]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
[PATCH] sched: less aggressive idle balancing
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
30#include <linux/completion.h>
31#include <linux/kernel_stat.h>
32#include <linux/security.h>
33#include <linux/notifier.h>
34#include <linux/profile.h>
35#include <linux/suspend.h>
36#include <linux/blkdev.h>
37#include <linux/delay.h>
38#include <linux/smp.h>
39#include <linux/threads.h>
40#include <linux/timer.h>
41#include <linux/rcupdate.h>
42#include <linux/cpu.h>
43#include <linux/cpuset.h>
44#include <linux/percpu.h>
45#include <linux/kthread.h>
46#include <linux/seq_file.h>
47#include <linux/syscalls.h>
48#include <linux/times.h>
49#include <linux/acct.h>
50#include <asm/tlb.h>
51
52#include <asm/unistd.h>
53
54/*
55 * Convert user-nice values [ -20 ... 0 ... 19 ]
56 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57 * and back.
58 */
59#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
60#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
61#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
62
63/*
64 * 'User priority' is the nice value converted to something we
65 * can work with better when scaling various scheduler parameters,
66 * it's a [ 0 ... 39 ] range.
67 */
68#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
69#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
70#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
71
72/*
73 * Some helpers for converting nanosecond timing to jiffy resolution
74 */
75#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
76#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
77
78/*
79 * These are the 'tuning knobs' of the scheduler:
80 *
81 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83 * Timeslices get refilled after they expire.
84 */
85#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
86#define DEF_TIMESLICE (100 * HZ / 1000)
87#define ON_RUNQUEUE_WEIGHT 30
88#define CHILD_PENALTY 95
89#define PARENT_PENALTY 100
90#define EXIT_WEIGHT 3
91#define PRIO_BONUS_RATIO 25
92#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93#define INTERACTIVE_DELTA 2
94#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
95#define STARVATION_LIMIT (MAX_SLEEP_AVG)
96#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98/*
99 * If a task is 'interactive' then we reinsert it in the active
100 * array after it has expired its current timeslice. (it will not
101 * continue to run immediately, it will still roundrobin with
102 * other interactive tasks.)
103 *
104 * This part scales the interactivity limit depending on niceness.
105 *
106 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107 * Here are a few examples of different nice levels:
108 *
109 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
112 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114 *
115 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116 * priority range a task can explore, a value of '1' means the
117 * task is rated interactive.)
118 *
119 * Ie. nice +19 tasks can never get 'interactive' enough to be
120 * reinserted into the active array. And only heavily CPU-hog nice -20
121 * tasks will be expired. Default nice 0 tasks are somewhere between,
122 * it takes some effort for them to get interactive, but it's not
123 * too hard.
124 */
125
126#define CURRENT_BONUS(p) \
127 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128 MAX_SLEEP_AVG)
129
130#define GRANULARITY (10 * HZ / 1000 ? : 1)
131
132#ifdef CONFIG_SMP
133#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
134 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135 num_online_cpus())
136#else
137#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139#endif
140
141#define SCALE(v1,v1_max,v2_max) \
142 (v1) * (v2_max) / (v1_max)
143
144#define DELTA(p) \
145 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147#define TASK_INTERACTIVE(p) \
148 ((p)->prio <= (p)->static_prio - DELTA(p))
149
150#define INTERACTIVE_SLEEP(p) \
151 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154#define TASK_PREEMPTS_CURR(p, rq) \
155 ((p)->prio < (rq)->curr->prio)
156
157/*
158 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159 * to time slice values: [800ms ... 100ms ... 5ms]
160 *
161 * The higher a thread's priority, the bigger timeslices
162 * it gets during one round of execution. But even the lowest
163 * priority thread gets MIN_TIMESLICE worth of execution time.
164 */
165
166#define SCALE_PRIO(x, prio) \
167 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
169static inline unsigned int task_timeslice(task_t *p)
170{
171 if (p->static_prio < NICE_TO_PRIO(0))
172 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173 else
174 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175}
176#define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
177 < (long long) (sd)->cache_hot_time)
178
179/*
180 * These are the runqueue data structures:
181 */
182
183#define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185typedef struct runqueue runqueue_t;
186
187struct prio_array {
188 unsigned int nr_active;
189 unsigned long bitmap[BITMAP_SIZE];
190 struct list_head queue[MAX_PRIO];
191};
192
193/*
194 * This is the main, per-CPU runqueue data structure.
195 *
196 * Locking rule: those places that want to lock multiple runqueues
197 * (such as the load balancing or the thread migration code), lock
198 * acquire operations must be ordered by ascending &runqueue.
199 */
200struct runqueue {
201 spinlock_t lock;
202
203 /*
204 * nr_running and cpu_load should be in the same cacheline because
205 * remote CPUs use both these fields when doing load calculation.
206 */
207 unsigned long nr_running;
208#ifdef CONFIG_SMP
209 unsigned long cpu_load;
210#endif
211 unsigned long long nr_switches;
212
213 /*
214 * This is part of a global counter where only the total sum
215 * over all CPUs matters. A task can increase this counter on
216 * one CPU and if it got migrated afterwards it may decrease
217 * it on another CPU. Always updated under the runqueue lock:
218 */
219 unsigned long nr_uninterruptible;
220
221 unsigned long expired_timestamp;
222 unsigned long long timestamp_last_tick;
223 task_t *curr, *idle;
224 struct mm_struct *prev_mm;
225 prio_array_t *active, *expired, arrays[2];
226 int best_expired_prio;
227 atomic_t nr_iowait;
228
229#ifdef CONFIG_SMP
230 struct sched_domain *sd;
231
232 /* For active balancing */
233 int active_balance;
234 int push_cpu;
235
236 task_t *migration_thread;
237 struct list_head migration_queue;
238#endif
239
240#ifdef CONFIG_SCHEDSTATS
241 /* latency stats */
242 struct sched_info rq_sched_info;
243
244 /* sys_sched_yield() stats */
245 unsigned long yld_exp_empty;
246 unsigned long yld_act_empty;
247 unsigned long yld_both_empty;
248 unsigned long yld_cnt;
249
250 /* schedule() stats */
251 unsigned long sched_switch;
252 unsigned long sched_cnt;
253 unsigned long sched_goidle;
254
255 /* try_to_wake_up() stats */
256 unsigned long ttwu_cnt;
257 unsigned long ttwu_local;
258#endif
259};
260
261static DEFINE_PER_CPU(struct runqueue, runqueues);
262
263#define for_each_domain(cpu, domain) \
264 for (domain = cpu_rq(cpu)->sd; domain; domain = domain->parent)
265
266#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
267#define this_rq() (&__get_cpu_var(runqueues))
268#define task_rq(p) cpu_rq(task_cpu(p))
269#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
270
271/*
272 * Default context-switch locking:
273 */
274#ifndef prepare_arch_switch
275# define prepare_arch_switch(rq, next) do { } while (0)
276# define finish_arch_switch(rq, next) spin_unlock_irq(&(rq)->lock)
277# define task_running(rq, p) ((rq)->curr == (p))
278#endif
279
280/*
281 * task_rq_lock - lock the runqueue a given task resides on and disable
282 * interrupts. Note the ordering: we can safely lookup the task_rq without
283 * explicitly disabling preemption.
284 */
285static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
286 __acquires(rq->lock)
287{
288 struct runqueue *rq;
289
290repeat_lock_task:
291 local_irq_save(*flags);
292 rq = task_rq(p);
293 spin_lock(&rq->lock);
294 if (unlikely(rq != task_rq(p))) {
295 spin_unlock_irqrestore(&rq->lock, *flags);
296 goto repeat_lock_task;
297 }
298 return rq;
299}
300
301static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
302 __releases(rq->lock)
303{
304 spin_unlock_irqrestore(&rq->lock, *flags);
305}
306
307#ifdef CONFIG_SCHEDSTATS
308/*
309 * bump this up when changing the output format or the meaning of an existing
310 * format, so that tools can adapt (or abort)
311 */
312#define SCHEDSTAT_VERSION 11
313
314static int show_schedstat(struct seq_file *seq, void *v)
315{
316 int cpu;
317
318 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
319 seq_printf(seq, "timestamp %lu\n", jiffies);
320 for_each_online_cpu(cpu) {
321 runqueue_t *rq = cpu_rq(cpu);
322#ifdef CONFIG_SMP
323 struct sched_domain *sd;
324 int dcnt = 0;
325#endif
326
327 /* runqueue-specific stats */
328 seq_printf(seq,
329 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
330 cpu, rq->yld_both_empty,
331 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
332 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
333 rq->ttwu_cnt, rq->ttwu_local,
334 rq->rq_sched_info.cpu_time,
335 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
336
337 seq_printf(seq, "\n");
338
339#ifdef CONFIG_SMP
340 /* domain-specific stats */
341 for_each_domain(cpu, sd) {
342 enum idle_type itype;
343 char mask_str[NR_CPUS];
344
345 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
346 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
347 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
348 itype++) {
349 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
350 sd->lb_cnt[itype],
351 sd->lb_balanced[itype],
352 sd->lb_failed[itype],
353 sd->lb_imbalance[itype],
354 sd->lb_gained[itype],
355 sd->lb_hot_gained[itype],
356 sd->lb_nobusyq[itype],
357 sd->lb_nobusyg[itype]);
358 }
359 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu\n",
360 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
361 sd->sbe_pushed, sd->sbe_attempts,
362 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
363 }
364#endif
365 }
366 return 0;
367}
368
369static int schedstat_open(struct inode *inode, struct file *file)
370{
371 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
372 char *buf = kmalloc(size, GFP_KERNEL);
373 struct seq_file *m;
374 int res;
375
376 if (!buf)
377 return -ENOMEM;
378 res = single_open(file, show_schedstat, NULL);
379 if (!res) {
380 m = file->private_data;
381 m->buf = buf;
382 m->size = size;
383 } else
384 kfree(buf);
385 return res;
386}
387
388struct file_operations proc_schedstat_operations = {
389 .open = schedstat_open,
390 .read = seq_read,
391 .llseek = seq_lseek,
392 .release = single_release,
393};
394
395# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
396# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
397#else /* !CONFIG_SCHEDSTATS */
398# define schedstat_inc(rq, field) do { } while (0)
399# define schedstat_add(rq, field, amt) do { } while (0)
400#endif
401
402/*
403 * rq_lock - lock a given runqueue and disable interrupts.
404 */
405static inline runqueue_t *this_rq_lock(void)
406 __acquires(rq->lock)
407{
408 runqueue_t *rq;
409
410 local_irq_disable();
411 rq = this_rq();
412 spin_lock(&rq->lock);
413
414 return rq;
415}
416
417#ifdef CONFIG_SCHED_SMT
418static int cpu_and_siblings_are_idle(int cpu)
419{
420 int sib;
421 for_each_cpu_mask(sib, cpu_sibling_map[cpu]) {
422 if (idle_cpu(sib))
423 continue;
424 return 0;
425 }
426
427 return 1;
428}
429#else
430#define cpu_and_siblings_are_idle(A) idle_cpu(A)
431#endif
432
433#ifdef CONFIG_SCHEDSTATS
434/*
435 * Called when a process is dequeued from the active array and given
436 * the cpu. We should note that with the exception of interactive
437 * tasks, the expired queue will become the active queue after the active
438 * queue is empty, without explicitly dequeuing and requeuing tasks in the
439 * expired queue. (Interactive tasks may be requeued directly to the
440 * active queue, thus delaying tasks in the expired queue from running;
441 * see scheduler_tick()).
442 *
443 * This function is only called from sched_info_arrive(), rather than
444 * dequeue_task(). Even though a task may be queued and dequeued multiple
445 * times as it is shuffled about, we're really interested in knowing how
446 * long it was from the *first* time it was queued to the time that it
447 * finally hit a cpu.
448 */
449static inline void sched_info_dequeued(task_t *t)
450{
451 t->sched_info.last_queued = 0;
452}
453
454/*
455 * Called when a task finally hits the cpu. We can now calculate how
456 * long it was waiting to run. We also note when it began so that we
457 * can keep stats on how long its timeslice is.
458 */
459static inline void sched_info_arrive(task_t *t)
460{
461 unsigned long now = jiffies, diff = 0;
462 struct runqueue *rq = task_rq(t);
463
464 if (t->sched_info.last_queued)
465 diff = now - t->sched_info.last_queued;
466 sched_info_dequeued(t);
467 t->sched_info.run_delay += diff;
468 t->sched_info.last_arrival = now;
469 t->sched_info.pcnt++;
470
471 if (!rq)
472 return;
473
474 rq->rq_sched_info.run_delay += diff;
475 rq->rq_sched_info.pcnt++;
476}
477
478/*
479 * Called when a process is queued into either the active or expired
480 * array. The time is noted and later used to determine how long we
481 * had to wait for us to reach the cpu. Since the expired queue will
482 * become the active queue after active queue is empty, without dequeuing
483 * and requeuing any tasks, we are interested in queuing to either. It
484 * is unusual but not impossible for tasks to be dequeued and immediately
485 * requeued in the same or another array: this can happen in sched_yield(),
486 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
487 * to runqueue.
488 *
489 * This function is only called from enqueue_task(), but also only updates
490 * the timestamp if it is already not set. It's assumed that
491 * sched_info_dequeued() will clear that stamp when appropriate.
492 */
493static inline void sched_info_queued(task_t *t)
494{
495 if (!t->sched_info.last_queued)
496 t->sched_info.last_queued = jiffies;
497}
498
499/*
500 * Called when a process ceases being the active-running process, either
501 * voluntarily or involuntarily. Now we can calculate how long we ran.
502 */
503static inline void sched_info_depart(task_t *t)
504{
505 struct runqueue *rq = task_rq(t);
506 unsigned long diff = jiffies - t->sched_info.last_arrival;
507
508 t->sched_info.cpu_time += diff;
509
510 if (rq)
511 rq->rq_sched_info.cpu_time += diff;
512}
513
514/*
515 * Called when tasks are switched involuntarily due, typically, to expiring
516 * their time slice. (This may also be called when switching to or from
517 * the idle task.) We are only called when prev != next.
518 */
519static inline void sched_info_switch(task_t *prev, task_t *next)
520{
521 struct runqueue *rq = task_rq(prev);
522
523 /*
524 * prev now departs the cpu. It's not interesting to record
525 * stats about how efficient we were at scheduling the idle
526 * process, however.
527 */
528 if (prev != rq->idle)
529 sched_info_depart(prev);
530
531 if (next != rq->idle)
532 sched_info_arrive(next);
533}
534#else
535#define sched_info_queued(t) do { } while (0)
536#define sched_info_switch(t, next) do { } while (0)
537#endif /* CONFIG_SCHEDSTATS */
538
539/*
540 * Adding/removing a task to/from a priority array:
541 */
542static void dequeue_task(struct task_struct *p, prio_array_t *array)
543{
544 array->nr_active--;
545 list_del(&p->run_list);
546 if (list_empty(array->queue + p->prio))
547 __clear_bit(p->prio, array->bitmap);
548}
549
550static void enqueue_task(struct task_struct *p, prio_array_t *array)
551{
552 sched_info_queued(p);
553 list_add_tail(&p->run_list, array->queue + p->prio);
554 __set_bit(p->prio, array->bitmap);
555 array->nr_active++;
556 p->array = array;
557}
558
559/*
560 * Put task to the end of the run list without the overhead of dequeue
561 * followed by enqueue.
562 */
563static void requeue_task(struct task_struct *p, prio_array_t *array)
564{
565 list_move_tail(&p->run_list, array->queue + p->prio);
566}
567
568static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
569{
570 list_add(&p->run_list, array->queue + p->prio);
571 __set_bit(p->prio, array->bitmap);
572 array->nr_active++;
573 p->array = array;
574}
575
576/*
577 * effective_prio - return the priority that is based on the static
578 * priority but is modified by bonuses/penalties.
579 *
580 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
581 * into the -5 ... 0 ... +5 bonus/penalty range.
582 *
583 * We use 25% of the full 0...39 priority range so that:
584 *
585 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
586 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
587 *
588 * Both properties are important to certain workloads.
589 */
590static int effective_prio(task_t *p)
591{
592 int bonus, prio;
593
594 if (rt_task(p))
595 return p->prio;
596
597 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
598
599 prio = p->static_prio - bonus;
600 if (prio < MAX_RT_PRIO)
601 prio = MAX_RT_PRIO;
602 if (prio > MAX_PRIO-1)
603 prio = MAX_PRIO-1;
604 return prio;
605}
606
607/*
608 * __activate_task - move a task to the runqueue.
609 */
610static inline void __activate_task(task_t *p, runqueue_t *rq)
611{
612 enqueue_task(p, rq->active);
613 rq->nr_running++;
614}
615
616/*
617 * __activate_idle_task - move idle task to the _front_ of runqueue.
618 */
619static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
620{
621 enqueue_task_head(p, rq->active);
622 rq->nr_running++;
623}
624
625static void recalc_task_prio(task_t *p, unsigned long long now)
626{
627 /* Caller must always ensure 'now >= p->timestamp' */
628 unsigned long long __sleep_time = now - p->timestamp;
629 unsigned long sleep_time;
630
631 if (__sleep_time > NS_MAX_SLEEP_AVG)
632 sleep_time = NS_MAX_SLEEP_AVG;
633 else
634 sleep_time = (unsigned long)__sleep_time;
635
636 if (likely(sleep_time > 0)) {
637 /*
638 * User tasks that sleep a long time are categorised as
639 * idle and will get just interactive status to stay active &
640 * prevent them suddenly becoming cpu hogs and starving
641 * other processes.
642 */
643 if (p->mm && p->activated != -1 &&
644 sleep_time > INTERACTIVE_SLEEP(p)) {
645 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
646 DEF_TIMESLICE);
647 } else {
648 /*
649 * The lower the sleep avg a task has the more
650 * rapidly it will rise with sleep time.
651 */
652 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
653
654 /*
655 * Tasks waking from uninterruptible sleep are
656 * limited in their sleep_avg rise as they
657 * are likely to be waiting on I/O
658 */
659 if (p->activated == -1 && p->mm) {
660 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
661 sleep_time = 0;
662 else if (p->sleep_avg + sleep_time >=
663 INTERACTIVE_SLEEP(p)) {
664 p->sleep_avg = INTERACTIVE_SLEEP(p);
665 sleep_time = 0;
666 }
667 }
668
669 /*
670 * This code gives a bonus to interactive tasks.
671 *
672 * The boost works by updating the 'average sleep time'
673 * value here, based on ->timestamp. The more time a
674 * task spends sleeping, the higher the average gets -
675 * and the higher the priority boost gets as well.
676 */
677 p->sleep_avg += sleep_time;
678
679 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
680 p->sleep_avg = NS_MAX_SLEEP_AVG;
681 }
682 }
683
684 p->prio = effective_prio(p);
685}
686
687/*
688 * activate_task - move a task to the runqueue and do priority recalculation
689 *
690 * Update all the scheduling statistics stuff. (sleep average
691 * calculation, priority modifiers, etc.)
692 */
693static void activate_task(task_t *p, runqueue_t *rq, int local)
694{
695 unsigned long long now;
696
697 now = sched_clock();
698#ifdef CONFIG_SMP
699 if (!local) {
700 /* Compensate for drifting sched_clock */
701 runqueue_t *this_rq = this_rq();
702 now = (now - this_rq->timestamp_last_tick)
703 + rq->timestamp_last_tick;
704 }
705#endif
706
707 recalc_task_prio(p, now);
708
709 /*
710 * This checks to make sure it's not an uninterruptible task
711 * that is now waking up.
712 */
713 if (!p->activated) {
714 /*
715 * Tasks which were woken up by interrupts (ie. hw events)
716 * are most likely of interactive nature. So we give them
717 * the credit of extending their sleep time to the period
718 * of time they spend on the runqueue, waiting for execution
719 * on a CPU, first time around:
720 */
721 if (in_interrupt())
722 p->activated = 2;
723 else {
724 /*
725 * Normal first-time wakeups get a credit too for
726 * on-runqueue time, but it will be weighted down:
727 */
728 p->activated = 1;
729 }
730 }
731 p->timestamp = now;
732
733 __activate_task(p, rq);
734}
735
736/*
737 * deactivate_task - remove a task from the runqueue.
738 */
739static void deactivate_task(struct task_struct *p, runqueue_t *rq)
740{
741 rq->nr_running--;
742 dequeue_task(p, p->array);
743 p->array = NULL;
744}
745
746/*
747 * resched_task - mark a task 'to be rescheduled now'.
748 *
749 * On UP this means the setting of the need_resched flag, on SMP it
750 * might also involve a cross-CPU call to trigger the scheduler on
751 * the target CPU.
752 */
753#ifdef CONFIG_SMP
754static void resched_task(task_t *p)
755{
756 int need_resched, nrpolling;
757
758 assert_spin_locked(&task_rq(p)->lock);
759
760 /* minimise the chance of sending an interrupt to poll_idle() */
761 nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
762 need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
763 nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
764
765 if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
766 smp_send_reschedule(task_cpu(p));
767}
768#else
769static inline void resched_task(task_t *p)
770{
771 set_tsk_need_resched(p);
772}
773#endif
774
775/**
776 * task_curr - is this task currently executing on a CPU?
777 * @p: the task in question.
778 */
779inline int task_curr(const task_t *p)
780{
781 return cpu_curr(task_cpu(p)) == p;
782}
783
784#ifdef CONFIG_SMP
785enum request_type {
786 REQ_MOVE_TASK,
787 REQ_SET_DOMAIN,
788};
789
790typedef struct {
791 struct list_head list;
792 enum request_type type;
793
794 /* For REQ_MOVE_TASK */
795 task_t *task;
796 int dest_cpu;
797
798 /* For REQ_SET_DOMAIN */
799 struct sched_domain *sd;
800
801 struct completion done;
802} migration_req_t;
803
804/*
805 * The task's runqueue lock must be held.
806 * Returns true if you have to wait for migration thread.
807 */
808static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
809{
810 runqueue_t *rq = task_rq(p);
811
812 /*
813 * If the task is not on a runqueue (and not running), then
814 * it is sufficient to simply update the task's cpu field.
815 */
816 if (!p->array && !task_running(rq, p)) {
817 set_task_cpu(p, dest_cpu);
818 return 0;
819 }
820
821 init_completion(&req->done);
822 req->type = REQ_MOVE_TASK;
823 req->task = p;
824 req->dest_cpu = dest_cpu;
825 list_add(&req->list, &rq->migration_queue);
826 return 1;
827}
828
829/*
830 * wait_task_inactive - wait for a thread to unschedule.
831 *
832 * The caller must ensure that the task *will* unschedule sometime soon,
833 * else this function might spin for a *long* time. This function can't
834 * be called with interrupts off, or it may introduce deadlock with
835 * smp_call_function() if an IPI is sent by the same process we are
836 * waiting to become inactive.
837 */
838void wait_task_inactive(task_t * p)
839{
840 unsigned long flags;
841 runqueue_t *rq;
842 int preempted;
843
844repeat:
845 rq = task_rq_lock(p, &flags);
846 /* Must be off runqueue entirely, not preempted. */
847 if (unlikely(p->array || task_running(rq, p))) {
848 /* If it's preempted, we yield. It could be a while. */
849 preempted = !task_running(rq, p);
850 task_rq_unlock(rq, &flags);
851 cpu_relax();
852 if (preempted)
853 yield();
854 goto repeat;
855 }
856 task_rq_unlock(rq, &flags);
857}
858
859/***
860 * kick_process - kick a running thread to enter/exit the kernel
861 * @p: the to-be-kicked thread
862 *
863 * Cause a process which is running on another CPU to enter
864 * kernel-mode, without any delay. (to get signals handled.)
865 *
866 * NOTE: this function doesnt have to take the runqueue lock,
867 * because all it wants to ensure is that the remote task enters
868 * the kernel. If the IPI races and the task has been migrated
869 * to another CPU then no harm is done and the purpose has been
870 * achieved as well.
871 */
872void kick_process(task_t *p)
873{
874 int cpu;
875
876 preempt_disable();
877 cpu = task_cpu(p);
878 if ((cpu != smp_processor_id()) && task_curr(p))
879 smp_send_reschedule(cpu);
880 preempt_enable();
881}
882
883/*
884 * Return a low guess at the load of a migration-source cpu.
885 *
886 * We want to under-estimate the load of migration sources, to
887 * balance conservatively.
888 */
889static inline unsigned long source_load(int cpu)
890{
891 runqueue_t *rq = cpu_rq(cpu);
892 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
893
894 return min(rq->cpu_load, load_now);
895}
896
897/*
898 * Return a high guess at the load of a migration-target cpu
899 */
900static inline unsigned long target_load(int cpu)
901{
902 runqueue_t *rq = cpu_rq(cpu);
903 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
904
905 return max(rq->cpu_load, load_now);
906}
907
908#endif
909
910/*
911 * wake_idle() will wake a task on an idle cpu if task->cpu is
912 * not idle and an idle cpu is available. The span of cpus to
913 * search starts with cpus closest then further out as needed,
914 * so we always favor a closer, idle cpu.
915 *
916 * Returns the CPU we should wake onto.
917 */
918#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
919static int wake_idle(int cpu, task_t *p)
920{
921 cpumask_t tmp;
922 struct sched_domain *sd;
923 int i;
924
925 if (idle_cpu(cpu))
926 return cpu;
927
928 for_each_domain(cpu, sd) {
929 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 930 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
931 for_each_cpu_mask(i, tmp) {
932 if (idle_cpu(i))
933 return i;
934 }
935 }
e0f364f4
NP
936 else
937 break;
1da177e4
LT
938 }
939 return cpu;
940}
941#else
942static inline int wake_idle(int cpu, task_t *p)
943{
944 return cpu;
945}
946#endif
947
948/***
949 * try_to_wake_up - wake up a thread
950 * @p: the to-be-woken-up thread
951 * @state: the mask of task states that can be woken
952 * @sync: do a synchronous wakeup?
953 *
954 * Put it on the run-queue if it's not already there. The "current"
955 * thread is always on the run-queue (except when the actual
956 * re-schedule is in progress), and as such you're allowed to do
957 * the simpler "current->state = TASK_RUNNING" to mark yourself
958 * runnable without the overhead of this.
959 *
960 * returns failure only if the task is already active.
961 */
962static int try_to_wake_up(task_t * p, unsigned int state, int sync)
963{
964 int cpu, this_cpu, success = 0;
965 unsigned long flags;
966 long old_state;
967 runqueue_t *rq;
968#ifdef CONFIG_SMP
969 unsigned long load, this_load;
970 struct sched_domain *sd;
971 int new_cpu;
972#endif
973
974 rq = task_rq_lock(p, &flags);
975 old_state = p->state;
976 if (!(old_state & state))
977 goto out;
978
979 if (p->array)
980 goto out_running;
981
982 cpu = task_cpu(p);
983 this_cpu = smp_processor_id();
984
985#ifdef CONFIG_SMP
986 if (unlikely(task_running(rq, p)))
987 goto out_activate;
988
989#ifdef CONFIG_SCHEDSTATS
990 schedstat_inc(rq, ttwu_cnt);
991 if (cpu == this_cpu) {
992 schedstat_inc(rq, ttwu_local);
993 } else {
994 for_each_domain(this_cpu, sd) {
995 if (cpu_isset(cpu, sd->span)) {
996 schedstat_inc(sd, ttwu_wake_remote);
997 break;
998 }
999 }
1000 }
1001#endif
1002
1003 new_cpu = cpu;
1004 if (cpu == this_cpu || unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1005 goto out_set_cpu;
1006
1007 load = source_load(cpu);
1008 this_load = target_load(this_cpu);
1009
1010 /*
1011 * If sync wakeup then subtract the (maximum possible) effect of
1012 * the currently running task from the load of the current CPU:
1013 */
1014 if (sync)
1015 this_load -= SCHED_LOAD_SCALE;
1016
1017 /* Don't pull the task off an idle CPU to a busy one */
1018 if (load < SCHED_LOAD_SCALE/2 && this_load > SCHED_LOAD_SCALE/2)
1019 goto out_set_cpu;
1020
1021 new_cpu = this_cpu; /* Wake to this CPU if we can */
1022
1023 /*
1024 * Scan domains for affine wakeup and passive balancing
1025 * possibilities.
1026 */
1027 for_each_domain(this_cpu, sd) {
1028 unsigned int imbalance;
1029 /*
1030 * Start passive balancing when half the imbalance_pct
1031 * limit is reached.
1032 */
1033 imbalance = sd->imbalance_pct + (sd->imbalance_pct - 100) / 2;
1034
1035 if ((sd->flags & SD_WAKE_AFFINE) &&
1036 !task_hot(p, rq->timestamp_last_tick, sd)) {
1037 /*
1038 * This domain has SD_WAKE_AFFINE and p is cache cold
1039 * in this domain.
1040 */
1041 if (cpu_isset(cpu, sd->span)) {
1042 schedstat_inc(sd, ttwu_move_affine);
1043 goto out_set_cpu;
1044 }
1045 } else if ((sd->flags & SD_WAKE_BALANCE) &&
1046 imbalance*this_load <= 100*load) {
1047 /*
1048 * This domain has SD_WAKE_BALANCE and there is
1049 * an imbalance.
1050 */
1051 if (cpu_isset(cpu, sd->span)) {
1052 schedstat_inc(sd, ttwu_move_balance);
1053 goto out_set_cpu;
1054 }
1055 }
1056 }
1057
1058 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1059out_set_cpu:
1060 new_cpu = wake_idle(new_cpu, p);
1061 if (new_cpu != cpu) {
1062 set_task_cpu(p, new_cpu);
1063 task_rq_unlock(rq, &flags);
1064 /* might preempt at this point */
1065 rq = task_rq_lock(p, &flags);
1066 old_state = p->state;
1067 if (!(old_state & state))
1068 goto out;
1069 if (p->array)
1070 goto out_running;
1071
1072 this_cpu = smp_processor_id();
1073 cpu = task_cpu(p);
1074 }
1075
1076out_activate:
1077#endif /* CONFIG_SMP */
1078 if (old_state == TASK_UNINTERRUPTIBLE) {
1079 rq->nr_uninterruptible--;
1080 /*
1081 * Tasks on involuntary sleep don't earn
1082 * sleep_avg beyond just interactive state.
1083 */
1084 p->activated = -1;
1085 }
1086
1087 /*
1088 * Sync wakeups (i.e. those types of wakeups where the waker
1089 * has indicated that it will leave the CPU in short order)
1090 * don't trigger a preemption, if the woken up task will run on
1091 * this cpu. (in this case the 'I will reschedule' promise of
1092 * the waker guarantees that the freshly woken up task is going
1093 * to be considered on this CPU.)
1094 */
1095 activate_task(p, rq, cpu == this_cpu);
1096 if (!sync || cpu != this_cpu) {
1097 if (TASK_PREEMPTS_CURR(p, rq))
1098 resched_task(rq->curr);
1099 }
1100 success = 1;
1101
1102out_running:
1103 p->state = TASK_RUNNING;
1104out:
1105 task_rq_unlock(rq, &flags);
1106
1107 return success;
1108}
1109
1110int fastcall wake_up_process(task_t * p)
1111{
1112 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1113 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1114}
1115
1116EXPORT_SYMBOL(wake_up_process);
1117
1118int fastcall wake_up_state(task_t *p, unsigned int state)
1119{
1120 return try_to_wake_up(p, state, 0);
1121}
1122
1123#ifdef CONFIG_SMP
1124static int find_idlest_cpu(struct task_struct *p, int this_cpu,
1125 struct sched_domain *sd);
1126#endif
1127
1128/*
1129 * Perform scheduler related setup for a newly forked process p.
1130 * p is forked by current.
1131 */
1132void fastcall sched_fork(task_t *p)
1133{
1134 /*
1135 * We mark the process as running here, but have not actually
1136 * inserted it onto the runqueue yet. This guarantees that
1137 * nobody will actually run it, and a signal or other external
1138 * event cannot wake it up and insert it on the runqueue either.
1139 */
1140 p->state = TASK_RUNNING;
1141 INIT_LIST_HEAD(&p->run_list);
1142 p->array = NULL;
1143 spin_lock_init(&p->switch_lock);
1144#ifdef CONFIG_SCHEDSTATS
1145 memset(&p->sched_info, 0, sizeof(p->sched_info));
1146#endif
1147#ifdef CONFIG_PREEMPT
1148 /*
1149 * During context-switch we hold precisely one spinlock, which
1150 * schedule_tail drops. (in the common case it's this_rq()->lock,
1151 * but it also can be p->switch_lock.) So we compensate with a count
1152 * of 1. Also, we want to start with kernel preemption disabled.
1153 */
1154 p->thread_info->preempt_count = 1;
1155#endif
1156 /*
1157 * Share the timeslice between parent and child, thus the
1158 * total amount of pending timeslices in the system doesn't change,
1159 * resulting in more scheduling fairness.
1160 */
1161 local_irq_disable();
1162 p->time_slice = (current->time_slice + 1) >> 1;
1163 /*
1164 * The remainder of the first timeslice might be recovered by
1165 * the parent if the child exits early enough.
1166 */
1167 p->first_time_slice = 1;
1168 current->time_slice >>= 1;
1169 p->timestamp = sched_clock();
1170 if (unlikely(!current->time_slice)) {
1171 /*
1172 * This case is rare, it happens when the parent has only
1173 * a single jiffy left from its timeslice. Taking the
1174 * runqueue lock is not a problem.
1175 */
1176 current->time_slice = 1;
1177 preempt_disable();
1178 scheduler_tick();
1179 local_irq_enable();
1180 preempt_enable();
1181 } else
1182 local_irq_enable();
1183}
1184
1185/*
1186 * wake_up_new_task - wake up a newly created task for the first time.
1187 *
1188 * This function will do some initial scheduler statistics housekeeping
1189 * that must be done for every newly created context, then puts the task
1190 * on the runqueue and wakes it.
1191 */
1192void fastcall wake_up_new_task(task_t * p, unsigned long clone_flags)
1193{
1194 unsigned long flags;
1195 int this_cpu, cpu;
1196 runqueue_t *rq, *this_rq;
1197
1198 rq = task_rq_lock(p, &flags);
1199 cpu = task_cpu(p);
1200 this_cpu = smp_processor_id();
1201
1202 BUG_ON(p->state != TASK_RUNNING);
1203
1204 /*
1205 * We decrease the sleep average of forking parents
1206 * and children as well, to keep max-interactive tasks
1207 * from forking tasks that are max-interactive. The parent
1208 * (current) is done further down, under its lock.
1209 */
1210 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1211 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1212
1213 p->prio = effective_prio(p);
1214
1215 if (likely(cpu == this_cpu)) {
1216 if (!(clone_flags & CLONE_VM)) {
1217 /*
1218 * The VM isn't cloned, so we're in a good position to
1219 * do child-runs-first in anticipation of an exec. This
1220 * usually avoids a lot of COW overhead.
1221 */
1222 if (unlikely(!current->array))
1223 __activate_task(p, rq);
1224 else {
1225 p->prio = current->prio;
1226 list_add_tail(&p->run_list, &current->run_list);
1227 p->array = current->array;
1228 p->array->nr_active++;
1229 rq->nr_running++;
1230 }
1231 set_need_resched();
1232 } else
1233 /* Run child last */
1234 __activate_task(p, rq);
1235 /*
1236 * We skip the following code due to cpu == this_cpu
1237 *
1238 * task_rq_unlock(rq, &flags);
1239 * this_rq = task_rq_lock(current, &flags);
1240 */
1241 this_rq = rq;
1242 } else {
1243 this_rq = cpu_rq(this_cpu);
1244
1245 /*
1246 * Not the local CPU - must adjust timestamp. This should
1247 * get optimised away in the !CONFIG_SMP case.
1248 */
1249 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1250 + rq->timestamp_last_tick;
1251 __activate_task(p, rq);
1252 if (TASK_PREEMPTS_CURR(p, rq))
1253 resched_task(rq->curr);
1254
1255 /*
1256 * Parent and child are on different CPUs, now get the
1257 * parent runqueue to update the parent's ->sleep_avg:
1258 */
1259 task_rq_unlock(rq, &flags);
1260 this_rq = task_rq_lock(current, &flags);
1261 }
1262 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1263 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1264 task_rq_unlock(this_rq, &flags);
1265}
1266
1267/*
1268 * Potentially available exiting-child timeslices are
1269 * retrieved here - this way the parent does not get
1270 * penalized for creating too many threads.
1271 *
1272 * (this cannot be used to 'generate' timeslices
1273 * artificially, because any timeslice recovered here
1274 * was given away by the parent in the first place.)
1275 */
1276void fastcall sched_exit(task_t * p)
1277{
1278 unsigned long flags;
1279 runqueue_t *rq;
1280
1281 /*
1282 * If the child was a (relative-) CPU hog then decrease
1283 * the sleep_avg of the parent as well.
1284 */
1285 rq = task_rq_lock(p->parent, &flags);
1286 if (p->first_time_slice) {
1287 p->parent->time_slice += p->time_slice;
1288 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1289 p->parent->time_slice = task_timeslice(p);
1290 }
1291 if (p->sleep_avg < p->parent->sleep_avg)
1292 p->parent->sleep_avg = p->parent->sleep_avg /
1293 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1294 (EXIT_WEIGHT + 1);
1295 task_rq_unlock(rq, &flags);
1296}
1297
1298/**
1299 * finish_task_switch - clean up after a task-switch
1300 * @prev: the thread we just switched away from.
1301 *
1302 * We enter this with the runqueue still locked, and finish_arch_switch()
1303 * will unlock it along with doing any other architecture-specific cleanup
1304 * actions.
1305 *
1306 * Note that we may have delayed dropping an mm in context_switch(). If
1307 * so, we finish that here outside of the runqueue lock. (Doing it
1308 * with the lock held can cause deadlocks; see schedule() for
1309 * details.)
1310 */
1311static inline void finish_task_switch(task_t *prev)
1312 __releases(rq->lock)
1313{
1314 runqueue_t *rq = this_rq();
1315 struct mm_struct *mm = rq->prev_mm;
1316 unsigned long prev_task_flags;
1317
1318 rq->prev_mm = NULL;
1319
1320 /*
1321 * A task struct has one reference for the use as "current".
1322 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1323 * calls schedule one last time. The schedule call will never return,
1324 * and the scheduled task must drop that reference.
1325 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1326 * still held, otherwise prev could be scheduled on another cpu, die
1327 * there before we look at prev->state, and then the reference would
1328 * be dropped twice.
1329 * Manfred Spraul <manfred@colorfullife.com>
1330 */
1331 prev_task_flags = prev->flags;
1332 finish_arch_switch(rq, prev);
1333 if (mm)
1334 mmdrop(mm);
1335 if (unlikely(prev_task_flags & PF_DEAD))
1336 put_task_struct(prev);
1337}
1338
1339/**
1340 * schedule_tail - first thing a freshly forked thread must call.
1341 * @prev: the thread we just switched away from.
1342 */
1343asmlinkage void schedule_tail(task_t *prev)
1344 __releases(rq->lock)
1345{
1346 finish_task_switch(prev);
1347
1348 if (current->set_child_tid)
1349 put_user(current->pid, current->set_child_tid);
1350}
1351
1352/*
1353 * context_switch - switch to the new MM and the new
1354 * thread's register state.
1355 */
1356static inline
1357task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1358{
1359 struct mm_struct *mm = next->mm;
1360 struct mm_struct *oldmm = prev->active_mm;
1361
1362 if (unlikely(!mm)) {
1363 next->active_mm = oldmm;
1364 atomic_inc(&oldmm->mm_count);
1365 enter_lazy_tlb(oldmm, next);
1366 } else
1367 switch_mm(oldmm, mm, next);
1368
1369 if (unlikely(!prev->mm)) {
1370 prev->active_mm = NULL;
1371 WARN_ON(rq->prev_mm);
1372 rq->prev_mm = oldmm;
1373 }
1374
1375 /* Here we just switch the register state and the stack. */
1376 switch_to(prev, next, prev);
1377
1378 return prev;
1379}
1380
1381/*
1382 * nr_running, nr_uninterruptible and nr_context_switches:
1383 *
1384 * externally visible scheduler statistics: current number of runnable
1385 * threads, current number of uninterruptible-sleeping threads, total
1386 * number of context switches performed since bootup.
1387 */
1388unsigned long nr_running(void)
1389{
1390 unsigned long i, sum = 0;
1391
1392 for_each_online_cpu(i)
1393 sum += cpu_rq(i)->nr_running;
1394
1395 return sum;
1396}
1397
1398unsigned long nr_uninterruptible(void)
1399{
1400 unsigned long i, sum = 0;
1401
1402 for_each_cpu(i)
1403 sum += cpu_rq(i)->nr_uninterruptible;
1404
1405 /*
1406 * Since we read the counters lockless, it might be slightly
1407 * inaccurate. Do not allow it to go below zero though:
1408 */
1409 if (unlikely((long)sum < 0))
1410 sum = 0;
1411
1412 return sum;
1413}
1414
1415unsigned long long nr_context_switches(void)
1416{
1417 unsigned long long i, sum = 0;
1418
1419 for_each_cpu(i)
1420 sum += cpu_rq(i)->nr_switches;
1421
1422 return sum;
1423}
1424
1425unsigned long nr_iowait(void)
1426{
1427 unsigned long i, sum = 0;
1428
1429 for_each_cpu(i)
1430 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1431
1432 return sum;
1433}
1434
1435#ifdef CONFIG_SMP
1436
1437/*
1438 * double_rq_lock - safely lock two runqueues
1439 *
1440 * Note this does not disable interrupts like task_rq_lock,
1441 * you need to do so manually before calling.
1442 */
1443static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1444 __acquires(rq1->lock)
1445 __acquires(rq2->lock)
1446{
1447 if (rq1 == rq2) {
1448 spin_lock(&rq1->lock);
1449 __acquire(rq2->lock); /* Fake it out ;) */
1450 } else {
1451 if (rq1 < rq2) {
1452 spin_lock(&rq1->lock);
1453 spin_lock(&rq2->lock);
1454 } else {
1455 spin_lock(&rq2->lock);
1456 spin_lock(&rq1->lock);
1457 }
1458 }
1459}
1460
1461/*
1462 * double_rq_unlock - safely unlock two runqueues
1463 *
1464 * Note this does not restore interrupts like task_rq_unlock,
1465 * you need to do so manually after calling.
1466 */
1467static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1468 __releases(rq1->lock)
1469 __releases(rq2->lock)
1470{
1471 spin_unlock(&rq1->lock);
1472 if (rq1 != rq2)
1473 spin_unlock(&rq2->lock);
1474 else
1475 __release(rq2->lock);
1476}
1477
1478/*
1479 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1480 */
1481static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1482 __releases(this_rq->lock)
1483 __acquires(busiest->lock)
1484 __acquires(this_rq->lock)
1485{
1486 if (unlikely(!spin_trylock(&busiest->lock))) {
1487 if (busiest < this_rq) {
1488 spin_unlock(&this_rq->lock);
1489 spin_lock(&busiest->lock);
1490 spin_lock(&this_rq->lock);
1491 } else
1492 spin_lock(&busiest->lock);
1493 }
1494}
1495
1496/*
1497 * find_idlest_cpu - find the least busy runqueue.
1498 */
1499static int find_idlest_cpu(struct task_struct *p, int this_cpu,
1500 struct sched_domain *sd)
1501{
1502 unsigned long load, min_load, this_load;
1503 int i, min_cpu;
1504 cpumask_t mask;
1505
1506 min_cpu = UINT_MAX;
1507 min_load = ULONG_MAX;
1508
1509 cpus_and(mask, sd->span, p->cpus_allowed);
1510
1511 for_each_cpu_mask(i, mask) {
1512 load = target_load(i);
1513
1514 if (load < min_load) {
1515 min_cpu = i;
1516 min_load = load;
1517
1518 /* break out early on an idle CPU: */
1519 if (!min_load)
1520 break;
1521 }
1522 }
1523
1524 /* add +1 to account for the new task */
1525 this_load = source_load(this_cpu) + SCHED_LOAD_SCALE;
1526
1527 /*
1528 * Would with the addition of the new task to the
1529 * current CPU there be an imbalance between this
1530 * CPU and the idlest CPU?
1531 *
1532 * Use half of the balancing threshold - new-context is
1533 * a good opportunity to balance.
1534 */
1535 if (min_load*(100 + (sd->imbalance_pct-100)/2) < this_load*100)
1536 return min_cpu;
1537
1538 return this_cpu;
1539}
1540
1541/*
1542 * If dest_cpu is allowed for this process, migrate the task to it.
1543 * This is accomplished by forcing the cpu_allowed mask to only
1544 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1545 * the cpu_allowed mask is restored.
1546 */
1547static void sched_migrate_task(task_t *p, int dest_cpu)
1548{
1549 migration_req_t req;
1550 runqueue_t *rq;
1551 unsigned long flags;
1552
1553 rq = task_rq_lock(p, &flags);
1554 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1555 || unlikely(cpu_is_offline(dest_cpu)))
1556 goto out;
1557
1558 /* force the process onto the specified CPU */
1559 if (migrate_task(p, dest_cpu, &req)) {
1560 /* Need to wait for migration thread (might exit: take ref). */
1561 struct task_struct *mt = rq->migration_thread;
1562 get_task_struct(mt);
1563 task_rq_unlock(rq, &flags);
1564 wake_up_process(mt);
1565 put_task_struct(mt);
1566 wait_for_completion(&req.done);
1567 return;
1568 }
1569out:
1570 task_rq_unlock(rq, &flags);
1571}
1572
1573/*
1574 * sched_exec(): find the highest-level, exec-balance-capable
1575 * domain and try to migrate the task to the least loaded CPU.
1576 *
1577 * execve() is a valuable balancing opportunity, because at this point
1578 * the task has the smallest effective memory and cache footprint.
1579 */
1580void sched_exec(void)
1581{
1582 struct sched_domain *tmp, *sd = NULL;
1583 int new_cpu, this_cpu = get_cpu();
1584
1585 /* Prefer the current CPU if there's only this task running */
1586 if (this_rq()->nr_running <= 1)
1587 goto out;
1588
1589 for_each_domain(this_cpu, tmp)
1590 if (tmp->flags & SD_BALANCE_EXEC)
1591 sd = tmp;
1592
1593 if (sd) {
1594 schedstat_inc(sd, sbe_attempts);
1595 new_cpu = find_idlest_cpu(current, this_cpu, sd);
1596 if (new_cpu != this_cpu) {
1597 schedstat_inc(sd, sbe_pushed);
1598 put_cpu();
1599 sched_migrate_task(current, new_cpu);
1600 return;
1601 }
1602 }
1603out:
1604 put_cpu();
1605}
1606
1607/*
1608 * pull_task - move a task from a remote runqueue to the local runqueue.
1609 * Both runqueues must be locked.
1610 */
1611static inline
1612void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1613 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1614{
1615 dequeue_task(p, src_array);
1616 src_rq->nr_running--;
1617 set_task_cpu(p, this_cpu);
1618 this_rq->nr_running++;
1619 enqueue_task(p, this_array);
1620 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1621 + this_rq->timestamp_last_tick;
1622 /*
1623 * Note that idle threads have a prio of MAX_PRIO, for this test
1624 * to be always true for them.
1625 */
1626 if (TASK_PREEMPTS_CURR(p, this_rq))
1627 resched_task(this_rq->curr);
1628}
1629
1630/*
1631 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1632 */
1633static inline
1634int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
81026794 1635 struct sched_domain *sd, enum idle_type idle, int *all_pinned)
1da177e4
LT
1636{
1637 /*
1638 * We do not migrate tasks that are:
1639 * 1) running (obviously), or
1640 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1641 * 3) are cache-hot on their current CPU.
1642 */
1da177e4
LT
1643 if (!cpu_isset(this_cpu, p->cpus_allowed))
1644 return 0;
81026794
NP
1645 *all_pinned = 0;
1646
1647 if (task_running(rq, p))
1648 return 0;
1da177e4
LT
1649
1650 /*
1651 * Aggressive migration if:
1652 * 1) the [whole] cpu is idle, or
1653 * 2) too many balance attempts have failed.
1654 */
1655
1656 if (cpu_and_siblings_are_idle(this_cpu) || \
1657 sd->nr_balance_failed > sd->cache_nice_tries)
1658 return 1;
1659
1660 if (task_hot(p, rq->timestamp_last_tick, sd))
81026794 1661 return 0;
1da177e4
LT
1662 return 1;
1663}
1664
1665/*
1666 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1667 * as part of a balancing operation within "domain". Returns the number of
1668 * tasks moved.
1669 *
1670 * Called with both runqueues locked.
1671 */
1672static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1673 unsigned long max_nr_move, struct sched_domain *sd,
81026794 1674 enum idle_type idle, int *all_pinned)
1da177e4
LT
1675{
1676 prio_array_t *array, *dst_array;
1677 struct list_head *head, *curr;
81026794 1678 int idx, pulled = 0, pinned = 0;
1da177e4
LT
1679 task_t *tmp;
1680
81026794 1681 if (max_nr_move == 0)
1da177e4
LT
1682 goto out;
1683
81026794
NP
1684 pinned = 1;
1685
1da177e4
LT
1686 /*
1687 * We first consider expired tasks. Those will likely not be
1688 * executed in the near future, and they are most likely to
1689 * be cache-cold, thus switching CPUs has the least effect
1690 * on them.
1691 */
1692 if (busiest->expired->nr_active) {
1693 array = busiest->expired;
1694 dst_array = this_rq->expired;
1695 } else {
1696 array = busiest->active;
1697 dst_array = this_rq->active;
1698 }
1699
1700new_array:
1701 /* Start searching at priority 0: */
1702 idx = 0;
1703skip_bitmap:
1704 if (!idx)
1705 idx = sched_find_first_bit(array->bitmap);
1706 else
1707 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1708 if (idx >= MAX_PRIO) {
1709 if (array == busiest->expired && busiest->active->nr_active) {
1710 array = busiest->active;
1711 dst_array = this_rq->active;
1712 goto new_array;
1713 }
1714 goto out;
1715 }
1716
1717 head = array->queue + idx;
1718 curr = head->prev;
1719skip_queue:
1720 tmp = list_entry(curr, task_t, run_list);
1721
1722 curr = curr->prev;
1723
81026794 1724 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1da177e4
LT
1725 if (curr != head)
1726 goto skip_queue;
1727 idx++;
1728 goto skip_bitmap;
1729 }
1730
1731#ifdef CONFIG_SCHEDSTATS
1732 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1733 schedstat_inc(sd, lb_hot_gained[idle]);
1734#endif
1735
1736 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1737 pulled++;
1738
1739 /* We only want to steal up to the prescribed number of tasks. */
1740 if (pulled < max_nr_move) {
1741 if (curr != head)
1742 goto skip_queue;
1743 idx++;
1744 goto skip_bitmap;
1745 }
1746out:
1747 /*
1748 * Right now, this is the only place pull_task() is called,
1749 * so we can safely collect pull_task() stats here rather than
1750 * inside pull_task().
1751 */
1752 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
1753
1754 if (all_pinned)
1755 *all_pinned = pinned;
1da177e4
LT
1756 return pulled;
1757}
1758
1759/*
1760 * find_busiest_group finds and returns the busiest CPU group within the
1761 * domain. It calculates and returns the number of tasks which should be
1762 * moved to restore balance via the imbalance parameter.
1763 */
1764static struct sched_group *
1765find_busiest_group(struct sched_domain *sd, int this_cpu,
1766 unsigned long *imbalance, enum idle_type idle)
1767{
1768 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1769 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1770
1771 max_load = this_load = total_load = total_pwr = 0;
1772
1773 do {
1774 unsigned long load;
1775 int local_group;
1776 int i;
1777
1778 local_group = cpu_isset(this_cpu, group->cpumask);
1779
1780 /* Tally up the load of all CPUs in the group */
1781 avg_load = 0;
1782
1783 for_each_cpu_mask(i, group->cpumask) {
1784 /* Bias balancing toward cpus of our domain */
1785 if (local_group)
1786 load = target_load(i);
1787 else
1788 load = source_load(i);
1789
1790 avg_load += load;
1791 }
1792
1793 total_load += avg_load;
1794 total_pwr += group->cpu_power;
1795
1796 /* Adjust by relative CPU power of the group */
1797 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1798
1799 if (local_group) {
1800 this_load = avg_load;
1801 this = group;
1802 goto nextgroup;
1803 } else if (avg_load > max_load) {
1804 max_load = avg_load;
1805 busiest = group;
1806 }
1807nextgroup:
1808 group = group->next;
1809 } while (group != sd->groups);
1810
1811 if (!busiest || this_load >= max_load)
1812 goto out_balanced;
1813
1814 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1815
1816 if (this_load >= avg_load ||
1817 100*max_load <= sd->imbalance_pct*this_load)
1818 goto out_balanced;
1819
1820 /*
1821 * We're trying to get all the cpus to the average_load, so we don't
1822 * want to push ourselves above the average load, nor do we wish to
1823 * reduce the max loaded cpu below the average load, as either of these
1824 * actions would just result in more rebalancing later, and ping-pong
1825 * tasks around. Thus we look for the minimum possible imbalance.
1826 * Negative imbalances (*we* are more loaded than anyone else) will
1827 * be counted as no imbalance for these purposes -- we can't fix that
1828 * by pulling tasks to us. Be careful of negative numbers as they'll
1829 * appear as very large values with unsigned longs.
1830 */
1831 /* How much load to actually move to equalise the imbalance */
1832 *imbalance = min((max_load - avg_load) * busiest->cpu_power,
1833 (avg_load - this_load) * this->cpu_power)
1834 / SCHED_LOAD_SCALE;
1835
1836 if (*imbalance < SCHED_LOAD_SCALE) {
1837 unsigned long pwr_now = 0, pwr_move = 0;
1838 unsigned long tmp;
1839
1840 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
1841 *imbalance = 1;
1842 return busiest;
1843 }
1844
1845 /*
1846 * OK, we don't have enough imbalance to justify moving tasks,
1847 * however we may be able to increase total CPU power used by
1848 * moving them.
1849 */
1850
1851 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
1852 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
1853 pwr_now /= SCHED_LOAD_SCALE;
1854
1855 /* Amount of load we'd subtract */
1856 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
1857 if (max_load > tmp)
1858 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
1859 max_load - tmp);
1860
1861 /* Amount of load we'd add */
1862 if (max_load*busiest->cpu_power <
1863 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
1864 tmp = max_load*busiest->cpu_power/this->cpu_power;
1865 else
1866 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
1867 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
1868 pwr_move /= SCHED_LOAD_SCALE;
1869
1870 /* Move if we gain throughput */
1871 if (pwr_move <= pwr_now)
1872 goto out_balanced;
1873
1874 *imbalance = 1;
1875 return busiest;
1876 }
1877
1878 /* Get rid of the scaling factor, rounding down as we divide */
1879 *imbalance = *imbalance / SCHED_LOAD_SCALE;
1da177e4
LT
1880 return busiest;
1881
1882out_balanced:
1da177e4
LT
1883
1884 *imbalance = 0;
1885 return NULL;
1886}
1887
1888/*
1889 * find_busiest_queue - find the busiest runqueue among the cpus in group.
1890 */
1891static runqueue_t *find_busiest_queue(struct sched_group *group)
1892{
1893 unsigned long load, max_load = 0;
1894 runqueue_t *busiest = NULL;
1895 int i;
1896
1897 for_each_cpu_mask(i, group->cpumask) {
1898 load = source_load(i);
1899
1900 if (load > max_load) {
1901 max_load = load;
1902 busiest = cpu_rq(i);
1903 }
1904 }
1905
1906 return busiest;
1907}
1908
1909/*
1910 * Check this_cpu to ensure it is balanced within domain. Attempt to move
1911 * tasks if there is an imbalance.
1912 *
1913 * Called with this_rq unlocked.
1914 */
1915static int load_balance(int this_cpu, runqueue_t *this_rq,
1916 struct sched_domain *sd, enum idle_type idle)
1917{
1918 struct sched_group *group;
1919 runqueue_t *busiest;
1920 unsigned long imbalance;
81026794
NP
1921 int nr_moved, all_pinned;
1922 int active_balance = 0;
1da177e4
LT
1923
1924 spin_lock(&this_rq->lock);
1925 schedstat_inc(sd, lb_cnt[idle]);
1926
1927 group = find_busiest_group(sd, this_cpu, &imbalance, idle);
1928 if (!group) {
1929 schedstat_inc(sd, lb_nobusyg[idle]);
1930 goto out_balanced;
1931 }
1932
1933 busiest = find_busiest_queue(group);
1934 if (!busiest) {
1935 schedstat_inc(sd, lb_nobusyq[idle]);
1936 goto out_balanced;
1937 }
1938
db935dbd 1939 BUG_ON(busiest == this_rq);
1da177e4
LT
1940
1941 schedstat_add(sd, lb_imbalance[idle], imbalance);
1942
1943 nr_moved = 0;
1944 if (busiest->nr_running > 1) {
1945 /*
1946 * Attempt to move tasks. If find_busiest_group has found
1947 * an imbalance but busiest->nr_running <= 1, the group is
1948 * still unbalanced. nr_moved simply stays zero, so it is
1949 * correctly treated as an imbalance.
1950 */
1951 double_lock_balance(this_rq, busiest);
1952 nr_moved = move_tasks(this_rq, this_cpu, busiest,
81026794
NP
1953 imbalance, sd, idle,
1954 &all_pinned);
1da177e4 1955 spin_unlock(&busiest->lock);
81026794
NP
1956
1957 /* All tasks on this runqueue were pinned by CPU affinity */
1958 if (unlikely(all_pinned))
1959 goto out_balanced;
1da177e4 1960 }
81026794 1961
1da177e4
LT
1962 spin_unlock(&this_rq->lock);
1963
1964 if (!nr_moved) {
1965 schedstat_inc(sd, lb_failed[idle]);
1966 sd->nr_balance_failed++;
1967
1968 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4
LT
1969
1970 spin_lock(&busiest->lock);
1971 if (!busiest->active_balance) {
1972 busiest->active_balance = 1;
1973 busiest->push_cpu = this_cpu;
81026794 1974 active_balance = 1;
1da177e4
LT
1975 }
1976 spin_unlock(&busiest->lock);
81026794 1977 if (active_balance)
1da177e4
LT
1978 wake_up_process(busiest->migration_thread);
1979
1980 /*
1981 * We've kicked active balancing, reset the failure
1982 * counter.
1983 */
39507451 1984 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 1985 }
81026794 1986 } else
1da177e4
LT
1987 sd->nr_balance_failed = 0;
1988
81026794 1989 if (likely(!active_balance)) {
1da177e4
LT
1990 /* We were unbalanced, so reset the balancing interval */
1991 sd->balance_interval = sd->min_interval;
81026794
NP
1992 } else {
1993 /*
1994 * If we've begun active balancing, start to back off. This
1995 * case may not be covered by the all_pinned logic if there
1996 * is only 1 task on the busy runqueue (because we don't call
1997 * move_tasks).
1998 */
1999 if (sd->balance_interval < sd->max_interval)
2000 sd->balance_interval *= 2;
1da177e4
LT
2001 }
2002
2003 return nr_moved;
2004
2005out_balanced:
2006 spin_unlock(&this_rq->lock);
2007
2008 schedstat_inc(sd, lb_balanced[idle]);
2009
16cfb1c0 2010 sd->nr_balance_failed = 0;
1da177e4
LT
2011 /* tune up the balancing interval */
2012 if (sd->balance_interval < sd->max_interval)
2013 sd->balance_interval *= 2;
2014
2015 return 0;
2016}
2017
2018/*
2019 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2020 * tasks if there is an imbalance.
2021 *
2022 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2023 * this_rq is locked.
2024 */
2025static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2026 struct sched_domain *sd)
2027{
2028 struct sched_group *group;
2029 runqueue_t *busiest = NULL;
2030 unsigned long imbalance;
2031 int nr_moved = 0;
2032
2033 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2034 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
2035 if (!group) {
1da177e4 2036 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
16cfb1c0 2037 goto out_balanced;
1da177e4
LT
2038 }
2039
2040 busiest = find_busiest_queue(group);
db935dbd 2041 if (!busiest) {
1da177e4 2042 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
16cfb1c0 2043 goto out_balanced;
1da177e4
LT
2044 }
2045
db935dbd
NP
2046 BUG_ON(busiest == this_rq);
2047
1da177e4
LT
2048 /* Attempt to move tasks */
2049 double_lock_balance(this_rq, busiest);
2050
2051 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2052 nr_moved = move_tasks(this_rq, this_cpu, busiest,
81026794 2053 imbalance, sd, NEWLY_IDLE, NULL);
1da177e4
LT
2054 if (!nr_moved)
2055 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
16cfb1c0
NP
2056 else
2057 sd->nr_balance_failed = 0;
1da177e4
LT
2058
2059 spin_unlock(&busiest->lock);
1da177e4 2060 return nr_moved;
16cfb1c0
NP
2061
2062out_balanced:
2063 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2064 sd->nr_balance_failed = 0;
2065 return 0;
1da177e4
LT
2066}
2067
2068/*
2069 * idle_balance is called by schedule() if this_cpu is about to become
2070 * idle. Attempts to pull tasks from other CPUs.
2071 */
2072static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2073{
2074 struct sched_domain *sd;
2075
2076 for_each_domain(this_cpu, sd) {
2077 if (sd->flags & SD_BALANCE_NEWIDLE) {
2078 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2079 /* We've pulled tasks over so stop searching */
2080 break;
2081 }
2082 }
2083 }
2084}
2085
2086/*
2087 * active_load_balance is run by migration threads. It pushes running tasks
2088 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2089 * running on each physical CPU where possible, and avoids physical /
2090 * logical imbalances.
2091 *
2092 * Called with busiest_rq locked.
2093 */
2094static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2095{
2096 struct sched_domain *sd;
1da177e4 2097 runqueue_t *target_rq;
39507451
NP
2098 int target_cpu = busiest_rq->push_cpu;
2099
2100 if (busiest_rq->nr_running <= 1)
2101 /* no task to move */
2102 return;
2103
2104 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2105
2106 /*
39507451
NP
2107 * This condition is "impossible", if it occurs
2108 * we need to fix it. Originally reported by
2109 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2110 */
39507451 2111 BUG_ON(busiest_rq == target_rq);
1da177e4 2112
39507451
NP
2113 /* move a task from busiest_rq to target_rq */
2114 double_lock_balance(busiest_rq, target_rq);
2115
2116 /* Search for an sd spanning us and the target CPU. */
2117 for_each_domain(target_cpu, sd)
2118 if ((sd->flags & SD_LOAD_BALANCE) &&
2119 cpu_isset(busiest_cpu, sd->span))
2120 break;
2121
2122 if (unlikely(sd == NULL))
2123 goto out;
2124
2125 schedstat_inc(sd, alb_cnt);
2126
2127 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2128 schedstat_inc(sd, alb_pushed);
2129 else
2130 schedstat_inc(sd, alb_failed);
2131out:
2132 spin_unlock(&target_rq->lock);
1da177e4
LT
2133}
2134
2135/*
2136 * rebalance_tick will get called every timer tick, on every CPU.
2137 *
2138 * It checks each scheduling domain to see if it is due to be balanced,
2139 * and initiates a balancing operation if so.
2140 *
2141 * Balancing parameters are set up in arch_init_sched_domains.
2142 */
2143
2144/* Don't have all balancing operations going off at once */
2145#define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2146
2147static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2148 enum idle_type idle)
2149{
2150 unsigned long old_load, this_load;
2151 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2152 struct sched_domain *sd;
2153
2154 /* Update our load */
2155 old_load = this_rq->cpu_load;
2156 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2157 /*
2158 * Round up the averaging division if load is increasing. This
2159 * prevents us from getting stuck on 9 if the load is 10, for
2160 * example.
2161 */
2162 if (this_load > old_load)
2163 old_load++;
2164 this_rq->cpu_load = (old_load + this_load) / 2;
2165
2166 for_each_domain(this_cpu, sd) {
2167 unsigned long interval;
2168
2169 if (!(sd->flags & SD_LOAD_BALANCE))
2170 continue;
2171
2172 interval = sd->balance_interval;
2173 if (idle != SCHED_IDLE)
2174 interval *= sd->busy_factor;
2175
2176 /* scale ms to jiffies */
2177 interval = msecs_to_jiffies(interval);
2178 if (unlikely(!interval))
2179 interval = 1;
2180
2181 if (j - sd->last_balance >= interval) {
2182 if (load_balance(this_cpu, this_rq, sd, idle)) {
2183 /* We've pulled tasks over so no longer idle */
2184 idle = NOT_IDLE;
2185 }
2186 sd->last_balance += interval;
2187 }
2188 }
2189}
2190#else
2191/*
2192 * on UP we do not need to balance between CPUs:
2193 */
2194static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2195{
2196}
2197static inline void idle_balance(int cpu, runqueue_t *rq)
2198{
2199}
2200#endif
2201
2202static inline int wake_priority_sleeper(runqueue_t *rq)
2203{
2204 int ret = 0;
2205#ifdef CONFIG_SCHED_SMT
2206 spin_lock(&rq->lock);
2207 /*
2208 * If an SMT sibling task has been put to sleep for priority
2209 * reasons reschedule the idle task to see if it can now run.
2210 */
2211 if (rq->nr_running) {
2212 resched_task(rq->idle);
2213 ret = 1;
2214 }
2215 spin_unlock(&rq->lock);
2216#endif
2217 return ret;
2218}
2219
2220DEFINE_PER_CPU(struct kernel_stat, kstat);
2221
2222EXPORT_PER_CPU_SYMBOL(kstat);
2223
2224/*
2225 * This is called on clock ticks and on context switches.
2226 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2227 */
2228static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2229 unsigned long long now)
2230{
2231 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2232 p->sched_time += now - last;
2233}
2234
2235/*
2236 * Return current->sched_time plus any more ns on the sched_clock
2237 * that have not yet been banked.
2238 */
2239unsigned long long current_sched_time(const task_t *tsk)
2240{
2241 unsigned long long ns;
2242 unsigned long flags;
2243 local_irq_save(flags);
2244 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2245 ns = tsk->sched_time + (sched_clock() - ns);
2246 local_irq_restore(flags);
2247 return ns;
2248}
2249
2250/*
2251 * We place interactive tasks back into the active array, if possible.
2252 *
2253 * To guarantee that this does not starve expired tasks we ignore the
2254 * interactivity of a task if the first expired task had to wait more
2255 * than a 'reasonable' amount of time. This deadline timeout is
2256 * load-dependent, as the frequency of array switched decreases with
2257 * increasing number of running tasks. We also ignore the interactivity
2258 * if a better static_prio task has expired:
2259 */
2260#define EXPIRED_STARVING(rq) \
2261 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2262 (jiffies - (rq)->expired_timestamp >= \
2263 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2264 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2265
2266/*
2267 * Account user cpu time to a process.
2268 * @p: the process that the cpu time gets accounted to
2269 * @hardirq_offset: the offset to subtract from hardirq_count()
2270 * @cputime: the cpu time spent in user space since the last update
2271 */
2272void account_user_time(struct task_struct *p, cputime_t cputime)
2273{
2274 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2275 cputime64_t tmp;
2276
2277 p->utime = cputime_add(p->utime, cputime);
2278
2279 /* Add user time to cpustat. */
2280 tmp = cputime_to_cputime64(cputime);
2281 if (TASK_NICE(p) > 0)
2282 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2283 else
2284 cpustat->user = cputime64_add(cpustat->user, tmp);
2285}
2286
2287/*
2288 * Account system cpu time to a process.
2289 * @p: the process that the cpu time gets accounted to
2290 * @hardirq_offset: the offset to subtract from hardirq_count()
2291 * @cputime: the cpu time spent in kernel space since the last update
2292 */
2293void account_system_time(struct task_struct *p, int hardirq_offset,
2294 cputime_t cputime)
2295{
2296 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2297 runqueue_t *rq = this_rq();
2298 cputime64_t tmp;
2299
2300 p->stime = cputime_add(p->stime, cputime);
2301
2302 /* Add system time to cpustat. */
2303 tmp = cputime_to_cputime64(cputime);
2304 if (hardirq_count() - hardirq_offset)
2305 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2306 else if (softirq_count())
2307 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2308 else if (p != rq->idle)
2309 cpustat->system = cputime64_add(cpustat->system, tmp);
2310 else if (atomic_read(&rq->nr_iowait) > 0)
2311 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2312 else
2313 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2314 /* Account for system time used */
2315 acct_update_integrals(p);
2316 /* Update rss highwater mark */
2317 update_mem_hiwater(p);
2318}
2319
2320/*
2321 * Account for involuntary wait time.
2322 * @p: the process from which the cpu time has been stolen
2323 * @steal: the cpu time spent in involuntary wait
2324 */
2325void account_steal_time(struct task_struct *p, cputime_t steal)
2326{
2327 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2328 cputime64_t tmp = cputime_to_cputime64(steal);
2329 runqueue_t *rq = this_rq();
2330
2331 if (p == rq->idle) {
2332 p->stime = cputime_add(p->stime, steal);
2333 if (atomic_read(&rq->nr_iowait) > 0)
2334 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2335 else
2336 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2337 } else
2338 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2339}
2340
2341/*
2342 * This function gets called by the timer code, with HZ frequency.
2343 * We call it with interrupts disabled.
2344 *
2345 * It also gets called by the fork code, when changing the parent's
2346 * timeslices.
2347 */
2348void scheduler_tick(void)
2349{
2350 int cpu = smp_processor_id();
2351 runqueue_t *rq = this_rq();
2352 task_t *p = current;
2353 unsigned long long now = sched_clock();
2354
2355 update_cpu_clock(p, rq, now);
2356
2357 rq->timestamp_last_tick = now;
2358
2359 if (p == rq->idle) {
2360 if (wake_priority_sleeper(rq))
2361 goto out;
2362 rebalance_tick(cpu, rq, SCHED_IDLE);
2363 return;
2364 }
2365
2366 /* Task might have expired already, but not scheduled off yet */
2367 if (p->array != rq->active) {
2368 set_tsk_need_resched(p);
2369 goto out;
2370 }
2371 spin_lock(&rq->lock);
2372 /*
2373 * The task was running during this tick - update the
2374 * time slice counter. Note: we do not update a thread's
2375 * priority until it either goes to sleep or uses up its
2376 * timeslice. This makes it possible for interactive tasks
2377 * to use up their timeslices at their highest priority levels.
2378 */
2379 if (rt_task(p)) {
2380 /*
2381 * RR tasks need a special form of timeslice management.
2382 * FIFO tasks have no timeslices.
2383 */
2384 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2385 p->time_slice = task_timeslice(p);
2386 p->first_time_slice = 0;
2387 set_tsk_need_resched(p);
2388
2389 /* put it at the end of the queue: */
2390 requeue_task(p, rq->active);
2391 }
2392 goto out_unlock;
2393 }
2394 if (!--p->time_slice) {
2395 dequeue_task(p, rq->active);
2396 set_tsk_need_resched(p);
2397 p->prio = effective_prio(p);
2398 p->time_slice = task_timeslice(p);
2399 p->first_time_slice = 0;
2400
2401 if (!rq->expired_timestamp)
2402 rq->expired_timestamp = jiffies;
2403 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2404 enqueue_task(p, rq->expired);
2405 if (p->static_prio < rq->best_expired_prio)
2406 rq->best_expired_prio = p->static_prio;
2407 } else
2408 enqueue_task(p, rq->active);
2409 } else {
2410 /*
2411 * Prevent a too long timeslice allowing a task to monopolize
2412 * the CPU. We do this by splitting up the timeslice into
2413 * smaller pieces.
2414 *
2415 * Note: this does not mean the task's timeslices expire or
2416 * get lost in any way, they just might be preempted by
2417 * another task of equal priority. (one with higher
2418 * priority would have preempted this task already.) We
2419 * requeue this task to the end of the list on this priority
2420 * level, which is in essence a round-robin of tasks with
2421 * equal priority.
2422 *
2423 * This only applies to tasks in the interactive
2424 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2425 */
2426 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2427 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2428 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2429 (p->array == rq->active)) {
2430
2431 requeue_task(p, rq->active);
2432 set_tsk_need_resched(p);
2433 }
2434 }
2435out_unlock:
2436 spin_unlock(&rq->lock);
2437out:
2438 rebalance_tick(cpu, rq, NOT_IDLE);
2439}
2440
2441#ifdef CONFIG_SCHED_SMT
2442static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2443{
2444 struct sched_domain *sd = this_rq->sd;
2445 cpumask_t sibling_map;
2446 int i;
2447
2448 if (!(sd->flags & SD_SHARE_CPUPOWER))
2449 return;
2450
2451 /*
2452 * Unlock the current runqueue because we have to lock in
2453 * CPU order to avoid deadlocks. Caller knows that we might
2454 * unlock. We keep IRQs disabled.
2455 */
2456 spin_unlock(&this_rq->lock);
2457
2458 sibling_map = sd->span;
2459
2460 for_each_cpu_mask(i, sibling_map)
2461 spin_lock(&cpu_rq(i)->lock);
2462 /*
2463 * We clear this CPU from the mask. This both simplifies the
2464 * inner loop and keps this_rq locked when we exit:
2465 */
2466 cpu_clear(this_cpu, sibling_map);
2467
2468 for_each_cpu_mask(i, sibling_map) {
2469 runqueue_t *smt_rq = cpu_rq(i);
2470
2471 /*
2472 * If an SMT sibling task is sleeping due to priority
2473 * reasons wake it up now.
2474 */
2475 if (smt_rq->curr == smt_rq->idle && smt_rq->nr_running)
2476 resched_task(smt_rq->idle);
2477 }
2478
2479 for_each_cpu_mask(i, sibling_map)
2480 spin_unlock(&cpu_rq(i)->lock);
2481 /*
2482 * We exit with this_cpu's rq still held and IRQs
2483 * still disabled:
2484 */
2485}
2486
2487static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2488{
2489 struct sched_domain *sd = this_rq->sd;
2490 cpumask_t sibling_map;
2491 prio_array_t *array;
2492 int ret = 0, i;
2493 task_t *p;
2494
2495 if (!(sd->flags & SD_SHARE_CPUPOWER))
2496 return 0;
2497
2498 /*
2499 * The same locking rules and details apply as for
2500 * wake_sleeping_dependent():
2501 */
2502 spin_unlock(&this_rq->lock);
2503 sibling_map = sd->span;
2504 for_each_cpu_mask(i, sibling_map)
2505 spin_lock(&cpu_rq(i)->lock);
2506 cpu_clear(this_cpu, sibling_map);
2507
2508 /*
2509 * Establish next task to be run - it might have gone away because
2510 * we released the runqueue lock above:
2511 */
2512 if (!this_rq->nr_running)
2513 goto out_unlock;
2514 array = this_rq->active;
2515 if (!array->nr_active)
2516 array = this_rq->expired;
2517 BUG_ON(!array->nr_active);
2518
2519 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2520 task_t, run_list);
2521
2522 for_each_cpu_mask(i, sibling_map) {
2523 runqueue_t *smt_rq = cpu_rq(i);
2524 task_t *smt_curr = smt_rq->curr;
2525
2526 /*
2527 * If a user task with lower static priority than the
2528 * running task on the SMT sibling is trying to schedule,
2529 * delay it till there is proportionately less timeslice
2530 * left of the sibling task to prevent a lower priority
2531 * task from using an unfair proportion of the
2532 * physical cpu's resources. -ck
2533 */
2534 if (((smt_curr->time_slice * (100 - sd->per_cpu_gain) / 100) >
2535 task_timeslice(p) || rt_task(smt_curr)) &&
2536 p->mm && smt_curr->mm && !rt_task(p))
2537 ret = 1;
2538
2539 /*
2540 * Reschedule a lower priority task on the SMT sibling,
2541 * or wake it up if it has been put to sleep for priority
2542 * reasons.
2543 */
2544 if ((((p->time_slice * (100 - sd->per_cpu_gain) / 100) >
2545 task_timeslice(smt_curr) || rt_task(p)) &&
2546 smt_curr->mm && p->mm && !rt_task(smt_curr)) ||
2547 (smt_curr == smt_rq->idle && smt_rq->nr_running))
2548 resched_task(smt_curr);
2549 }
2550out_unlock:
2551 for_each_cpu_mask(i, sibling_map)
2552 spin_unlock(&cpu_rq(i)->lock);
2553 return ret;
2554}
2555#else
2556static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2557{
2558}
2559
2560static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2561{
2562 return 0;
2563}
2564#endif
2565
2566#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2567
2568void fastcall add_preempt_count(int val)
2569{
2570 /*
2571 * Underflow?
2572 */
be5b4fbd 2573 BUG_ON((preempt_count() < 0));
1da177e4
LT
2574 preempt_count() += val;
2575 /*
2576 * Spinlock count overflowing soon?
2577 */
2578 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2579}
2580EXPORT_SYMBOL(add_preempt_count);
2581
2582void fastcall sub_preempt_count(int val)
2583{
2584 /*
2585 * Underflow?
2586 */
2587 BUG_ON(val > preempt_count());
2588 /*
2589 * Is the spinlock portion underflowing?
2590 */
2591 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2592 preempt_count() -= val;
2593}
2594EXPORT_SYMBOL(sub_preempt_count);
2595
2596#endif
2597
2598/*
2599 * schedule() is the main scheduler function.
2600 */
2601asmlinkage void __sched schedule(void)
2602{
2603 long *switch_count;
2604 task_t *prev, *next;
2605 runqueue_t *rq;
2606 prio_array_t *array;
2607 struct list_head *queue;
2608 unsigned long long now;
2609 unsigned long run_time;
2610 int cpu, idx;
2611
2612 /*
2613 * Test if we are atomic. Since do_exit() needs to call into
2614 * schedule() atomically, we ignore that path for now.
2615 * Otherwise, whine if we are scheduling when we should not be.
2616 */
2617 if (likely(!current->exit_state)) {
2618 if (unlikely(in_atomic())) {
2619 printk(KERN_ERR "scheduling while atomic: "
2620 "%s/0x%08x/%d\n",
2621 current->comm, preempt_count(), current->pid);
2622 dump_stack();
2623 }
2624 }
2625 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2626
2627need_resched:
2628 preempt_disable();
2629 prev = current;
2630 release_kernel_lock(prev);
2631need_resched_nonpreemptible:
2632 rq = this_rq();
2633
2634 /*
2635 * The idle thread is not allowed to schedule!
2636 * Remove this check after it has been exercised a bit.
2637 */
2638 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2639 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2640 dump_stack();
2641 }
2642
2643 schedstat_inc(rq, sched_cnt);
2644 now = sched_clock();
238628ed 2645 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
1da177e4 2646 run_time = now - prev->timestamp;
238628ed 2647 if (unlikely((long long)(now - prev->timestamp) < 0))
1da177e4
LT
2648 run_time = 0;
2649 } else
2650 run_time = NS_MAX_SLEEP_AVG;
2651
2652 /*
2653 * Tasks charged proportionately less run_time at high sleep_avg to
2654 * delay them losing their interactive status
2655 */
2656 run_time /= (CURRENT_BONUS(prev) ? : 1);
2657
2658 spin_lock_irq(&rq->lock);
2659
2660 if (unlikely(prev->flags & PF_DEAD))
2661 prev->state = EXIT_DEAD;
2662
2663 switch_count = &prev->nivcsw;
2664 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2665 switch_count = &prev->nvcsw;
2666 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2667 unlikely(signal_pending(prev))))
2668 prev->state = TASK_RUNNING;
2669 else {
2670 if (prev->state == TASK_UNINTERRUPTIBLE)
2671 rq->nr_uninterruptible++;
2672 deactivate_task(prev, rq);
2673 }
2674 }
2675
2676 cpu = smp_processor_id();
2677 if (unlikely(!rq->nr_running)) {
2678go_idle:
2679 idle_balance(cpu, rq);
2680 if (!rq->nr_running) {
2681 next = rq->idle;
2682 rq->expired_timestamp = 0;
2683 wake_sleeping_dependent(cpu, rq);
2684 /*
2685 * wake_sleeping_dependent() might have released
2686 * the runqueue, so break out if we got new
2687 * tasks meanwhile:
2688 */
2689 if (!rq->nr_running)
2690 goto switch_tasks;
2691 }
2692 } else {
2693 if (dependent_sleeper(cpu, rq)) {
2694 next = rq->idle;
2695 goto switch_tasks;
2696 }
2697 /*
2698 * dependent_sleeper() releases and reacquires the runqueue
2699 * lock, hence go into the idle loop if the rq went
2700 * empty meanwhile:
2701 */
2702 if (unlikely(!rq->nr_running))
2703 goto go_idle;
2704 }
2705
2706 array = rq->active;
2707 if (unlikely(!array->nr_active)) {
2708 /*
2709 * Switch the active and expired arrays.
2710 */
2711 schedstat_inc(rq, sched_switch);
2712 rq->active = rq->expired;
2713 rq->expired = array;
2714 array = rq->active;
2715 rq->expired_timestamp = 0;
2716 rq->best_expired_prio = MAX_PRIO;
2717 }
2718
2719 idx = sched_find_first_bit(array->bitmap);
2720 queue = array->queue + idx;
2721 next = list_entry(queue->next, task_t, run_list);
2722
2723 if (!rt_task(next) && next->activated > 0) {
2724 unsigned long long delta = now - next->timestamp;
238628ed 2725 if (unlikely((long long)(now - next->timestamp) < 0))
1da177e4
LT
2726 delta = 0;
2727
2728 if (next->activated == 1)
2729 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2730
2731 array = next->array;
2732 dequeue_task(next, array);
2733 recalc_task_prio(next, next->timestamp + delta);
2734 enqueue_task(next, array);
2735 }
2736 next->activated = 0;
2737switch_tasks:
2738 if (next == rq->idle)
2739 schedstat_inc(rq, sched_goidle);
2740 prefetch(next);
2741 clear_tsk_need_resched(prev);
2742 rcu_qsctr_inc(task_cpu(prev));
2743
2744 update_cpu_clock(prev, rq, now);
2745
2746 prev->sleep_avg -= run_time;
2747 if ((long)prev->sleep_avg <= 0)
2748 prev->sleep_avg = 0;
2749 prev->timestamp = prev->last_ran = now;
2750
2751 sched_info_switch(prev, next);
2752 if (likely(prev != next)) {
2753 next->timestamp = now;
2754 rq->nr_switches++;
2755 rq->curr = next;
2756 ++*switch_count;
2757
2758 prepare_arch_switch(rq, next);
2759 prev = context_switch(rq, prev, next);
2760 barrier();
2761
2762 finish_task_switch(prev);
2763 } else
2764 spin_unlock_irq(&rq->lock);
2765
2766 prev = current;
2767 if (unlikely(reacquire_kernel_lock(prev) < 0))
2768 goto need_resched_nonpreemptible;
2769 preempt_enable_no_resched();
2770 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2771 goto need_resched;
2772}
2773
2774EXPORT_SYMBOL(schedule);
2775
2776#ifdef CONFIG_PREEMPT
2777/*
2778 * this is is the entry point to schedule() from in-kernel preemption
2779 * off of preempt_enable. Kernel preemptions off return from interrupt
2780 * occur there and call schedule directly.
2781 */
2782asmlinkage void __sched preempt_schedule(void)
2783{
2784 struct thread_info *ti = current_thread_info();
2785#ifdef CONFIG_PREEMPT_BKL
2786 struct task_struct *task = current;
2787 int saved_lock_depth;
2788#endif
2789 /*
2790 * If there is a non-zero preempt_count or interrupts are disabled,
2791 * we do not want to preempt the current task. Just return..
2792 */
2793 if (unlikely(ti->preempt_count || irqs_disabled()))
2794 return;
2795
2796need_resched:
2797 add_preempt_count(PREEMPT_ACTIVE);
2798 /*
2799 * We keep the big kernel semaphore locked, but we
2800 * clear ->lock_depth so that schedule() doesnt
2801 * auto-release the semaphore:
2802 */
2803#ifdef CONFIG_PREEMPT_BKL
2804 saved_lock_depth = task->lock_depth;
2805 task->lock_depth = -1;
2806#endif
2807 schedule();
2808#ifdef CONFIG_PREEMPT_BKL
2809 task->lock_depth = saved_lock_depth;
2810#endif
2811 sub_preempt_count(PREEMPT_ACTIVE);
2812
2813 /* we could miss a preemption opportunity between schedule and now */
2814 barrier();
2815 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2816 goto need_resched;
2817}
2818
2819EXPORT_SYMBOL(preempt_schedule);
2820
2821/*
2822 * this is is the entry point to schedule() from kernel preemption
2823 * off of irq context.
2824 * Note, that this is called and return with irqs disabled. This will
2825 * protect us against recursive calling from irq.
2826 */
2827asmlinkage void __sched preempt_schedule_irq(void)
2828{
2829 struct thread_info *ti = current_thread_info();
2830#ifdef CONFIG_PREEMPT_BKL
2831 struct task_struct *task = current;
2832 int saved_lock_depth;
2833#endif
2834 /* Catch callers which need to be fixed*/
2835 BUG_ON(ti->preempt_count || !irqs_disabled());
2836
2837need_resched:
2838 add_preempt_count(PREEMPT_ACTIVE);
2839 /*
2840 * We keep the big kernel semaphore locked, but we
2841 * clear ->lock_depth so that schedule() doesnt
2842 * auto-release the semaphore:
2843 */
2844#ifdef CONFIG_PREEMPT_BKL
2845 saved_lock_depth = task->lock_depth;
2846 task->lock_depth = -1;
2847#endif
2848 local_irq_enable();
2849 schedule();
2850 local_irq_disable();
2851#ifdef CONFIG_PREEMPT_BKL
2852 task->lock_depth = saved_lock_depth;
2853#endif
2854 sub_preempt_count(PREEMPT_ACTIVE);
2855
2856 /* we could miss a preemption opportunity between schedule and now */
2857 barrier();
2858 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2859 goto need_resched;
2860}
2861
2862#endif /* CONFIG_PREEMPT */
2863
2864int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, void *key)
2865{
c43dc2fd 2866 task_t *p = curr->private;
1da177e4
LT
2867 return try_to_wake_up(p, mode, sync);
2868}
2869
2870EXPORT_SYMBOL(default_wake_function);
2871
2872/*
2873 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2874 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
2875 * number) then we wake all the non-exclusive tasks and one exclusive task.
2876 *
2877 * There are circumstances in which we can try to wake a task which has already
2878 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
2879 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2880 */
2881static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2882 int nr_exclusive, int sync, void *key)
2883{
2884 struct list_head *tmp, *next;
2885
2886 list_for_each_safe(tmp, next, &q->task_list) {
2887 wait_queue_t *curr;
2888 unsigned flags;
2889 curr = list_entry(tmp, wait_queue_t, task_list);
2890 flags = curr->flags;
2891 if (curr->func(curr, mode, sync, key) &&
2892 (flags & WQ_FLAG_EXCLUSIVE) &&
2893 !--nr_exclusive)
2894 break;
2895 }
2896}
2897
2898/**
2899 * __wake_up - wake up threads blocked on a waitqueue.
2900 * @q: the waitqueue
2901 * @mode: which threads
2902 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 2903 * @key: is directly passed to the wakeup function
1da177e4
LT
2904 */
2905void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
2906 int nr_exclusive, void *key)
2907{
2908 unsigned long flags;
2909
2910 spin_lock_irqsave(&q->lock, flags);
2911 __wake_up_common(q, mode, nr_exclusive, 0, key);
2912 spin_unlock_irqrestore(&q->lock, flags);
2913}
2914
2915EXPORT_SYMBOL(__wake_up);
2916
2917/*
2918 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2919 */
2920void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
2921{
2922 __wake_up_common(q, mode, 1, 0, NULL);
2923}
2924
2925/**
67be2dd1 2926 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
2927 * @q: the waitqueue
2928 * @mode: which threads
2929 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2930 *
2931 * The sync wakeup differs that the waker knows that it will schedule
2932 * away soon, so while the target thread will be woken up, it will not
2933 * be migrated to another CPU - ie. the two threads are 'synchronized'
2934 * with each other. This can prevent needless bouncing between CPUs.
2935 *
2936 * On UP it can prevent extra preemption.
2937 */
2938void fastcall __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2939{
2940 unsigned long flags;
2941 int sync = 1;
2942
2943 if (unlikely(!q))
2944 return;
2945
2946 if (unlikely(!nr_exclusive))
2947 sync = 0;
2948
2949 spin_lock_irqsave(&q->lock, flags);
2950 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
2951 spin_unlock_irqrestore(&q->lock, flags);
2952}
2953EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
2954
2955void fastcall complete(struct completion *x)
2956{
2957 unsigned long flags;
2958
2959 spin_lock_irqsave(&x->wait.lock, flags);
2960 x->done++;
2961 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2962 1, 0, NULL);
2963 spin_unlock_irqrestore(&x->wait.lock, flags);
2964}
2965EXPORT_SYMBOL(complete);
2966
2967void fastcall complete_all(struct completion *x)
2968{
2969 unsigned long flags;
2970
2971 spin_lock_irqsave(&x->wait.lock, flags);
2972 x->done += UINT_MAX/2;
2973 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2974 0, 0, NULL);
2975 spin_unlock_irqrestore(&x->wait.lock, flags);
2976}
2977EXPORT_SYMBOL(complete_all);
2978
2979void fastcall __sched wait_for_completion(struct completion *x)
2980{
2981 might_sleep();
2982 spin_lock_irq(&x->wait.lock);
2983 if (!x->done) {
2984 DECLARE_WAITQUEUE(wait, current);
2985
2986 wait.flags |= WQ_FLAG_EXCLUSIVE;
2987 __add_wait_queue_tail(&x->wait, &wait);
2988 do {
2989 __set_current_state(TASK_UNINTERRUPTIBLE);
2990 spin_unlock_irq(&x->wait.lock);
2991 schedule();
2992 spin_lock_irq(&x->wait.lock);
2993 } while (!x->done);
2994 __remove_wait_queue(&x->wait, &wait);
2995 }
2996 x->done--;
2997 spin_unlock_irq(&x->wait.lock);
2998}
2999EXPORT_SYMBOL(wait_for_completion);
3000
3001unsigned long fastcall __sched
3002wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3003{
3004 might_sleep();
3005
3006 spin_lock_irq(&x->wait.lock);
3007 if (!x->done) {
3008 DECLARE_WAITQUEUE(wait, current);
3009
3010 wait.flags |= WQ_FLAG_EXCLUSIVE;
3011 __add_wait_queue_tail(&x->wait, &wait);
3012 do {
3013 __set_current_state(TASK_UNINTERRUPTIBLE);
3014 spin_unlock_irq(&x->wait.lock);
3015 timeout = schedule_timeout(timeout);
3016 spin_lock_irq(&x->wait.lock);
3017 if (!timeout) {
3018 __remove_wait_queue(&x->wait, &wait);
3019 goto out;
3020 }
3021 } while (!x->done);
3022 __remove_wait_queue(&x->wait, &wait);
3023 }
3024 x->done--;
3025out:
3026 spin_unlock_irq(&x->wait.lock);
3027 return timeout;
3028}
3029EXPORT_SYMBOL(wait_for_completion_timeout);
3030
3031int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3032{
3033 int ret = 0;
3034
3035 might_sleep();
3036
3037 spin_lock_irq(&x->wait.lock);
3038 if (!x->done) {
3039 DECLARE_WAITQUEUE(wait, current);
3040
3041 wait.flags |= WQ_FLAG_EXCLUSIVE;
3042 __add_wait_queue_tail(&x->wait, &wait);
3043 do {
3044 if (signal_pending(current)) {
3045 ret = -ERESTARTSYS;
3046 __remove_wait_queue(&x->wait, &wait);
3047 goto out;
3048 }
3049 __set_current_state(TASK_INTERRUPTIBLE);
3050 spin_unlock_irq(&x->wait.lock);
3051 schedule();
3052 spin_lock_irq(&x->wait.lock);
3053 } while (!x->done);
3054 __remove_wait_queue(&x->wait, &wait);
3055 }
3056 x->done--;
3057out:
3058 spin_unlock_irq(&x->wait.lock);
3059
3060 return ret;
3061}
3062EXPORT_SYMBOL(wait_for_completion_interruptible);
3063
3064unsigned long fastcall __sched
3065wait_for_completion_interruptible_timeout(struct completion *x,
3066 unsigned long timeout)
3067{
3068 might_sleep();
3069
3070 spin_lock_irq(&x->wait.lock);
3071 if (!x->done) {
3072 DECLARE_WAITQUEUE(wait, current);
3073
3074 wait.flags |= WQ_FLAG_EXCLUSIVE;
3075 __add_wait_queue_tail(&x->wait, &wait);
3076 do {
3077 if (signal_pending(current)) {
3078 timeout = -ERESTARTSYS;
3079 __remove_wait_queue(&x->wait, &wait);
3080 goto out;
3081 }
3082 __set_current_state(TASK_INTERRUPTIBLE);
3083 spin_unlock_irq(&x->wait.lock);
3084 timeout = schedule_timeout(timeout);
3085 spin_lock_irq(&x->wait.lock);
3086 if (!timeout) {
3087 __remove_wait_queue(&x->wait, &wait);
3088 goto out;
3089 }
3090 } while (!x->done);
3091 __remove_wait_queue(&x->wait, &wait);
3092 }
3093 x->done--;
3094out:
3095 spin_unlock_irq(&x->wait.lock);
3096 return timeout;
3097}
3098EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3099
3100
3101#define SLEEP_ON_VAR \
3102 unsigned long flags; \
3103 wait_queue_t wait; \
3104 init_waitqueue_entry(&wait, current);
3105
3106#define SLEEP_ON_HEAD \
3107 spin_lock_irqsave(&q->lock,flags); \
3108 __add_wait_queue(q, &wait); \
3109 spin_unlock(&q->lock);
3110
3111#define SLEEP_ON_TAIL \
3112 spin_lock_irq(&q->lock); \
3113 __remove_wait_queue(q, &wait); \
3114 spin_unlock_irqrestore(&q->lock, flags);
3115
3116void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3117{
3118 SLEEP_ON_VAR
3119
3120 current->state = TASK_INTERRUPTIBLE;
3121
3122 SLEEP_ON_HEAD
3123 schedule();
3124 SLEEP_ON_TAIL
3125}
3126
3127EXPORT_SYMBOL(interruptible_sleep_on);
3128
3129long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3130{
3131 SLEEP_ON_VAR
3132
3133 current->state = TASK_INTERRUPTIBLE;
3134
3135 SLEEP_ON_HEAD
3136 timeout = schedule_timeout(timeout);
3137 SLEEP_ON_TAIL
3138
3139 return timeout;
3140}
3141
3142EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3143
3144void fastcall __sched sleep_on(wait_queue_head_t *q)
3145{
3146 SLEEP_ON_VAR
3147
3148 current->state = TASK_UNINTERRUPTIBLE;
3149
3150 SLEEP_ON_HEAD
3151 schedule();
3152 SLEEP_ON_TAIL
3153}
3154
3155EXPORT_SYMBOL(sleep_on);
3156
3157long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3158{
3159 SLEEP_ON_VAR
3160
3161 current->state = TASK_UNINTERRUPTIBLE;
3162
3163 SLEEP_ON_HEAD
3164 timeout = schedule_timeout(timeout);
3165 SLEEP_ON_TAIL
3166
3167 return timeout;
3168}
3169
3170EXPORT_SYMBOL(sleep_on_timeout);
3171
3172void set_user_nice(task_t *p, long nice)
3173{
3174 unsigned long flags;
3175 prio_array_t *array;
3176 runqueue_t *rq;
3177 int old_prio, new_prio, delta;
3178
3179 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3180 return;
3181 /*
3182 * We have to be careful, if called from sys_setpriority(),
3183 * the task might be in the middle of scheduling on another CPU.
3184 */
3185 rq = task_rq_lock(p, &flags);
3186 /*
3187 * The RT priorities are set via sched_setscheduler(), but we still
3188 * allow the 'normal' nice value to be set - but as expected
3189 * it wont have any effect on scheduling until the task is
3190 * not SCHED_NORMAL:
3191 */
3192 if (rt_task(p)) {
3193 p->static_prio = NICE_TO_PRIO(nice);
3194 goto out_unlock;
3195 }
3196 array = p->array;
3197 if (array)
3198 dequeue_task(p, array);
3199
3200 old_prio = p->prio;
3201 new_prio = NICE_TO_PRIO(nice);
3202 delta = new_prio - old_prio;
3203 p->static_prio = NICE_TO_PRIO(nice);
3204 p->prio += delta;
3205
3206 if (array) {
3207 enqueue_task(p, array);
3208 /*
3209 * If the task increased its priority or is running and
3210 * lowered its priority, then reschedule its CPU:
3211 */
3212 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3213 resched_task(rq->curr);
3214 }
3215out_unlock:
3216 task_rq_unlock(rq, &flags);
3217}
3218
3219EXPORT_SYMBOL(set_user_nice);
3220
e43379f1
MM
3221/*
3222 * can_nice - check if a task can reduce its nice value
3223 * @p: task
3224 * @nice: nice value
3225 */
3226int can_nice(const task_t *p, const int nice)
3227{
3228 /* convert nice value [19,-20] to rlimit style value [0,39] */
3229 int nice_rlim = 19 - nice;
3230 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3231 capable(CAP_SYS_NICE));
3232}
3233
1da177e4
LT
3234#ifdef __ARCH_WANT_SYS_NICE
3235
3236/*
3237 * sys_nice - change the priority of the current process.
3238 * @increment: priority increment
3239 *
3240 * sys_setpriority is a more generic, but much slower function that
3241 * does similar things.
3242 */
3243asmlinkage long sys_nice(int increment)
3244{
3245 int retval;
3246 long nice;
3247
3248 /*
3249 * Setpriority might change our priority at the same moment.
3250 * We don't have to worry. Conceptually one call occurs first
3251 * and we have a single winner.
3252 */
e43379f1
MM
3253 if (increment < -40)
3254 increment = -40;
1da177e4
LT
3255 if (increment > 40)
3256 increment = 40;
3257
3258 nice = PRIO_TO_NICE(current->static_prio) + increment;
3259 if (nice < -20)
3260 nice = -20;
3261 if (nice > 19)
3262 nice = 19;
3263
e43379f1
MM
3264 if (increment < 0 && !can_nice(current, nice))
3265 return -EPERM;
3266
1da177e4
LT
3267 retval = security_task_setnice(current, nice);
3268 if (retval)
3269 return retval;
3270
3271 set_user_nice(current, nice);
3272 return 0;
3273}
3274
3275#endif
3276
3277/**
3278 * task_prio - return the priority value of a given task.
3279 * @p: the task in question.
3280 *
3281 * This is the priority value as seen by users in /proc.
3282 * RT tasks are offset by -200. Normal tasks are centered
3283 * around 0, value goes from -16 to +15.
3284 */
3285int task_prio(const task_t *p)
3286{
3287 return p->prio - MAX_RT_PRIO;
3288}
3289
3290/**
3291 * task_nice - return the nice value of a given task.
3292 * @p: the task in question.
3293 */
3294int task_nice(const task_t *p)
3295{
3296 return TASK_NICE(p);
3297}
3298
3299/*
3300 * The only users of task_nice are binfmt_elf and binfmt_elf32.
3301 * binfmt_elf is no longer modular, but binfmt_elf32 still is.
3302 * Therefore, task_nice is needed if there is a compat_mode.
3303 */
3304#ifdef CONFIG_COMPAT
3305EXPORT_SYMBOL_GPL(task_nice);
3306#endif
3307
3308/**
3309 * idle_cpu - is a given cpu idle currently?
3310 * @cpu: the processor in question.
3311 */
3312int idle_cpu(int cpu)
3313{
3314 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3315}
3316
3317EXPORT_SYMBOL_GPL(idle_cpu);
3318
3319/**
3320 * idle_task - return the idle task for a given cpu.
3321 * @cpu: the processor in question.
3322 */
3323task_t *idle_task(int cpu)
3324{
3325 return cpu_rq(cpu)->idle;
3326}
3327
3328/**
3329 * find_process_by_pid - find a process with a matching PID value.
3330 * @pid: the pid in question.
3331 */
3332static inline task_t *find_process_by_pid(pid_t pid)
3333{
3334 return pid ? find_task_by_pid(pid) : current;
3335}
3336
3337/* Actually do priority change: must hold rq lock. */
3338static void __setscheduler(struct task_struct *p, int policy, int prio)
3339{
3340 BUG_ON(p->array);
3341 p->policy = policy;
3342 p->rt_priority = prio;
3343 if (policy != SCHED_NORMAL)
3344 p->prio = MAX_USER_RT_PRIO-1 - p->rt_priority;
3345 else
3346 p->prio = p->static_prio;
3347}
3348
3349/**
3350 * sched_setscheduler - change the scheduling policy and/or RT priority of
3351 * a thread.
3352 * @p: the task in question.
3353 * @policy: new policy.
3354 * @param: structure containing the new RT priority.
3355 */
3356int sched_setscheduler(struct task_struct *p, int policy, struct sched_param *param)
3357{
3358 int retval;
3359 int oldprio, oldpolicy = -1;
3360 prio_array_t *array;
3361 unsigned long flags;
3362 runqueue_t *rq;
3363
3364recheck:
3365 /* double check policy once rq lock held */
3366 if (policy < 0)
3367 policy = oldpolicy = p->policy;
3368 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3369 policy != SCHED_NORMAL)
3370 return -EINVAL;
3371 /*
3372 * Valid priorities for SCHED_FIFO and SCHED_RR are
3373 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3374 */
3375 if (param->sched_priority < 0 ||
3376 param->sched_priority > MAX_USER_RT_PRIO-1)
3377 return -EINVAL;
3378 if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3379 return -EINVAL;
3380
3381 if ((policy == SCHED_FIFO || policy == SCHED_RR) &&
e43379f1 3382 param->sched_priority > p->signal->rlim[RLIMIT_RTPRIO].rlim_cur &&
1da177e4
LT
3383 !capable(CAP_SYS_NICE))
3384 return -EPERM;
3385 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3386 !capable(CAP_SYS_NICE))
3387 return -EPERM;
3388
3389 retval = security_task_setscheduler(p, policy, param);
3390 if (retval)
3391 return retval;
3392 /*
3393 * To be able to change p->policy safely, the apropriate
3394 * runqueue lock must be held.
3395 */
3396 rq = task_rq_lock(p, &flags);
3397 /* recheck policy now with rq lock held */
3398 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3399 policy = oldpolicy = -1;
3400 task_rq_unlock(rq, &flags);
3401 goto recheck;
3402 }
3403 array = p->array;
3404 if (array)
3405 deactivate_task(p, rq);
3406 oldprio = p->prio;
3407 __setscheduler(p, policy, param->sched_priority);
3408 if (array) {
3409 __activate_task(p, rq);
3410 /*
3411 * Reschedule if we are currently running on this runqueue and
3412 * our priority decreased, or if we are not currently running on
3413 * this runqueue and our priority is higher than the current's
3414 */
3415 if (task_running(rq, p)) {
3416 if (p->prio > oldprio)
3417 resched_task(rq->curr);
3418 } else if (TASK_PREEMPTS_CURR(p, rq))
3419 resched_task(rq->curr);
3420 }
3421 task_rq_unlock(rq, &flags);
3422 return 0;
3423}
3424EXPORT_SYMBOL_GPL(sched_setscheduler);
3425
3426static int do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3427{
3428 int retval;
3429 struct sched_param lparam;
3430 struct task_struct *p;
3431
3432 if (!param || pid < 0)
3433 return -EINVAL;
3434 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3435 return -EFAULT;
3436 read_lock_irq(&tasklist_lock);
3437 p = find_process_by_pid(pid);
3438 if (!p) {
3439 read_unlock_irq(&tasklist_lock);
3440 return -ESRCH;
3441 }
3442 retval = sched_setscheduler(p, policy, &lparam);
3443 read_unlock_irq(&tasklist_lock);
3444 return retval;
3445}
3446
3447/**
3448 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3449 * @pid: the pid in question.
3450 * @policy: new policy.
3451 * @param: structure containing the new RT priority.
3452 */
3453asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3454 struct sched_param __user *param)
3455{
3456 return do_sched_setscheduler(pid, policy, param);
3457}
3458
3459/**
3460 * sys_sched_setparam - set/change the RT priority of a thread
3461 * @pid: the pid in question.
3462 * @param: structure containing the new RT priority.
3463 */
3464asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3465{
3466 return do_sched_setscheduler(pid, -1, param);
3467}
3468
3469/**
3470 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3471 * @pid: the pid in question.
3472 */
3473asmlinkage long sys_sched_getscheduler(pid_t pid)
3474{
3475 int retval = -EINVAL;
3476 task_t *p;
3477
3478 if (pid < 0)
3479 goto out_nounlock;
3480
3481 retval = -ESRCH;
3482 read_lock(&tasklist_lock);
3483 p = find_process_by_pid(pid);
3484 if (p) {
3485 retval = security_task_getscheduler(p);
3486 if (!retval)
3487 retval = p->policy;
3488 }
3489 read_unlock(&tasklist_lock);
3490
3491out_nounlock:
3492 return retval;
3493}
3494
3495/**
3496 * sys_sched_getscheduler - get the RT priority of a thread
3497 * @pid: the pid in question.
3498 * @param: structure containing the RT priority.
3499 */
3500asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3501{
3502 struct sched_param lp;
3503 int retval = -EINVAL;
3504 task_t *p;
3505
3506 if (!param || pid < 0)
3507 goto out_nounlock;
3508
3509 read_lock(&tasklist_lock);
3510 p = find_process_by_pid(pid);
3511 retval = -ESRCH;
3512 if (!p)
3513 goto out_unlock;
3514
3515 retval = security_task_getscheduler(p);
3516 if (retval)
3517 goto out_unlock;
3518
3519 lp.sched_priority = p->rt_priority;
3520 read_unlock(&tasklist_lock);
3521
3522 /*
3523 * This one might sleep, we cannot do it with a spinlock held ...
3524 */
3525 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3526
3527out_nounlock:
3528 return retval;
3529
3530out_unlock:
3531 read_unlock(&tasklist_lock);
3532 return retval;
3533}
3534
3535long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3536{
3537 task_t *p;
3538 int retval;
3539 cpumask_t cpus_allowed;
3540
3541 lock_cpu_hotplug();
3542 read_lock(&tasklist_lock);
3543
3544 p = find_process_by_pid(pid);
3545 if (!p) {
3546 read_unlock(&tasklist_lock);
3547 unlock_cpu_hotplug();
3548 return -ESRCH;
3549 }
3550
3551 /*
3552 * It is not safe to call set_cpus_allowed with the
3553 * tasklist_lock held. We will bump the task_struct's
3554 * usage count and then drop tasklist_lock.
3555 */
3556 get_task_struct(p);
3557 read_unlock(&tasklist_lock);
3558
3559 retval = -EPERM;
3560 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3561 !capable(CAP_SYS_NICE))
3562 goto out_unlock;
3563
3564 cpus_allowed = cpuset_cpus_allowed(p);
3565 cpus_and(new_mask, new_mask, cpus_allowed);
3566 retval = set_cpus_allowed(p, new_mask);
3567
3568out_unlock:
3569 put_task_struct(p);
3570 unlock_cpu_hotplug();
3571 return retval;
3572}
3573
3574static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3575 cpumask_t *new_mask)
3576{
3577 if (len < sizeof(cpumask_t)) {
3578 memset(new_mask, 0, sizeof(cpumask_t));
3579 } else if (len > sizeof(cpumask_t)) {
3580 len = sizeof(cpumask_t);
3581 }
3582 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3583}
3584
3585/**
3586 * sys_sched_setaffinity - set the cpu affinity of a process
3587 * @pid: pid of the process
3588 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3589 * @user_mask_ptr: user-space pointer to the new cpu mask
3590 */
3591asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3592 unsigned long __user *user_mask_ptr)
3593{
3594 cpumask_t new_mask;
3595 int retval;
3596
3597 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3598 if (retval)
3599 return retval;
3600
3601 return sched_setaffinity(pid, new_mask);
3602}
3603
3604/*
3605 * Represents all cpu's present in the system
3606 * In systems capable of hotplug, this map could dynamically grow
3607 * as new cpu's are detected in the system via any platform specific
3608 * method, such as ACPI for e.g.
3609 */
3610
3611cpumask_t cpu_present_map;
3612EXPORT_SYMBOL(cpu_present_map);
3613
3614#ifndef CONFIG_SMP
3615cpumask_t cpu_online_map = CPU_MASK_ALL;
3616cpumask_t cpu_possible_map = CPU_MASK_ALL;
3617#endif
3618
3619long sched_getaffinity(pid_t pid, cpumask_t *mask)
3620{
3621 int retval;
3622 task_t *p;
3623
3624 lock_cpu_hotplug();
3625 read_lock(&tasklist_lock);
3626
3627 retval = -ESRCH;
3628 p = find_process_by_pid(pid);
3629 if (!p)
3630 goto out_unlock;
3631
3632 retval = 0;
3633 cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3634
3635out_unlock:
3636 read_unlock(&tasklist_lock);
3637 unlock_cpu_hotplug();
3638 if (retval)
3639 return retval;
3640
3641 return 0;
3642}
3643
3644/**
3645 * sys_sched_getaffinity - get the cpu affinity of a process
3646 * @pid: pid of the process
3647 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3648 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3649 */
3650asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3651 unsigned long __user *user_mask_ptr)
3652{
3653 int ret;
3654 cpumask_t mask;
3655
3656 if (len < sizeof(cpumask_t))
3657 return -EINVAL;
3658
3659 ret = sched_getaffinity(pid, &mask);
3660 if (ret < 0)
3661 return ret;
3662
3663 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3664 return -EFAULT;
3665
3666 return sizeof(cpumask_t);
3667}
3668
3669/**
3670 * sys_sched_yield - yield the current processor to other threads.
3671 *
3672 * this function yields the current CPU by moving the calling thread
3673 * to the expired array. If there are no other threads running on this
3674 * CPU then this function will return.
3675 */
3676asmlinkage long sys_sched_yield(void)
3677{
3678 runqueue_t *rq = this_rq_lock();
3679 prio_array_t *array = current->array;
3680 prio_array_t *target = rq->expired;
3681
3682 schedstat_inc(rq, yld_cnt);
3683 /*
3684 * We implement yielding by moving the task into the expired
3685 * queue.
3686 *
3687 * (special rule: RT tasks will just roundrobin in the active
3688 * array.)
3689 */
3690 if (rt_task(current))
3691 target = rq->active;
3692
3693 if (current->array->nr_active == 1) {
3694 schedstat_inc(rq, yld_act_empty);
3695 if (!rq->expired->nr_active)
3696 schedstat_inc(rq, yld_both_empty);
3697 } else if (!rq->expired->nr_active)
3698 schedstat_inc(rq, yld_exp_empty);
3699
3700 if (array != target) {
3701 dequeue_task(current, array);
3702 enqueue_task(current, target);
3703 } else
3704 /*
3705 * requeue_task is cheaper so perform that if possible.
3706 */
3707 requeue_task(current, array);
3708
3709 /*
3710 * Since we are going to call schedule() anyway, there's
3711 * no need to preempt or enable interrupts:
3712 */
3713 __release(rq->lock);
3714 _raw_spin_unlock(&rq->lock);
3715 preempt_enable_no_resched();
3716
3717 schedule();
3718
3719 return 0;
3720}
3721
3722static inline void __cond_resched(void)
3723{
3724 do {
3725 add_preempt_count(PREEMPT_ACTIVE);
3726 schedule();
3727 sub_preempt_count(PREEMPT_ACTIVE);
3728 } while (need_resched());
3729}
3730
3731int __sched cond_resched(void)
3732{
3733 if (need_resched()) {
3734 __cond_resched();
3735 return 1;
3736 }
3737 return 0;
3738}
3739
3740EXPORT_SYMBOL(cond_resched);
3741
3742/*
3743 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
3744 * call schedule, and on return reacquire the lock.
3745 *
3746 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3747 * operations here to prevent schedule() from being called twice (once via
3748 * spin_unlock(), once by hand).
3749 */
3750int cond_resched_lock(spinlock_t * lock)
3751{
6df3cecb
JK
3752 int ret = 0;
3753
1da177e4
LT
3754 if (need_lockbreak(lock)) {
3755 spin_unlock(lock);
3756 cpu_relax();
6df3cecb 3757 ret = 1;
1da177e4
LT
3758 spin_lock(lock);
3759 }
3760 if (need_resched()) {
3761 _raw_spin_unlock(lock);
3762 preempt_enable_no_resched();
3763 __cond_resched();
6df3cecb 3764 ret = 1;
1da177e4 3765 spin_lock(lock);
1da177e4 3766 }
6df3cecb 3767 return ret;
1da177e4
LT
3768}
3769
3770EXPORT_SYMBOL(cond_resched_lock);
3771
3772int __sched cond_resched_softirq(void)
3773{
3774 BUG_ON(!in_softirq());
3775
3776 if (need_resched()) {
3777 __local_bh_enable();
3778 __cond_resched();
3779 local_bh_disable();
3780 return 1;
3781 }
3782 return 0;
3783}
3784
3785EXPORT_SYMBOL(cond_resched_softirq);
3786
3787
3788/**
3789 * yield - yield the current processor to other threads.
3790 *
3791 * this is a shortcut for kernel-space yielding - it marks the
3792 * thread runnable and calls sys_sched_yield().
3793 */
3794void __sched yield(void)
3795{
3796 set_current_state(TASK_RUNNING);
3797 sys_sched_yield();
3798}
3799
3800EXPORT_SYMBOL(yield);
3801
3802/*
3803 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3804 * that process accounting knows that this is a task in IO wait state.
3805 *
3806 * But don't do that if it is a deliberate, throttling IO wait (this task
3807 * has set its backing_dev_info: the queue against which it should throttle)
3808 */
3809void __sched io_schedule(void)
3810{
39c715b7 3811 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
1da177e4
LT
3812
3813 atomic_inc(&rq->nr_iowait);
3814 schedule();
3815 atomic_dec(&rq->nr_iowait);
3816}
3817
3818EXPORT_SYMBOL(io_schedule);
3819
3820long __sched io_schedule_timeout(long timeout)
3821{
39c715b7 3822 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
1da177e4
LT
3823 long ret;
3824
3825 atomic_inc(&rq->nr_iowait);
3826 ret = schedule_timeout(timeout);
3827 atomic_dec(&rq->nr_iowait);
3828 return ret;
3829}
3830
3831/**
3832 * sys_sched_get_priority_max - return maximum RT priority.
3833 * @policy: scheduling class.
3834 *
3835 * this syscall returns the maximum rt_priority that can be used
3836 * by a given scheduling class.
3837 */
3838asmlinkage long sys_sched_get_priority_max(int policy)
3839{
3840 int ret = -EINVAL;
3841
3842 switch (policy) {
3843 case SCHED_FIFO:
3844 case SCHED_RR:
3845 ret = MAX_USER_RT_PRIO-1;
3846 break;
3847 case SCHED_NORMAL:
3848 ret = 0;
3849 break;
3850 }
3851 return ret;
3852}
3853
3854/**
3855 * sys_sched_get_priority_min - return minimum RT priority.
3856 * @policy: scheduling class.
3857 *
3858 * this syscall returns the minimum rt_priority that can be used
3859 * by a given scheduling class.
3860 */
3861asmlinkage long sys_sched_get_priority_min(int policy)
3862{
3863 int ret = -EINVAL;
3864
3865 switch (policy) {
3866 case SCHED_FIFO:
3867 case SCHED_RR:
3868 ret = 1;
3869 break;
3870 case SCHED_NORMAL:
3871 ret = 0;
3872 }
3873 return ret;
3874}
3875
3876/**
3877 * sys_sched_rr_get_interval - return the default timeslice of a process.
3878 * @pid: pid of the process.
3879 * @interval: userspace pointer to the timeslice value.
3880 *
3881 * this syscall writes the default timeslice value of a given process
3882 * into the user-space timespec buffer. A value of '0' means infinity.
3883 */
3884asmlinkage
3885long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
3886{
3887 int retval = -EINVAL;
3888 struct timespec t;
3889 task_t *p;
3890
3891 if (pid < 0)
3892 goto out_nounlock;
3893
3894 retval = -ESRCH;
3895 read_lock(&tasklist_lock);
3896 p = find_process_by_pid(pid);
3897 if (!p)
3898 goto out_unlock;
3899
3900 retval = security_task_getscheduler(p);
3901 if (retval)
3902 goto out_unlock;
3903
3904 jiffies_to_timespec(p->policy & SCHED_FIFO ?
3905 0 : task_timeslice(p), &t);
3906 read_unlock(&tasklist_lock);
3907 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
3908out_nounlock:
3909 return retval;
3910out_unlock:
3911 read_unlock(&tasklist_lock);
3912 return retval;
3913}
3914
3915static inline struct task_struct *eldest_child(struct task_struct *p)
3916{
3917 if (list_empty(&p->children)) return NULL;
3918 return list_entry(p->children.next,struct task_struct,sibling);
3919}
3920
3921static inline struct task_struct *older_sibling(struct task_struct *p)
3922{
3923 if (p->sibling.prev==&p->parent->children) return NULL;
3924 return list_entry(p->sibling.prev,struct task_struct,sibling);
3925}
3926
3927static inline struct task_struct *younger_sibling(struct task_struct *p)
3928{
3929 if (p->sibling.next==&p->parent->children) return NULL;
3930 return list_entry(p->sibling.next,struct task_struct,sibling);
3931}
3932
3933static void show_task(task_t * p)
3934{
3935 task_t *relative;
3936 unsigned state;
3937 unsigned long free = 0;
3938 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
3939
3940 printk("%-13.13s ", p->comm);
3941 state = p->state ? __ffs(p->state) + 1 : 0;
3942 if (state < ARRAY_SIZE(stat_nam))
3943 printk(stat_nam[state]);
3944 else
3945 printk("?");
3946#if (BITS_PER_LONG == 32)
3947 if (state == TASK_RUNNING)
3948 printk(" running ");
3949 else
3950 printk(" %08lX ", thread_saved_pc(p));
3951#else
3952 if (state == TASK_RUNNING)
3953 printk(" running task ");
3954 else
3955 printk(" %016lx ", thread_saved_pc(p));
3956#endif
3957#ifdef CONFIG_DEBUG_STACK_USAGE
3958 {
3959 unsigned long * n = (unsigned long *) (p->thread_info+1);
3960 while (!*n)
3961 n++;
3962 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
3963 }
3964#endif
3965 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
3966 if ((relative = eldest_child(p)))
3967 printk("%5d ", relative->pid);
3968 else
3969 printk(" ");
3970 if ((relative = younger_sibling(p)))
3971 printk("%7d", relative->pid);
3972 else
3973 printk(" ");
3974 if ((relative = older_sibling(p)))
3975 printk(" %5d", relative->pid);
3976 else
3977 printk(" ");
3978 if (!p->mm)
3979 printk(" (L-TLB)\n");
3980 else
3981 printk(" (NOTLB)\n");
3982
3983 if (state != TASK_RUNNING)
3984 show_stack(p, NULL);
3985}
3986
3987void show_state(void)
3988{
3989 task_t *g, *p;
3990
3991#if (BITS_PER_LONG == 32)
3992 printk("\n"
3993 " sibling\n");
3994 printk(" task PC pid father child younger older\n");
3995#else
3996 printk("\n"
3997 " sibling\n");
3998 printk(" task PC pid father child younger older\n");
3999#endif
4000 read_lock(&tasklist_lock);
4001 do_each_thread(g, p) {
4002 /*
4003 * reset the NMI-timeout, listing all files on a slow
4004 * console might take alot of time:
4005 */
4006 touch_nmi_watchdog();
4007 show_task(p);
4008 } while_each_thread(g, p);
4009
4010 read_unlock(&tasklist_lock);
4011}
4012
4013void __devinit init_idle(task_t *idle, int cpu)
4014{
4015 runqueue_t *rq = cpu_rq(cpu);
4016 unsigned long flags;
4017
4018 idle->sleep_avg = 0;
4019 idle->array = NULL;
4020 idle->prio = MAX_PRIO;
4021 idle->state = TASK_RUNNING;
4022 idle->cpus_allowed = cpumask_of_cpu(cpu);
4023 set_task_cpu(idle, cpu);
4024
4025 spin_lock_irqsave(&rq->lock, flags);
4026 rq->curr = rq->idle = idle;
4027 set_tsk_need_resched(idle);
4028 spin_unlock_irqrestore(&rq->lock, flags);
4029
4030 /* Set the preempt count _outside_ the spinlocks! */
4031#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4032 idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4033#else
4034 idle->thread_info->preempt_count = 0;
4035#endif
4036}
4037
4038/*
4039 * In a system that switches off the HZ timer nohz_cpu_mask
4040 * indicates which cpus entered this state. This is used
4041 * in the rcu update to wait only for active cpus. For system
4042 * which do not switch off the HZ timer nohz_cpu_mask should
4043 * always be CPU_MASK_NONE.
4044 */
4045cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4046
4047#ifdef CONFIG_SMP
4048/*
4049 * This is how migration works:
4050 *
4051 * 1) we queue a migration_req_t structure in the source CPU's
4052 * runqueue and wake up that CPU's migration thread.
4053 * 2) we down() the locked semaphore => thread blocks.
4054 * 3) migration thread wakes up (implicitly it forces the migrated
4055 * thread off the CPU)
4056 * 4) it gets the migration request and checks whether the migrated
4057 * task is still in the wrong runqueue.
4058 * 5) if it's in the wrong runqueue then the migration thread removes
4059 * it and puts it into the right queue.
4060 * 6) migration thread up()s the semaphore.
4061 * 7) we wake up and the migration is done.
4062 */
4063
4064/*
4065 * Change a given task's CPU affinity. Migrate the thread to a
4066 * proper CPU and schedule it away if the CPU it's executing on
4067 * is removed from the allowed bitmask.
4068 *
4069 * NOTE: the caller must have a valid reference to the task, the
4070 * task must not exit() & deallocate itself prematurely. The
4071 * call is not atomic; no spinlocks may be held.
4072 */
4073int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4074{
4075 unsigned long flags;
4076 int ret = 0;
4077 migration_req_t req;
4078 runqueue_t *rq;
4079
4080 rq = task_rq_lock(p, &flags);
4081 if (!cpus_intersects(new_mask, cpu_online_map)) {
4082 ret = -EINVAL;
4083 goto out;
4084 }
4085
4086 p->cpus_allowed = new_mask;
4087 /* Can the task run on the task's current CPU? If so, we're done */
4088 if (cpu_isset(task_cpu(p), new_mask))
4089 goto out;
4090
4091 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4092 /* Need help from migration thread: drop lock and wait. */
4093 task_rq_unlock(rq, &flags);
4094 wake_up_process(rq->migration_thread);
4095 wait_for_completion(&req.done);
4096 tlb_migrate_finish(p->mm);
4097 return 0;
4098 }
4099out:
4100 task_rq_unlock(rq, &flags);
4101 return ret;
4102}
4103
4104EXPORT_SYMBOL_GPL(set_cpus_allowed);
4105
4106/*
4107 * Move (not current) task off this cpu, onto dest cpu. We're doing
4108 * this because either it can't run here any more (set_cpus_allowed()
4109 * away from this CPU, or CPU going down), or because we're
4110 * attempting to rebalance this task on exec (sched_exec).
4111 *
4112 * So we race with normal scheduler movements, but that's OK, as long
4113 * as the task is no longer on this CPU.
4114 */
4115static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4116{
4117 runqueue_t *rq_dest, *rq_src;
4118
4119 if (unlikely(cpu_is_offline(dest_cpu)))
4120 return;
4121
4122 rq_src = cpu_rq(src_cpu);
4123 rq_dest = cpu_rq(dest_cpu);
4124
4125 double_rq_lock(rq_src, rq_dest);
4126 /* Already moved. */
4127 if (task_cpu(p) != src_cpu)
4128 goto out;
4129 /* Affinity changed (again). */
4130 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4131 goto out;
4132
4133 set_task_cpu(p, dest_cpu);
4134 if (p->array) {
4135 /*
4136 * Sync timestamp with rq_dest's before activating.
4137 * The same thing could be achieved by doing this step
4138 * afterwards, and pretending it was a local activate.
4139 * This way is cleaner and logically correct.
4140 */
4141 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4142 + rq_dest->timestamp_last_tick;
4143 deactivate_task(p, rq_src);
4144 activate_task(p, rq_dest, 0);
4145 if (TASK_PREEMPTS_CURR(p, rq_dest))
4146 resched_task(rq_dest->curr);
4147 }
4148
4149out:
4150 double_rq_unlock(rq_src, rq_dest);
4151}
4152
4153/*
4154 * migration_thread - this is a highprio system thread that performs
4155 * thread migration by bumping thread off CPU then 'pushing' onto
4156 * another runqueue.
4157 */
4158static int migration_thread(void * data)
4159{
4160 runqueue_t *rq;
4161 int cpu = (long)data;
4162
4163 rq = cpu_rq(cpu);
4164 BUG_ON(rq->migration_thread != current);
4165
4166 set_current_state(TASK_INTERRUPTIBLE);
4167 while (!kthread_should_stop()) {
4168 struct list_head *head;
4169 migration_req_t *req;
4170
4171 if (current->flags & PF_FREEZE)
4172 refrigerator(PF_FREEZE);
4173
4174 spin_lock_irq(&rq->lock);
4175
4176 if (cpu_is_offline(cpu)) {
4177 spin_unlock_irq(&rq->lock);
4178 goto wait_to_die;
4179 }
4180
4181 if (rq->active_balance) {
4182 active_load_balance(rq, cpu);
4183 rq->active_balance = 0;
4184 }
4185
4186 head = &rq->migration_queue;
4187
4188 if (list_empty(head)) {
4189 spin_unlock_irq(&rq->lock);
4190 schedule();
4191 set_current_state(TASK_INTERRUPTIBLE);
4192 continue;
4193 }
4194 req = list_entry(head->next, migration_req_t, list);
4195 list_del_init(head->next);
4196
4197 if (req->type == REQ_MOVE_TASK) {
4198 spin_unlock(&rq->lock);
4199 __migrate_task(req->task, cpu, req->dest_cpu);
4200 local_irq_enable();
4201 } else if (req->type == REQ_SET_DOMAIN) {
4202 rq->sd = req->sd;
4203 spin_unlock_irq(&rq->lock);
4204 } else {
4205 spin_unlock_irq(&rq->lock);
4206 WARN_ON(1);
4207 }
4208
4209 complete(&req->done);
4210 }
4211 __set_current_state(TASK_RUNNING);
4212 return 0;
4213
4214wait_to_die:
4215 /* Wait for kthread_stop */
4216 set_current_state(TASK_INTERRUPTIBLE);
4217 while (!kthread_should_stop()) {
4218 schedule();
4219 set_current_state(TASK_INTERRUPTIBLE);
4220 }
4221 __set_current_state(TASK_RUNNING);
4222 return 0;
4223}
4224
4225#ifdef CONFIG_HOTPLUG_CPU
4226/* Figure out where task on dead CPU should go, use force if neccessary. */
4227static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4228{
4229 int dest_cpu;
4230 cpumask_t mask;
4231
4232 /* On same node? */
4233 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4234 cpus_and(mask, mask, tsk->cpus_allowed);
4235 dest_cpu = any_online_cpu(mask);
4236
4237 /* On any allowed CPU? */
4238 if (dest_cpu == NR_CPUS)
4239 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4240
4241 /* No more Mr. Nice Guy. */
4242 if (dest_cpu == NR_CPUS) {
b39c4fab 4243 cpus_setall(tsk->cpus_allowed);
1da177e4
LT
4244 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4245
4246 /*
4247 * Don't tell them about moving exiting tasks or
4248 * kernel threads (both mm NULL), since they never
4249 * leave kernel.
4250 */
4251 if (tsk->mm && printk_ratelimit())
4252 printk(KERN_INFO "process %d (%s) no "
4253 "longer affine to cpu%d\n",
4254 tsk->pid, tsk->comm, dead_cpu);
4255 }
4256 __migrate_task(tsk, dead_cpu, dest_cpu);
4257}
4258
4259/*
4260 * While a dead CPU has no uninterruptible tasks queued at this point,
4261 * it might still have a nonzero ->nr_uninterruptible counter, because
4262 * for performance reasons the counter is not stricly tracking tasks to
4263 * their home CPUs. So we just add the counter to another CPU's counter,
4264 * to keep the global sum constant after CPU-down:
4265 */
4266static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4267{
4268 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4269 unsigned long flags;
4270
4271 local_irq_save(flags);
4272 double_rq_lock(rq_src, rq_dest);
4273 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4274 rq_src->nr_uninterruptible = 0;
4275 double_rq_unlock(rq_src, rq_dest);
4276 local_irq_restore(flags);
4277}
4278
4279/* Run through task list and migrate tasks from the dead cpu. */
4280static void migrate_live_tasks(int src_cpu)
4281{
4282 struct task_struct *tsk, *t;
4283
4284 write_lock_irq(&tasklist_lock);
4285
4286 do_each_thread(t, tsk) {
4287 if (tsk == current)
4288 continue;
4289
4290 if (task_cpu(tsk) == src_cpu)
4291 move_task_off_dead_cpu(src_cpu, tsk);
4292 } while_each_thread(t, tsk);
4293
4294 write_unlock_irq(&tasklist_lock);
4295}
4296
4297/* Schedules idle task to be the next runnable task on current CPU.
4298 * It does so by boosting its priority to highest possible and adding it to
4299 * the _front_ of runqueue. Used by CPU offline code.
4300 */
4301void sched_idle_next(void)
4302{
4303 int cpu = smp_processor_id();
4304 runqueue_t *rq = this_rq();
4305 struct task_struct *p = rq->idle;
4306 unsigned long flags;
4307
4308 /* cpu has to be offline */
4309 BUG_ON(cpu_online(cpu));
4310
4311 /* Strictly not necessary since rest of the CPUs are stopped by now
4312 * and interrupts disabled on current cpu.
4313 */
4314 spin_lock_irqsave(&rq->lock, flags);
4315
4316 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4317 /* Add idle task to _front_ of it's priority queue */
4318 __activate_idle_task(p, rq);
4319
4320 spin_unlock_irqrestore(&rq->lock, flags);
4321}
4322
4323/* Ensures that the idle task is using init_mm right before its cpu goes
4324 * offline.
4325 */
4326void idle_task_exit(void)
4327{
4328 struct mm_struct *mm = current->active_mm;
4329
4330 BUG_ON(cpu_online(smp_processor_id()));
4331
4332 if (mm != &init_mm)
4333 switch_mm(mm, &init_mm, current);
4334 mmdrop(mm);
4335}
4336
4337static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4338{
4339 struct runqueue *rq = cpu_rq(dead_cpu);
4340
4341 /* Must be exiting, otherwise would be on tasklist. */
4342 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4343
4344 /* Cannot have done final schedule yet: would have vanished. */
4345 BUG_ON(tsk->flags & PF_DEAD);
4346
4347 get_task_struct(tsk);
4348
4349 /*
4350 * Drop lock around migration; if someone else moves it,
4351 * that's OK. No task can be added to this CPU, so iteration is
4352 * fine.
4353 */
4354 spin_unlock_irq(&rq->lock);
4355 move_task_off_dead_cpu(dead_cpu, tsk);
4356 spin_lock_irq(&rq->lock);
4357
4358 put_task_struct(tsk);
4359}
4360
4361/* release_task() removes task from tasklist, so we won't find dead tasks. */
4362static void migrate_dead_tasks(unsigned int dead_cpu)
4363{
4364 unsigned arr, i;
4365 struct runqueue *rq = cpu_rq(dead_cpu);
4366
4367 for (arr = 0; arr < 2; arr++) {
4368 for (i = 0; i < MAX_PRIO; i++) {
4369 struct list_head *list = &rq->arrays[arr].queue[i];
4370 while (!list_empty(list))
4371 migrate_dead(dead_cpu,
4372 list_entry(list->next, task_t,
4373 run_list));
4374 }
4375 }
4376}
4377#endif /* CONFIG_HOTPLUG_CPU */
4378
4379/*
4380 * migration_call - callback that gets triggered when a CPU is added.
4381 * Here we can start up the necessary migration thread for the new CPU.
4382 */
4383static int migration_call(struct notifier_block *nfb, unsigned long action,
4384 void *hcpu)
4385{
4386 int cpu = (long)hcpu;
4387 struct task_struct *p;
4388 struct runqueue *rq;
4389 unsigned long flags;
4390
4391 switch (action) {
4392 case CPU_UP_PREPARE:
4393 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4394 if (IS_ERR(p))
4395 return NOTIFY_BAD;
4396 p->flags |= PF_NOFREEZE;
4397 kthread_bind(p, cpu);
4398 /* Must be high prio: stop_machine expects to yield to it. */
4399 rq = task_rq_lock(p, &flags);
4400 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4401 task_rq_unlock(rq, &flags);
4402 cpu_rq(cpu)->migration_thread = p;
4403 break;
4404 case CPU_ONLINE:
4405 /* Strictly unneccessary, as first user will wake it. */
4406 wake_up_process(cpu_rq(cpu)->migration_thread);
4407 break;
4408#ifdef CONFIG_HOTPLUG_CPU
4409 case CPU_UP_CANCELED:
4410 /* Unbind it from offline cpu so it can run. Fall thru. */
4411 kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
4412 kthread_stop(cpu_rq(cpu)->migration_thread);
4413 cpu_rq(cpu)->migration_thread = NULL;
4414 break;
4415 case CPU_DEAD:
4416 migrate_live_tasks(cpu);
4417 rq = cpu_rq(cpu);
4418 kthread_stop(rq->migration_thread);
4419 rq->migration_thread = NULL;
4420 /* Idle task back to normal (off runqueue, low prio) */
4421 rq = task_rq_lock(rq->idle, &flags);
4422 deactivate_task(rq->idle, rq);
4423 rq->idle->static_prio = MAX_PRIO;
4424 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4425 migrate_dead_tasks(cpu);
4426 task_rq_unlock(rq, &flags);
4427 migrate_nr_uninterruptible(rq);
4428 BUG_ON(rq->nr_running != 0);
4429
4430 /* No need to migrate the tasks: it was best-effort if
4431 * they didn't do lock_cpu_hotplug(). Just wake up
4432 * the requestors. */
4433 spin_lock_irq(&rq->lock);
4434 while (!list_empty(&rq->migration_queue)) {
4435 migration_req_t *req;
4436 req = list_entry(rq->migration_queue.next,
4437 migration_req_t, list);
4438 BUG_ON(req->type != REQ_MOVE_TASK);
4439 list_del_init(&req->list);
4440 complete(&req->done);
4441 }
4442 spin_unlock_irq(&rq->lock);
4443 break;
4444#endif
4445 }
4446 return NOTIFY_OK;
4447}
4448
4449/* Register at highest priority so that task migration (migrate_all_tasks)
4450 * happens before everything else.
4451 */
4452static struct notifier_block __devinitdata migration_notifier = {
4453 .notifier_call = migration_call,
4454 .priority = 10
4455};
4456
4457int __init migration_init(void)
4458{
4459 void *cpu = (void *)(long)smp_processor_id();
4460 /* Start one for boot CPU. */
4461 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4462 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4463 register_cpu_notifier(&migration_notifier);
4464 return 0;
4465}
4466#endif
4467
4468#ifdef CONFIG_SMP
4469#define SCHED_DOMAIN_DEBUG
4470#ifdef SCHED_DOMAIN_DEBUG
4471static void sched_domain_debug(struct sched_domain *sd, int cpu)
4472{
4473 int level = 0;
4474
4475 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4476
4477 do {
4478 int i;
4479 char str[NR_CPUS];
4480 struct sched_group *group = sd->groups;
4481 cpumask_t groupmask;
4482
4483 cpumask_scnprintf(str, NR_CPUS, sd->span);
4484 cpus_clear(groupmask);
4485
4486 printk(KERN_DEBUG);
4487 for (i = 0; i < level + 1; i++)
4488 printk(" ");
4489 printk("domain %d: ", level);
4490
4491 if (!(sd->flags & SD_LOAD_BALANCE)) {
4492 printk("does not load-balance\n");
4493 if (sd->parent)
4494 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4495 break;
4496 }
4497
4498 printk("span %s\n", str);
4499
4500 if (!cpu_isset(cpu, sd->span))
4501 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4502 if (!cpu_isset(cpu, group->cpumask))
4503 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4504
4505 printk(KERN_DEBUG);
4506 for (i = 0; i < level + 2; i++)
4507 printk(" ");
4508 printk("groups:");
4509 do {
4510 if (!group) {
4511 printk("\n");
4512 printk(KERN_ERR "ERROR: group is NULL\n");
4513 break;
4514 }
4515
4516 if (!group->cpu_power) {
4517 printk("\n");
4518 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4519 }
4520
4521 if (!cpus_weight(group->cpumask)) {
4522 printk("\n");
4523 printk(KERN_ERR "ERROR: empty group\n");
4524 }
4525
4526 if (cpus_intersects(groupmask, group->cpumask)) {
4527 printk("\n");
4528 printk(KERN_ERR "ERROR: repeated CPUs\n");
4529 }
4530
4531 cpus_or(groupmask, groupmask, group->cpumask);
4532
4533 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4534 printk(" %s", str);
4535
4536 group = group->next;
4537 } while (group != sd->groups);
4538 printk("\n");
4539
4540 if (!cpus_equal(sd->span, groupmask))
4541 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4542
4543 level++;
4544 sd = sd->parent;
4545
4546 if (sd) {
4547 if (!cpus_subset(groupmask, sd->span))
4548 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4549 }
4550
4551 } while (sd);
4552}
4553#else
4554#define sched_domain_debug(sd, cpu) {}
4555#endif
4556
4557/*
4558 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4559 * hold the hotplug lock.
4560 */
4561void __devinit cpu_attach_domain(struct sched_domain *sd, int cpu)
4562{
4563 migration_req_t req;
4564 unsigned long flags;
4565 runqueue_t *rq = cpu_rq(cpu);
4566 int local = 1;
4567
4568 sched_domain_debug(sd, cpu);
4569
4570 spin_lock_irqsave(&rq->lock, flags);
4571
4572 if (cpu == smp_processor_id() || !cpu_online(cpu)) {
4573 rq->sd = sd;
4574 } else {
4575 init_completion(&req.done);
4576 req.type = REQ_SET_DOMAIN;
4577 req.sd = sd;
4578 list_add(&req.list, &rq->migration_queue);
4579 local = 0;
4580 }
4581
4582 spin_unlock_irqrestore(&rq->lock, flags);
4583
4584 if (!local) {
4585 wake_up_process(rq->migration_thread);
4586 wait_for_completion(&req.done);
4587 }
4588}
4589
4590/* cpus with isolated domains */
4591cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4592
4593/* Setup the mask of cpus configured for isolated domains */
4594static int __init isolated_cpu_setup(char *str)
4595{
4596 int ints[NR_CPUS], i;
4597
4598 str = get_options(str, ARRAY_SIZE(ints), ints);
4599 cpus_clear(cpu_isolated_map);
4600 for (i = 1; i <= ints[0]; i++)
4601 if (ints[i] < NR_CPUS)
4602 cpu_set(ints[i], cpu_isolated_map);
4603 return 1;
4604}
4605
4606__setup ("isolcpus=", isolated_cpu_setup);
4607
4608/*
4609 * init_sched_build_groups takes an array of groups, the cpumask we wish
4610 * to span, and a pointer to a function which identifies what group a CPU
4611 * belongs to. The return value of group_fn must be a valid index into the
4612 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4613 * keep track of groups covered with a cpumask_t).
4614 *
4615 * init_sched_build_groups will build a circular linked list of the groups
4616 * covered by the given span, and will set each group's ->cpumask correctly,
4617 * and ->cpu_power to 0.
4618 */
4619void __devinit init_sched_build_groups(struct sched_group groups[],
4620 cpumask_t span, int (*group_fn)(int cpu))
4621{
4622 struct sched_group *first = NULL, *last = NULL;
4623 cpumask_t covered = CPU_MASK_NONE;
4624 int i;
4625
4626 for_each_cpu_mask(i, span) {
4627 int group = group_fn(i);
4628 struct sched_group *sg = &groups[group];
4629 int j;
4630
4631 if (cpu_isset(i, covered))
4632 continue;
4633
4634 sg->cpumask = CPU_MASK_NONE;
4635 sg->cpu_power = 0;
4636
4637 for_each_cpu_mask(j, span) {
4638 if (group_fn(j) != group)
4639 continue;
4640
4641 cpu_set(j, covered);
4642 cpu_set(j, sg->cpumask);
4643 }
4644 if (!first)
4645 first = sg;
4646 if (last)
4647 last->next = sg;
4648 last = sg;
4649 }
4650 last->next = first;
4651}
4652
4653
4654#ifdef ARCH_HAS_SCHED_DOMAIN
4655extern void __devinit arch_init_sched_domains(void);
4656extern void __devinit arch_destroy_sched_domains(void);
4657#else
4658#ifdef CONFIG_SCHED_SMT
4659static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
4660static struct sched_group sched_group_cpus[NR_CPUS];
4661static int __devinit cpu_to_cpu_group(int cpu)
4662{
4663 return cpu;
4664}
4665#endif
4666
4667static DEFINE_PER_CPU(struct sched_domain, phys_domains);
4668static struct sched_group sched_group_phys[NR_CPUS];
4669static int __devinit cpu_to_phys_group(int cpu)
4670{
4671#ifdef CONFIG_SCHED_SMT
4672 return first_cpu(cpu_sibling_map[cpu]);
4673#else
4674 return cpu;
4675#endif
4676}
4677
4678#ifdef CONFIG_NUMA
4679
4680static DEFINE_PER_CPU(struct sched_domain, node_domains);
4681static struct sched_group sched_group_nodes[MAX_NUMNODES];
4682static int __devinit cpu_to_node_group(int cpu)
4683{
4684 return cpu_to_node(cpu);
4685}
4686#endif
4687
4688#if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
4689/*
4690 * The domains setup code relies on siblings not spanning
4691 * multiple nodes. Make sure the architecture has a proper
4692 * siblings map:
4693 */
4694static void check_sibling_maps(void)
4695{
4696 int i, j;
4697
4698 for_each_online_cpu(i) {
4699 for_each_cpu_mask(j, cpu_sibling_map[i]) {
4700 if (cpu_to_node(i) != cpu_to_node(j)) {
4701 printk(KERN_INFO "warning: CPU %d siblings map "
4702 "to different node - isolating "
4703 "them.\n", i);
4704 cpu_sibling_map[i] = cpumask_of_cpu(i);
4705 break;
4706 }
4707 }
4708 }
4709}
4710#endif
4711
4712/*
4713 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
4714 */
4715static void __devinit arch_init_sched_domains(void)
4716{
4717 int i;
4718 cpumask_t cpu_default_map;
4719
4720#if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
4721 check_sibling_maps();
4722#endif
4723 /*
4724 * Setup mask for cpus without special case scheduling requirements.
4725 * For now this just excludes isolated cpus, but could be used to
4726 * exclude other special cases in the future.
4727 */
4728 cpus_complement(cpu_default_map, cpu_isolated_map);
4729 cpus_and(cpu_default_map, cpu_default_map, cpu_online_map);
4730
4731 /*
4732 * Set up domains. Isolated domains just stay on the dummy domain.
4733 */
4734 for_each_cpu_mask(i, cpu_default_map) {
4735 int group;
4736 struct sched_domain *sd = NULL, *p;
4737 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
4738
4739 cpus_and(nodemask, nodemask, cpu_default_map);
4740
4741#ifdef CONFIG_NUMA
4742 sd = &per_cpu(node_domains, i);
4743 group = cpu_to_node_group(i);
4744 *sd = SD_NODE_INIT;
4745 sd->span = cpu_default_map;
4746 sd->groups = &sched_group_nodes[group];
4747#endif
4748
4749 p = sd;
4750 sd = &per_cpu(phys_domains, i);
4751 group = cpu_to_phys_group(i);
4752 *sd = SD_CPU_INIT;
4753 sd->span = nodemask;
4754 sd->parent = p;
4755 sd->groups = &sched_group_phys[group];
4756
4757#ifdef CONFIG_SCHED_SMT
4758 p = sd;
4759 sd = &per_cpu(cpu_domains, i);
4760 group = cpu_to_cpu_group(i);
4761 *sd = SD_SIBLING_INIT;
4762 sd->span = cpu_sibling_map[i];
4763 cpus_and(sd->span, sd->span, cpu_default_map);
4764 sd->parent = p;
4765 sd->groups = &sched_group_cpus[group];
4766#endif
4767 }
4768
4769#ifdef CONFIG_SCHED_SMT
4770 /* Set up CPU (sibling) groups */
4771 for_each_online_cpu(i) {
4772 cpumask_t this_sibling_map = cpu_sibling_map[i];
4773 cpus_and(this_sibling_map, this_sibling_map, cpu_default_map);
4774 if (i != first_cpu(this_sibling_map))
4775 continue;
4776
4777 init_sched_build_groups(sched_group_cpus, this_sibling_map,
4778 &cpu_to_cpu_group);
4779 }
4780#endif
4781
4782 /* Set up physical groups */
4783 for (i = 0; i < MAX_NUMNODES; i++) {
4784 cpumask_t nodemask = node_to_cpumask(i);
4785
4786 cpus_and(nodemask, nodemask, cpu_default_map);
4787 if (cpus_empty(nodemask))
4788 continue;
4789
4790 init_sched_build_groups(sched_group_phys, nodemask,
4791 &cpu_to_phys_group);
4792 }
4793
4794#ifdef CONFIG_NUMA
4795 /* Set up node groups */
4796 init_sched_build_groups(sched_group_nodes, cpu_default_map,
4797 &cpu_to_node_group);
4798#endif
4799
4800 /* Calculate CPU power for physical packages and nodes */
4801 for_each_cpu_mask(i, cpu_default_map) {
4802 int power;
4803 struct sched_domain *sd;
4804#ifdef CONFIG_SCHED_SMT
4805 sd = &per_cpu(cpu_domains, i);
4806 power = SCHED_LOAD_SCALE;
4807 sd->groups->cpu_power = power;
4808#endif
4809
4810 sd = &per_cpu(phys_domains, i);
4811 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
4812 (cpus_weight(sd->groups->cpumask)-1) / 10;
4813 sd->groups->cpu_power = power;
4814
4815#ifdef CONFIG_NUMA
4816 if (i == first_cpu(sd->groups->cpumask)) {
4817 /* Only add "power" once for each physical package. */
4818 sd = &per_cpu(node_domains, i);
4819 sd->groups->cpu_power += power;
4820 }
4821#endif
4822 }
4823
4824 /* Attach the domains */
4825 for_each_online_cpu(i) {
4826 struct sched_domain *sd;
4827#ifdef CONFIG_SCHED_SMT
4828 sd = &per_cpu(cpu_domains, i);
4829#else
4830 sd = &per_cpu(phys_domains, i);
4831#endif
4832 cpu_attach_domain(sd, i);
4833 }
4834}
4835
4836#ifdef CONFIG_HOTPLUG_CPU
4837static void __devinit arch_destroy_sched_domains(void)
4838{
4839 /* Do nothing: everything is statically allocated. */
4840}
4841#endif
4842
4843#endif /* ARCH_HAS_SCHED_DOMAIN */
4844
4845/*
4846 * Initial dummy domain for early boot and for hotplug cpu. Being static,
4847 * it is initialized to zero, so all balancing flags are cleared which is
4848 * what we want.
4849 */
4850static struct sched_domain sched_domain_dummy;
4851
4852#ifdef CONFIG_HOTPLUG_CPU
4853/*
4854 * Force a reinitialization of the sched domains hierarchy. The domains
4855 * and groups cannot be updated in place without racing with the balancing
4856 * code, so we temporarily attach all running cpus to a "dummy" domain
4857 * which will prevent rebalancing while the sched domains are recalculated.
4858 */
4859static int update_sched_domains(struct notifier_block *nfb,
4860 unsigned long action, void *hcpu)
4861{
4862 int i;
4863
4864 switch (action) {
4865 case CPU_UP_PREPARE:
4866 case CPU_DOWN_PREPARE:
4867 for_each_online_cpu(i)
4868 cpu_attach_domain(&sched_domain_dummy, i);
4869 arch_destroy_sched_domains();
4870 return NOTIFY_OK;
4871
4872 case CPU_UP_CANCELED:
4873 case CPU_DOWN_FAILED:
4874 case CPU_ONLINE:
4875 case CPU_DEAD:
4876 /*
4877 * Fall through and re-initialise the domains.
4878 */
4879 break;
4880 default:
4881 return NOTIFY_DONE;
4882 }
4883
4884 /* The hotplug lock is already held by cpu_up/cpu_down */
4885 arch_init_sched_domains();
4886
4887 return NOTIFY_OK;
4888}
4889#endif
4890
4891void __init sched_init_smp(void)
4892{
4893 lock_cpu_hotplug();
4894 arch_init_sched_domains();
4895 unlock_cpu_hotplug();
4896 /* XXX: Theoretical race here - CPU may be hotplugged now */
4897 hotcpu_notifier(update_sched_domains, 0);
4898}
4899#else
4900void __init sched_init_smp(void)
4901{
4902}
4903#endif /* CONFIG_SMP */
4904
4905int in_sched_functions(unsigned long addr)
4906{
4907 /* Linker adds these: start and end of __sched functions */
4908 extern char __sched_text_start[], __sched_text_end[];
4909 return in_lock_functions(addr) ||
4910 (addr >= (unsigned long)__sched_text_start
4911 && addr < (unsigned long)__sched_text_end);
4912}
4913
4914void __init sched_init(void)
4915{
4916 runqueue_t *rq;
4917 int i, j, k;
4918
4919 for (i = 0; i < NR_CPUS; i++) {
4920 prio_array_t *array;
4921
4922 rq = cpu_rq(i);
4923 spin_lock_init(&rq->lock);
4924 rq->active = rq->arrays;
4925 rq->expired = rq->arrays + 1;
4926 rq->best_expired_prio = MAX_PRIO;
4927
4928#ifdef CONFIG_SMP
4929 rq->sd = &sched_domain_dummy;
4930 rq->cpu_load = 0;
4931 rq->active_balance = 0;
4932 rq->push_cpu = 0;
4933 rq->migration_thread = NULL;
4934 INIT_LIST_HEAD(&rq->migration_queue);
4935#endif
4936 atomic_set(&rq->nr_iowait, 0);
4937
4938 for (j = 0; j < 2; j++) {
4939 array = rq->arrays + j;
4940 for (k = 0; k < MAX_PRIO; k++) {
4941 INIT_LIST_HEAD(array->queue + k);
4942 __clear_bit(k, array->bitmap);
4943 }
4944 // delimiter for bitsearch
4945 __set_bit(MAX_PRIO, array->bitmap);
4946 }
4947 }
4948
4949 /*
4950 * The boot idle thread does lazy MMU switching as well:
4951 */
4952 atomic_inc(&init_mm.mm_count);
4953 enter_lazy_tlb(&init_mm, current);
4954
4955 /*
4956 * Make us the idle thread. Technically, schedule() should not be
4957 * called from this thread, however somewhere below it might be,
4958 * but because we are the idle thread, we just pick up running again
4959 * when this runqueue becomes "idle".
4960 */
4961 init_idle(current, smp_processor_id());
4962}
4963
4964#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4965void __might_sleep(char *file, int line)
4966{
4967#if defined(in_atomic)
4968 static unsigned long prev_jiffy; /* ratelimiting */
4969
4970 if ((in_atomic() || irqs_disabled()) &&
4971 system_state == SYSTEM_RUNNING && !oops_in_progress) {
4972 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
4973 return;
4974 prev_jiffy = jiffies;
4975 printk(KERN_ERR "Debug: sleeping function called from invalid"
4976 " context at %s:%d\n", file, line);
4977 printk("in_atomic():%d, irqs_disabled():%d\n",
4978 in_atomic(), irqs_disabled());
4979 dump_stack();
4980 }
4981#endif
4982}
4983EXPORT_SYMBOL(__might_sleep);
4984#endif
4985
4986#ifdef CONFIG_MAGIC_SYSRQ
4987void normalize_rt_tasks(void)
4988{
4989 struct task_struct *p;
4990 prio_array_t *array;
4991 unsigned long flags;
4992 runqueue_t *rq;
4993
4994 read_lock_irq(&tasklist_lock);
4995 for_each_process (p) {
4996 if (!rt_task(p))
4997 continue;
4998
4999 rq = task_rq_lock(p, &flags);
5000
5001 array = p->array;
5002 if (array)
5003 deactivate_task(p, task_rq(p));
5004 __setscheduler(p, SCHED_NORMAL, 0);
5005 if (array) {
5006 __activate_task(p, task_rq(p));
5007 resched_task(rq->curr);
5008 }
5009
5010 task_rq_unlock(rq, &flags);
5011 }
5012 read_unlock_irq(&tasklist_lock);
5013}
5014
5015#endif /* CONFIG_MAGIC_SYSRQ */