now calculate how
456 * long it was waiting to run. We also note when it began so that we
457 * can keep stats on how long its timeslice is.
458 */
459static inline void sched_info_arrive(task_t *t)
460{
461 unsigned long now = jiffies, diff = 0;
462 struct runqueue *rq = task_rq(t);
463
464 if (t->sched_info.last_queued)
465 diff = now - t->sched_info.last_queued;
466 sched_info_dequeued(t);
467 t->sched_info.run_delay += diff;
468 t->sched_info.last_arrival = now;
469 t->sched_info.pcnt++;
470
471 if (!rq)
472 return;
473
474 rq->rq_sched_info.run_delay += diff;
475 rq->rq_sched_info.pcnt++;
476}
477
478/*
479 * Called when a process is queued into either the active or expired
480 * array. The time is noted and later used to determine how long we
481 * had to wait for us to reach the cpu. Since the expired queue will
482 * become the active queue after active queue is empty, without dequeuing
483 * and requeuing any tasks, we are interested in queuing to either. It
484 * is unusual but not impossible for tasks to be dequeued and immediately
485 * requeued in the same or another array: this can happen in sched_yield(),
486 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
487 * to runqueue.
488 *
489 * This function is only called from enqueue_task(), but also only updates
490 * the timestamp if it is already not set. It's assumed that
491 * sched_info_dequeued() will clear that stamp when appropriate.
492 */
493static inline void sched_info_queued(task_t *t)
494{
495 if (!t->sched_info.last_queued)
496 t->sched_info.last_queued = jiffies;
497}
498
499/*
500 * Called when a process ceases being the active-running process, either
501 * voluntarily or involuntarily. Now we can calculate how long we ran.
502 */
503static inline void sched_info_depart(task_t *t)
504{
505 struct runqueue *rq = task_rq(t);
506 unsigned long diff = jiffies - t->sched_info.last_arrival;
507
508 t->sched_info.cpu_time += diff;
509
510 if (rq)
511 rq->rq_sched_info.cpu_time += diff;
512}
513
514/*
515 * Called when tasks are switched involuntarily due, typically, to expiring
516 * their time slice. (This may also be called when switching to or from
517 * the idle task.) We are only called when prev != next.
518 */
519static inline void sched_info_switch(task_t *prev, task_t *next)
520{
521 struct runqueue *rq = task_rq(prev);
522
523 /*
524 * prev now departs the cpu. It's not interesting to record
525 * stats about how efficient we were at scheduling the idle
526 * process, however.
527 */
528 if (prev != rq->idle)
529 sched_info_depart(prev);
530
531 if (next != rq->idle)
532 sched_info_arrive(next);
533}
534#else
535#define sched_info_queued(t) do { } while (0)
536#define sched_info_switch(t, next) do { } while (0)
537#endif /* CONFIG_SCHEDSTATS */
538
539/*
540 * Adding/removing a task to/from a priority array:
541 */
542static void dequeue_task(struct task_struct *p, prio_array_t *array)
543{
544 array->nr_active--;
545 list_del(&p->run_list);
546 if (list_empty(array->queue + p->prio))
547 __clear_bit(p->prio, array->bitmap);
548}
549
550static void enqueue_task(struct task_struct *p, prio_array_t *array)
551{
552 sched_info_queued(p);
553 list_add_tail(&p->run_list, array->queue + p->prio);
554 __set_bit(p->prio, array->bitmap);
555 array->nr_active++;
556 p->array = array;
557}
558
559/*
560 * Put task to the end of the run list without the overhead of dequeue
561 * followed by enqueue.
562 */
563static void requeue_task(struct task_struct *p, prio_array_t *array)
564{
565 list_move_tail(&p->run_list, array->queue + p->prio);
566}
567
568static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
569{
570 list_add(&p->run_list, array->queue + p->prio);
571 __set_bit(p->prio, array->bitmap);
572 array->nr_active++;
573 p->array = array;
574}
575
576/*
577 * effective_prio - return the priority that is based on the static
578 * priority but is modified by bonuses/penalties.
579 *
580 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
581 * into the -5 ... 0 ... +5 bonus/penalty range.
582 *
583 * We use 25% of the full 0...39 priority range so that:
584 *
585 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
586 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
587 *
588 * Both properties are important to certain workloads.
589 */
590static int effective_prio(task_t *p)
591{
592 int bonus, prio;
593
594 if (rt_task(p))
595 return p->prio;
596
597 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
598
599 prio = p->static_prio - bonus;
600 if (prio < MAX_RT_PRIO)
601 prio = MAX_RT_PRIO;
602 if (prio > MAX_PRIO-1)
603 prio = MAX_PRIO-1;
604 return prio;
605}
606
607/*
608 * __activate_task - move a task to the runqueue.
609 */
610static inline void __activate_task(task_t *p, runqueue_t *rq)
611{
612 enqueue_task(p, rq->active);
613 rq->nr_running++;
614}
615
616/*
617 * __activate_idle_task - move idle task to the _front_ of runqueue.
618 */
619static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
620{
621 enqueue_task_head(p, rq->active);
622 rq->nr_running++;
623}
624
625static void recalc_task_prio(task_t *p, unsigned long long now)
626{
627 /* Caller must always ensure 'now >= p->timestamp' */
628 unsigned long long __sleep_time = now - p->timestamp;
629 unsigned long sleep_time;
630
631 if (__sleep_time > NS_MAX_SLEEP_AVG)
632 sleep_time = NS_MAX_SLEEP_AVG;
633 else
634 sleep_time = (unsigned long)__sleep_time;
635
636 if (likely(sleep_time > 0)) {
637 /*
638 * User tasks that sleep a long time are categorised as
639 * idle and will get just interactive status to stay active &
640 * prevent them suddenly becoming cpu hogs and starving
641 * other processes.
642 */
643 if (p->mm && p->activated != -1 &&
644 sleep_time > INTERACTIVE_SLEEP(p)) {
645 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
646 DEF_TIMESLICE);
647 } else {
648 /*
649 * The lower the sleep avg a task has the more
650 * rapidly it will rise with sleep time.
651 */
652 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
653
654 /*
655 * Tasks waking from uninterruptible sleep are
656 * limited in their sleep_avg rise as they
657 * are likely to be waiting on I/O
658 */
659 if (p->activated == -1 && p->mm) {
660 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
661 sleep_time = 0;
662 else if (p->sleep_avg + sleep_time >=
663 INTERACTIVE_SLEEP(p)) {
664 p->sleep_avg = INTERACTIVE_SLEEP(p);
665 sleep_time = 0;
666 }
667 }
668
669 /*
670 * This code gives a bonus to interactive tasks.
671 *
672 * The boost works by updating the 'average sleep time'
673 * value here, based on ->timestamp. The more time a
674 * task spends sleeping, the higher the average gets -
675 * and the higher the priority boost gets as well.
676 */
677 p->sleep_avg += sleep_time;
678
679 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
680 p->sleep_avg = NS_MAX_SLEEP_AVG;
681 }
682 }
683
684 p->prio = effective_prio(p);
685}
686
687/*
688 * activate_task - move a task to the runqueue and do priority recalculation
689 *
690 * Update all the scheduling statistics stuff. (sleep average
691 * calculation, priority modifiers, etc.)
692 */
693static void activate_task(task_t *p, runqueue_t *rq, int local)
694{
695 unsigned long long now;
696
697 now = sched_clock();
698#ifdef CONFIG_SMP
699 if (!local) {
700 /* Compensate for drifting sched_clock */
701 runqueue_t *this_rq = this_rq();
702 now = (now - this_rq->timestamp_last_tick)
703 + rq->timestamp_last_tick;
704 }
705#endif
706
707 recalc_task_prio(p, now);
708
709 /*
710 * This checks to make sure it's not an uninterruptible task
711 * that is now waking up.
712 */
713 if (!p->activated) {
714 /*
715 * Tasks which were woken up by interrupts (ie. hw events)
716 * are most likely of interactive nature. So we give them
717 * the credit of extending their sleep time to the period
718 * of time they spend on the runqueue, waiting for execution
719 * on a CPU, first time around:
720 */
721 if (in_interrupt())
722 p->activated = 2;
723 else {
724 /*
725 * Normal first-time wakeups get a credit too for
726 * on-runqueue time, but it will be weighted down:
727 */
728 p->activated = 1;
729 }
730 }
731 p->timestamp = now;
732
733 __activate_task(p, rq);
734}
735
736/*
737 * deactivate_task - remove a task from the runqueue.
738 */
739static void deactivate_task(struct task_struct *p, runqueue_t *rq)
740{
741 rq->nr_running--;
742 dequeue_task(p, p->array);
743 p->array = NULL;
744}
745
746/*
747 * resched_task - mark a task 'to be rescheduled now'.
748 *
749 * On UP this means the setting of the need_resched flag, on SMP it
750 * might also involve a cross-CPU call to trigger the scheduler on
751 * the target CPU.
752 */
753#ifdef CONFIG_SMP
754static void resched_task(task_t *p)
755{
756 int need_resched, nrpolling;
757
758 assert_spin_locked(&task_rq(p)->lock);
759
760 /* minimise the chance of sending an interrupt to poll_idle() */
761 nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
762 need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
763 nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
764
765 if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
766 smp_send_reschedule(task_cpu(p));
767}
768#else
769static inline void resched_task(task_t *p)
770{
771 set_tsk_need_resched(p);
772}
773#endif
774
775/**
776 * task_curr - is this task currently executing on a CPU?
777 * @p: the task in question.
778 */
779inline int task_curr(const task_t *p)
780{
781 return cpu_curr(task_cpu(p)) == p;
782}
783
784#ifdef CONFIG_SMP
785enum request_type {
786 REQ_MOVE_TASK,
787 REQ_SET_DOMAIN,
788};
789
790typedef struct {
791 struct list_head list;
792 enum request_type type;
793
794 /* For REQ_MOVE_TASK */
795 task_t *task;
796 int dest_cpu;
797
798 /* For REQ_SET_DOMAIN */
799 struct sched_domain *sd;
800
801 struct completion done;
802} migration_req_t;
803
804/*
805 * The task's runqueue lock must be held.
806 * Returns true if you have to wait for migration thread.
807 */
808static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
809{
810 runqueue_t *rq = task_rq(p);
811
812 /*
813 * If the task is not on a runqueue (and not running), then
814 * it is sufficient to simply update the task's cpu field.
815 */
816 if (!p->array && !task_running(rq, p)) {
817 set_task_cpu(p, dest_cpu);
818 return 0;
819 }
820
821 init_completion(&req->done);
822 req->type = REQ_MOVE_TASK;
823 req->task = p;
824 req->dest_cpu = dest_cpu;
825 list_add(&req->list, &rq->migration_queue);
826 return 1;
827}
828
829/*
830 * wait_task_inactive - wait for a thread to unschedule.
831 *
832 * The caller must ensure that the task *will* unschedule sometime soon,
833 * else this function might spin for a *long* time. This function can't
834 * be called with interrupts off, or it may introduce deadlock with
835 * smp_call_function() if an IPI is sent by the same process we are
836 * waiting to become inactive.
837 */
838void wait_task_inactive(task_t * p)
839{
840 unsigned long flags;
841 runqueue_t *rq;
842 int preempted;
843
844repeat:
845 rq = task_rq_lock(p, &flags);
846 /* Must be off runqueue entirely, not preempted. */
847 if (unlikely(p->array || task_running(rq, p))) {
848 /* If it's preempted, we yield. It could be a while. */
849 preempted = !task_running(rq, p);
850 task_rq_unlock(rq, &flags);
851 cpu_relax();
852 if (preempted)
853 yield();
854 goto repeat;
855 }
856 task_rq_unlock(rq, &flags);
857}
858
859/***
860 * kick_process - kick a running thread to enter/exit the kernel
861 * @p: the to-be-kicked thread
862 *
863 * Cause a process which is running on another CPU to enter
864 * kernel-mode, without any delay. (to get signals handled.)
865 *
866 * NOTE: this function doesnt have to take the runqueue lock,
867 * because all it wants to ensure is that the remote task enters
868 * the kernel. If the IPI races and the task has been migrated
869 * to another CPU then no harm is done and the purpose has been
870 * achieved as well.
871 */
872void kick_process(task_t *p)
873{
874 int cpu;
875
876 preempt_disable();
877 cpu = task_cpu(p);
878 if ((cpu != smp_processor_id()) && task_curr(p))
879 smp_send_reschedule(cpu);
880 preempt_enable();
881}
882
883/*
884 * Return a low guess at the load of a migration-source cpu.
885 *
886 * We want to under-estimate the load of migration sources, to
887 * balance conservatively.
888 */
7897986b 889static inline unsigned long source_load(int cpu, int type)
1da177e4
LT
890{
891 runqueue_t *rq = cpu_rq(cpu);
892 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
7897986b
NP
893 if (type == 0)
894 return load_now;
1da177e4 895
7897986b 896 return min(rq->cpu_load[type-1], load_now);
1da177e4
LT
897}
898
899/*
900 * Return a high guess at the load of a migration-target cpu
901 */
7897986b 902static inline unsigned long target_load(int cpu, int type)
1da177e4
LT
903{
904 runqueue_t *rq = cpu_rq(cpu);
905 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
7897986b
NP
906 if (type == 0)
907 return load_now;
1da177e4 908
7897986b 909 return max(rq->cpu_load[type-1], load_now);
1da177e4
LT
910}
911
912#endif
913
914/*
915 * wake_idle() will wake a task on an idle cpu if task->cpu is
916 * not idle and an idle cpu is available. The span of cpus to
917 * search starts with cpus closest then further out as needed,
918 * so we always favor a closer, idle cpu.
919 *
920 * Returns the CPU we should wake onto.
921 */
922#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
923static int wake_idle(int cpu, task_t *p)
924{
925 cpumask_t tmp;
926 struct sched_domain *sd;
927 int i;
928
929 if (idle_cpu(cpu))
930 return cpu;
931
932 for_each_domain(cpu, sd) {
933 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 934 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
935 for_each_cpu_mask(i, tmp) {
936 if (idle_cpu(i))
937 return i;
938 }
939 }
e0f364f4
NP
940 else
941 break;
1da177e4
LT
942 }
943 return cpu;
944}
945#else
946static inline int wake_idle(int cpu, task_t *p)
947{
948 return cpu;
949}
950#endif
951
952/***
953 * try_to_wake_up - wake up a thread
954 * @p: the to-be-woken-up thread
955 * @state: the mask of task states that can be woken
956 * @sync: do a synchronous wakeup?
957 *
958 * Put it on the run-queue if it's not already there. The "current"
959 * thread is always on the run-queue (except when the actual
960 * re-schedule is in progress), and as such you're allowed to do
961 * the simpler "current->state = TASK_RUNNING" to mark yourself
962 * runnable without the overhead of this.
963 *
964 * returns failure only if the task is already active.
965 */
966static int try_to_wake_up(task_t * p, unsigned int state, int sync)
967{
968 int cpu, this_cpu, success = 0;
969 unsigned long flags;
970 long old_state;
971 runqueue_t *rq;
972#ifdef CONFIG_SMP
973 unsigned long load, this_load;
7897986b 974 struct sched_domain *sd, *this_sd = NULL;
1da177e4
LT
975 int new_cpu;
976#endif
977
978 rq = task_rq_lock(p, &flags);
979 old_state = p->state;
980 if (!(old_state & state))
981 goto out;
982
983 if (p->array)
984 goto out_running;
985
986 cpu = task_cpu(p);
987 this_cpu = smp_processor_id();
988
989#ifdef CONFIG_SMP
990 if (unlikely(task_running(rq, p)))
991 goto out_activate;
992
7897986b
NP
993 new_cpu = cpu;
994
1da177e4
LT
995 schedstat_inc(rq, ttwu_cnt);
996 if (cpu == this_cpu) {
997 schedstat_inc(rq, ttwu_local);
7897986b
NP
998 goto out_set_cpu;
999 }
1000
1001 for_each_domain(this_cpu, sd) {
1002 if (cpu_isset(cpu, sd->span)) {
1003 schedstat_inc(sd, ttwu_wake_remote);
1004 this_sd = sd;
1005 break;
1da177e4
LT
1006 }
1007 }
1da177e4 1008
7897986b 1009 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1010 goto out_set_cpu;
1011
1da177e4 1012 /*
7897986b 1013 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1014 */
7897986b
NP
1015 if (this_sd) {
1016 int idx = this_sd->wake_idx;
1017 unsigned int imbalance;
1da177e4 1018
a3f21bce
NP
1019 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1020
7897986b
NP
1021 load = source_load(cpu, idx);
1022 this_load = target_load(this_cpu, idx);
1da177e4 1023
7897986b
NP
1024 new_cpu = this_cpu; /* Wake to this CPU if we can */
1025
a3f21bce
NP
1026 if (this_sd->flags & SD_WAKE_AFFINE) {
1027 unsigned long tl = this_load;
1da177e4 1028 /*
a3f21bce
NP
1029 * If sync wakeup then subtract the (maximum possible)
1030 * effect of the currently running task from the load
1031 * of the current CPU:
1da177e4 1032 */
a3f21bce
NP
1033 if (sync)
1034 tl -= SCHED_LOAD_SCALE;
1035
1036 if ((tl <= load &&
1037 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1038 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1039 /*
1040 * This domain has SD_WAKE_AFFINE and
1041 * p is cache cold in this domain, and
1042 * there is no bad imbalance.
1043 */
1044 schedstat_inc(this_sd, ttwu_move_affine);
1045 goto out_set_cpu;
1046 }
1047 }
1048
1049 /*
1050 * Start passive balancing when half the imbalance_pct
1051 * limit is reached.
1052 */
1053 if (this_sd->flags & SD_WAKE_BALANCE) {
1054 if (imbalance*this_load <= 100*load) {
1055 schedstat_inc(this_sd, ttwu_move_balance);
1056 goto out_set_cpu;
1057 }
1da177e4
LT
1058 }
1059 }
1060
1061 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1062out_set_cpu:
1063 new_cpu = wake_idle(new_cpu, p);
1064 if (new_cpu != cpu) {
1065 set_task_cpu(p, new_cpu);
1066 task_rq_unlock(rq, &flags);
1067 /* might preempt at this point */
1068 rq = task_rq_lock(p, &flags);
1069 old_state = p->state;
1070 if (!(old_state & state))
1071 goto out;
1072 if (p->array)
1073 goto out_running;
1074
1075 this_cpu = smp_processor_id();
1076 cpu = task_cpu(p);
1077 }
1078
1079out_activate:
1080#endif /* CONFIG_SMP */
1081 if (old_state == TASK_UNINTERRUPTIBLE) {
1082 rq->nr_uninterruptible--;
1083 /*
1084 * Tasks on involuntary sleep don't earn
1085 * sleep_avg beyond just interactive state.
1086 */
1087 p->activated = -1;
1088 }
1089
1090 /*
1091 * Sync wakeups (i.e. those types of wakeups where the waker
1092 * has indicated that it will leave the CPU in short order)
1093 * don't trigger a preemption, if the woken up task will run on
1094 * this cpu. (in this case the 'I will reschedule' promise of
1095 * the waker guarantees that the freshly woken up task is going
1096 * to be considered on this CPU.)
1097 */
1098 activate_task(p, rq, cpu == this_cpu);
1099 if (!sync || cpu != this_cpu) {
1100 if (TASK_PREEMPTS_CURR(p, rq))
1101 resched_task(rq->curr);
1102 }
1103 success = 1;
1104
1105out_running:
1106 p->state = TASK_RUNNING;
1107out:
1108 task_rq_unlock(rq, &flags);
1109
1110 return success;
1111}
1112
1113int fastcall wake_up_process(task_t * p)
1114{
1115 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1116 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1117}
1118
1119EXPORT_SYMBOL(wake_up_process);
1120
1121int fastcall wake_up_state(task_t *p, unsigned int state)
1122{
1123 return try_to_wake_up(p, state, 0);
1124}
1125
1126#ifdef CONFIG_SMP
1127static int find_idlest_cpu(struct task_struct *p, int this_cpu,
1128 struct sched_domain *sd);
1129#endif
1130
1131/*
1132 * Perform scheduler related setup for a newly forked process p.
1133 * p is forked by current.
1134 */
1135void fastcall sched_fork(task_t *p)
1136{
1137 /*
1138 * We mark the process as running here, but have not actually
1139 * inserted it onto the runqueue yet. This guarantees that
1140 * nobody will actually run it, and a signal or other external
1141 * event cannot wake it up and insert it on the runqueue either.
1142 */
1143 p->state = TASK_RUNNING;
1144 INIT_LIST_HEAD(&p->run_list);
1145 p->array = NULL;
1146 spin_lock_init(&p->switch_lock);
1147#ifdef CONFIG_SCHEDSTATS
1148 memset(&p->sched_info, 0, sizeof(p->sched_info));
1149#endif
1150#ifdef CONFIG_PREEMPT
1151 /*
1152 * During context-switch we hold precisely one spinlock, which
1153 * schedule_tail drops. (in the common case it's this_rq()->lock,
1154 * but it also can be p->switch_lock.) So we compensate with a count
1155 * of 1. Also, we want to start with kernel preemption disabled.
1156 */
1157 p->thread_info->preempt_count = 1;
1158#endif
1159 /*
1160 * Share the timeslice between parent and child, thus the
1161 * total amount of pending timeslices in the system doesn't change,
1162 * resulting in more scheduling fairness.
1163 */
1164 local_irq_disable();
1165 p->time_slice = (current->time_slice + 1) >> 1;
1166 /*
1167 * The remainder of the first timeslice might be recovered by
1168 * the parent if the child exits early enough.
1169 */
1170 p->first_time_slice = 1;
1171 current->time_slice >>= 1;
1172 p->timestamp = sched_clock();
1173 if (unlikely(!current->time_slice)) {
1174 /*
1175 * This case is rare, it happens when the parent has only
1176 * a single jiffy left from its timeslice. Taking the
1177 * runqueue lock is not a problem.
1178 */
1179 current->time_slice = 1;
1180 preempt_disable();
1181 scheduler_tick();
1182 local_irq_enable();
1183 preempt_enable();
1184 } else
1185 local_irq_enable();
1186}
1187
1188/*
1189 * wake_up_new_task - wake up a newly created task for the first time.
1190 *
1191 * This function will do some initial scheduler statistics housekeeping
1192 * that must be done for every newly created context, then puts the task
1193 * on the runqueue and wakes it.
1194 */
1195void fastcall wake_up_new_task(task_t * p, unsigned long clone_flags)
1196{
1197 unsigned long flags;
1198 int this_cpu, cpu;
1199 runqueue_t *rq, *this_rq;
1200
1201 rq = task_rq_lock(p, &flags);
1202 cpu = task_cpu(p);
1203 this_cpu = smp_processor_id();
1204
1205 BUG_ON(p->state != TASK_RUNNING);
1206
1207 /*
1208 * We decrease the sleep average of forking parents
1209 * and children as well, to keep max-interactive tasks
1210 * from forking tasks that are max-interactive. The parent
1211 * (current) is done further down, under its lock.
1212 */
1213 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1214 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1215
1216 p->prio = effective_prio(p);
1217
1218 if (likely(cpu == this_cpu)) {
1219 if (!(clone_flags & CLONE_VM)) {
1220 /*
1221 * The VM isn't cloned, so we're in a good position to
1222 * do child-runs-first in anticipation of an exec. This
1223 * usually avoids a lot of COW overhead.
1224 */
1225 if (unlikely(!current->array))
1226 __activate_task(p, rq);
1227 else {
1228 p->prio = current->prio;
1229 list_add_tail(&p->run_list, &current->run_list);
1230 p->array = current->array;
1231 p->array->nr_active++;
1232 rq->nr_running++;
1233 }
1234 set_need_resched();
1235 } else
1236 /* Run child last */
1237 __activate_task(p, rq);
1238 /*
1239 * We skip the following code due to cpu == this_cpu
1240 *
1241 * task_rq_unlock(rq, &flags);
1242 * this_rq = task_rq_lock(current, &flags);
1243 */
1244 this_rq = rq;
1245 } else {
1246 this_rq = cpu_rq(this_cpu);
1247
1248 /*
1249 * Not the local CPU - must adjust timestamp. This should
1250 * get optimised away in the !CONFIG_SMP case.
1251 */
1252 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1253 + rq->timestamp_last_tick;
1254 __activate_task(p, rq);
1255 if (TASK_PREEMPTS_CURR(p, rq))
1256 resched_task(rq->curr);
1257
1258 /*
1259 * Parent and child are on different CPUs, now get the
1260 * parent runqueue to update the parent's ->sleep_avg:
1261 */
1262 task_rq_unlock(rq, &flags);
1263 this_rq = task_rq_lock(current, &flags);
1264 }
1265 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1266 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1267 task_rq_unlock(this_rq, &flags);
1268}
1269
1270/*
1271 * Potentially available exiting-child timeslices are
1272 * retrieved here - this way the parent does not get
1273 * penalized for creating too many threads.
1274 *
1275 * (this cannot be used to 'generate' timeslices
1276 * artificially, because any timeslice recovered here
1277 * was given away by the parent in the first place.)
1278 */
1279void fastcall sched_exit(task_t * p)
1280{
1281 unsigned long flags;
1282 runqueue_t *rq;
1283
1284 /*
1285 * If the child was a (relative-) CPU hog then decrease
1286 * the sleep_avg of the parent as well.
1287 */
1288 rq = task_rq_lock(p->parent, &flags);
1289 if (p->first_time_slice) {
1290 p->parent->time_slice += p->time_slice;
1291 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1292 p->parent->time_slice = task_timeslice(p);
1293 }
1294 if (p->sleep_avg < p->parent->sleep_avg)
1295 p->parent->sleep_avg = p->parent->sleep_avg /
1296 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1297 (EXIT_WEIGHT + 1);
1298 task_rq_unlock(rq, &flags);
1299}
1300
1301/**
1302 * finish_task_switch - clean up after a task-switch
1303 * @prev: the thread we just switched away from.
1304 *
1305 * We enter this with the runqueue still locked, and finish_arch_switch()
1306 * will unlock it along with doing any other architecture-specific cleanup
1307 * actions.
1308 *
1309 * Note that we may have delayed dropping an mm in context_switch(). If
1310 * so, we finish that here outside of the runqueue lock. (Doing it
1311 * with the lock held can cause deadlocks; see schedule() for
1312 * details.)
1313 */
1314static inline void finish_task_switch(task_t *prev)
1315 __releases(rq->lock)
1316{
1317 runqueue_t *rq = this_rq();
1318 struct mm_struct *mm = rq->prev_mm;
1319 unsigned long prev_task_flags;
1320
1321 rq->prev_mm = NULL;
1322
1323 /*
1324 * A task struct has one reference for the use as "current".
1325 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1326 * calls schedule one last time. The schedule call will never return,
1327 * and the scheduled task must drop that reference.
1328 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1329 * still held, otherwise prev could be scheduled on another cpu, die
1330 * there before we look at prev->state, and then the reference would
1331 * be dropped twice.
1332 * Manfred Spraul <manfred@colorfullife.com>
1333 */
1334 prev_task_flags = prev->flags;
1335 finish_arch_switch(rq, prev);
1336 if (mm)
1337 mmdrop(mm);
1338 if (unlikely(prev_task_flags & PF_DEAD))
1339 put_task_struct(prev);
1340}
1341
1342/**
1343 * schedule_tail - first thing a freshly forked thread must call.
1344 * @prev: the thread we just switched away from.
1345 */
1346asmlinkage void schedule_tail(task_t *prev)
1347 __releases(rq->lock)
1348{
1349 finish_task_switch(prev);
1350
1351 if (current->set_child_tid)
1352 put_user(current->pid, current->set_child_tid);
1353}
1354
1355/*
1356 * context_switch - switch to the new MM and the new
1357 * thread's register state.
1358 */
1359static inline
1360task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1361{
1362 struct mm_struct *mm = next->mm;
1363 struct mm_struct *oldmm = prev->active_mm;
1364
1365 if (unlikely(!mm)) {
1366 next->active_mm = oldmm;
1367 atomic_inc(&oldmm->mm_count);
1368 enter_lazy_tlb(oldmm, next);
1369 } else
1370 switch_mm(oldmm, mm, next);
1371
1372 if (unlikely(!prev->mm)) {
1373 prev->active_mm = NULL;
1374 WARN_ON(rq->prev_mm);
1375 rq->prev_mm = oldmm;
1376 }
1377
1378 /* Here we just switch the register state and the stack. */
1379 switch_to(prev, next, prev);
1380
1381 return prev;
1382}
1383
1384/*
1385 * nr_running, nr_uninterruptible and nr_context_switches:
1386 *
1387 * externally visible scheduler statistics: current number of runnable
1388 * threads, current number of uninterruptible-sleeping threads, total
1389 * number of context switches performed since bootup.
1390 */
1391unsigned long nr_running(void)
1392{
1393 unsigned long i, sum = 0;
1394
1395 for_each_online_cpu(i)
1396 sum += cpu_rq(i)->nr_running;
1397
1398 return sum;
1399}
1400
1401unsigned long nr_uninterruptible(void)
1402{
1403 unsigned long i, sum = 0;
1404
1405 for_each_cpu(i)
1406 sum += cpu_rq(i)->nr_uninterruptible;
1407
1408 /*
1409 * Since we read the counters lockless, it might be slightly
1410 * inaccurate. Do not allow it to go below zero though:
1411 */
1412 if (unlikely((long)sum < 0))
1413 sum = 0;
1414
1415 return sum;
1416}
1417
1418unsigned long long nr_context_switches(void)
1419{
1420 unsigned long long i, sum = 0;
1421
1422 for_each_cpu(i)
1423 sum += cpu_rq(i)->nr_switches;
1424
1425 return sum;
1426}
1427
1428unsigned long nr_iowait(void)
1429{
1430 unsigned long i, sum = 0;
1431
1432 for_each_cpu(i)
1433 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1434
1435 return sum;
1436}
1437
1438#ifdef CONFIG_SMP
1439
1440/*
1441 * double_rq_lock - safely lock two runqueues
1442 *
1443 * Note this does not disable interrupts like task_rq_lock,
1444 * you need to do so manually before calling.
1445 */
1446static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1447 __acquires(rq1->lock)
1448 __acquires(rq2->lock)
1449{
1450 if (rq1 == rq2) {
1451 spin_lock(&rq1->lock);
1452 __acquire(rq2->lock); /* Fake it out ;) */
1453 } else {
1454 if (rq1 < rq2) {
1455 spin_lock(&rq1->lock);
1456 spin_lock(&rq2->lock);
1457 } else {
1458 spin_lock(&rq2->lock);
1459 spin_lock(&rq1->lock);
1460 }
1461 }
1462}
1463
1464/*
1465 * double_rq_unlock - safely unlock two runqueues
1466 *
1467 * Note this does not restore interrupts like task_rq_unlock,
1468 * you need to do so manually after calling.
1469 */
1470static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1471 __releases(rq1->lock)
1472 __releases(rq2->lock)
1473{
1474 spin_unlock(&rq1->lock);
1475 if (rq1 != rq2)
1476 spin_unlock(&rq2->lock);
1477 else
1478 __release(rq2->lock);
1479}
1480
1481/*
1482 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1483 */
1484static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1485 __releases(this_rq->lock)
1486 __acquires(busiest->lock)
1487 __acquires(this_rq->lock)
1488{
1489 if (unlikely(!spin_trylock(&busiest->lock))) {
1490 if (busiest < this_rq) {
1491 spin_unlock(&this_rq->lock);
1492 spin_lock(&busiest->lock);
1493 spin_lock(&this_rq->lock);
1494 } else
1495 spin_lock(&busiest->lock);
1496 }
1497}
1498
1499/*
1500 * find_idlest_cpu - find the least busy runqueue.
1501 */
1502static int find_idlest_cpu(struct task_struct *p, int this_cpu,
1503 struct sched_domain *sd)
1504{
1505 unsigned long load, min_load, this_load;
1506 int i, min_cpu;
1507 cpumask_t mask;
1508
1509 min_cpu = UINT_MAX;
1510 min_load = ULONG_MAX;
1511
1512 cpus_and(mask, sd->span, p->cpus_allowed);
1513
1514 for_each_cpu_mask(i, mask) {
7897986b 1515 load = target_load(i, sd->wake_idx);
1da177e4
LT
1516
1517 if (load < min_load) {
1518 min_cpu = i;
1519 min_load = load;
1520
1521 /* break out early on an idle CPU: */
1522 if (!min_load)
1523 break;
1524 }
1525 }
1526
1527 /* add +1 to account for the new task */
7897986b 1528 this_load = source_load(this_cpu, sd->wake_idx) + SCHED_LOAD_SCALE;
1da177e4
LT
1529
1530 /*
1531 * Would with the addition of the new task to the
1532 * current CPU there be an imbalance between this
1533 * CPU and the idlest CPU?
1534 *
1535 * Use half of the balancing threshold - new-context is
1536 * a good opportunity to balance.
1537 */
1538 if (min_load*(100 + (sd->imbalance_pct-100)/2) < this_load*100)
1539 return min_cpu;
1540
1541 return this_cpu;
1542}
1543
1544/*
1545 * If dest_cpu is allowed for this process, migrate the task to it.
1546 * This is accomplished by forcing the cpu_allowed mask to only
1547 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1548 * the cpu_allowed mask is restored.
1549 */
1550static void sched_migrate_task(task_t *p, int dest_cpu)
1551{
1552 migration_req_t req;
1553 runqueue_t *rq;
1554 unsigned long flags;
1555
1556 rq = task_rq_lock(p, &flags);
1557 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1558 || unlikely(cpu_is_offline(dest_cpu)))
1559 goto out;
1560
1561 /* force the process onto the specified CPU */
1562 if (migrate_task(p, dest_cpu, &req)) {
1563 /* Need to wait for migration thread (might exit: take ref). */
1564 struct task_struct *mt = rq->migration_thread;
1565 get_task_struct(mt);
1566 task_rq_unlock(rq, &flags);
1567 wake_up_process(mt);
1568 put_task_struct(mt);
1569 wait_for_completion(&req.done);
1570 return;
1571 }
1572out:
1573 task_rq_unlock(rq, &flags);
1574}
1575
1576/*
1577 * sched_exec(): find the highest-level, exec-balance-capable
1578 * domain and try to migrate the task to the least loaded CPU.
1579 *
1580 * execve() is a valuable balancing opportunity, because at this point
1581 * the task has the smallest effective memory and cache footprint.
1582 */
1583void sched_exec(void)
1584{
1585 struct sched_domain *tmp, *sd = NULL;
1586 int new_cpu, this_cpu = get_cpu();
1587
1588 /* Prefer the current CPU if there's only this task running */
1589 if (this_rq()->nr_running <= 1)
1590 goto out;
1591
1592 for_each_domain(this_cpu, tmp)
1593 if (tmp->flags & SD_BALANCE_EXEC)
1594 sd = tmp;
1595
1596 if (sd) {
1597 schedstat_inc(sd, sbe_attempts);
1598 new_cpu = find_idlest_cpu(current, this_cpu, sd);
1599 if (new_cpu != this_cpu) {
1600 schedstat_inc(sd, sbe_pushed);
1601 put_cpu();
1602 sched_migrate_task(current, new_cpu);
1603 return;
1604 }
1605 }
1606out:
1607 put_cpu();
1608}
1609
1610/*
1611 * pull_task - move a task from a remote runqueue to the local runqueue.
1612 * Both runqueues must be locked.
1613 */
1614static inline
1615void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1616 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1617{
1618 dequeue_task(p, src_array);
1619 src_rq->nr_running--;
1620 set_task_cpu(p, this_cpu);
1621 this_rq->nr_running++;
1622 enqueue_task(p, this_array);
1623 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1624 + this_rq->timestamp_last_tick;
1625 /*
1626 * Note that idle threads have a prio of MAX_PRIO, for this test
1627 * to be always true for them.
1628 */
1629 if (TASK_PREEMPTS_CURR(p, this_rq))
1630 resched_task(this_rq->curr);
1631}
1632
1633/*
1634 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1635 */
1636static inline
1637int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
81026794 1638 struct sched_domain *sd, enum idle_type idle, int *all_pinned)
1da177e4
LT
1639{
1640 /*
1641 * We do not migrate tasks that are:
1642 * 1) running (obviously), or
1643 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1644 * 3) are cache-hot on their current CPU.
1645 */
1da177e4
LT
1646 if (!cpu_isset(this_cpu, p->cpus_allowed))
1647 return 0;
81026794
NP
1648 *all_pinned = 0;
1649
1650 if (task_running(rq, p))
1651 return 0;
1da177e4
LT
1652
1653 /*
1654 * Aggressive migration if:
1655 * 1) the [whole] cpu is idle, or
1656 * 2) too many balance attempts have failed.
1657 */
1658
1659 if (cpu_and_siblings_are_idle(this_cpu) || \
1660 sd->nr_balance_failed > sd->cache_nice_tries)
1661 return 1;
1662
1663 if (task_hot(p, rq->timestamp_last_tick, sd))
81026794 1664 return 0;
1da177e4
LT
1665 return 1;
1666}
1667
1668/*
1669 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1670 * as part of a balancing operation within "domain". Returns the number of
1671 * tasks moved.
1672 *
1673 * Called with both runqueues locked.
1674 */
1675static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1676 unsigned long max_nr_move, struct sched_domain *sd,
81026794 1677 enum idle_type idle, int *all_pinned)
1da177e4
LT
1678{
1679 prio_array_t *array, *dst_array;
1680 struct list_head *head, *curr;
81026794 1681 int idx, pulled = 0, pinned = 0;
1da177e4
LT
1682 task_t *tmp;
1683
81026794 1684 if (max_nr_move == 0)
1da177e4
LT
1685 goto out;
1686
81026794
NP
1687 pinned = 1;
1688
1da177e4
LT
1689 /*
1690 * We first consider expired tasks. Those will likely not be
1691 * executed in the near future, and they are most likely to
1692 * be cache-cold, thus switching CPUs has the least effect
1693 * on them.
1694 */
1695 if (busiest->expired->nr_active) {
1696 array = busiest->expired;
1697 dst_array = this_rq->expired;
1698 } else {
1699 array = busiest->active;
1700 dst_array = this_rq->active;
1701 }
1702
1703new_array:
1704 /* Start searching at priority 0: */
1705 idx = 0;
1706skip_bitmap:
1707 if (!idx)
1708 idx = sched_find_first_bit(array->bitmap);
1709 else
1710 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1711 if (idx >= MAX_PRIO) {
1712 if (array == busiest->expired && busiest->active->nr_active) {
1713 array = busiest->active;
1714 dst_array = this_rq->active;
1715 goto new_array;
1716 }
1717 goto out;
1718 }
1719
1720 head = array->queue + idx;
1721 curr = head->prev;
1722skip_queue:
1723 tmp = list_entry(curr, task_t, run_list);
1724
1725 curr = curr->prev;
1726
81026794 1727 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1da177e4
LT
1728 if (curr != head)
1729 goto skip_queue;
1730 idx++;
1731 goto skip_bitmap;
1732 }
1733
1734#ifdef CONFIG_SCHEDSTATS
1735 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1736 schedstat_inc(sd, lb_hot_gained[idle]);
1737#endif
1738
1739 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1740 pulled++;
1741
1742 /* We only want to steal up to the prescribed number of tasks. */
1743 if (pulled < max_nr_move) {
1744 if (curr != head)
1745 goto skip_queue;
1746 idx++;
1747 goto skip_bitmap;
1748 }
1749out:
1750 /*
1751 * Right now, this is the only place pull_task() is called,
1752 * so we can safely collect pull_task() stats here rather than
1753 * inside pull_task().
1754 */
1755 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
1756
1757 if (all_pinned)
1758 *all_pinned = pinned;
1da177e4
LT
1759 return pulled;
1760}
1761
1762/*
1763 * find_busiest_group finds and returns the busiest CPU group within the
1764 * domain. It calculates and returns the number of tasks which should be
1765 * moved to restore balance via the imbalance parameter.
1766 */
1767static struct sched_group *
1768find_busiest_group(struct sched_domain *sd, int this_cpu,
1769 unsigned long *imbalance, enum idle_type idle)
1770{
1771 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1772 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
7897986b 1773 int load_idx;
1da177e4
LT
1774
1775 max_load = this_load = total_load = total_pwr = 0;
7897986b
NP
1776 if (idle == NOT_IDLE)
1777 load_idx = sd->busy_idx;
1778 else if (idle == NEWLY_IDLE)
1779 load_idx = sd->newidle_idx;
1780 else
1781 load_idx = sd->idle_idx;
1da177e4
LT
1782
1783 do {
1784 unsigned long load;
1785 int local_group;
1786 int i;
1787
1788 local_group = cpu_isset(this_cpu, group->cpumask);
1789
1790 /* Tally up the load of all CPUs in the group */
1791 avg_load = 0;
1792
1793 for_each_cpu_mask(i, group->cpumask) {
1794 /* Bias balancing toward cpus of our domain */
1795 if (local_group)
7897986b 1796 load = target_load(i, load_idx);
1da177e4 1797 else
7897986b 1798 load = source_load(i, load_idx);
1da177e4
LT
1799
1800 avg_load += load;
1801 }
1802
1803 total_load += avg_load;
1804 total_pwr += group->cpu_power;
1805
1806 /* Adjust by relative CPU power of the group */
1807 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1808
1809 if (local_group) {
1810 this_load = avg_load;
1811 this = group;
1812 goto nextgroup;
1813 } else if (avg_load > max_load) {
1814 max_load = avg_load;
1815 busiest = group;
1816 }
1817nextgroup:
1818 group = group->next;
1819 } while (group != sd->groups);
1820
1821 if (!busiest || this_load >= max_load)
1822 goto out_balanced;
1823
1824 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1825
1826 if (this_load >= avg_load ||
1827 100*max_load <= sd->imbalance_pct*this_load)
1828 goto out_balanced;
1829
1830 /*
1831 * We're trying to get all the cpus to the average_load, so we don't
1832 * want to push ourselves above the average load, nor do we wish to
1833 * reduce the max loaded cpu below the average load, as either of these
1834 * actions would just result in more rebalancing later, and ping-pong
1835 * tasks around. Thus we look for the minimum possible imbalance.
1836 * Negative imbalances (*we* are more loaded than anyone else) will
1837 * be counted as no imbalance for these purposes -- we can't fix that
1838 * by pulling tasks to us. Be careful of negative numbers as they'll
1839 * appear as very large values with unsigned longs.
1840 */
1841 /* How much load to actually move to equalise the imbalance */
1842 *imbalance = min((max_load - avg_load) * busiest->cpu_power,
1843 (avg_load - this_load) * this->cpu_power)
1844 / SCHED_LOAD_SCALE;
1845
1846 if (*imbalance < SCHED_LOAD_SCALE) {
1847 unsigned long pwr_now = 0, pwr_move = 0;
1848 unsigned long tmp;
1849
1850 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
1851 *imbalance = 1;
1852 return busiest;
1853 }
1854
1855 /*
1856 * OK, we don't have enough imbalance to justify moving tasks,
1857 * however we may be able to increase total CPU power used by
1858 * moving them.
1859 */
1860
1861 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
1862 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
1863 pwr_now /= SCHED_LOAD_SCALE;
1864
1865 /* Amount of load we'd subtract */
1866 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
1867 if (max_load > tmp)
1868 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
1869 max_load - tmp);
1870
1871 /* Amount of load we'd add */
1872 if (max_load*busiest->cpu_power <
1873 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
1874 tmp = max_load*busiest->cpu_power/this->cpu_power;
1875 else
1876 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
1877 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
1878 pwr_move /= SCHED_LOAD_SCALE;
1879
1880 /* Move if we gain throughput */
1881 if (pwr_move <= pwr_now)
1882 goto out_balanced;
1883
1884 *imbalance = 1;
1885 return busiest;
1886 }
1887
1888 /* Get rid of the scaling factor, rounding down as we divide */
1889 *imbalance = *imbalance / SCHED_LOAD_SCALE;
1da177e4
LT
1890 return busiest;
1891
1892out_balanced:
1da177e4
LT
1893
1894 *imbalance = 0;
1895 return NULL;
1896}
1897
1898/*
1899 * find_busiest_queue - find the busiest runqueue among the cpus in group.
1900 */
1901static runqueue_t *find_busiest_queue(struct sched_group *group)
1902{
1903 unsigned long load, max_load = 0;
1904 runqueue_t *busiest = NULL;
1905 int i;
1906
1907 for_each_cpu_mask(i, group->cpumask) {
7897986b 1908 load = source_load(i, 0);
1da177e4
LT
1909
1910 if (load > max_load) {
1911 max_load = load;
1912 busiest = cpu_rq(i);
1913 }
1914 }
1915
1916 return busiest;
1917}
1918
1919/*
1920 * Check this_cpu to ensure it is balanced within domain. Attempt to move
1921 * tasks if there is an imbalance.
1922 *
1923 * Called with this_rq unlocked.
1924 */
1925static int load_balance(int this_cpu, runqueue_t *this_rq,
1926 struct sched_domain *sd, enum idle_type idle)
1927{
1928 struct sched_group *group;
1929 runqueue_t *busiest;
1930 unsigned long imbalance;
81026794
NP
1931 int nr_moved, all_pinned;
1932 int active_balance = 0;
1da177e4
LT
1933
1934 spin_lock(&this_rq->lock);
1935 schedstat_inc(sd, lb_cnt[idle]);
1936
1937 group = find_busiest_group(sd, this_cpu, &imbalance, idle);
1938 if (!group) {
1939 schedstat_inc(sd, lb_nobusyg[idle]);
1940 goto out_balanced;
1941 }
1942
1943 busiest = find_busiest_queue(group);
1944 if (!busiest) {
1945 schedstat_inc(sd, lb_nobusyq[idle]);
1946 goto out_balanced;
1947 }
1948
db935dbd 1949 BUG_ON(busiest == this_rq);
1da177e4
LT
1950
1951 schedstat_add(sd, lb_imbalance[idle], imbalance);
1952
1953 nr_moved = 0;
1954 if (busiest->nr_running > 1) {
1955 /*
1956 * Attempt to move tasks. If find_busiest_group has found
1957 * an imbalance but busiest->nr_running <= 1, the group is
1958 * still unbalanced. nr_moved simply stays zero, so it is
1959 * correctly treated as an imbalance.
1960 */
1961 double_lock_balance(this_rq, busiest);
1962 nr_moved = move_tasks(this_rq, this_cpu, busiest,
81026794
NP
1963 imbalance, sd, idle,
1964 &all_pinned);
1da177e4 1965 spin_unlock(&busiest->lock);
81026794
NP
1966
1967 /* All tasks on this runqueue were pinned by CPU affinity */
1968 if (unlikely(all_pinned))
1969 goto out_balanced;
1da177e4 1970 }
81026794 1971
1da177e4
LT
1972 spin_unlock(&this_rq->lock);
1973
1974 if (!nr_moved) {
1975 schedstat_inc(sd, lb_failed[idle]);
1976 sd->nr_balance_failed++;
1977
1978 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4
LT
1979
1980 spin_lock(&busiest->lock);
1981 if (!busiest->active_balance) {
1982 busiest->active_balance = 1;
1983 busiest->push_cpu = this_cpu;
81026794 1984 active_balance = 1;
1da177e4
LT
1985 }
1986 spin_unlock(&busiest->lock);
81026794 1987 if (active_balance)
1da177e4
LT
1988 wake_up_process(busiest->migration_thread);
1989
1990 /*
1991 * We've kicked active balancing, reset the failure
1992 * counter.
1993 */
39507451 1994 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 1995 }
81026794 1996 } else
1da177e4
LT
1997 sd->nr_balance_failed = 0;
1998
81026794 1999 if (likely(!active_balance)) {
1da177e4
LT
2000 /* We were unbalanced, so reset the balancing interval */
2001 sd->balance_interval = sd->min_interval;
81026794
NP
2002 } else {
2003 /*
2004 * If we've begun active balancing, start to back off. This
2005 * case may not be covered by the all_pinned logic if there
2006 * is only 1 task on the busy runqueue (because we don't call
2007 * move_tasks).
2008 */
2009 if (sd->balance_interval < sd->max_interval)
2010 sd->balance_interval *= 2;
1da177e4
LT
2011 }
2012
2013 return nr_moved;
2014
2015out_balanced:
2016 spin_unlock(&this_rq->lock);
2017
2018 schedstat_inc(sd, lb_balanced[idle]);
2019
16cfb1c0 2020 sd->nr_balance_failed = 0;
1da177e4
LT
2021 /* tune up the balancing interval */
2022 if (sd->balance_interval < sd->max_interval)
2023 sd->balance_interval *= 2;
2024
2025 return 0;
2026}
2027
2028/*
2029 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2030 * tasks if there is an imbalance.
2031 *
2032 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2033 * this_rq is locked.
2034 */
2035static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2036 struct sched_domain *sd)
2037{
2038 struct sched_group *group;
2039 runqueue_t *busiest = NULL;
2040 unsigned long imbalance;
2041 int nr_moved = 0;
2042
2043 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2044 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
2045 if (!group) {
1da177e4 2046 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
16cfb1c0 2047 goto out_balanced;
1da177e4
LT
2048 }
2049
2050 busiest = find_busiest_queue(group);
db935dbd 2051 if (!busiest) {
1da177e4 2052 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
16cfb1c0 2053 goto out_balanced;
1da177e4
LT
2054 }
2055
db935dbd
NP
2056 BUG_ON(busiest == this_rq);
2057
1da177e4
LT
2058 /* Attempt to move tasks */
2059 double_lock_balance(this_rq, busiest);
2060
2061 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2062 nr_moved = move_tasks(this_rq, this_cpu, busiest,
81026794 2063 imbalance, sd, NEWLY_IDLE, NULL);
1da177e4
LT
2064 if (!nr_moved)
2065 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
16cfb1c0
NP
2066 else
2067 sd->nr_balance_failed = 0;
1da177e4
LT
2068
2069 spin_unlock(&busiest->lock);
1da177e4 2070 return nr_moved;
16cfb1c0
NP
2071
2072out_balanced:
2073 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2074 sd->nr_balance_failed = 0;
2075 return 0;
1da177e4
LT
2076}
2077
2078/*
2079 * idle_balance is called by schedule() if this_cpu is about to become
2080 * idle. Attempts to pull tasks from other CPUs.
2081 */
2082static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2083{
2084 struct sched_domain *sd;
2085
2086 for_each_domain(this_cpu, sd) {
2087 if (sd->flags & SD_BALANCE_NEWIDLE) {
2088 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2089 /* We've pulled tasks over so stop searching */
2090 break;
2091 }
2092 }
2093 }
2094}
2095
2096/*
2097 * active_load_balance is run by migration threads. It pushes running tasks
2098 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2099 * running on each physical CPU where possible, and avoids physical /
2100 * logical imbalances.
2101 *
2102 * Called with busiest_rq locked.
2103 */
2104static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2105{
2106 struct sched_domain *sd;
1da177e4 2107 runqueue_t *target_rq;
39507451
NP
2108 int target_cpu = busiest_rq->push_cpu;
2109
2110 if (busiest_rq->nr_running <= 1)
2111 /* no task to move */
2112 return;
2113
2114 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2115
2116 /*
39507451
NP
2117 * This condition is "impossible", if it occurs
2118 * we need to fix it. Originally reported by
2119 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2120 */
39507451 2121 BUG_ON(busiest_rq == target_rq);
1da177e4 2122
39507451
NP
2123 /* move a task from busiest_rq to target_rq */
2124 double_lock_balance(busiest_rq, target_rq);
2125
2126 /* Search for an sd spanning us and the target CPU. */
2127 for_each_domain(target_cpu, sd)
2128 if ((sd->flags & SD_LOAD_BALANCE) &&
2129 cpu_isset(busiest_cpu, sd->span))
2130 break;
2131
2132 if (unlikely(sd == NULL))
2133 goto out;
2134
2135 schedstat_inc(sd, alb_cnt);
2136
2137 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2138 schedstat_inc(sd, alb_pushed);
2139 else
2140 schedstat_inc(sd, alb_failed);
2141out:
2142 spin_unlock(&target_rq->lock);
1da177e4
LT
2143}
2144
2145/*
2146 * rebalance_tick will get called every timer tick, on every CPU.
2147 *
2148 * It checks each scheduling domain to see if it is due to be balanced,
2149 * and initiates a balancing operation if so.
2150 *
2151 * Balancing parameters are set up in arch_init_sched_domains.
2152 */
2153
2154/* Don't have all balancing operations going off at once */
2155#define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2156
2157static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2158 enum idle_type idle)
2159{
2160 unsigned long old_load, this_load;
2161 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2162 struct sched_domain *sd;
7897986b 2163 int i;
1da177e4 2164
1da177e4 2165 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
7897986b
NP
2166 /* Update our load */
2167 for (i = 0; i < 3; i++) {
2168 unsigned long new_load = this_load;
2169 int scale = 1 << i;
2170 old_load = this_rq->cpu_load[i];
2171 /*
2172 * Round up the averaging division if load is increasing. This
2173 * prevents us from getting stuck on 9 if the load is 10, for
2174 * example.
2175 */
2176 if (new_load > old_load)
2177 new_load += scale-1;
2178 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2179 }
1da177e4
LT
2180
2181 for_each_domain(this_cpu, sd) {
2182 unsigned long interval;
2183
2184 if (!(sd->flags & SD_LOAD_BALANCE))
2185 continue;
2186
2187 interval = sd->balance_interval;
2188 if (idle != SCHED_IDLE)
2189 interval *= sd->busy_factor;
2190
2191 /* scale ms to jiffies */
2192 interval = msecs_to_jiffies(interval);
2193 if (unlikely(!interval))
2194 interval = 1;
2195
2196 if (j - sd->last_balance >= interval) {
2197 if (load_balance(this_cpu, this_rq, sd, idle)) {
2198 /* We've pulled tasks over so no longer idle */
2199 idle = NOT_IDLE;
2200 }
2201 sd->last_balance += interval;
2202 }
2203 }
2204}
2205#else
2206/*
2207 * on UP we do not need to balance between CPUs:
2208 */
2209static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2210{
2211}
2212static inline void idle_balance(int cpu, runqueue_t *rq)
2213{
2214}
2215#endif
2216
2217static inline int wake_priority_sleeper(runqueue_t *rq)
2218{
2219 int ret = 0;
2220#ifdef CONFIG_SCHED_SMT
2221 spin_lock(&rq->lock);
2222 /*
2223 * If an SMT sibling task has been put to sleep for priority
2224 * reasons reschedule the idle task to see if it can now run.
2225 */
2226 if (rq->nr_running) {
2227 resched_task(rq->idle);
2228 ret = 1;
2229 }
2230 spin_unlock(&rq->lock);
2231#endif
2232 return ret;
2233}
2234
2235DEFINE_PER_CPU(struct kernel_stat, kstat);
2236
2237EXPORT_PER_CPU_SYMBOL(kstat);
2238
2239/*
2240 * This is called on clock ticks and on context switches.
2241 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2242 */
2243static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2244 unsigned long long now)
2245{
2246 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2247 p->sched_time += now - last;
2248}
2249
2250/*
2251 * Return current->sched_time plus any more ns on the sched_clock
2252 * that have not yet been banked.
2253 */
2254unsigned long long current_sched_time(const task_t *tsk)
2255{
2256 unsigned long long ns;
2257 unsigned long flags;
2258 local_irq_save(flags);
2259 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2260 ns = tsk->sched_time + (sched_clock() - ns);
2261 local_irq_restore(flags);
2262 return ns;
2263}
2264
2265/*
2266 * We place interactive tasks back into the active array, if possible.
2267 *
2268 * To guarantee that this does not starve expired tasks we ignore the
2269 * interactivity of a task if the first expired task had to wait more
2270 * than a 'reasonable' amount of time. This deadline timeout is
2271 * load-dependent, as the frequency of array switched decreases with
2272 * increasing number of running tasks. We also ignore the interactivity
2273 * if a better static_prio task has expired:
2274 */
2275#define EXPIRED_STARVING(rq) \
2276 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2277 (jiffies - (rq)->expired_timestamp >= \
2278 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2279 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2280
2281/*
2282 * Account user cpu time to a process.
2283 * @p: the process that the cpu time gets accounted to
2284 * @hardirq_offset: the offset to subtract from hardirq_count()
2285 * @cputime: the cpu time spent in user space since the last update
2286 */
2287void account_user_time(struct task_struct *p, cputime_t cputime)
2288{
2289 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2290 cputime64_t tmp;
2291
2292 p->utime = cputime_add(p->utime, cputime);
2293
2294 /* Add user time to cpustat. */
2295 tmp = cputime_to_cputime64(cputime);
2296 if (TASK_NICE(p) > 0)
2297 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2298 else
2299 cpustat->user = cputime64_add(cpustat->user, tmp);
2300}
2301
2302/*
2303 * Account system cpu time to a process.
2304 * @p: the process that the cpu time gets accounted to
2305 * @hardirq_offset: the offset to subtract from hardirq_count()
2306 * @cputime: the cpu time spent in kernel space since the last update
2307 */
2308void account_system_time(struct task_struct *p, int hardirq_offset,
2309 cputime_t cputime)
2310{
2311 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2312 runqueue_t *rq = this_rq();
2313 cputime64_t tmp;
2314
2315 p->stime = cputime_add(p->stime, cputime);
2316
2317 /* Add system time to cpustat. */
2318 tmp = cputime_to_cputime64(cputime);
2319 if (hardirq_count() - hardirq_offset)
2320 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2321 else if (softirq_count())
2322 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2323 else if (p != rq->idle)
2324 cpustat->system = cputime64_add(cpustat->system, tmp);
2325 else if (atomic_read(&rq->nr_iowait) > 0)
2326 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2327 else
2328 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2329 /* Account for system time used */
2330 acct_update_integrals(p);
2331 /* Update rss highwater mark */
2332 update_mem_hiwater(p);
2333}
2334
2335/*
2336 * Account for involuntary wait time.
2337 * @p: the process from which the cpu time has been stolen
2338 * @steal: the cpu time spent in involuntary wait
2339 */
2340void account_steal_time(struct task_struct *p, cputime_t steal)
2341{
2342 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2343 cputime64_t tmp = cputime_to_cputime64(steal);
2344 runqueue_t *rq = this_rq();
2345
2346 if (p == rq->idle) {
2347 p->stime = cputime_add(p->stime, steal);
2348 if (atomic_read(&rq->nr_iowait) > 0)
2349 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2350 else
2351 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2352 } else
2353 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2354}
2355
2356/*
2357 * This function gets called by the timer code, with HZ frequency.
2358 * We call it with interrupts disabled.
2359 *
2360 * It also gets called by the fork code, when changing the parent's
2361 * timeslices.
2362 */
2363void scheduler_tick(void)
2364{
2365 int cpu = smp_processor_id();
2366 runqueue_t *rq = this_rq();
2367 task_t *p = current;
2368 unsigned long long now = sched_clock();
2369
2370 update_cpu_clock(p, rq, now);
2371
2372 rq->timestamp_last_tick = now;
2373
2374 if (p == rq->idle) {
2375 if (wake_priority_sleeper(rq))
2376 goto out;
2377 rebalance_tick(cpu, rq, SCHED_IDLE);
2378 return;
2379 }
2380
2381 /* Task might have expired already, but not scheduled off yet */
2382 if (p->array != rq->active) {
2383 set_tsk_need_resched(p);
2384 goto out;
2385 }
2386 spin_lock(&rq->lock);
2387 /*
2388 * The task was running during this tick - update the
2389 * time slice counter. Note: we do not update a thread's
2390 * priority until it either goes to sleep or uses up its
2391 * timeslice. This makes it possible for interactive tasks
2392 * to use up their timeslices at their highest priority levels.
2393 */
2394 if (rt_task(p)) {
2395 /*
2396 * RR tasks need a special form of timeslice management.
2397 * FIFO tasks have no timeslices.
2398 */
2399 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2400 p->time_slice = task_timeslice(p);
2401 p->first_time_slice = 0;
2402 set_tsk_need_resched(p);
2403
2404 /* put it at the end of the queue: */
2405 requeue_task(p, rq->active);
2406 }
2407 goto out_unlock;
2408 }
2409 if (!--p->time_slice) {
2410 dequeue_task(p, rq->active);
2411 set_tsk_need_resched(p);
2412 p->prio = effective_prio(p);
2413 p->time_slice = task_timeslice(p);
2414 p->first_time_slice = 0;
2415
2416 if (!rq->expired_timestamp)
2417 rq->expired_timestamp = jiffies;
2418 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2419 enqueue_task(p, rq->expired);
2420 if (p->static_prio < rq->best_expired_prio)
2421 rq->best_expired_prio = p->static_prio;
2422 } else
2423 enqueue_task(p, rq->active);
2424 } else {
2425 /*
2426 * Prevent a too long timeslice allowing a task to monopolize
2427 * the CPU. We do this by splitting up the timeslice into
2428 * smaller pieces.
2429 *
2430 * Note: this does not mean the task's timeslices expire or
2431 * get lost in any way, they just might be preempted by
2432 * another task of equal priority. (one with higher
2433 * priority would have preempted this task already.) We
2434 * requeue this task to the end of the list on this priority
2435 * level, which is in essence a round-robin of tasks with
2436 * equal priority.
2437 *
2438 * This only applies to tasks in the interactive
2439 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2440 */
2441 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2442 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2443 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2444 (p->array == rq->active)) {
2445
2446 requeue_task(p, rq->active);
2447 set_tsk_need_resched(p);
2448 }
2449 }
2450out_unlock:
2451 spin_unlock(&rq->lock);
2452out:
2453 rebalance_tick(cpu, rq, NOT_IDLE);
2454}
2455
2456#ifdef CONFIG_SCHED_SMT
2457static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2458{
2459 struct sched_domain *sd = this_rq->sd;
2460 cpumask_t sibling_map;
2461 int i;
2462
2463 if (!(sd->flags & SD_SHARE_CPUPOWER))
2464 return;
2465
2466 /*
2467 * Unlock the current runqueue because we have to lock in
2468 * CPU order to avoid deadlocks. Caller knows that we might
2469 * unlock. We keep IRQs disabled.
2470 */
2471 spin_unlock(&this_rq->lock);
2472
2473 sibling_map = sd->span;
2474
2475 for_each_cpu_mask(i, sibling_map)
2476 spin_lock(&cpu_rq(i)->lock);
2477 /*
2478 * We clear this CPU from the mask. This both simplifies the
2479 * inner loop and keps this_rq locked when we exit:
2480 */
2481 cpu_clear(this_cpu, sibling_map);
2482
2483 for_each_cpu_mask(i, sibling_map) {
2484 runqueue_t *smt_rq = cpu_rq(i);
2485
2486 /*
2487 * If an SMT sibling task is sleeping due to priority
2488 * reasons wake it up now.
2489 */
2490 if (smt_rq->curr == smt_rq->idle && smt_rq->nr_running)
2491 resched_task(smt_rq->idle);
2492 }
2493
2494 for_each_cpu_mask(i, sibling_map)
2495 spin_unlock(&cpu_rq(i)->lock);
2496 /*
2497 * We exit with this_cpu's rq still held and IRQs
2498 * still disabled:
2499 */
2500}
2501
2502static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2503{
2504 struct sched_domain *sd = this_rq->sd;
2505 cpumask_t sibling_map;
2506 prio_array_t *array;
2507 int ret = 0, i;
2508 task_t *p;
2509
2510 if (!(sd->flags & SD_SHARE_CPUPOWER))
2511 return 0;
2512
2513 /*
2514 * The same locking rules and details apply as for
2515 * wake_sleeping_dependent():
2516 */
2517 spin_unlock(&this_rq->lock);
2518 sibling_map = sd->span;
2519 for_each_cpu_mask(i, sibling_map)
2520 spin_lock(&cpu_rq(i)->lock);
2521 cpu_clear(this_cpu, sibling_map);
2522
2523 /*
2524 * Establish next task to be run - it might have gone away because
2525 * we released the runqueue lock above:
2526 */
2527 if (!this_rq->nr_running)
2528 goto out_unlock;
2529 array = this_rq->active;
2530 if (!array->nr_active)
2531 array = this_rq->expired;
2532 BUG_ON(!array->nr_active);
2533
2534 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2535 task_t, run_list);
2536
2537 for_each_cpu_mask(i, sibling_map) {
2538 runqueue_t *smt_rq = cpu_rq(i);
2539 task_t *smt_curr = smt_rq->curr;
2540
2541 /*
2542 * If a user task with lower static priority than the
2543 * running task on the SMT sibling is trying to schedule,
2544 * delay it till there is proportionately less timeslice
2545 * left of the sibling task to prevent a lower priority
2546 * task from using an unfair proportion of the
2547 * physical cpu's resources. -ck
2548 */
2549 if (((smt_curr->time_slice * (100 - sd->per_cpu_gain) / 100) >
2550 task_timeslice(p) || rt_task(smt_curr)) &&
2551 p->mm && smt_curr->mm && !rt_task(p))
2552 ret = 1;
2553
2554 /*
2555 * Reschedule a lower priority task on the SMT sibling,
2556 * or wake it up if it has been put to sleep for priority
2557 * reasons.
2558 */
2559 if ((((p->time_slice * (100 - sd->per_cpu_gain) / 100) >
2560 task_timeslice(smt_curr) || rt_task(p)) &&
2561 smt_curr->mm && p->mm && !rt_task(smt_curr)) ||
2562 (smt_curr == smt_rq->idle && smt_rq->nr_running))
2563 resched_task(smt_curr);
2564 }
2565out_unlock:
2566 for_each_cpu_mask(i, sibling_map)
2567 spin_unlock(&cpu_rq(i)->lock);
2568 return ret;
2569}
2570#else
2571static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2572{
2573}
2574
2575static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2576{
2577 return 0;
2578}
2579#endif
2580
2581#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2582
2583void fastcall add_preempt_count(int val)
2584{
2585 /*
2586 * Underflow?
2587 */
be5b4fbd 2588 BUG_ON((preempt_count() < 0));
1da177e4
LT
2589 preempt_count() += val;
2590 /*
2591 * Spinlock count overflowing soon?
2592 */
2593 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2594}
2595EXPORT_SYMBOL(add_preempt_count);
2596
2597void fastcall sub_preempt_count(int val)
2598{
2599 /*
2600 * Underflow?
2601 */
2602 BUG_ON(val > preempt_count());
2603 /*
2604 * Is the spinlock portion underflowing?
2605 */
2606 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2607 preempt_count() -= val;
2608}
2609EXPORT_SYMBOL(sub_preempt_count);
2610
2611#endif
2612
2613/*
2614 * schedule() is the main scheduler function.
2615 */
2616asmlinkage void __sched schedule(void)
2617{
2618 long *switch_count;
2619 task_t *prev, *next;
2620 runqueue_t *rq;
2621 prio_array_t *array;
2622 struct list_head *queue;
2623 unsigned long long now;
2624 unsigned long run_time;
2625 int cpu, idx;
2626
2627 /*
2628 * Test if we are atomic. Since do_exit() needs to call into
2629 * schedule() atomically, we ignore that path for now.
2630 * Otherwise, whine if we are scheduling when we should not be.
2631 */
2632 if (likely(!current->exit_state)) {
2633 if (unlikely(in_atomic())) {
2634 printk(KERN_ERR "scheduling while atomic: "
2635 "%s/0x%08x/%d\n",
2636 current->comm, preempt_count(), current->pid);
2637 dump_stack();
2638 }
2639 }
2640 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2641
2642need_resched:
2643 preempt_disable();
2644 prev = current;
2645 release_kernel_lock(prev);
2646need_resched_nonpreemptible:
2647 rq = this_rq();
2648
2649 /*
2650 * The idle thread is not allowed to schedule!
2651 * Remove this check after it has been exercised a bit.
2652 */
2653 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2654 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2655 dump_stack();
2656 }
2657
2658 schedstat_inc(rq, sched_cnt);
2659 now = sched_clock();
238628ed 2660 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
1da177e4 2661 run_time = now - prev->timestamp;
238628ed 2662 if (unlikely((long long)(now - prev->timestamp) < 0))
1da177e4
LT
2663 run_time = 0;
2664 } else
2665 run_time = NS_MAX_SLEEP_AVG;
2666
2667 /*
2668 * Tasks charged proportionately less run_time at high sleep_avg to
2669 * delay them losing their interactive status
2670 */
2671 run_time /= (CURRENT_BONUS(prev) ? : 1);
2672
2673 spin_lock_irq(&rq->lock);
2674
2675 if (unlikely(prev->flags & PF_DEAD))
2676 prev->state = EXIT_DEAD;
2677
2678 switch_count = &prev->nivcsw;
2679 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2680 switch_count = &prev->nvcsw;
2681 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2682 unlikely(signal_pending(prev))))
2683 prev->state = TASK_RUNNING;
2684 else {
2685 if (prev->state == TASK_UNINTERRUPTIBLE)
2686 rq->nr_uninterruptible++;
2687 deactivate_task(prev, rq);
2688 }
2689 }
2690
2691 cpu = smp_processor_id();
2692 if (unlikely(!rq->nr_running)) {
2693go_idle:
2694 idle_balance(cpu, rq);
2695 if (!rq->nr_running) {
2696 next = rq->idle;
2697 rq->expired_timestamp = 0;
2698 wake_sleeping_dependent(cpu, rq);
2699 /*
2700 * wake_sleeping_dependent() might have released
2701 * the runqueue, so break out if we got new
2702 * tasks meanwhile:
2703 */
2704 if (!rq->nr_running)
2705 goto switch_tasks;
2706 }
2707 } else {
2708 if (dependent_sleeper(cpu, rq)) {
2709 next = rq->idle;
2710 goto switch_tasks;
2711 }
2712 /*
2713 * dependent_sleeper() releases and reacquires the runqueue
2714 * lock, hence go into the idle loop if the rq went
2715 * empty meanwhile:
2716 */
2717 if (unlikely(!rq->nr_running))
2718 goto go_idle;
2719 }
2720
2721 array = rq->active;
2722 if (unlikely(!array->nr_active)) {
2723 /*
2724 * Switch the active and expired arrays.
2725 */
2726 schedstat_inc(rq, sched_switch);
2727 rq->active = rq->expired;
2728 rq->expired = array;
2729 array = rq->active;
2730 rq->expired_timestamp = 0;
2731 rq->best_expired_prio = MAX_PRIO;
2732 }
2733
2734 idx = sched_find_first_bit(array->bitmap);
2735 queue = array->queue + idx;
2736 next = list_entry(queue->next, task_t, run_list);
2737
2738 if (!rt_task(next) && next->activated > 0) {
2739 unsigned long long delta = now - next->timestamp;
238628ed 2740 if (unlikely((long long)(now - next->timestamp) < 0))
1da177e4
LT
2741 delta = 0;
2742
2743 if (next->activated == 1)
2744 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2745
2746 array = next->array;
2747 dequeue_task(next, array);
2748 recalc_task_prio(next, next->timestamp + delta);
2749 enqueue_task(next, array);
2750 }
2751 next->activated = 0;
2752switch_tasks:
2753 if (next == rq->idle)
2754 schedstat_inc(rq, sched_goidle);
2755 prefetch(next);
2756 clear_tsk_need_resched(prev);
2757 rcu_qsctr_inc(task_cpu(prev));
2758
2759 update_cpu_clock(prev, rq, now);
2760
2761 prev->sleep_avg -= run_time;
2762 if ((long)prev->sleep_avg <= 0)
2763 prev->sleep_avg = 0;
2764 prev->timestamp = prev->last_ran = now;
2765
2766 sched_info_switch(prev, next);
2767 if (likely(prev != next)) {
2768 next->timestamp = now;
2769 rq->nr_switches++;
2770 rq->curr = next;
2771 ++*switch_count;
2772
2773 prepare_arch_switch(rq, next);
2774 prev = context_switch(rq, prev, next);
2775 barrier();
2776
2777 finish_task_switch(prev);
2778 } else
2779 spin_unlock_irq(&rq->lock);
2780
2781 prev = current;
2782 if (unlikely(reacquire_kernel_lock(prev) < 0))
2783 goto need_resched_nonpreemptible;
2784 preempt_enable_no_resched();
2785 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2786 goto need_resched;
2787}
2788
2789EXPORT_SYMBOL(schedule);
2790
2791#ifdef CONFIG_PREEMPT
2792/*
2793 * this is is the entry point to schedule() from in-kernel preemption
2794 * off of preempt_enable. Kernel preemptions off return from interrupt
2795 * occur there and call schedule directly.
2796 */
2797asmlinkage void __sched preempt_schedule(void)
2798{
2799 struct thread_info *ti = current_thread_info();
2800#ifdef CONFIG_PREEMPT_BKL
2801 struct task_struct *task = current;
2802 int saved_lock_depth;
2803#endif
2804 /*
2805 * If there is a non-zero preempt_count or interrupts are disabled,
2806 * we do not want to preempt the current task. Just return..
2807 */
2808 if (unlikely(ti->preempt_count || irqs_disabled()))
2809 return;
2810
2811need_resched:
2812 add_preempt_count(PREEMPT_ACTIVE);
2813 /*
2814 * We keep the big kernel semaphore locked, but we
2815 * clear ->lock_depth so that schedule() doesnt
2816 * auto-release the semaphore:
2817 */
2818#ifdef CONFIG_PREEMPT_BKL
2819 saved_lock_depth = task->lock_depth;
2820 task->lock_depth = -1;
2821#endif
2822 schedule();
2823#ifdef CONFIG_PREEMPT_BKL
2824 task->lock_depth = saved_lock_depth;
2825#endif
2826 sub_preempt_count(PREEMPT_ACTIVE);
2827
2828 /* we could miss a preemption opportunity between schedule and now */
2829 barrier();
2830 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2831 goto need_resched;
2832}
2833
2834EXPORT_SYMBOL(preempt_schedule);
2835
2836/*
2837 * this is is the entry point to schedule() from kernel preemption
2838 * off of irq context.
2839 * Note, that this is called and return with irqs disabled. This will
2840 * protect us against recursive calling from irq.
2841 */
2842asmlinkage void __sched preempt_schedule_irq(void)
2843{
2844 struct thread_info *ti = current_thread_info();
2845#ifdef CONFIG_PREEMPT_BKL
2846 struct task_struct *task = current;
2847 int saved_lock_depth;
2848#endif
2849 /* Catch callers which need to be fixed*/
2850 BUG_ON(ti->preempt_count || !irqs_disabled());
2851
2852need_resched:
2853 add_preempt_count(PREEMPT_ACTIVE);
2854 /*
2855 * We keep the big kernel semaphore locked, but we
2856 * clear ->lock_depth so that schedule() doesnt
2857 * auto-release the semaphore:
2858 */
2859#ifdef CONFIG_PREEMPT_BKL
2860 saved_lock_depth = task->lock_depth;
2861 task->lock_depth = -1;
2862#endif
2863 local_irq_enable();
2864 schedule();
2865 local_irq_disable();
2866#ifdef CONFIG_PREEMPT_BKL
2867 task->lock_depth = saved_lock_depth;
2868#endif
2869 sub_preempt_count(PREEMPT_ACTIVE);
2870
2871 /* we could miss a preemption opportunity between schedule and now */
2872 barrier();
2873 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2874 goto need_resched;
2875}
2876
2877#endif /* CONFIG_PREEMPT */
2878
2879int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, void *key)
2880{
c43dc2fd 2881 task_t *p = curr->private;
1da177e4
LT
2882 return try_to_wake_up(p, mode, sync);
2883}
2884
2885EXPORT_SYMBOL(default_wake_function);
2886
2887/*
2888 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2889 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
2890 * number) then we wake all the non-exclusive tasks and one exclusive task.
2891 *
2892 * There are circumstances in which we can try to wake a task which has already
2893 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
2894 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2895 */
2896static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2897 int nr_exclusive, int sync, void *key)
2898{
2899 struct list_head *tmp, *next;
2900
2901 list_for_each_safe(tmp, next, &q->task_list) {
2902 wait_queue_t *curr;
2903 unsigned flags;
2904 curr = list_entry(tmp, wait_queue_t, task_list);
2905 flags = curr->flags;
2906 if (curr->func(curr, mode, sync, key) &&
2907 (flags & WQ_FLAG_EXCLUSIVE) &&
2908 !--nr_exclusive)
2909 break;
2910 }
2911}
2912
2913/**
2914 * __wake_up - wake up threads blocked on a waitqueue.
2915 * @q: the waitqueue
2916 * @mode: which threads
2917 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 2918 * @key: is directly passed to the wakeup function
1da177e4
LT
2919 */
2920void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
2921 int nr_exclusive, void *key)
2922{
2923 unsigned long flags;
2924
2925 spin_lock_irqsave(&q->lock, flags);
2926 __wake_up_common(q, mode, nr_exclusive, 0, key);
2927 spin_unlock_irqrestore(&q->lock, flags);
2928}
2929
2930EXPORT_SYMBOL(__wake_up);
2931
2932/*
2933 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2934 */
2935void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
2936{
2937 __wake_up_common(q, mode, 1, 0, NULL);
2938}
2939
2940/**
67be2dd1 2941 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
2942 * @q: the waitqueue
2943 * @mode: which threads
2944 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2945 *
2946 * The sync wakeup differs that the waker knows that it will schedule
2947 * away soon, so while the target thread will be woken up, it will not
2948 * be migrated to another CPU - ie. the two threads are 'synchronized'
2949 * with each other. This can prevent needless bouncing between CPUs.
2950 *
2951 * On UP it can prevent extra preemption.
2952 */
2953void fastcall __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2954{
2955 unsigned long flags;
2956 int sync = 1;
2957
2958 if (unlikely(!q))
2959 return;
2960
2961 if (unlikely(!nr_exclusive))
2962 sync = 0;
2963
2964 spin_lock_irqsave(&q->lock, flags);
2965 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
2966 spin_unlock_irqrestore(&q->lock, flags);
2967}
2968EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
2969
2970void fastcall complete(struct completion *x)
2971{
2972 unsigned long flags;
2973
2974 spin_lock_irqsave(&x->wait.lock, flags);
2975 x->done++;
2976 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2977 1, 0, NULL);
2978 spin_unlock_irqrestore(&x->wait.lock, flags);
2979}
2980EXPORT_SYMBOL(complete);
2981
2982void fastcall complete_all(struct completion *x)
2983{
2984 unsigned long flags;
2985
2986 spin_lock_irqsave(&x->wait.lock, flags);
2987 x->done += UINT_MAX/2;
2988 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2989 0, 0, NULL);
2990 spin_unlock_irqrestore(&x->wait.lock, flags);
2991}
2992EXPORT_SYMBOL(complete_all);
2993
2994void fastcall __sched wait_for_completion(struct completion *x)
2995{
2996 might_sleep();
2997 spin_lock_irq(&x->wait.lock);
2998 if (!x->done) {
2999 DECLARE_WAITQUEUE(wait, current);
3000
3001 wait.flags |= WQ_FLAG_EXCLUSIVE;
3002 __add_wait_queue_tail(&x->wait, &wait);
3003 do {
3004 __set_current_state(TASK_UNINTERRUPTIBLE);
3005 spin_unlock_irq(&x->wait.lock);
3006 schedule();
3007 spin_lock_irq(&x->wait.lock);
3008 } while (!x->done);
3009 __remove_wait_queue(&x->wait, &wait);
3010 }
3011 x->done--;
3012 spin_unlock_irq(&x->wait.lock);
3013}
3014EXPORT_SYMBOL(wait_for_completion);
3015
3016unsigned long fastcall __sched
3017wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3018{
3019 might_sleep();
3020
3021 spin_lock_irq(&x->wait.lock);
3022 if (!x->done) {
3023 DECLARE_WAITQUEUE(wait, current);
3024
3025 wait.flags |= WQ_FLAG_EXCLUSIVE;
3026 __add_wait_queue_tail(&x->wait, &wait);
3027 do {
3028 __set_current_state(TASK_UNINTERRUPTIBLE);
3029 spin_unlock_irq(&x->wait.lock);
3030 timeout = schedule_timeout(timeout);
3031 spin_lock_irq(&x->wait.lock);
3032 if (!timeout) {
3033 __remove_wait_queue(&x->wait, &wait);
3034 goto out;
3035 }
3036 } while (!x->done);
3037 __remove_wait_queue(&x->wait, &wait);
3038 }
3039 x->done--;
3040out:
3041 spin_unlock_irq(&x->wait.lock);
3042 return timeout;
3043}
3044EXPORT_SYMBOL(wait_for_completion_timeout);
3045
3046int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3047{
3048 int ret = 0;
3049
3050 might_sleep();
3051
3052 spin_lock_irq(&x->wait.lock);
3053 if (!x->done) {
3054 DECLARE_WAITQUEUE(wait, current);
3055
3056 wait.flags |= WQ_FLAG_EXCLUSIVE;
3057 __add_wait_queue_tail(&x->wait, &wait);
3058 do {
3059 if (signal_pending(current)) {
3060 ret = -ERESTARTSYS;
3061 __remove_wait_queue(&x->wait, &wait);
3062 goto out;
3063 }
3064 __set_current_state(TASK_INTERRUPTIBLE);
3065 spin_unlock_irq(&x->wait.lock);
3066 schedule();
3067 spin_lock_irq(&x->wait.lock);
3068 } while (!x->done);
3069 __remove_wait_queue(&x->wait, &wait);
3070 }
3071 x->done--;
3072out:
3073 spin_unlock_irq(&x->wait.lock);
3074
3075 return ret;
3076}
3077EXPORT_SYMBOL(wait_for_completion_interruptible);
3078
3079unsigned long fastcall __sched
3080wait_for_completion_interruptible_timeout(struct completion *x,
3081 unsigned long timeout)
3082{
3083 might_sleep();
3084
3085 spin_lock_irq(&x->wait.lock);
3086 if (!x->done) {
3087 DECLARE_WAITQUEUE(wait, current);
3088
3089 wait.flags |= WQ_FLAG_EXCLUSIVE;
3090 __add_wait_queue_tail(&x->wait, &wait);
3091 do {
3092 if (signal_pending(current)) {
3093 timeout = -ERESTARTSYS;
3094 __remove_wait_queue(&x->wait, &wait);
3095 goto out;
3096 }
3097 __set_current_state(TASK_INTERRUPTIBLE);
3098 spin_unlock_irq(&x->wait.lock);
3099 timeout = schedule_timeout(timeout);
3100 spin_lock_irq(&x->wait.lock);
3101 if (!timeout) {
3102 __remove_wait_queue(&x->wait, &wait);
3103 goto out;
3104 }
3105 } while (!x->done);
3106 __remove_wait_queue(&x->wait, &wait);
3107 }
3108 x->done--;
3109out:
3110 spin_unlock_irq(&x->wait.lock);
3111 return timeout;
3112}
3113EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3114
3115
3116#define SLEEP_ON_VAR \
3117 unsigned long flags; \
3118 wait_queue_t wait; \
3119 init_waitqueue_entry(&wait, current);
3120
3121#define SLEEP_ON_HEAD \
3122 spin_lock_irqsave(&q->lock,flags); \
3123 __add_wait_queue(q, &wait); \
3124 spin_unlock(&q->lock);
3125
3126#define SLEEP_ON_TAIL \
3127 spin_lock_irq(&q->lock); \
3128 __remove_wait_queue(q, &wait); \
3129 spin_unlock_irqrestore(&q->lock, flags);
3130
3131void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3132{
3133 SLEEP_ON_VAR
3134
3135 current->state = TASK_INTERRUPTIBLE;
3136
3137 SLEEP_ON_HEAD
3138 schedule();
3139 SLEEP_ON_TAIL
3140}
3141
3142EXPORT_SYMBOL(interruptible_sleep_on);
3143
3144long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3145{
3146 SLEEP_ON_VAR
3147
3148 current->state = TASK_INTERRUPTIBLE;
3149
3150 SLEEP_ON_HEAD
3151 timeout = schedule_timeout(timeout);
3152 SLEEP_ON_TAIL
3153
3154 return timeout;
3155}
3156
3157EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3158
3159void fastcall __sched sleep_on(wait_queue_head_t *q)
3160{
3161 SLEEP_ON_VAR
3162
3163 current->state = TASK_UNINTERRUPTIBLE;
3164
3165 SLEEP_ON_HEAD
3166 schedule();
3167 SLEEP_ON_TAIL
3168}
3169
3170EXPORT_SYMBOL(sleep_on);
3171
3172long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3173{
3174 SLEEP_ON_VAR
3175
3176 current->state = TASK_UNINTERRUPTIBLE;
3177
3178 SLEEP_ON_HEAD
3179 timeout = schedule_timeout(timeout);
3180 SLEEP_ON_TAIL
3181
3182 return timeout;
3183}
3184
3185EXPORT_SYMBOL(sleep_on_timeout);
3186
3187void set_user_nice(task_t *p, long nice)
3188{
3189 unsigned long flags;
3190 prio_array_t *array;
3191 runqueue_t *rq;
3192 int old_prio, new_prio, delta;
3193
3194 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3195 return;
3196 /*
3197 * We have to be careful, if called from sys_setpriority(),
3198 * the task might be in the middle of scheduling on another CPU.
3199 */
3200 rq = task_rq_lock(p, &flags);
3201 /*
3202 * The RT priorities are set via sched_setscheduler(), but we still
3203 * allow the 'normal' nice value to be set - but as expected
3204 * it wont have any effect on scheduling until the task is
3205 * not SCHED_NORMAL:
3206 */
3207 if (rt_task(p)) {
3208 p->static_prio = NICE_TO_PRIO(nice);
3209 goto out_unlock;
3210 }
3211 array = p->array;
3212 if (array)
3213 dequeue_task(p, array);
3214
3215 old_prio = p->prio;
3216 new_prio = NICE_TO_PRIO(nice);
3217 delta = new_prio - old_prio;
3218 p->static_prio = NICE_TO_PRIO(nice);
3219 p->prio += delta;
3220
3221 if (array) {
3222 enqueue_task(p, array);
3223 /*
3224 * If the task increased its priority or is running and
3225 * lowered its priority, then reschedule its CPU:
3226 */
3227 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3228 resched_task(rq->curr);
3229 }
3230out_unlock:
3231 task_rq_unlock(rq, &flags);
3232}
3233
3234EXPORT_SYMBOL(set_user_nice);
3235
e43379f1
MM
3236/*
3237 * can_nice - check if a task can reduce its nice value
3238 * @p: task
3239 * @nice: nice value
3240 */
3241int can_nice(const task_t *p, const int nice)
3242{
3243 /* convert nice value [19,-20] to rlimit style value [0,39] */
3244 int nice_rlim = 19 - nice;
3245 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3246 capable(CAP_SYS_NICE));
3247}
3248
1da177e4
LT
3249#ifdef __ARCH_WANT_SYS_NICE
3250
3251/*
3252 * sys_nice - change the priority of the current process.
3253 * @increment: priority increment
3254 *
3255 * sys_setpriority is a more generic, but much slower function that
3256 * does similar things.
3257 */
3258asmlinkage long sys_nice(int increment)
3259{
3260 int retval;
3261 long nice;
3262
3263 /*
3264 * Setpriority might change our priority at the same moment.
3265 * We don't have to worry. Conceptually one call occurs first
3266 * and we have a single winner.
3267 */
e43379f1
MM
3268 if (increment < -40)
3269 increment = -40;
1da177e4
LT
3270 if (increment > 40)
3271 increment = 40;
3272
3273 nice = PRIO_TO_NICE(current->static_prio) + increment;
3274 if (nice < -20)
3275 nice = -20;
3276 if (nice > 19)
3277 nice = 19;
3278
e43379f1
MM
3279 if (increment < 0 && !can_nice(current, nice))
3280 return -EPERM;
3281
1da177e4
LT
3282 retval = security_task_setnice(current, nice);
3283 if (retval)
3284 return retval;
3285
3286 set_user_nice(current, nice);
3287 return 0;
3288}
3289
3290#endif
3291
3292/**
3293 * task_prio - return the priority value of a given task.
3294 * @p: the task in question.
3295 *
3296 * This is the priority value as seen by users in /proc.
3297 * RT tasks are offset by -200. Normal tasks are centered
3298 * around 0, value goes from -16 to +15.
3299 */
3300int task_prio(const task_t *p)
3301{
3302 return p->prio - MAX_RT_PRIO;
3303}
3304
3305/**
3306 * task_nice - return the nice value of a given task.
3307 * @p: the task in question.
3308 */
3309int task_nice(const task_t *p)
3310{
3311 return TASK_NICE(p);
3312}
3313
3314/*
3315 * The only users of task_nice are binfmt_elf and binfmt_elf32.
3316 * binfmt_elf is no longer modular, but binfmt_elf32 still is.
3317 * Therefore, task_nice is needed if there is a compat_mode.
3318 */
3319#ifdef CONFIG_COMPAT
3320EXPORT_SYMBOL_GPL(task_nice);
3321#endif
3322
3323/**
3324 * idle_cpu - is a given cpu idle currently?
3325 * @cpu: the processor in question.
3326 */
3327int idle_cpu(int cpu)
3328{
3329 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3330}
3331
3332EXPORT_SYMBOL_GPL(idle_cpu);
3333
3334/**
3335 * idle_task - return the idle task for a given cpu.
3336 * @cpu: the processor in question.
3337 */
3338task_t *idle_task(int cpu)
3339{
3340 return cpu_rq(cpu)->idle;
3341}
3342
3343/**
3344 * find_process_by_pid - find a process with a matching PID value.
3345 * @pid: the pid in question.
3346 */
3347static inline task_t *find_process_by_pid(pid_t pid)
3348{
3349 return pid ? find_task_by_pid(pid) : current;
3350}
3351
3352/* Actually do priority change: must hold rq lock. */
3353static void __setscheduler(struct task_struct *p, int policy, int prio)
3354{
3355 BUG_ON(p->array);
3356 p->policy = policy;
3357 p->rt_priority = prio;
3358 if (policy != SCHED_NORMAL)
3359 p->prio = MAX_USER_RT_PRIO-1 - p->rt_priority;
3360 else
3361 p->prio = p->static_prio;
3362}
3363
3364/**
3365 * sched_setscheduler - change the scheduling policy and/or RT priority of
3366 * a thread.
3367 * @p: the task in question.
3368 * @policy: new policy.
3369 * @param: structure containing the new RT priority.
3370 */
3371int sched_setscheduler(struct task_struct *p, int policy, struct sched_param *param)
3372{
3373 int retval;
3374 int oldprio, oldpolicy = -1;
3375 prio_array_t *array;
3376 unsigned long flags;
3377 runqueue_t *rq;
3378
3379recheck:
3380 /* double check policy once rq lock held */
3381 if (policy < 0)
3382 policy = oldpolicy = p->policy;
3383 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3384 policy != SCHED_NORMAL)
3385 return -EINVAL;
3386 /*
3387 * Valid priorities for SCHED_FIFO and SCHED_RR are
3388 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3389 */
3390 if (param->sched_priority < 0 ||
3391 param->sched_priority > MAX_USER_RT_PRIO-1)
3392 return -EINVAL;
3393 if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3394 return -EINVAL;
3395
3396 if ((policy == SCHED_FIFO || policy == SCHED_RR) &&
e43379f1 3397 param->sched_priority > p->signal->rlim[RLIMIT_RTPRIO].rlim_cur &&
1da177e4
LT
3398 !capable(CAP_SYS_NICE))
3399 return -EPERM;
3400 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3401 !capable(CAP_SYS_NICE))
3402 return -EPERM;
3403
3404 retval = security_task_setscheduler(p, policy, param);
3405 if (retval)
3406 return retval;
3407 /*
3408 * To be able to change p->policy safely, the apropriate
3409 * runqueue lock must be held.
3410 */
3411 rq = task_rq_lock(p, &flags);
3412 /* recheck policy now with rq lock held */
3413 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3414 policy = oldpolicy = -1;
3415 task_rq_unlock(rq, &flags);
3416 goto recheck;
3417 }
3418 array = p->array;
3419 if (array)
3420 deactivate_task(p, rq);
3421 oldprio = p->prio;
3422 __setscheduler(p, policy, param->sched_priority);
3423 if (array) {
3424 __activate_task(p, rq);
3425 /*
3426 * Reschedule if we are currently running on this runqueue and
3427 * our priority decreased, or if we are not currently running on
3428 * this runqueue and our priority is higher than the current's
3429 */
3430 if (task_running(rq, p)) {
3431 if (p->prio > oldprio)
3432 resched_task(rq->curr);
3433 } else if (TASK_PREEMPTS_CURR(p, rq))
3434 resched_task(rq->curr);
3435 }
3436 task_rq_unlock(rq, &flags);
3437 return 0;
3438}
3439EXPORT_SYMBOL_GPL(sched_setscheduler);
3440
3441static int do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3442{
3443 int retval;
3444 struct sched_param lparam;
3445 struct task_struct *p;
3446
3447 if (!param || pid < 0)
3448 return -EINVAL;
3449 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3450 return -EFAULT;
3451 read_lock_irq(&tasklist_lock);
3452 p = find_process_by_pid(pid);
3453 if (!p) {
3454 read_unlock_irq(&tasklist_lock);
3455 return -ESRCH;
3456 }
3457 retval = sched_setscheduler(p, policy, &lparam);
3458 read_unlock_irq(&tasklist_lock);
3459 return retval;
3460}
3461
3462/**
3463 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3464 * @pid: the pid in question.
3465 * @policy: new policy.
3466 * @param: structure containing the new RT priority.
3467 */
3468asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3469 struct sched_param __user *param)
3470{
3471 return do_sched_setscheduler(pid, policy, param);
3472}
3473
3474/**
3475 * sys_sched_setparam - set/change the RT priority of a thread
3476 * @pid: the pid in question.
3477 * @param: structure containing the new RT priority.
3478 */
3479asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3480{
3481 return do_sched_setscheduler(pid, -1, param);
3482}
3483
3484/**
3485 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3486 * @pid: the pid in question.
3487 */
3488asmlinkage long sys_sched_getscheduler(pid_t pid)
3489{
3490 int retval = -EINVAL;
3491 task_t *p;
3492
3493 if (pid < 0)
3494 goto out_nounlock;
3495
3496 retval = -ESRCH;
3497 read_lock(&tasklist_lock);
3498 p = find_process_by_pid(pid);
3499 if (p) {
3500 retval = security_task_getscheduler(p);
3501 if (!retval)
3502 retval = p->policy;
3503 }
3504 read_unlock(&tasklist_lock);
3505
3506out_nounlock:
3507 return retval;
3508}
3509
3510/**
3511 * sys_sched_getscheduler - get the RT priority of a thread
3512 * @pid: the pid in question.
3513 * @param: structure containing the RT priority.
3514 */
3515asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3516{
3517 struct sched_param lp;
3518 int retval = -EINVAL;
3519 task_t *p;
3520
3521 if (!param || pid < 0)
3522 goto out_nounlock;
3523
3524 read_lock(&tasklist_lock);
3525 p = find_process_by_pid(pid);
3526 retval = -ESRCH;
3527 if (!p)
3528 goto out_unlock;
3529
3530 retval = security_task_getscheduler(p);
3531 if (retval)
3532 goto out_unlock;
3533
3534 lp.sched_priority = p->rt_priority;
3535 read_unlock(&tasklist_lock);
3536
3537 /*
3538 * This one might sleep, we cannot do it with a spinlock held ...
3539 */
3540 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3541
3542out_nounlock:
3543 return retval;
3544
3545out_unlock:
3546 read_unlock(&tasklist_lock);
3547 return retval;
3548}
3549
3550long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3551{
3552 task_t *p;
3553 int retval;
3554 cpumask_t cpus_allowed;
3555
3556 lock_cpu_hotplug();
3557 read_lock(&tasklist_lock);
3558
3559 p = find_process_by_pid(pid);
3560 if (!p) {
3561 read_unlock(&tasklist_lock);
3562 unlock_cpu_hotplug();
3563 return -ESRCH;
3564 }
3565
3566 /*
3567 * It is not safe to call set_cpus_allowed with the
3568 * tasklist_lock held. We will bump the task_struct's
3569 * usage count and then drop tasklist_lock.
3570 */
3571 get_task_struct(p);
3572 read_unlock(&tasklist_lock);
3573
3574 retval = -EPERM;
3575 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3576 !capable(CAP_SYS_NICE))
3577 goto out_unlock;
3578
3579 cpus_allowed = cpuset_cpus_allowed(p);
3580 cpus_and(new_mask, new_mask, cpus_allowed);
3581 retval = set_cpus_allowed(p, new_mask);
3582
3583out_unlock:
3584 put_task_struct(p);
3585 unlock_cpu_hotplug();
3586 return retval;
3587}
3588
3589static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3590 cpumask_t *new_mask)
3591{
3592 if (len < sizeof(cpumask_t)) {
3593 memset(new_mask, 0, sizeof(cpumask_t));
3594 } else if (len > sizeof(cpumask_t)) {
3595 len = sizeof(cpumask_t);
3596 }
3597 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3598}
3599
3600/**
3601 * sys_sched_setaffinity - set the cpu affinity of a process
3602 * @pid: pid of the process
3603 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3604 * @user_mask_ptr: user-space pointer to the new cpu mask
3605 */
3606asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3607 unsigned long __user *user_mask_ptr)
3608{
3609 cpumask_t new_mask;
3610 int retval;
3611
3612 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3613 if (retval)
3614 return retval;
3615
3616 return sched_setaffinity(pid, new_mask);
3617}
3618
3619/*
3620 * Represents all cpu's present in the system
3621 * In systems capable of hotplug, this map could dynamically grow
3622 * as new cpu's are detected in the system via any platform specific
3623 * method, such as ACPI for e.g.
3624 */
3625
3626cpumask_t cpu_present_map;
3627EXPORT_SYMBOL(cpu_present_map);
3628
3629#ifndef CONFIG_SMP
3630cpumask_t cpu_online_map = CPU_MASK_ALL;
3631cpumask_t cpu_possible_map = CPU_MASK_ALL;
3632#endif
3633
3634long sched_getaffinity(pid_t pid, cpumask_t *mask)
3635{
3636 int retval;
3637 task_t *p;
3638
3639 lock_cpu_hotplug();
3640 read_lock(&tasklist_lock);
3641
3642 retval = -ESRCH;
3643 p = find_process_by_pid(pid);
3644 if (!p)
3645 goto out_unlock;
3646
3647 retval = 0;
3648 cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3649
3650out_unlock:
3651 read_unlock(&tasklist_lock);
3652 unlock_cpu_hotplug();
3653 if (retval)
3654 return retval;
3655
3656 return 0;
3657}
3658
3659/**
3660 * sys_sched_getaffinity - get the cpu affinity of a process
3661 * @pid: pid of the process
3662 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3663 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3664 */
3665asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3666 unsigned long __user *user_mask_ptr)
3667{
3668 int ret;
3669 cpumask_t mask;
3670
3671 if (len < sizeof(cpumask_t))
3672 return -EINVAL;
3673
3674 ret = sched_getaffinity(pid, &mask);
3675 if (ret < 0)
3676 return ret;
3677
3678 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3679 return -EFAULT;
3680
3681 return sizeof(cpumask_t);
3682}
3683
3684/**
3685 * sys_sched_yield - yield the current processor to other threads.
3686 *
3687 * this function yields the current CPU by moving the calling thread
3688 * to the expired array. If there are no other threads running on this
3689 * CPU then this function will return.
3690 */
3691asmlinkage long sys_sched_yield(void)
3692{
3693 runqueue_t *rq = this_rq_lock();
3694 prio_array_t *array = current->array;
3695 prio_array_t *target = rq->expired;
3696
3697 schedstat_inc(rq, yld_cnt);
3698 /*
3699 * We implement yielding by moving the task into the expired
3700 * queue.
3701 *
3702 * (special rule: RT tasks will just roundrobin in the active
3703 * array.)
3704 */
3705 if (rt_task(current))
3706 target = rq->active;
3707
3708 if (current->array->nr_active == 1) {
3709 schedstat_inc(rq, yld_act_empty);
3710 if (!rq->expired->nr_active)
3711 schedstat_inc(rq, yld_both_empty);
3712 } else if (!rq->expired->nr_active)
3713 schedstat_inc(rq, yld_exp_empty);
3714
3715 if (array != target) {
3716 dequeue_task(current, array);
3717 enqueue_task(current, target);
3718 } else
3719 /*
3720 * requeue_task is cheaper so perform that if possible.
3721 */
3722 requeue_task(current, array);
3723
3724 /*
3725 * Since we are going to call schedule() anyway, there's
3726 * no need to preempt or enable interrupts:
3727 */
3728 __release(rq->lock);
3729 _raw_spin_unlock(&rq->lock);
3730 preempt_enable_no_resched();
3731
3732 schedule();
3733
3734 return 0;
3735}
3736
3737static inline void __cond_resched(void)
3738{
3739 do {
3740 add_preempt_count(PREEMPT_ACTIVE);
3741 schedule();
3742 sub_preempt_count(PREEMPT_ACTIVE);
3743 } while (need_resched());
3744}
3745
3746int __sched cond_resched(void)
3747{
3748 if (need_resched()) {
3749 __cond_resched();
3750 return 1;
3751 }
3752 return 0;
3753}
3754
3755EXPORT_SYMBOL(cond_resched);
3756
3757/*
3758 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
3759 * call schedule, and on return reacquire the lock.
3760 *
3761 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3762 * operations here to prevent schedule() from being called twice (once via
3763 * spin_unlock(), once by hand).
3764 */
3765int cond_resched_lock(spinlock_t * lock)
3766{
6df3cecb
JK
3767 int ret = 0;
3768
1da177e4
LT
3769 if (need_lockbreak(lock)) {
3770 spin_unlock(lock);
3771 cpu_relax();
6df3cecb 3772 ret = 1;
1da177e4
LT
3773 spin_lock(lock);
3774 }
3775 if (need_resched()) {
3776 _raw_spin_unlock(lock);
3777 preempt_enable_no_resched();
3778 __cond_resched();
6df3cecb 3779 ret = 1;
1da177e4 3780 spin_lock(lock);
1da177e4 3781 }
6df3cecb 3782 return ret;
1da177e4
LT
3783}
3784
3785EXPORT_SYMBOL(cond_resched_lock);
3786
3787int __sched cond_resched_softirq(void)
3788{
3789 BUG_ON(!in_softirq());
3790
3791 if (need_resched()) {
3792 __local_bh_enable();
3793 __cond_resched();
3794 local_bh_disable();
3795 return 1;
3796 }
3797 return 0;
3798}
3799
3800EXPORT_SYMBOL(cond_resched_softirq);
3801
3802
3803/**
3804 * yield - yield the current processor to other threads.
3805 *
3806 * this is a shortcut for kernel-space yielding - it marks the
3807 * thread runnable and calls sys_sched_yield().
3808 */
3809void __sched yield(void)
3810{
3811 set_current_state(TASK_RUNNING);
3812 sys_sched_yield();
3813}
3814
3815EXPORT_SYMBOL(yield);
3816
3817/*
3818 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3819 * that process accounting knows that this is a task in IO wait state.
3820 *
3821 * But don't do that if it is a deliberate, throttling IO wait (this task
3822 * has set its backing_dev_info: the queue against which it should throttle)
3823 */
3824void __sched io_schedule(void)
3825{
39c715b7 3826 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
1da177e4
LT
3827
3828 atomic_inc(&rq->nr_iowait);
3829 schedule();
3830 atomic_dec(&rq->nr_iowait);
3831}
3832
3833EXPORT_SYMBOL(io_schedule);
3834
3835long __sched io_schedule_timeout(long timeout)
3836{
39c715b7 3837 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
1da177e4
LT
3838 long ret;
3839
3840 atomic_inc(&rq->nr_iowait);
3841 ret = schedule_timeout(timeout);
3842 atomic_dec(&rq->nr_iowait);
3843 return ret;
3844}
3845
3846/**
3847 * sys_sched_get_priority_max - return maximum RT priority.
3848 * @policy: scheduling class.
3849 *
3850 * this syscall returns the maximum rt_priority that can be used
3851 * by a given scheduling class.
3852 */
3853asmlinkage long sys_sched_get_priority_max(int policy)
3854{
3855 int ret = -EINVAL;
3856
3857 switch (policy) {
3858 case SCHED_FIFO:
3859 case SCHED_RR:
3860 ret = MAX_USER_RT_PRIO-1;
3861 break;
3862 case SCHED_NORMAL:
3863 ret = 0;
3864 break;
3865 }
3866 return ret;
3867}
3868
3869/**
3870 * sys_sched_get_priority_min - return minimum RT priority.
3871 * @policy: scheduling class.
3872 *
3873 * this syscall returns the minimum rt_priority that can be used
3874 * by a given scheduling class.
3875 */
3876asmlinkage long sys_sched_get_priority_min(int policy)
3877{
3878 int ret = -EINVAL;
3879
3880 switch (policy) {
3881 case SCHED_FIFO:
3882 case SCHED_RR:
3883 ret = 1;
3884 break;
3885 case SCHED_NORMAL:
3886 ret = 0;
3887 }
3888 return ret;
3889}
3890
3891/**
3892 * sys_sched_rr_get_interval - return the default timeslice of a process.
3893 * @pid: pid of the process.
3894 * @interval: userspace pointer to the timeslice value.
3895 *
3896 * this syscall writes the default timeslice value of a given process
3897 * into the user-space timespec buffer. A value of '0' means infinity.
3898 */
3899asmlinkage
3900long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
3901{
3902 int retval = -EINVAL;
3903 struct timespec t;
3904 task_t *p;
3905
3906 if (pid < 0)
3907 goto out_nounlock;
3908
3909 retval = -ESRCH;
3910 read_lock(&tasklist_lock);
3911 p = find_process_by_pid(pid);
3912 if (!p)
3913 goto out_unlock;
3914
3915 retval = security_task_getscheduler(p);
3916 if (retval)
3917 goto out_unlock;
3918
3919 jiffies_to_timespec(p->policy & SCHED_FIFO ?
3920 0 : task_timeslice(p), &t);
3921 read_unlock(&tasklist_lock);
3922 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
3923out_nounlock:
3924 return retval;
3925out_unlock:
3926 read_unlock(&tasklist_lock);
3927 return retval;
3928}
3929
3930static inline struct task_struct *eldest_child(struct task_struct *p)
3931{
3932 if (list_empty(&p->children)) return NULL;
3933 return list_entry(p->children.next,struct task_struct,sibling);
3934}
3935
3936static inline struct task_struct *older_sibling(struct task_struct *p)
3937{
3938 if (p->sibling.prev==&p->parent->children) return NULL;
3939 return list_entry(p->sibling.prev,struct task_struct,sibling);
3940}
3941
3942static inline struct task_struct *younger_sibling(struct task_struct *p)
3943{
3944 if (p->sibling.next==&p->parent->children) return NULL;
3945 return list_entry(p->sibling.next,struct task_struct,sibling);
3946}
3947
3948static void show_task(task_t * p)
3949{
3950 task_t *relative;
3951 unsigned state;
3952 unsigned long free = 0;
3953 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
3954
3955 printk("%-13.13s ", p->comm);
3956 state = p->state ? __ffs(p->state) + 1 : 0;
3957 if (state < ARRAY_SIZE(stat_nam))
3958 printk(stat_nam[state]);
3959 else
3960 printk("?");
3961#if (BITS_PER_LONG == 32)
3962 if (state == TASK_RUNNING)
3963 printk(" running ");
3964 else
3965 printk(" %08lX ", thread_saved_pc(p));
3966#else
3967 if (state == TASK_RUNNING)
3968 printk(" running task ");
3969 else
3970 printk(" %016lx ", thread_saved_pc(p));
3971#endif
3972#ifdef CONFIG_DEBUG_STACK_USAGE
3973 {
3974 unsigned long * n = (unsigned long *) (p->thread_info+1);
3975 while (!*n)
3976 n++;
3977 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
3978 }
3979#endif
3980 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
3981 if ((relative = eldest_child(p)))
3982 printk("%5d ", relative->pid);
3983 else
3984 printk(" ");
3985 if ((relative = younger_sibling(p)))
3986 printk("%7d", relative->pid);
3987 else
3988 printk(" ");
3989 if ((relative = older_sibling(p)))
3990 printk(" %5d", relative->pid);
3991 else
3992 printk(" ");
3993 if (!p->mm)
3994 printk(" (L-TLB)\n");
3995 else
3996 printk(" (NOTLB)\n");
3997
3998 if (state != TASK_RUNNING)
3999 show_stack(p, NULL);
4000}
4001
4002void show_state(void)
4003{
4004 task_t *g, *p;
4005
4006#if (BITS_PER_LONG == 32)
4007 printk("\n"
4008 " sibling\n");
4009 printk(" task PC pid father child younger older\n");
4010#else
4011 printk("\n"
4012 " sibling\n");
4013 printk(" task PC pid father child younger older\n");
4014#endif
4015 read_lock(&tasklist_lock);
4016 do_each_thread(g, p) {
4017 /*
4018 * reset the NMI-timeout, listing all files on a slow
4019 * console might take alot of time:
4020 */
4021 touch_nmi_watchdog();
4022 show_task(p);
4023 } while_each_thread(g, p);
4024
4025 read_unlock(&tasklist_lock);
4026}
4027
4028void __devinit init_idle(task_t *idle, int cpu)
4029{
4030 runqueue_t *rq = cpu_rq(cpu);
4031 unsigned long flags;
4032
4033 idle->sleep_avg = 0;
4034 idle->array = NULL;
4035 idle->prio = MAX_PRIO;
4036 idle->state = TASK_RUNNING;
4037 idle->cpus_allowed = cpumask_of_cpu(cpu);
4038 set_task_cpu(idle, cpu);
4039
4040 spin_lock_irqsave(&rq->lock, flags);
4041 rq->curr = rq->idle = idle;
4042 set_tsk_need_resched(idle);
4043 spin_unlock_irqrestore(&rq->lock, flags);
4044
4045 /* Set the preempt count _outside_ the spinlocks! */
4046#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4047 idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4048#else
4049 idle->thread_info->preempt_count = 0;
4050#endif
4051}
4052
4053/*
4054 * In a system that switches off the HZ timer nohz_cpu_mask
4055 * indicates which cpus entered this state. This is used
4056 * in the rcu update to wait only for active cpus. For system
4057 * which do not switch off the HZ timer nohz_cpu_mask should
4058 * always be CPU_MASK_NONE.
4059 */
4060cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4061
4062#ifdef CONFIG_SMP
4063/*
4064 * This is how migration works:
4065 *
4066 * 1) we queue a migration_req_t structure in the source CPU's
4067 * runqueue and wake up that CPU's migration thread.
4068 * 2) we down() the locked semaphore => thread blocks.
4069 * 3) migration thread wakes up (implicitly it forces the migrated
4070 * thread off the CPU)
4071 * 4) it gets the migration request and checks whether the migrated
4072 * task is still in the wrong runqueue.
4073 * 5) if it's in the wrong runqueue then the migration thread removes
4074 * it and puts it into the right queue.
4075 * 6) migration thread up()s the semaphore.
4076 * 7) we wake up and the migration is done.
4077 */
4078
4079/*
4080 * Change a given task's CPU affinity. Migrate the thread to a
4081 * proper CPU and schedule it away if the CPU it's executing on
4082 * is removed from the allowed bitmask.
4083 *
4084 * NOTE: the caller must have a valid reference to the task, the
4085 * task must not exit() & deallocate itself prematurely. The
4086 * call is not atomic; no spinlocks may be held.
4087 */
4088int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4089{
4090 unsigned long flags;
4091 int ret = 0;
4092 migration_req_t req;
4093 runqueue_t *rq;
4094
4095 rq = task_rq_lock(p, &flags);
4096 if (!cpus_intersects(new_mask, cpu_online_map)) {
4097 ret = -EINVAL;
4098 goto out;
4099 }
4100
4101 p->cpus_allowed = new_mask;
4102 /* Can the task run on the task's current CPU? If so, we're done */
4103 if (cpu_isset(task_cpu(p), new_mask))
4104 goto out;
4105
4106 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4107 /* Need help from migration thread: drop lock and wait. */
4108 task_rq_unlock(rq, &flags);
4109 wake_up_process(rq->migration_thread);
4110 wait_for_completion(&req.done);
4111 tlb_migrate_finish(p->mm);
4112 return 0;
4113 }
4114out:
4115 task_rq_unlock(rq, &flags);
4116 return ret;
4117}
4118
4119EXPORT_SYMBOL_GPL(set_cpus_allowed);
4120
4121/*
4122 * Move (not current) task off this cpu, onto dest cpu. We're doing
4123 * this because either it can't run here any more (set_cpus_allowed()
4124 * away from this CPU, or CPU going down), or because we're
4125 * attempting to rebalance this task on exec (sched_exec).
4126 *
4127 * So we race with normal scheduler movements, but that's OK, as long
4128 * as the task is no longer on this CPU.
4129 */
4130static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4131{
4132 runqueue_t *rq_dest, *rq_src;
4133
4134 if (unlikely(cpu_is_offline(dest_cpu)))
4135 return;
4136
4137 rq_src = cpu_rq(src_cpu);
4138 rq_dest = cpu_rq(dest_cpu);
4139
4140 double_rq_lock(rq_src, rq_dest);
4141 /* Already moved. */
4142 if (task_cpu(p) != src_cpu)
4143 goto out;
4144 /* Affinity changed (again). */
4145 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4146 goto out;
4147
4148 set_task_cpu(p, dest_cpu);
4149 if (p->array) {
4150 /*
4151 * Sync timestamp with rq_dest's before activating.
4152 * The same thing could be achieved by doing this step
4153 * afterwards, and pretending it was a local activate.
4154 * This way is cleaner and logically correct.
4155 */
4156 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4157 + rq_dest->timestamp_last_tick;
4158 deactivate_task(p, rq_src);
4159 activate_task(p, rq_dest, 0);
4160 if (TASK_PREEMPTS_CURR(p, rq_dest))
4161 resched_task(rq_dest->curr);
4162 }
4163
4164out:
4165 double_rq_unlock(rq_src, rq_dest);
4166}
4167
4168/*
4169 * migration_thread - this is a highprio system thread that performs
4170 * thread migration by bumping thread off CPU then 'pushing' onto
4171 * another runqueue.
4172 */
4173static int migration_thread(void * data)
4174{
4175 runqueue_t *rq;
4176 int cpu = (long)data;
4177
4178 rq = cpu_rq(cpu);
4179 BUG_ON(rq->migration_thread != current);
4180
4181 set_current_state(TASK_INTERRUPTIBLE);
4182 while (!kthread_should_stop()) {
4183 struct list_head *head;
4184 migration_req_t *req;
4185
4186 if (current->flags & PF_FREEZE)
4187 refrigerator(PF_FREEZE);
4188
4189 spin_lock_irq(&rq->lock);
4190
4191 if (cpu_is_offline(cpu)) {
4192 spin_unlock_irq(&rq->lock);
4193 goto wait_to_die;
4194 }
4195
4196 if (rq->active_balance) {
4197 active_load_balance(rq, cpu);
4198 rq->active_balance = 0;
4199 }
4200
4201 head = &rq->migration_queue;
4202
4203 if (list_empty(head)) {
4204 spin_unlock_irq(&rq->lock);
4205 schedule();
4206 set_current_state(TASK_INTERRUPTIBLE);
4207 continue;
4208 }
4209 req = list_entry(head->next, migration_req_t, list);
4210 list_del_init(head->next);
4211
4212 if (req->type == REQ_MOVE_TASK) {
4213 spin_unlock(&rq->lock);
4214 __migrate_task(req->task, cpu, req->dest_cpu);
4215 local_irq_enable();
4216 } else if (req->type == REQ_SET_DOMAIN) {
4217 rq->sd = req->sd;
4218 spin_unlock_irq(&rq->lock);
4219 } else {
4220 spin_unlock_irq(&rq->lock);
4221 WARN_ON(1);
4222 }
4223
4224 complete(&req->done);
4225 }
4226 __set_current_state(TASK_RUNNING);
4227 return 0;
4228
4229wait_to_die:
4230 /* Wait for kthread_stop */
4231 set_current_state(TASK_INTERRUPTIBLE);
4232 while (!kthread_should_stop()) {
4233 schedule();
4234 set_current_state(TASK_INTERRUPTIBLE);
4235 }
4236 __set_current_state(TASK_RUNNING);
4237 return 0;
4238}
4239
4240#ifdef CONFIG_HOTPLUG_CPU
4241/* Figure out where task on dead CPU should go, use force if neccessary. */
4242static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4243{
4244 int dest_cpu;
4245 cpumask_t mask;
4246
4247 /* On same node? */
4248 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4249 cpus_and(mask, mask, tsk->cpus_allowed);
4250 dest_cpu = any_online_cpu(mask);
4251
4252 /* On any allowed CPU? */
4253 if (dest_cpu == NR_CPUS)
4254 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4255
4256 /* No more Mr. Nice Guy. */
4257 if (dest_cpu == NR_CPUS) {
b39c4fab 4258 cpus_setall(tsk->cpus_allowed);
1da177e4
LT
4259 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4260
4261 /*
4262 * Don't tell them about moving exiting tasks or
4263 * kernel threads (both mm NULL), since they never
4264 * leave kernel.
4265 */
4266 if (tsk->mm && printk_ratelimit())
4267 printk(KERN_INFO "process %d (%s) no "
4268 "longer affine to cpu%d\n",
4269 tsk->pid, tsk->comm, dead_cpu);
4270 }
4271 __migrate_task(tsk, dead_cpu, dest_cpu);
4272}
4273
4274/*
4275 * While a dead CPU has no uninterruptible tasks queued at this point,
4276 * it might still have a nonzero ->nr_uninterruptible counter, because
4277 * for performance reasons the counter is not stricly tracking tasks to
4278 * their home CPUs. So we just add the counter to another CPU's counter,
4279 * to keep the global sum constant after CPU-down:
4280 */
4281static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4282{
4283 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4284 unsigned long flags;
4285
4286 local_irq_save(flags);
4287 double_rq_lock(rq_src, rq_dest);
4288 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4289 rq_src->nr_uninterruptible = 0;
4290 double_rq_unlock(rq_src, rq_dest);
4291 local_irq_restore(flags);
4292}
4293
4294/* Run through task list and migrate tasks from the dead cpu. */
4295static void migrate_live_tasks(int src_cpu)
4296{
4297 struct task_struct *tsk, *t;
4298
4299 write_lock_irq(&tasklist_lock);
4300
4301 do_each_thread(t, tsk) {
4302 if (tsk == current)
4303 continue;
4304
4305 if (task_cpu(tsk) == src_cpu)
4306 move_task_off_dead_cpu(src_cpu, tsk);
4307 } while_each_thread(t, tsk);
4308
4309 write_unlock_irq(&tasklist_lock);
4310}
4311
4312/* Schedules idle task to be the next runnable task on current CPU.
4313 * It does so by boosting its priority to highest possible and adding it to
4314 * the _front_ of runqueue. Used by CPU offline code.
4315 */
4316void sched_idle_next(void)
4317{
4318 int cpu = smp_processor_id();
4319 runqueue_t *rq = this_rq();
4320 struct task_struct *p = rq->idle;
4321 unsigned long flags;
4322
4323 /* cpu has to be offline */
4324 BUG_ON(cpu_online(cpu));
4325
4326 /* Strictly not necessary since rest of the CPUs are stopped by now
4327 * and interrupts disabled on current cpu.
4328 */
4329 spin_lock_irqsave(&rq->lock, flags);
4330
4331 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4332 /* Add idle task to _front_ of it's priority queue */
4333 __activate_idle_task(p, rq);
4334
4335 spin_unlock_irqrestore(&rq->lock, flags);
4336}
4337
4338/* Ensures that the idle task is using init_mm right before its cpu goes
4339 * offline.
4340 */
4341void idle_task_exit(void)
4342{
4343 struct mm_struct *mm = current->active_mm;
4344
4345 BUG_ON(cpu_online(smp_processor_id()));
4346
4347 if (mm != &init_mm)
4348 switch_mm(mm, &init_mm, current);
4349 mmdrop(mm);
4350}
4351
4352static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4353{
4354 struct runqueue *rq = cpu_rq(dead_cpu);
4355
4356 /* Must be exiting, otherwise would be on tasklist. */
4357 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4358
4359 /* Cannot have done final schedule yet: would have vanished. */
4360 BUG_ON(tsk->flags & PF_DEAD);
4361
4362 get_task_struct(tsk);
4363
4364 /*
4365 * Drop lock around migration; if someone else moves it,
4366 * that's OK. No task can be added to this CPU, so iteration is
4367 * fine.
4368 */
4369 spin_unlock_irq(&rq->lock);
4370 move_task_off_dead_cpu(dead_cpu, tsk);
4371 spin_lock_irq(&rq->lock);
4372
4373 put_task_struct(tsk);
4374}
4375
4376/* release_task() removes task from tasklist, so we won't find dead tasks. */
4377static void migrate_dead_tasks(unsigned int dead_cpu)
4378{
4379 unsigned arr, i;
4380 struct runqueue *rq = cpu_rq(dead_cpu);
4381
4382 for (arr = 0; arr < 2; arr++) {
4383 for (i = 0; i < MAX_PRIO; i++) {
4384 struct list_head *list = &rq->arrays[arr].queue[i];
4385 while (!list_empty(list))
4386 migrate_dead(dead_cpu,
4387 list_entry(list->next, task_t,
4388 run_list));
4389 }
4390 }
4391}
4392#endif /* CONFIG_HOTPLUG_CPU */
4393
4394/*
4395 * migration_call - callback that gets triggered when a CPU is added.
4396 * Here we can start up the necessary migration thread for the new CPU.
4397 */
4398static int migration_call(struct notifier_block *nfb, unsigned long action,
4399 void *hcpu)
4400{
4401 int cpu = (long)hcpu;
4402 struct task_struct *p;
4403 struct runqueue *rq;
4404 unsigned long flags;
4405
4406 switch (action) {
4407 case CPU_UP_PREPARE:
4408 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4409 if (IS_ERR(p))
4410 return NOTIFY_BAD;
4411 p->flags |= PF_NOFREEZE;
4412 kthread_bind(p, cpu);
4413 /* Must be high prio: stop_machine expects to yield to it. */
4414 rq = task_rq_lock(p, &flags);
4415 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4416 task_rq_unlock(rq, &flags);
4417 cpu_rq(cpu)->migration_thread = p;
4418 break;
4419 case CPU_ONLINE:
4420 /* Strictly unneccessary, as first user will wake it. */
4421 wake_up_process(cpu_rq(cpu)->migration_thread);
4422 break;
4423#ifdef CONFIG_HOTPLUG_CPU
4424 case CPU_UP_CANCELED:
4425 /* Unbind it from offline cpu so it can run. Fall thru. */
4426 kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
4427 kthread_stop(cpu_rq(cpu)->migration_thread);
4428 cpu_rq(cpu)->migration_thread = NULL;
4429 break;
4430 case CPU_DEAD:
4431 migrate_live_tasks(cpu);
4432 rq = cpu_rq(cpu);
4433 kthread_stop(rq->migration_thread);
4434 rq->migration_thread = NULL;
4435 /* Idle task back to normal (off runqueue, low prio) */
4436 rq = task_rq_lock(rq->idle, &flags);
4437 deactivate_task(rq->idle, rq);
4438 rq->idle->static_prio = MAX_PRIO;
4439 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4440 migrate_dead_tasks(cpu);
4441 task_rq_unlock(rq, &flags);
4442 migrate_nr_uninterruptible(rq);
4443 BUG_ON(rq->nr_running != 0);
4444
4445 /* No need to migrate the tasks: it was best-effort if
4446 * they didn't do lock_cpu_hotplug(). Just wake up
4447 * the requestors. */
4448 spin_lock_irq(&rq->lock);
4449 while (!list_empty(&rq->migration_queue)) {
4450 migration_req_t *req;
4451 req = list_entry(rq->migration_queue.next,
4452 migration_req_t, list);
4453 BUG_ON(req->type != REQ_MOVE_TASK);
4454 list_del_init(&req->list);
4455 complete(&req->done);
4456 }
4457 spin_unlock_irq(&rq->lock);
4458 break;
4459#endif
4460 }
4461 return NOTIFY_OK;
4462}
4463
4464/* Register at highest priority so that task migration (migrate_all_tasks)
4465 * happens before everything else.
4466 */
4467static struct notifier_block __devinitdata migration_notifier = {
4468 .notifier_call = migration_call,
4469 .priority = 10
4470};
4471
4472int __init migration_init(void)
4473{
4474 void *cpu = (void *)(long)smp_processor_id();
4475 /* Start one for boot CPU. */
4476 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4477 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4478 register_cpu_notifier(&migration_notifier);
4479 return 0;
4480}
4481#endif
4482
4483#ifdef CONFIG_SMP
4484#define SCHED_DOMAIN_DEBUG
4485#ifdef SCHED_DOMAIN_DEBUG
4486static void sched_domain_debug(struct sched_domain *sd, int cpu)
4487{
4488 int level = 0;
4489
4490 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4491
4492 do {
4493 int i;
4494 char str[NR_CPUS];
4495 struct sched_group *group = sd->groups;
4496 cpumask_t groupmask;
4497
4498 cpumask_scnprintf(str, NR_CPUS, sd->span);
4499 cpus_clear(groupmask);
4500
4501 printk(KERN_DEBUG);
4502 for (i = 0; i < level + 1; i++)
4503 printk(" ");
4504 printk("domain %d: ", level);
4505
4506 if (!(sd->flags & SD_LOAD_BALANCE)) {
4507 printk("does not load-balance\n");
4508 if (sd->parent)
4509 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4510 break;
4511 }
4512
4513 printk("span %s\n", str);
4514
4515 if (!cpu_isset(cpu, sd->span))
4516 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4517 if (!cpu_isset(cpu, group->cpumask))
4518 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4519
4520 printk(KERN_DEBUG);
4521 for (i = 0; i < level + 2; i++)
4522 printk(" ");
4523 printk("groups:");
4524 do {
4525 if (!group) {
4526 printk("\n");
4527 printk(KERN_ERR "ERROR: group is NULL\n");
4528 break;
4529 }
4530
4531 if (!group->cpu_power) {
4532 printk("\n");
4533 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4534 }
4535
4536 if (!cpus_weight(group->cpumask)) {
4537 printk("\n");
4538 printk(KERN_ERR "ERROR: empty group\n");
4539 }
4540
4541 if (cpus_intersects(groupmask, group->cpumask)) {
4542 printk("\n");
4543 printk(KERN_ERR "ERROR: repeated CPUs\n");
4544 }
4545
4546 cpus_or(groupmask, groupmask, group->cpumask);
4547
4548 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4549 printk(" %s", str);
4550
4551 group = group->next;
4552 } while (group != sd->groups);
4553 printk("\n");
4554
4555 if (!cpus_equal(sd->span, groupmask))
4556 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4557
4558 level++;
4559 sd = sd->parent;
4560
4561 if (sd) {
4562 if (!cpus_subset(groupmask, sd->span))
4563 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4564 }
4565
4566 } while (sd);
4567}
4568#else
4569#define sched_domain_debug(sd, cpu) {}
4570#endif
4571
4572/*
4573 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4574 * hold the hotplug lock.
4575 */
4576void __devinit cpu_attach_domain(struct sched_domain *sd, int cpu)
4577{
4578 migration_req_t req;
4579 unsigned long flags;
4580 runqueue_t *rq = cpu_rq(cpu);
4581 int local = 1;
4582
4583 sched_domain_debug(sd, cpu);
4584
4585 spin_lock_irqsave(&rq->lock, flags);
4586
4587 if (cpu == smp_processor_id() || !cpu_online(cpu)) {
4588 rq->sd = sd;
4589 } else {
4590 init_completion(&req.done);
4591 req.type = REQ_SET_DOMAIN;
4592 req.sd = sd;
4593 list_add(&req.list, &rq->migration_queue);
4594 local = 0;
4595 }
4596
4597 spin_unlock_irqrestore(&rq->lock, flags);
4598
4599 if (!local) {
4600 wake_up_process(rq->migration_thread);
4601 wait_for_completion(&req.done);
4602 }
4603}
4604
4605/* cpus with isolated domains */
4606cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4607
4608/* Setup the mask of cpus configured for isolated domains */
4609static int __init isolated_cpu_setup(char *str)
4610{
4611 int ints[NR_CPUS], i;
4612
4613 str = get_options(str, ARRAY_SIZE(ints), ints);
4614 cpus_clear(cpu_isolated_map);
4615 for (i = 1; i <= ints[0]; i++)
4616 if (ints[i] < NR_CPUS)
4617 cpu_set(ints[i], cpu_isolated_map);
4618 return 1;
4619}
4620
4621__setup ("isolcpus=", isolated_cpu_setup);
4622
4623/*
4624 * init_sched_build_groups takes an array of groups, the cpumask we wish
4625 * to span, and a pointer to a function which identifies what group a CPU
4626 * belongs to. The return value of group_fn must be a valid index into the
4627 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4628 * keep track of groups covered with a cpumask_t).
4629 *
4630 * init_sched_build_groups will build a circular linked list of the groups
4631 * covered by the given span, and will set each group's ->cpumask correctly,
4632 * and ->cpu_power to 0.
4633 */
4634void __devinit init_sched_build_groups(struct sched_group groups[],
4635 cpumask_t span, int (*group_fn)(int cpu))
4636{
4637 struct sched_group *first = NULL, *last = NULL;
4638 cpumask_t covered = CPU_MASK_NONE;
4639 int i;
4640
4641 for_each_cpu_mask(i, span) {
4642 int group = group_fn(i);
4643 struct sched_group *sg = &groups[group];
4644 int j;
4645
4646 if (cpu_isset(i, covered))
4647 continue;
4648
4649 sg->cpumask = CPU_MASK_NONE;
4650 sg->cpu_power = 0;
4651
4652 for_each_cpu_mask(j, span) {
4653 if (group_fn(j) != group)
4654 continue;
4655
4656 cpu_set(j, covered);
4657 cpu_set(j, sg->cpumask);
4658 }
4659 if (!first)
4660 first = sg;
4661 if (last)
4662 last->next = sg;
4663 last = sg;
4664 }
4665 last->next = first;
4666}
4667
4668
4669#ifdef ARCH_HAS_SCHED_DOMAIN
4670extern void __devinit arch_init_sched_domains(void);
4671extern void __devinit arch_destroy_sched_domains(void);
4672#else
4673#ifdef CONFIG_SCHED_SMT
4674static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
4675static struct sched_group sched_group_cpus[NR_CPUS];
4676static int __devinit cpu_to_cpu_group(int cpu)
4677{
4678 return cpu;
4679}
4680#endif
4681
4682static DEFINE_PER_CPU(struct sched_domain, phys_domains);
4683static struct sched_group sched_group_phys[NR_CPUS];
4684static int __devinit cpu_to_phys_group(int cpu)
4685{
4686#ifdef CONFIG_SCHED_SMT
4687 return first_cpu(cpu_sibling_map[cpu]);
4688#else
4689 return cpu;
4690#endif
4691}
4692
4693#ifdef CONFIG_NUMA
4694
4695static DEFINE_PER_CPU(struct sched_domain, node_domains);
4696static struct sched_group sched_group_nodes[MAX_NUMNODES];
4697static int __devinit cpu_to_node_group(int cpu)
4698{
4699 return cpu_to_node(cpu);
4700}
4701#endif
4702
4703#if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
4704/*
4705 * The domains setup code relies on siblings not spanning
4706 * multiple nodes. Make sure the architecture has a proper
4707 * siblings map:
4708 */
4709static void check_sibling_maps(void)
4710{
4711 int i, j;
4712
4713 for_each_online_cpu(i) {
4714 for_each_cpu_mask(j, cpu_sibling_map[i]) {
4715 if (cpu_to_node(i) != cpu_to_node(j)) {
4716 printk(KERN_INFO "warning: CPU %d siblings map "
4717 "to different node - isolating "
4718 "them.\n", i);
4719 cpu_sibling_map[i] = cpumask_of_cpu(i);
4720 break;
4721 }
4722 }
4723 }
4724}
4725#endif
4726
4727/*
4728 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
4729 */
4730static void __devinit arch_init_sched_domains(void)
4731{
4732 int i;
4733 cpumask_t cpu_default_map;
4734
4735#if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
4736 check_sibling_maps();
4737#endif
4738 /*
4739 * Setup mask for cpus without special case scheduling requirements.
4740 * For now this just excludes isolated cpus, but could be used to
4741 * exclude other special cases in the future.
4742 */
4743 cpus_complement(cpu_default_map, cpu_isolated_map);
4744 cpus_and(cpu_default_map, cpu_default_map, cpu_online_map);
4745
4746 /*
4747 * Set up domains. Isolated domains just stay on the dummy domain.
4748 */
4749 for_each_cpu_mask(i, cpu_default_map) {
4750 int group;
4751 struct sched_domain *sd = NULL, *p;
4752 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
4753
4754 cpus_and(nodemask, nodemask, cpu_default_map);
4755
4756#ifdef CONFIG_NUMA
4757 sd = &per_cpu(node_domains, i);
4758 group = cpu_to_node_group(i);
4759 *sd = SD_NODE_INIT;
4760 sd->span = cpu_default_map;
4761 sd->groups = &sched_group_nodes[group];
4762#endif
4763
4764 p = sd;
4765 sd = &per_cpu(phys_domains, i);
4766 group = cpu_to_phys_group(i);
4767 *sd = SD_CPU_INIT;
4768 sd->span = nodemask;
4769 sd->parent = p;
4770 sd->groups = &sched_group_phys[group];
4771
4772#ifdef CONFIG_SCHED_SMT
4773 p = sd;
4774 sd = &per_cpu(cpu_domains, i);
4775 group = cpu_to_cpu_group(i);
4776 *sd = SD_SIBLING_INIT;
4777 sd->span = cpu_sibling_map[i];
4778 cpus_and(sd->span, sd->span, cpu_default_map);
4779 sd->parent = p;
4780 sd->groups = &sched_group_cpus[group];
4781#endif
4782 }
4783
4784#ifdef CONFIG_SCHED_SMT
4785 /* Set up CPU (sibling) groups */
4786 for_each_online_cpu(i) {
4787 cpumask_t this_sibling_map = cpu_sibling_map[i];
4788 cpus_and(this_sibling_map, this_sibling_map, cpu_default_map);
4789 if (i != first_cpu(this_sibling_map))
4790 continue;
4791
4792 init_sched_build_groups(sched_group_cpus, this_sibling_map,
4793 &cpu_to_cpu_group);
4794 }
4795#endif
4796
4797 /* Set up physical groups */
4798 for (i = 0; i < MAX_NUMNODES; i++) {
4799 cpumask_t nodemask = node_to_cpumask(i);
4800
4801 cpus_and(nodemask, nodemask, cpu_default_map);
4802 if (cpus_empty(nodemask))
4803 continue;
4804
4805 init_sched_build_groups(sched_group_phys, nodemask,
4806 &cpu_to_phys_group);
4807 }
4808
4809#ifdef CONFIG_NUMA
4810 /* Set up node groups */
4811 init_sched_build_groups(sched_group_nodes, cpu_default_map,
4812 &cpu_to_node_group);
4813#endif
4814
4815 /* Calculate CPU power for physical packages and nodes */
4816 for_each_cpu_mask(i, cpu_default_map) {
4817 int power;
4818 struct sched_domain *sd;
4819#ifdef CONFIG_SCHED_SMT
4820 sd = &per_cpu(cpu_domains, i);
4821 power = SCHED_LOAD_SCALE;
4822 sd->groups->cpu_power = power;
4823#endif
4824
4825 sd = &per_cpu(phys_domains, i);
4826 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
4827 (cpus_weight(sd->groups->cpumask)-1) / 10;
4828 sd->groups->cpu_power = power;
4829
4830#ifdef CONFIG_NUMA
4831 if (i == first_cpu(sd->groups->cpumask)) {
4832 /* Only add "power" once for each physical package. */
4833 sd = &per_cpu(node_domains, i);
4834 sd->groups->cpu_power += power;
4835 }
4836#endif
4837 }
4838
4839 /* Attach the domains */
4840 for_each_online_cpu(i) {
4841 struct sched_domain *sd;
4842#ifdef CONFIG_SCHED_SMT
4843 sd = &per_cpu(cpu_domains, i);
4844#else
4845 sd = &per_cpu(phys_domains, i);
4846#endif
4847 cpu_attach_domain(sd, i);
4848 }
4849}
4850
4851#ifdef CONFIG_HOTPLUG_CPU
4852static void __devinit arch_destroy_sched_domains(void)
4853{
4854 /* Do nothing: everything is statically allocated. */
4855}
4856#endif
4857
4858#endif /* ARCH_HAS_SCHED_DOMAIN */
4859
4860/*
4861 * Initial dummy domain for early boot and for hotplug cpu. Being static,
4862 * it is initialized to zero, so all balancing flags are cleared which is
4863 * what we want.
4864 */
4865static struct sched_domain sched_domain_dummy;
4866
4867#ifdef CONFIG_HOTPLUG_CPU
4868/*
4869 * Force a reinitialization of the sched domains hierarchy. The domains
4870 * and groups cannot be updated in place without racing with the balancing
4871 * code, so we temporarily attach all running cpus to a "dummy" domain
4872 * which will prevent rebalancing while the sched domains are recalculated.
4873 */
4874static int update_sched_domains(struct notifier_block *nfb,
4875 unsigned long action, void *hcpu)
4876{
4877 int i;
4878
4879 switch (action) {
4880 case CPU_UP_PREPARE:
4881 case CPU_DOWN_PREPARE:
4882 for_each_online_cpu(i)
4883 cpu_attach_domain(&sched_domain_dummy, i);
4884 arch_destroy_sched_domains();
4885 return NOTIFY_OK;
4886
4887 case CPU_UP_CANCELED:
4888 case CPU_DOWN_FAILED:
4889 case CPU_ONLINE:
4890 case CPU_DEAD:
4891 /*
4892 * Fall through and re-initialise the domains.
4893 */
4894 break;
4895 default:
4896 return NOTIFY_DONE;
4897 }
4898
4899 /* The hotplug lock is already held by cpu_up/cpu_down */
4900 arch_init_sched_domains();
4901
4902 return NOTIFY_OK;
4903}
4904#endif
4905
4906void __init sched_init_smp(void)
4907{
4908 lock_cpu_hotplug();
4909 arch_init_sched_domains();
4910 unlock_cpu_hotplug();
4911 /* XXX: Theoretical race here - CPU may be hotplugged now */
4912 hotcpu_notifier(update_sched_domains, 0);
4913}
4914#else
4915void __init sched_init_smp(void)
4916{
4917}
4918#endif /* CONFIG_SMP */
4919
4920int in_sched_functions(unsigned long addr)
4921{
4922 /* Linker adds these: start and end of __sched functions */
4923 extern char __sched_text_start[], __sched_text_end[];
4924 return in_lock_functions(addr) ||
4925 (addr >= (unsigned long)__sched_text_start
4926 && addr < (unsigned long)__sched_text_end);
4927}
4928
4929void __init sched_init(void)
4930{
4931 runqueue_t *rq;
4932 int i, j, k;
4933
4934 for (i = 0; i < NR_CPUS; i++) {
4935 prio_array_t *array;
4936
4937 rq = cpu_rq(i);
4938 spin_lock_init(&rq->lock);
7897986b 4939 rq->nr_running = 0;
1da177e4
LT
4940 rq->active = rq->arrays;
4941 rq->expired = rq->arrays + 1;
4942 rq->best_expired_prio = MAX_PRIO;
4943
4944#ifdef CONFIG_SMP
4945 rq->sd = &sched_domain_dummy;
7897986b
NP
4946 for (j = 1; j < 3; j++)
4947 rq->cpu_load[j] = 0;
1da177e4
LT
4948 rq->active_balance = 0;
4949 rq->push_cpu = 0;
4950 rq->migration_thread = NULL;
4951 INIT_LIST_HEAD(&rq->migration_queue);
4952#endif
4953 atomic_set(&rq->nr_iowait, 0);
4954
4955 for (j = 0; j < 2; j++) {
4956 array = rq->arrays + j;
4957 for (k = 0; k < MAX_PRIO; k++) {
4958 INIT_LIST_HEAD(array->queue + k);
4959 __clear_bit(k, array->bitmap);
4960 }
4961 // delimiter for bitsearch
4962 __set_bit(MAX_PRIO, array->bitmap);
4963 }
4964 }
4965
4966 /*
4967 * The boot idle thread does lazy MMU switching as well:
4968 */
4969 atomic_inc(&init_mm.mm_count);
4970 enter_lazy_tlb(&init_mm, current);
4971
4972 /*
4973 * Make us the idle thread. Technically, schedule() should not be
4974 * called from this thread, however somewhere below it might be,
4975 * but because we are the idle thread, we just pick up running again
4976 * when this runqueue becomes "idle".
4977 */
4978 init_idle(current, smp_processor_id());
4979}
4980
4981#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4982void __might_sleep(char *file, int line)
4983{
4984#if defined(in_atomic)
4985 static unsigned long prev_jiffy; /* ratelimiting */
4986
4987 if ((in_atomic() || irqs_disabled()) &&
4988 system_state == SYSTEM_RUNNING && !oops_in_progress) {
4989 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
4990 return;
4991 prev_jiffy = jiffies;
4992 printk(KERN_ERR "Debug: sleeping function called from invalid"
4993 " context at %s:%d\n", file, line);
4994 printk("in_atomic():%d, irqs_disabled():%d\n",
4995 in_atomic(), irqs_disabled());
4996 dump_stack();
4997 }
4998#endif
4999}
5000EXPORT_SYMBOL(__might_sleep);
5001#endif
5002
5003#ifdef CONFIG_MAGIC_SYSRQ
5004void normalize_rt_tasks(void)
5005{
5006 struct task_struct *p;
5007 prio_array_t *array;
5008 unsigned long flags;
5009 runqueue_t *rq;
5010
5011 read_lock_irq(&tasklist_lock);
5012 for_each_process (p) {
5013 if (!rt_task(p))
5014 continue;
5015
5016 rq = task_rq_lock(p, &flags);
5017
5018 array = p->array;
5019 if (array)
5020 deactivate_task(p, task_rq(p));
5021 __setscheduler(p, SCHED_NORMAL, 0);
5022 if (array) {
5023 __activate_task(p, task_rq(p));
5024 resched_task(rq->curr);
5025 }
5026
5027 task_rq_unlock(rq, &flags);
5028 }
5029 read_unlock_irq(&tasklist_lock);
5030}
5031
5032#endif /* CONFIG_MAGIC_SYSRQ */