]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: print &rq->cfs stats
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
47#include <linux/smp.h>
48#include <linux/threads.h>
49#include <linux/timer.h>
50#include <linux/rcupdate.h>
51#include <linux/cpu.h>
52#include <linux/cpuset.h>
53#include <linux/percpu.h>
54#include <linux/kthread.h>
55#include <linux/seq_file.h>
e692ab53 56#include <linux/sysctl.h>
1da177e4
LT
57#include <linux/syscalls.h>
58#include <linux/times.h>
8f0ab514 59#include <linux/tsacct_kern.h>
c6fd91f0 60#include <linux/kprobes.h>
0ff92245 61#include <linux/delayacct.h>
5517d86b 62#include <linux/reciprocal_div.h>
dff06c15 63#include <linux/unistd.h>
f5ff8422 64#include <linux/pagemap.h>
1da177e4 65
5517d86b 66#include <asm/tlb.h>
1da177e4 67
b035b6de
AD
68/*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73unsigned long long __attribute__((weak)) sched_clock(void)
74{
75 return (unsigned long long)jiffies * (1000000000 / HZ);
76}
77
1da177e4
LT
78/*
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
82 */
83#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86
87/*
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
91 */
92#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95
96/*
97 * Some helpers for converting nanosecond timing to jiffy resolution
98 */
99#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
100#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101
6aa645ea
IM
102#define NICE_0_LOAD SCHED_LOAD_SCALE
103#define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
1da177e4
LT
105/*
106 * These are the 'tuning knobs' of the scheduler:
107 *
108 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
109 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
110 * Timeslices get refilled after they expire.
111 */
112#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
113#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 114
5517d86b
ED
115#ifdef CONFIG_SMP
116/*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121{
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123}
124
125/*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130{
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133}
134#endif
135
634fa8c9
IM
136#define SCALE_PRIO(x, prio) \
137 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
138
91fcdd4e 139/*
634fa8c9 140 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
91fcdd4e 141 * to time slice values: [800ms ... 100ms ... 5ms]
91fcdd4e 142 */
634fa8c9 143static unsigned int static_prio_timeslice(int static_prio)
2dd73a4f 144{
634fa8c9
IM
145 if (static_prio == NICE_TO_PRIO(19))
146 return 1;
147
148 if (static_prio < NICE_TO_PRIO(0))
149 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
150 else
151 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
2dd73a4f
PW
152}
153
e05606d3
IM
154static inline int rt_policy(int policy)
155{
156 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
157 return 1;
158 return 0;
159}
160
161static inline int task_has_rt_policy(struct task_struct *p)
162{
163 return rt_policy(p->policy);
164}
165
1da177e4 166/*
6aa645ea 167 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 168 */
6aa645ea
IM
169struct rt_prio_array {
170 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
171 struct list_head queue[MAX_RT_PRIO];
172};
173
29f59db3
SV
174#ifdef CONFIG_FAIR_GROUP_SCHED
175
176#include <linux/container.h>
177
178struct cfs_rq;
179
180/* task group related information */
181struct task_grp {
182 struct container_subsys_state css;
183 /* schedulable entities of this group on each cpu */
184 struct sched_entity **se;
185 /* runqueue "owned" by this group on each cpu */
186 struct cfs_rq **cfs_rq;
187 unsigned long shares;
188};
189
190/* Default task group's sched entity on each cpu */
191static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
192/* Default task group's cfs_rq on each cpu */
193static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
194
195static struct sched_entity *init_sched_entity_p[CONFIG_NR_CPUS];
196static struct cfs_rq *init_cfs_rq_p[CONFIG_NR_CPUS];
197
198/* Default task group.
199 * Every task in system belong to this group at bootup.
200 */
201static struct task_grp init_task_grp = {
202 .se = init_sched_entity_p,
203 .cfs_rq = init_cfs_rq_p,
204 };
205
206/* return group to which a task belongs */
207static inline struct task_grp *task_grp(struct task_struct *p)
208{
209 return container_of(task_subsys_state(p, cpu_subsys_id),
210 struct task_grp, css);
211}
212
213/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
214static inline void set_task_cfs_rq(struct task_struct *p)
215{
216 p->se.cfs_rq = task_grp(p)->cfs_rq[task_cpu(p)];
217 p->se.parent = task_grp(p)->se[task_cpu(p)];
218}
219
220#else
221
222static inline void set_task_cfs_rq(struct task_struct *p) { }
223
224#endif /* CONFIG_FAIR_GROUP_SCHED */
225
6aa645ea
IM
226/* CFS-related fields in a runqueue */
227struct cfs_rq {
228 struct load_weight load;
229 unsigned long nr_running;
230
6aa645ea 231 u64 exec_clock;
e9acbff6 232 u64 min_vruntime;
6aa645ea
IM
233
234 struct rb_root tasks_timeline;
235 struct rb_node *rb_leftmost;
236 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
237 /* 'curr' points to currently running entity on this cfs_rq.
238 * It is set to NULL otherwise (i.e when none are currently running).
239 */
240 struct sched_entity *curr;
62160e3f 241#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
242 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
243
244 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
245 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
246 * (like users, containers etc.)
247 *
248 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
249 * list is used during load balance.
250 */
251 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
29f59db3 252 struct task_grp *tg; /* group that "owns" this runqueue */
6aa645ea
IM
253#endif
254};
1da177e4 255
6aa645ea
IM
256/* Real-Time classes' related field in a runqueue: */
257struct rt_rq {
258 struct rt_prio_array active;
259 int rt_load_balance_idx;
260 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
261};
262
1da177e4
LT
263/*
264 * This is the main, per-CPU runqueue data structure.
265 *
266 * Locking rule: those places that want to lock multiple runqueues
267 * (such as the load balancing or the thread migration code), lock
268 * acquire operations must be ordered by ascending &runqueue.
269 */
70b97a7f 270struct rq {
6aa645ea 271 spinlock_t lock; /* runqueue lock */
1da177e4
LT
272
273 /*
274 * nr_running and cpu_load should be in the same cacheline because
275 * remote CPUs use both these fields when doing load calculation.
276 */
277 unsigned long nr_running;
6aa645ea
IM
278 #define CPU_LOAD_IDX_MAX 5
279 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 280 unsigned char idle_at_tick;
46cb4b7c
SS
281#ifdef CONFIG_NO_HZ
282 unsigned char in_nohz_recently;
283#endif
495eca49 284 struct load_weight load; /* capture load from *all* tasks on this cpu */
6aa645ea
IM
285 unsigned long nr_load_updates;
286 u64 nr_switches;
287
288 struct cfs_rq cfs;
289#ifdef CONFIG_FAIR_GROUP_SCHED
290 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
1da177e4 291#endif
6aa645ea 292 struct rt_rq rt;
1da177e4
LT
293
294 /*
295 * This is part of a global counter where only the total sum
296 * over all CPUs matters. A task can increase this counter on
297 * one CPU and if it got migrated afterwards it may decrease
298 * it on another CPU. Always updated under the runqueue lock:
299 */
300 unsigned long nr_uninterruptible;
301
36c8b586 302 struct task_struct *curr, *idle;
c9819f45 303 unsigned long next_balance;
1da177e4 304 struct mm_struct *prev_mm;
6aa645ea 305
6aa645ea
IM
306 u64 clock, prev_clock_raw;
307 s64 clock_max_delta;
308
309 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
310 u64 idle_clock;
311 unsigned int clock_deep_idle_events;
529c7726 312 u64 tick_timestamp;
6aa645ea 313
1da177e4
LT
314 atomic_t nr_iowait;
315
316#ifdef CONFIG_SMP
317 struct sched_domain *sd;
318
319 /* For active balancing */
320 int active_balance;
321 int push_cpu;
0a2966b4 322 int cpu; /* cpu of this runqueue */
1da177e4 323
36c8b586 324 struct task_struct *migration_thread;
1da177e4
LT
325 struct list_head migration_queue;
326#endif
327
328#ifdef CONFIG_SCHEDSTATS
329 /* latency stats */
330 struct sched_info rq_sched_info;
331
332 /* sys_sched_yield() stats */
333 unsigned long yld_exp_empty;
334 unsigned long yld_act_empty;
335 unsigned long yld_both_empty;
336 unsigned long yld_cnt;
337
338 /* schedule() stats */
339 unsigned long sched_switch;
340 unsigned long sched_cnt;
341 unsigned long sched_goidle;
342
343 /* try_to_wake_up() stats */
344 unsigned long ttwu_cnt;
345 unsigned long ttwu_local;
346#endif
fcb99371 347 struct lock_class_key rq_lock_key;
1da177e4
LT
348};
349
f34e3b61 350static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 351static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 352
dd41f596
IM
353static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
354{
355 rq->curr->sched_class->check_preempt_curr(rq, p);
356}
357
0a2966b4
CL
358static inline int cpu_of(struct rq *rq)
359{
360#ifdef CONFIG_SMP
361 return rq->cpu;
362#else
363 return 0;
364#endif
365}
366
20d315d4 367/*
b04a0f4c
IM
368 * Update the per-runqueue clock, as finegrained as the platform can give
369 * us, but without assuming monotonicity, etc.:
20d315d4 370 */
b04a0f4c 371static void __update_rq_clock(struct rq *rq)
20d315d4
IM
372{
373 u64 prev_raw = rq->prev_clock_raw;
374 u64 now = sched_clock();
375 s64 delta = now - prev_raw;
376 u64 clock = rq->clock;
377
b04a0f4c
IM
378#ifdef CONFIG_SCHED_DEBUG
379 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
380#endif
20d315d4
IM
381 /*
382 * Protect against sched_clock() occasionally going backwards:
383 */
384 if (unlikely(delta < 0)) {
385 clock++;
386 rq->clock_warps++;
387 } else {
388 /*
389 * Catch too large forward jumps too:
390 */
529c7726
IM
391 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
392 if (clock < rq->tick_timestamp + TICK_NSEC)
393 clock = rq->tick_timestamp + TICK_NSEC;
394 else
395 clock++;
20d315d4
IM
396 rq->clock_overflows++;
397 } else {
398 if (unlikely(delta > rq->clock_max_delta))
399 rq->clock_max_delta = delta;
400 clock += delta;
401 }
402 }
403
404 rq->prev_clock_raw = now;
405 rq->clock = clock;
b04a0f4c 406}
20d315d4 407
b04a0f4c
IM
408static void update_rq_clock(struct rq *rq)
409{
410 if (likely(smp_processor_id() == cpu_of(rq)))
411 __update_rq_clock(rq);
20d315d4
IM
412}
413
674311d5
NP
414/*
415 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 416 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
417 *
418 * The domain tree of any CPU may only be accessed from within
419 * preempt-disabled sections.
420 */
48f24c4d
IM
421#define for_each_domain(cpu, __sd) \
422 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
423
424#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
425#define this_rq() (&__get_cpu_var(runqueues))
426#define task_rq(p) cpu_rq(task_cpu(p))
427#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
428
bf5c91ba
IM
429/*
430 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
431 */
432#ifdef CONFIG_SCHED_DEBUG
433# define const_debug __read_mostly
434#else
435# define const_debug static const
436#endif
437
438/*
439 * Debugging: various feature bits
440 */
441enum {
bbdba7c0
IM
442 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
443 SCHED_FEAT_START_DEBIT = 2,
444 SCHED_FEAT_USE_TREE_AVG = 4,
445 SCHED_FEAT_APPROX_AVG = 8,
bf5c91ba
IM
446};
447
448const_debug unsigned int sysctl_sched_features =
bf5c91ba 449 SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
94dfb5e7
PZ
450 SCHED_FEAT_START_DEBIT *1 |
451 SCHED_FEAT_USE_TREE_AVG *0 |
452 SCHED_FEAT_APPROX_AVG *0;
bf5c91ba
IM
453
454#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
455
e436d800
IM
456/*
457 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
458 * clock constructed from sched_clock():
459 */
460unsigned long long cpu_clock(int cpu)
461{
e436d800
IM
462 unsigned long long now;
463 unsigned long flags;
b04a0f4c 464 struct rq *rq;
e436d800 465
2cd4d0ea 466 local_irq_save(flags);
b04a0f4c
IM
467 rq = cpu_rq(cpu);
468 update_rq_clock(rq);
469 now = rq->clock;
2cd4d0ea 470 local_irq_restore(flags);
e436d800
IM
471
472 return now;
473}
474
1da177e4 475#ifndef prepare_arch_switch
4866cde0
NP
476# define prepare_arch_switch(next) do { } while (0)
477#endif
478#ifndef finish_arch_switch
479# define finish_arch_switch(prev) do { } while (0)
480#endif
481
482#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 483static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
484{
485 return rq->curr == p;
486}
487
70b97a7f 488static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
489{
490}
491
70b97a7f 492static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 493{
da04c035
IM
494#ifdef CONFIG_DEBUG_SPINLOCK
495 /* this is a valid case when another task releases the spinlock */
496 rq->lock.owner = current;
497#endif
8a25d5de
IM
498 /*
499 * If we are tracking spinlock dependencies then we have to
500 * fix up the runqueue lock - which gets 'carried over' from
501 * prev into current:
502 */
503 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
504
4866cde0
NP
505 spin_unlock_irq(&rq->lock);
506}
507
508#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 509static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
510{
511#ifdef CONFIG_SMP
512 return p->oncpu;
513#else
514 return rq->curr == p;
515#endif
516}
517
70b97a7f 518static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
519{
520#ifdef CONFIG_SMP
521 /*
522 * We can optimise this out completely for !SMP, because the
523 * SMP rebalancing from interrupt is the only thing that cares
524 * here.
525 */
526 next->oncpu = 1;
527#endif
528#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
529 spin_unlock_irq(&rq->lock);
530#else
531 spin_unlock(&rq->lock);
532#endif
533}
534
70b97a7f 535static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
536{
537#ifdef CONFIG_SMP
538 /*
539 * After ->oncpu is cleared, the task can be moved to a different CPU.
540 * We must ensure this doesn't happen until the switch is completely
541 * finished.
542 */
543 smp_wmb();
544 prev->oncpu = 0;
545#endif
546#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
547 local_irq_enable();
1da177e4 548#endif
4866cde0
NP
549}
550#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 551
b29739f9
IM
552/*
553 * __task_rq_lock - lock the runqueue a given task resides on.
554 * Must be called interrupts disabled.
555 */
70b97a7f 556static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
557 __acquires(rq->lock)
558{
70b97a7f 559 struct rq *rq;
b29739f9
IM
560
561repeat_lock_task:
562 rq = task_rq(p);
563 spin_lock(&rq->lock);
564 if (unlikely(rq != task_rq(p))) {
565 spin_unlock(&rq->lock);
566 goto repeat_lock_task;
567 }
568 return rq;
569}
570
1da177e4
LT
571/*
572 * task_rq_lock - lock the runqueue a given task resides on and disable
573 * interrupts. Note the ordering: we can safely lookup the task_rq without
574 * explicitly disabling preemption.
575 */
70b97a7f 576static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
577 __acquires(rq->lock)
578{
70b97a7f 579 struct rq *rq;
1da177e4
LT
580
581repeat_lock_task:
582 local_irq_save(*flags);
583 rq = task_rq(p);
584 spin_lock(&rq->lock);
585 if (unlikely(rq != task_rq(p))) {
586 spin_unlock_irqrestore(&rq->lock, *flags);
587 goto repeat_lock_task;
588 }
589 return rq;
590}
591
70b97a7f 592static inline void __task_rq_unlock(struct rq *rq)
b29739f9
IM
593 __releases(rq->lock)
594{
595 spin_unlock(&rq->lock);
596}
597
70b97a7f 598static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
599 __releases(rq->lock)
600{
601 spin_unlock_irqrestore(&rq->lock, *flags);
602}
603
1da177e4 604/*
cc2a73b5 605 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 606 */
70b97a7f 607static inline struct rq *this_rq_lock(void)
1da177e4
LT
608 __acquires(rq->lock)
609{
70b97a7f 610 struct rq *rq;
1da177e4
LT
611
612 local_irq_disable();
613 rq = this_rq();
614 spin_lock(&rq->lock);
615
616 return rq;
617}
618
1b9f19c2 619/*
2aa44d05 620 * We are going deep-idle (irqs are disabled):
1b9f19c2 621 */
2aa44d05 622void sched_clock_idle_sleep_event(void)
1b9f19c2 623{
2aa44d05
IM
624 struct rq *rq = cpu_rq(smp_processor_id());
625
626 spin_lock(&rq->lock);
627 __update_rq_clock(rq);
628 spin_unlock(&rq->lock);
629 rq->clock_deep_idle_events++;
630}
631EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
632
633/*
634 * We just idled delta nanoseconds (called with irqs disabled):
635 */
636void sched_clock_idle_wakeup_event(u64 delta_ns)
637{
638 struct rq *rq = cpu_rq(smp_processor_id());
639 u64 now = sched_clock();
1b9f19c2 640
2aa44d05
IM
641 rq->idle_clock += delta_ns;
642 /*
643 * Override the previous timestamp and ignore all
644 * sched_clock() deltas that occured while we idled,
645 * and use the PM-provided delta_ns to advance the
646 * rq clock:
647 */
648 spin_lock(&rq->lock);
649 rq->prev_clock_raw = now;
650 rq->clock += delta_ns;
651 spin_unlock(&rq->lock);
1b9f19c2 652}
2aa44d05 653EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 654
c24d20db
IM
655/*
656 * resched_task - mark a task 'to be rescheduled now'.
657 *
658 * On UP this means the setting of the need_resched flag, on SMP it
659 * might also involve a cross-CPU call to trigger the scheduler on
660 * the target CPU.
661 */
662#ifdef CONFIG_SMP
663
664#ifndef tsk_is_polling
665#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
666#endif
667
668static void resched_task(struct task_struct *p)
669{
670 int cpu;
671
672 assert_spin_locked(&task_rq(p)->lock);
673
674 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
675 return;
676
677 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
678
679 cpu = task_cpu(p);
680 if (cpu == smp_processor_id())
681 return;
682
683 /* NEED_RESCHED must be visible before we test polling */
684 smp_mb();
685 if (!tsk_is_polling(p))
686 smp_send_reschedule(cpu);
687}
688
689static void resched_cpu(int cpu)
690{
691 struct rq *rq = cpu_rq(cpu);
692 unsigned long flags;
693
694 if (!spin_trylock_irqsave(&rq->lock, flags))
695 return;
696 resched_task(cpu_curr(cpu));
697 spin_unlock_irqrestore(&rq->lock, flags);
698}
699#else
700static inline void resched_task(struct task_struct *p)
701{
702 assert_spin_locked(&task_rq(p)->lock);
703 set_tsk_need_resched(p);
704}
705#endif
706
45bf76df
IM
707#if BITS_PER_LONG == 32
708# define WMULT_CONST (~0UL)
709#else
710# define WMULT_CONST (1UL << 32)
711#endif
712
713#define WMULT_SHIFT 32
714
194081eb
IM
715/*
716 * Shift right and round:
717 */
cf2ab469 718#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 719
cb1c4fc9 720static unsigned long
45bf76df
IM
721calc_delta_mine(unsigned long delta_exec, unsigned long weight,
722 struct load_weight *lw)
723{
724 u64 tmp;
725
726 if (unlikely(!lw->inv_weight))
194081eb 727 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
728
729 tmp = (u64)delta_exec * weight;
730 /*
731 * Check whether we'd overflow the 64-bit multiplication:
732 */
194081eb 733 if (unlikely(tmp > WMULT_CONST))
cf2ab469 734 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
735 WMULT_SHIFT/2);
736 else
cf2ab469 737 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 738
ecf691da 739 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
740}
741
742static inline unsigned long
743calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
744{
745 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
746}
747
1091985b 748static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
749{
750 lw->weight += inc;
45bf76df
IM
751}
752
1091985b 753static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
754{
755 lw->weight -= dec;
45bf76df
IM
756}
757
2dd73a4f
PW
758/*
759 * To aid in avoiding the subversion of "niceness" due to uneven distribution
760 * of tasks with abnormal "nice" values across CPUs the contribution that
761 * each task makes to its run queue's load is weighted according to its
762 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
763 * scaled version of the new time slice allocation that they receive on time
764 * slice expiry etc.
765 */
766
dd41f596
IM
767#define WEIGHT_IDLEPRIO 2
768#define WMULT_IDLEPRIO (1 << 31)
769
770/*
771 * Nice levels are multiplicative, with a gentle 10% change for every
772 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
773 * nice 1, it will get ~10% less CPU time than another CPU-bound task
774 * that remained on nice 0.
775 *
776 * The "10% effect" is relative and cumulative: from _any_ nice level,
777 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
778 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
779 * If a task goes up by ~10% and another task goes down by ~10% then
780 * the relative distance between them is ~25%.)
dd41f596
IM
781 */
782static const int prio_to_weight[40] = {
254753dc
IM
783 /* -20 */ 88761, 71755, 56483, 46273, 36291,
784 /* -15 */ 29154, 23254, 18705, 14949, 11916,
785 /* -10 */ 9548, 7620, 6100, 4904, 3906,
786 /* -5 */ 3121, 2501, 1991, 1586, 1277,
787 /* 0 */ 1024, 820, 655, 526, 423,
788 /* 5 */ 335, 272, 215, 172, 137,
789 /* 10 */ 110, 87, 70, 56, 45,
790 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
791};
792
5714d2de
IM
793/*
794 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
795 *
796 * In cases where the weight does not change often, we can use the
797 * precalculated inverse to speed up arithmetics by turning divisions
798 * into multiplications:
799 */
dd41f596 800static const u32 prio_to_wmult[40] = {
254753dc
IM
801 /* -20 */ 48388, 59856, 76040, 92818, 118348,
802 /* -15 */ 147320, 184698, 229616, 287308, 360437,
803 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
804 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
805 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
806 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
807 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
808 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 809};
2dd73a4f 810
dd41f596
IM
811static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
812
813/*
814 * runqueue iterator, to support SMP load-balancing between different
815 * scheduling classes, without having to expose their internal data
816 * structures to the load-balancing proper:
817 */
818struct rq_iterator {
819 void *arg;
820 struct task_struct *(*start)(void *);
821 struct task_struct *(*next)(void *);
822};
823
824static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
825 unsigned long max_nr_move, unsigned long max_load_move,
826 struct sched_domain *sd, enum cpu_idle_type idle,
827 int *all_pinned, unsigned long *load_moved,
a4ac01c3 828 int *this_best_prio, struct rq_iterator *iterator);
dd41f596
IM
829
830#include "sched_stats.h"
831#include "sched_rt.c"
832#include "sched_fair.c"
833#include "sched_idletask.c"
834#ifdef CONFIG_SCHED_DEBUG
835# include "sched_debug.c"
836#endif
837
838#define sched_class_highest (&rt_sched_class)
839
9c217245
IM
840/*
841 * Update delta_exec, delta_fair fields for rq.
842 *
843 * delta_fair clock advances at a rate inversely proportional to
495eca49 844 * total load (rq->load.weight) on the runqueue, while
9c217245
IM
845 * delta_exec advances at the same rate as wall-clock (provided
846 * cpu is not idle).
847 *
848 * delta_exec / delta_fair is a measure of the (smoothened) load on this
849 * runqueue over any given interval. This (smoothened) load is used
850 * during load balance.
851 *
495eca49 852 * This function is called /before/ updating rq->load
9c217245
IM
853 * and when switching tasks.
854 */
29b4b623 855static inline void inc_load(struct rq *rq, const struct task_struct *p)
9c217245 856{
495eca49 857 update_load_add(&rq->load, p->se.load.weight);
9c217245
IM
858}
859
79b5dddf 860static inline void dec_load(struct rq *rq, const struct task_struct *p)
9c217245 861{
495eca49 862 update_load_sub(&rq->load, p->se.load.weight);
9c217245
IM
863}
864
e5fa2237 865static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
866{
867 rq->nr_running++;
29b4b623 868 inc_load(rq, p);
9c217245
IM
869}
870
db53181e 871static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
872{
873 rq->nr_running--;
79b5dddf 874 dec_load(rq, p);
9c217245
IM
875}
876
45bf76df
IM
877static void set_load_weight(struct task_struct *p)
878{
879 if (task_has_rt_policy(p)) {
dd41f596
IM
880 p->se.load.weight = prio_to_weight[0] * 2;
881 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
882 return;
883 }
45bf76df 884
dd41f596
IM
885 /*
886 * SCHED_IDLE tasks get minimal weight:
887 */
888 if (p->policy == SCHED_IDLE) {
889 p->se.load.weight = WEIGHT_IDLEPRIO;
890 p->se.load.inv_weight = WMULT_IDLEPRIO;
891 return;
892 }
71f8bd46 893
dd41f596
IM
894 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
895 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
896}
897
8159f87e 898static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 899{
dd41f596 900 sched_info_queued(p);
fd390f6a 901 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 902 p->se.on_rq = 1;
71f8bd46
IM
903}
904
69be72c1 905static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 906{
f02231e5 907 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 908 p->se.on_rq = 0;
71f8bd46
IM
909}
910
14531189 911/*
dd41f596 912 * __normal_prio - return the priority that is based on the static prio
14531189 913 */
14531189
IM
914static inline int __normal_prio(struct task_struct *p)
915{
dd41f596 916 return p->static_prio;
14531189
IM
917}
918
b29739f9
IM
919/*
920 * Calculate the expected normal priority: i.e. priority
921 * without taking RT-inheritance into account. Might be
922 * boosted by interactivity modifiers. Changes upon fork,
923 * setprio syscalls, and whenever the interactivity
924 * estimator recalculates.
925 */
36c8b586 926static inline int normal_prio(struct task_struct *p)
b29739f9
IM
927{
928 int prio;
929
e05606d3 930 if (task_has_rt_policy(p))
b29739f9
IM
931 prio = MAX_RT_PRIO-1 - p->rt_priority;
932 else
933 prio = __normal_prio(p);
934 return prio;
935}
936
937/*
938 * Calculate the current priority, i.e. the priority
939 * taken into account by the scheduler. This value might
940 * be boosted by RT tasks, or might be boosted by
941 * interactivity modifiers. Will be RT if the task got
942 * RT-boosted. If not then it returns p->normal_prio.
943 */
36c8b586 944static int effective_prio(struct task_struct *p)
b29739f9
IM
945{
946 p->normal_prio = normal_prio(p);
947 /*
948 * If we are RT tasks or we were boosted to RT priority,
949 * keep the priority unchanged. Otherwise, update priority
950 * to the normal priority:
951 */
952 if (!rt_prio(p->prio))
953 return p->normal_prio;
954 return p->prio;
955}
956
1da177e4 957/*
dd41f596 958 * activate_task - move a task to the runqueue.
1da177e4 959 */
dd41f596 960static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 961{
dd41f596
IM
962 if (p->state == TASK_UNINTERRUPTIBLE)
963 rq->nr_uninterruptible--;
1da177e4 964
8159f87e 965 enqueue_task(rq, p, wakeup);
e5fa2237 966 inc_nr_running(p, rq);
1da177e4
LT
967}
968
969/*
dd41f596 970 * activate_idle_task - move idle task to the _front_ of runqueue.
1da177e4 971 */
dd41f596 972static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
1da177e4 973{
a8e504d2 974 update_rq_clock(rq);
1da177e4 975
dd41f596
IM
976 if (p->state == TASK_UNINTERRUPTIBLE)
977 rq->nr_uninterruptible--;
ece8a684 978
8159f87e 979 enqueue_task(rq, p, 0);
e5fa2237 980 inc_nr_running(p, rq);
1da177e4
LT
981}
982
983/*
984 * deactivate_task - remove a task from the runqueue.
985 */
2e1cb74a 986static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 987{
dd41f596
IM
988 if (p->state == TASK_UNINTERRUPTIBLE)
989 rq->nr_uninterruptible++;
990
69be72c1 991 dequeue_task(rq, p, sleep);
db53181e 992 dec_nr_running(p, rq);
1da177e4
LT
993}
994
1da177e4
LT
995/**
996 * task_curr - is this task currently executing on a CPU?
997 * @p: the task in question.
998 */
36c8b586 999inline int task_curr(const struct task_struct *p)
1da177e4
LT
1000{
1001 return cpu_curr(task_cpu(p)) == p;
1002}
1003
2dd73a4f
PW
1004/* Used instead of source_load when we know the type == 0 */
1005unsigned long weighted_cpuload(const int cpu)
1006{
495eca49 1007 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1008}
1009
1010static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1011{
1012#ifdef CONFIG_SMP
1013 task_thread_info(p)->cpu = cpu;
dd41f596 1014#endif
29f59db3 1015 set_task_cfs_rq(p);
2dd73a4f
PW
1016}
1017
1da177e4 1018#ifdef CONFIG_SMP
c65cc870 1019
dd41f596 1020void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1021{
dd41f596
IM
1022 int old_cpu = task_cpu(p);
1023 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
bbdba7c0 1024 u64 clock_offset;
dd41f596
IM
1025
1026 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1027
1028#ifdef CONFIG_SCHEDSTATS
1029 if (p->se.wait_start)
1030 p->se.wait_start -= clock_offset;
dd41f596
IM
1031 if (p->se.sleep_start)
1032 p->se.sleep_start -= clock_offset;
1033 if (p->se.block_start)
1034 p->se.block_start -= clock_offset;
6cfb0d5d 1035#endif
119fe5e0
MG
1036 if (likely(new_rq->cfs.min_vruntime))
1037 p->se.vruntime -= old_rq->cfs.min_vruntime -
1038 new_rq->cfs.min_vruntime;
dd41f596
IM
1039
1040 __set_task_cpu(p, new_cpu);
c65cc870
IM
1041}
1042
70b97a7f 1043struct migration_req {
1da177e4 1044 struct list_head list;
1da177e4 1045
36c8b586 1046 struct task_struct *task;
1da177e4
LT
1047 int dest_cpu;
1048
1da177e4 1049 struct completion done;
70b97a7f 1050};
1da177e4
LT
1051
1052/*
1053 * The task's runqueue lock must be held.
1054 * Returns true if you have to wait for migration thread.
1055 */
36c8b586 1056static int
70b97a7f 1057migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1058{
70b97a7f 1059 struct rq *rq = task_rq(p);
1da177e4
LT
1060
1061 /*
1062 * If the task is not on a runqueue (and not running), then
1063 * it is sufficient to simply update the task's cpu field.
1064 */
dd41f596 1065 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1066 set_task_cpu(p, dest_cpu);
1067 return 0;
1068 }
1069
1070 init_completion(&req->done);
1da177e4
LT
1071 req->task = p;
1072 req->dest_cpu = dest_cpu;
1073 list_add(&req->list, &rq->migration_queue);
48f24c4d 1074
1da177e4
LT
1075 return 1;
1076}
1077
1078/*
1079 * wait_task_inactive - wait for a thread to unschedule.
1080 *
1081 * The caller must ensure that the task *will* unschedule sometime soon,
1082 * else this function might spin for a *long* time. This function can't
1083 * be called with interrupts off, or it may introduce deadlock with
1084 * smp_call_function() if an IPI is sent by the same process we are
1085 * waiting to become inactive.
1086 */
36c8b586 1087void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1088{
1089 unsigned long flags;
dd41f596 1090 int running, on_rq;
70b97a7f 1091 struct rq *rq;
1da177e4
LT
1092
1093repeat:
fa490cfd
LT
1094 /*
1095 * We do the initial early heuristics without holding
1096 * any task-queue locks at all. We'll only try to get
1097 * the runqueue lock when things look like they will
1098 * work out!
1099 */
1100 rq = task_rq(p);
1101
1102 /*
1103 * If the task is actively running on another CPU
1104 * still, just relax and busy-wait without holding
1105 * any locks.
1106 *
1107 * NOTE! Since we don't hold any locks, it's not
1108 * even sure that "rq" stays as the right runqueue!
1109 * But we don't care, since "task_running()" will
1110 * return false if the runqueue has changed and p
1111 * is actually now running somewhere else!
1112 */
1113 while (task_running(rq, p))
1114 cpu_relax();
1115
1116 /*
1117 * Ok, time to look more closely! We need the rq
1118 * lock now, to be *sure*. If we're wrong, we'll
1119 * just go back and repeat.
1120 */
1da177e4 1121 rq = task_rq_lock(p, &flags);
fa490cfd 1122 running = task_running(rq, p);
dd41f596 1123 on_rq = p->se.on_rq;
fa490cfd
LT
1124 task_rq_unlock(rq, &flags);
1125
1126 /*
1127 * Was it really running after all now that we
1128 * checked with the proper locks actually held?
1129 *
1130 * Oops. Go back and try again..
1131 */
1132 if (unlikely(running)) {
1da177e4 1133 cpu_relax();
1da177e4
LT
1134 goto repeat;
1135 }
fa490cfd
LT
1136
1137 /*
1138 * It's not enough that it's not actively running,
1139 * it must be off the runqueue _entirely_, and not
1140 * preempted!
1141 *
1142 * So if it wa still runnable (but just not actively
1143 * running right now), it's preempted, and we should
1144 * yield - it could be a while.
1145 */
dd41f596 1146 if (unlikely(on_rq)) {
fa490cfd
LT
1147 yield();
1148 goto repeat;
1149 }
1150
1151 /*
1152 * Ahh, all good. It wasn't running, and it wasn't
1153 * runnable, which means that it will never become
1154 * running in the future either. We're all done!
1155 */
1da177e4
LT
1156}
1157
1158/***
1159 * kick_process - kick a running thread to enter/exit the kernel
1160 * @p: the to-be-kicked thread
1161 *
1162 * Cause a process which is running on another CPU to enter
1163 * kernel-mode, without any delay. (to get signals handled.)
1164 *
1165 * NOTE: this function doesnt have to take the runqueue lock,
1166 * because all it wants to ensure is that the remote task enters
1167 * the kernel. If the IPI races and the task has been migrated
1168 * to another CPU then no harm is done and the purpose has been
1169 * achieved as well.
1170 */
36c8b586 1171void kick_process(struct task_struct *p)
1da177e4
LT
1172{
1173 int cpu;
1174
1175 preempt_disable();
1176 cpu = task_cpu(p);
1177 if ((cpu != smp_processor_id()) && task_curr(p))
1178 smp_send_reschedule(cpu);
1179 preempt_enable();
1180}
1181
1182/*
2dd73a4f
PW
1183 * Return a low guess at the load of a migration-source cpu weighted
1184 * according to the scheduling class and "nice" value.
1da177e4
LT
1185 *
1186 * We want to under-estimate the load of migration sources, to
1187 * balance conservatively.
1188 */
a2000572 1189static inline unsigned long source_load(int cpu, int type)
1da177e4 1190{
70b97a7f 1191 struct rq *rq = cpu_rq(cpu);
dd41f596 1192 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1193
3b0bd9bc 1194 if (type == 0)
dd41f596 1195 return total;
b910472d 1196
dd41f596 1197 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1198}
1199
1200/*
2dd73a4f
PW
1201 * Return a high guess at the load of a migration-target cpu weighted
1202 * according to the scheduling class and "nice" value.
1da177e4 1203 */
a2000572 1204static inline unsigned long target_load(int cpu, int type)
1da177e4 1205{
70b97a7f 1206 struct rq *rq = cpu_rq(cpu);
dd41f596 1207 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1208
7897986b 1209 if (type == 0)
dd41f596 1210 return total;
3b0bd9bc 1211
dd41f596 1212 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1213}
1214
1215/*
1216 * Return the average load per task on the cpu's run queue
1217 */
1218static inline unsigned long cpu_avg_load_per_task(int cpu)
1219{
70b97a7f 1220 struct rq *rq = cpu_rq(cpu);
dd41f596 1221 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1222 unsigned long n = rq->nr_running;
1223
dd41f596 1224 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1225}
1226
147cbb4b
NP
1227/*
1228 * find_idlest_group finds and returns the least busy CPU group within the
1229 * domain.
1230 */
1231static struct sched_group *
1232find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1233{
1234 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1235 unsigned long min_load = ULONG_MAX, this_load = 0;
1236 int load_idx = sd->forkexec_idx;
1237 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1238
1239 do {
1240 unsigned long load, avg_load;
1241 int local_group;
1242 int i;
1243
da5a5522
BD
1244 /* Skip over this group if it has no CPUs allowed */
1245 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1246 goto nextgroup;
1247
147cbb4b 1248 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1249
1250 /* Tally up the load of all CPUs in the group */
1251 avg_load = 0;
1252
1253 for_each_cpu_mask(i, group->cpumask) {
1254 /* Bias balancing toward cpus of our domain */
1255 if (local_group)
1256 load = source_load(i, load_idx);
1257 else
1258 load = target_load(i, load_idx);
1259
1260 avg_load += load;
1261 }
1262
1263 /* Adjust by relative CPU power of the group */
5517d86b
ED
1264 avg_load = sg_div_cpu_power(group,
1265 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1266
1267 if (local_group) {
1268 this_load = avg_load;
1269 this = group;
1270 } else if (avg_load < min_load) {
1271 min_load = avg_load;
1272 idlest = group;
1273 }
da5a5522 1274nextgroup:
147cbb4b
NP
1275 group = group->next;
1276 } while (group != sd->groups);
1277
1278 if (!idlest || 100*this_load < imbalance*min_load)
1279 return NULL;
1280 return idlest;
1281}
1282
1283/*
0feaece9 1284 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1285 */
95cdf3b7
IM
1286static int
1287find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1288{
da5a5522 1289 cpumask_t tmp;
147cbb4b
NP
1290 unsigned long load, min_load = ULONG_MAX;
1291 int idlest = -1;
1292 int i;
1293
da5a5522
BD
1294 /* Traverse only the allowed CPUs */
1295 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1296
1297 for_each_cpu_mask(i, tmp) {
2dd73a4f 1298 load = weighted_cpuload(i);
147cbb4b
NP
1299
1300 if (load < min_load || (load == min_load && i == this_cpu)) {
1301 min_load = load;
1302 idlest = i;
1303 }
1304 }
1305
1306 return idlest;
1307}
1308
476d139c
NP
1309/*
1310 * sched_balance_self: balance the current task (running on cpu) in domains
1311 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1312 * SD_BALANCE_EXEC.
1313 *
1314 * Balance, ie. select the least loaded group.
1315 *
1316 * Returns the target CPU number, or the same CPU if no balancing is needed.
1317 *
1318 * preempt must be disabled.
1319 */
1320static int sched_balance_self(int cpu, int flag)
1321{
1322 struct task_struct *t = current;
1323 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1324
c96d145e 1325 for_each_domain(cpu, tmp) {
9761eea8
IM
1326 /*
1327 * If power savings logic is enabled for a domain, stop there.
1328 */
5c45bf27
SS
1329 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1330 break;
476d139c
NP
1331 if (tmp->flags & flag)
1332 sd = tmp;
c96d145e 1333 }
476d139c
NP
1334
1335 while (sd) {
1336 cpumask_t span;
1337 struct sched_group *group;
1a848870
SS
1338 int new_cpu, weight;
1339
1340 if (!(sd->flags & flag)) {
1341 sd = sd->child;
1342 continue;
1343 }
476d139c
NP
1344
1345 span = sd->span;
1346 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1347 if (!group) {
1348 sd = sd->child;
1349 continue;
1350 }
476d139c 1351
da5a5522 1352 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1353 if (new_cpu == -1 || new_cpu == cpu) {
1354 /* Now try balancing at a lower domain level of cpu */
1355 sd = sd->child;
1356 continue;
1357 }
476d139c 1358
1a848870 1359 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1360 cpu = new_cpu;
476d139c
NP
1361 sd = NULL;
1362 weight = cpus_weight(span);
1363 for_each_domain(cpu, tmp) {
1364 if (weight <= cpus_weight(tmp->span))
1365 break;
1366 if (tmp->flags & flag)
1367 sd = tmp;
1368 }
1369 /* while loop will break here if sd == NULL */
1370 }
1371
1372 return cpu;
1373}
1374
1375#endif /* CONFIG_SMP */
1da177e4
LT
1376
1377/*
1378 * wake_idle() will wake a task on an idle cpu if task->cpu is
1379 * not idle and an idle cpu is available. The span of cpus to
1380 * search starts with cpus closest then further out as needed,
1381 * so we always favor a closer, idle cpu.
1382 *
1383 * Returns the CPU we should wake onto.
1384 */
1385#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1386static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1387{
1388 cpumask_t tmp;
1389 struct sched_domain *sd;
1390 int i;
1391
4953198b
SS
1392 /*
1393 * If it is idle, then it is the best cpu to run this task.
1394 *
1395 * This cpu is also the best, if it has more than one task already.
1396 * Siblings must be also busy(in most cases) as they didn't already
1397 * pickup the extra load from this cpu and hence we need not check
1398 * sibling runqueue info. This will avoid the checks and cache miss
1399 * penalities associated with that.
1400 */
1401 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1402 return cpu;
1403
1404 for_each_domain(cpu, sd) {
1405 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1406 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1407 for_each_cpu_mask(i, tmp) {
1408 if (idle_cpu(i))
1409 return i;
1410 }
9761eea8 1411 } else {
e0f364f4 1412 break;
9761eea8 1413 }
1da177e4
LT
1414 }
1415 return cpu;
1416}
1417#else
36c8b586 1418static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1419{
1420 return cpu;
1421}
1422#endif
1423
1424/***
1425 * try_to_wake_up - wake up a thread
1426 * @p: the to-be-woken-up thread
1427 * @state: the mask of task states that can be woken
1428 * @sync: do a synchronous wakeup?
1429 *
1430 * Put it on the run-queue if it's not already there. The "current"
1431 * thread is always on the run-queue (except when the actual
1432 * re-schedule is in progress), and as such you're allowed to do
1433 * the simpler "current->state = TASK_RUNNING" to mark yourself
1434 * runnable without the overhead of this.
1435 *
1436 * returns failure only if the task is already active.
1437 */
36c8b586 1438static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1439{
1440 int cpu, this_cpu, success = 0;
1441 unsigned long flags;
1442 long old_state;
70b97a7f 1443 struct rq *rq;
1da177e4 1444#ifdef CONFIG_SMP
7897986b 1445 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1446 unsigned long load, this_load;
1da177e4
LT
1447 int new_cpu;
1448#endif
1449
1450 rq = task_rq_lock(p, &flags);
1451 old_state = p->state;
1452 if (!(old_state & state))
1453 goto out;
1454
dd41f596 1455 if (p->se.on_rq)
1da177e4
LT
1456 goto out_running;
1457
1458 cpu = task_cpu(p);
1459 this_cpu = smp_processor_id();
1460
1461#ifdef CONFIG_SMP
1462 if (unlikely(task_running(rq, p)))
1463 goto out_activate;
1464
7897986b
NP
1465 new_cpu = cpu;
1466
1da177e4
LT
1467 schedstat_inc(rq, ttwu_cnt);
1468 if (cpu == this_cpu) {
1469 schedstat_inc(rq, ttwu_local);
7897986b
NP
1470 goto out_set_cpu;
1471 }
1472
1473 for_each_domain(this_cpu, sd) {
1474 if (cpu_isset(cpu, sd->span)) {
1475 schedstat_inc(sd, ttwu_wake_remote);
1476 this_sd = sd;
1477 break;
1da177e4
LT
1478 }
1479 }
1da177e4 1480
7897986b 1481 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1482 goto out_set_cpu;
1483
1da177e4 1484 /*
7897986b 1485 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1486 */
7897986b
NP
1487 if (this_sd) {
1488 int idx = this_sd->wake_idx;
1489 unsigned int imbalance;
1da177e4 1490
a3f21bce
NP
1491 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1492
7897986b
NP
1493 load = source_load(cpu, idx);
1494 this_load = target_load(this_cpu, idx);
1da177e4 1495
7897986b
NP
1496 new_cpu = this_cpu; /* Wake to this CPU if we can */
1497
a3f21bce
NP
1498 if (this_sd->flags & SD_WAKE_AFFINE) {
1499 unsigned long tl = this_load;
33859f7f
MOS
1500 unsigned long tl_per_task;
1501
1502 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1503
1da177e4 1504 /*
a3f21bce
NP
1505 * If sync wakeup then subtract the (maximum possible)
1506 * effect of the currently running task from the load
1507 * of the current CPU:
1da177e4 1508 */
a3f21bce 1509 if (sync)
dd41f596 1510 tl -= current->se.load.weight;
a3f21bce
NP
1511
1512 if ((tl <= load &&
2dd73a4f 1513 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1514 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1515 /*
1516 * This domain has SD_WAKE_AFFINE and
1517 * p is cache cold in this domain, and
1518 * there is no bad imbalance.
1519 */
1520 schedstat_inc(this_sd, ttwu_move_affine);
1521 goto out_set_cpu;
1522 }
1523 }
1524
1525 /*
1526 * Start passive balancing when half the imbalance_pct
1527 * limit is reached.
1528 */
1529 if (this_sd->flags & SD_WAKE_BALANCE) {
1530 if (imbalance*this_load <= 100*load) {
1531 schedstat_inc(this_sd, ttwu_move_balance);
1532 goto out_set_cpu;
1533 }
1da177e4
LT
1534 }
1535 }
1536
1537 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1538out_set_cpu:
1539 new_cpu = wake_idle(new_cpu, p);
1540 if (new_cpu != cpu) {
1541 set_task_cpu(p, new_cpu);
1542 task_rq_unlock(rq, &flags);
1543 /* might preempt at this point */
1544 rq = task_rq_lock(p, &flags);
1545 old_state = p->state;
1546 if (!(old_state & state))
1547 goto out;
dd41f596 1548 if (p->se.on_rq)
1da177e4
LT
1549 goto out_running;
1550
1551 this_cpu = smp_processor_id();
1552 cpu = task_cpu(p);
1553 }
1554
1555out_activate:
1556#endif /* CONFIG_SMP */
2daa3577 1557 update_rq_clock(rq);
dd41f596 1558 activate_task(rq, p, 1);
1da177e4
LT
1559 /*
1560 * Sync wakeups (i.e. those types of wakeups where the waker
1561 * has indicated that it will leave the CPU in short order)
1562 * don't trigger a preemption, if the woken up task will run on
1563 * this cpu. (in this case the 'I will reschedule' promise of
1564 * the waker guarantees that the freshly woken up task is going
1565 * to be considered on this CPU.)
1566 */
dd41f596
IM
1567 if (!sync || cpu != this_cpu)
1568 check_preempt_curr(rq, p);
1da177e4
LT
1569 success = 1;
1570
1571out_running:
1572 p->state = TASK_RUNNING;
1573out:
1574 task_rq_unlock(rq, &flags);
1575
1576 return success;
1577}
1578
36c8b586 1579int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1580{
1581 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1582 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1583}
1da177e4
LT
1584EXPORT_SYMBOL(wake_up_process);
1585
36c8b586 1586int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1587{
1588 return try_to_wake_up(p, state, 0);
1589}
1590
1da177e4
LT
1591/*
1592 * Perform scheduler related setup for a newly forked process p.
1593 * p is forked by current.
dd41f596
IM
1594 *
1595 * __sched_fork() is basic setup used by init_idle() too:
1596 */
1597static void __sched_fork(struct task_struct *p)
1598{
dd41f596
IM
1599 p->se.exec_start = 0;
1600 p->se.sum_exec_runtime = 0;
f6cf891c 1601 p->se.prev_sum_exec_runtime = 0;
6cfb0d5d
IM
1602
1603#ifdef CONFIG_SCHEDSTATS
1604 p->se.wait_start = 0;
dd41f596
IM
1605 p->se.sum_sleep_runtime = 0;
1606 p->se.sleep_start = 0;
dd41f596
IM
1607 p->se.block_start = 0;
1608 p->se.sleep_max = 0;
1609 p->se.block_max = 0;
1610 p->se.exec_max = 0;
eba1ed4b 1611 p->se.slice_max = 0;
dd41f596 1612 p->se.wait_max = 0;
6cfb0d5d 1613#endif
476d139c 1614
dd41f596
IM
1615 INIT_LIST_HEAD(&p->run_list);
1616 p->se.on_rq = 0;
476d139c 1617
e107be36
AK
1618#ifdef CONFIG_PREEMPT_NOTIFIERS
1619 INIT_HLIST_HEAD(&p->preempt_notifiers);
1620#endif
1621
1da177e4
LT
1622 /*
1623 * We mark the process as running here, but have not actually
1624 * inserted it onto the runqueue yet. This guarantees that
1625 * nobody will actually run it, and a signal or other external
1626 * event cannot wake it up and insert it on the runqueue either.
1627 */
1628 p->state = TASK_RUNNING;
dd41f596
IM
1629}
1630
1631/*
1632 * fork()/clone()-time setup:
1633 */
1634void sched_fork(struct task_struct *p, int clone_flags)
1635{
1636 int cpu = get_cpu();
1637
1638 __sched_fork(p);
1639
1640#ifdef CONFIG_SMP
1641 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1642#endif
1643 __set_task_cpu(p, cpu);
b29739f9
IM
1644
1645 /*
1646 * Make sure we do not leak PI boosting priority to the child:
1647 */
1648 p->prio = current->normal_prio;
1649
52f17b6c 1650#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1651 if (likely(sched_info_on()))
52f17b6c 1652 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1653#endif
d6077cb8 1654#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1655 p->oncpu = 0;
1656#endif
1da177e4 1657#ifdef CONFIG_PREEMPT
4866cde0 1658 /* Want to start with kernel preemption disabled. */
a1261f54 1659 task_thread_info(p)->preempt_count = 1;
1da177e4 1660#endif
476d139c 1661 put_cpu();
1da177e4
LT
1662}
1663
1664/*
1665 * wake_up_new_task - wake up a newly created task for the first time.
1666 *
1667 * This function will do some initial scheduler statistics housekeeping
1668 * that must be done for every newly created context, then puts the task
1669 * on the runqueue and wakes it.
1670 */
36c8b586 1671void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1672{
1673 unsigned long flags;
dd41f596
IM
1674 struct rq *rq;
1675 int this_cpu;
1da177e4
LT
1676
1677 rq = task_rq_lock(p, &flags);
147cbb4b 1678 BUG_ON(p->state != TASK_RUNNING);
dd41f596 1679 this_cpu = smp_processor_id(); /* parent's CPU */
a8e504d2 1680 update_rq_clock(rq);
1da177e4
LT
1681
1682 p->prio = effective_prio(p);
1683
9c95e731
HS
1684 if (rt_prio(p->prio))
1685 p->sched_class = &rt_sched_class;
1686 else
1687 p->sched_class = &fair_sched_class;
1688
44142fac
IM
1689 if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
1690 !current->se.on_rq) {
dd41f596 1691 activate_task(rq, p, 0);
1da177e4 1692 } else {
1da177e4 1693 /*
dd41f596
IM
1694 * Let the scheduling class do new task startup
1695 * management (if any):
1da177e4 1696 */
ee0827d8 1697 p->sched_class->task_new(rq, p);
e5fa2237 1698 inc_nr_running(p, rq);
1da177e4 1699 }
dd41f596
IM
1700 check_preempt_curr(rq, p);
1701 task_rq_unlock(rq, &flags);
1da177e4
LT
1702}
1703
e107be36
AK
1704#ifdef CONFIG_PREEMPT_NOTIFIERS
1705
1706/**
421cee29
RD
1707 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1708 * @notifier: notifier struct to register
e107be36
AK
1709 */
1710void preempt_notifier_register(struct preempt_notifier *notifier)
1711{
1712 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1713}
1714EXPORT_SYMBOL_GPL(preempt_notifier_register);
1715
1716/**
1717 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1718 * @notifier: notifier struct to unregister
e107be36
AK
1719 *
1720 * This is safe to call from within a preemption notifier.
1721 */
1722void preempt_notifier_unregister(struct preempt_notifier *notifier)
1723{
1724 hlist_del(&notifier->link);
1725}
1726EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1727
1728static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1729{
1730 struct preempt_notifier *notifier;
1731 struct hlist_node *node;
1732
1733 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1734 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1735}
1736
1737static void
1738fire_sched_out_preempt_notifiers(struct task_struct *curr,
1739 struct task_struct *next)
1740{
1741 struct preempt_notifier *notifier;
1742 struct hlist_node *node;
1743
1744 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1745 notifier->ops->sched_out(notifier, next);
1746}
1747
1748#else
1749
1750static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1751{
1752}
1753
1754static void
1755fire_sched_out_preempt_notifiers(struct task_struct *curr,
1756 struct task_struct *next)
1757{
1758}
1759
1760#endif
1761
4866cde0
NP
1762/**
1763 * prepare_task_switch - prepare to switch tasks
1764 * @rq: the runqueue preparing to switch
421cee29 1765 * @prev: the current task that is being switched out
4866cde0
NP
1766 * @next: the task we are going to switch to.
1767 *
1768 * This is called with the rq lock held and interrupts off. It must
1769 * be paired with a subsequent finish_task_switch after the context
1770 * switch.
1771 *
1772 * prepare_task_switch sets up locking and calls architecture specific
1773 * hooks.
1774 */
e107be36
AK
1775static inline void
1776prepare_task_switch(struct rq *rq, struct task_struct *prev,
1777 struct task_struct *next)
4866cde0 1778{
e107be36 1779 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1780 prepare_lock_switch(rq, next);
1781 prepare_arch_switch(next);
1782}
1783
1da177e4
LT
1784/**
1785 * finish_task_switch - clean up after a task-switch
344babaa 1786 * @rq: runqueue associated with task-switch
1da177e4
LT
1787 * @prev: the thread we just switched away from.
1788 *
4866cde0
NP
1789 * finish_task_switch must be called after the context switch, paired
1790 * with a prepare_task_switch call before the context switch.
1791 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1792 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1793 *
1794 * Note that we may have delayed dropping an mm in context_switch(). If
1795 * so, we finish that here outside of the runqueue lock. (Doing it
1796 * with the lock held can cause deadlocks; see schedule() for
1797 * details.)
1798 */
70b97a7f 1799static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1800 __releases(rq->lock)
1801{
1da177e4 1802 struct mm_struct *mm = rq->prev_mm;
55a101f8 1803 long prev_state;
1da177e4
LT
1804
1805 rq->prev_mm = NULL;
1806
1807 /*
1808 * A task struct has one reference for the use as "current".
c394cc9f 1809 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1810 * schedule one last time. The schedule call will never return, and
1811 * the scheduled task must drop that reference.
c394cc9f 1812 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1813 * still held, otherwise prev could be scheduled on another cpu, die
1814 * there before we look at prev->state, and then the reference would
1815 * be dropped twice.
1816 * Manfred Spraul <manfred@colorfullife.com>
1817 */
55a101f8 1818 prev_state = prev->state;
4866cde0
NP
1819 finish_arch_switch(prev);
1820 finish_lock_switch(rq, prev);
e107be36 1821 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1822 if (mm)
1823 mmdrop(mm);
c394cc9f 1824 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1825 /*
1826 * Remove function-return probe instances associated with this
1827 * task and put them back on the free list.
9761eea8 1828 */
c6fd91f0 1829 kprobe_flush_task(prev);
1da177e4 1830 put_task_struct(prev);
c6fd91f0 1831 }
1da177e4
LT
1832}
1833
1834/**
1835 * schedule_tail - first thing a freshly forked thread must call.
1836 * @prev: the thread we just switched away from.
1837 */
36c8b586 1838asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1839 __releases(rq->lock)
1840{
70b97a7f
IM
1841 struct rq *rq = this_rq();
1842
4866cde0
NP
1843 finish_task_switch(rq, prev);
1844#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1845 /* In this case, finish_task_switch does not reenable preemption */
1846 preempt_enable();
1847#endif
1da177e4
LT
1848 if (current->set_child_tid)
1849 put_user(current->pid, current->set_child_tid);
1850}
1851
1852/*
1853 * context_switch - switch to the new MM and the new
1854 * thread's register state.
1855 */
dd41f596 1856static inline void
70b97a7f 1857context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1858 struct task_struct *next)
1da177e4 1859{
dd41f596 1860 struct mm_struct *mm, *oldmm;
1da177e4 1861
e107be36 1862 prepare_task_switch(rq, prev, next);
dd41f596
IM
1863 mm = next->mm;
1864 oldmm = prev->active_mm;
9226d125
ZA
1865 /*
1866 * For paravirt, this is coupled with an exit in switch_to to
1867 * combine the page table reload and the switch backend into
1868 * one hypercall.
1869 */
1870 arch_enter_lazy_cpu_mode();
1871
dd41f596 1872 if (unlikely(!mm)) {
1da177e4
LT
1873 next->active_mm = oldmm;
1874 atomic_inc(&oldmm->mm_count);
1875 enter_lazy_tlb(oldmm, next);
1876 } else
1877 switch_mm(oldmm, mm, next);
1878
dd41f596 1879 if (unlikely(!prev->mm)) {
1da177e4 1880 prev->active_mm = NULL;
1da177e4
LT
1881 rq->prev_mm = oldmm;
1882 }
3a5f5e48
IM
1883 /*
1884 * Since the runqueue lock will be released by the next
1885 * task (which is an invalid locking op but in the case
1886 * of the scheduler it's an obvious special-case), so we
1887 * do an early lockdep release here:
1888 */
1889#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1890 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1891#endif
1da177e4
LT
1892
1893 /* Here we just switch the register state and the stack. */
1894 switch_to(prev, next, prev);
1895
dd41f596
IM
1896 barrier();
1897 /*
1898 * this_rq must be evaluated again because prev may have moved
1899 * CPUs since it called schedule(), thus the 'rq' on its stack
1900 * frame will be invalid.
1901 */
1902 finish_task_switch(this_rq(), prev);
1da177e4
LT
1903}
1904
1905/*
1906 * nr_running, nr_uninterruptible and nr_context_switches:
1907 *
1908 * externally visible scheduler statistics: current number of runnable
1909 * threads, current number of uninterruptible-sleeping threads, total
1910 * number of context switches performed since bootup.
1911 */
1912unsigned long nr_running(void)
1913{
1914 unsigned long i, sum = 0;
1915
1916 for_each_online_cpu(i)
1917 sum += cpu_rq(i)->nr_running;
1918
1919 return sum;
1920}
1921
1922unsigned long nr_uninterruptible(void)
1923{
1924 unsigned long i, sum = 0;
1925
0a945022 1926 for_each_possible_cpu(i)
1da177e4
LT
1927 sum += cpu_rq(i)->nr_uninterruptible;
1928
1929 /*
1930 * Since we read the counters lockless, it might be slightly
1931 * inaccurate. Do not allow it to go below zero though:
1932 */
1933 if (unlikely((long)sum < 0))
1934 sum = 0;
1935
1936 return sum;
1937}
1938
1939unsigned long long nr_context_switches(void)
1940{
cc94abfc
SR
1941 int i;
1942 unsigned long long sum = 0;
1da177e4 1943
0a945022 1944 for_each_possible_cpu(i)
1da177e4
LT
1945 sum += cpu_rq(i)->nr_switches;
1946
1947 return sum;
1948}
1949
1950unsigned long nr_iowait(void)
1951{
1952 unsigned long i, sum = 0;
1953
0a945022 1954 for_each_possible_cpu(i)
1da177e4
LT
1955 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1956
1957 return sum;
1958}
1959
db1b1fef
JS
1960unsigned long nr_active(void)
1961{
1962 unsigned long i, running = 0, uninterruptible = 0;
1963
1964 for_each_online_cpu(i) {
1965 running += cpu_rq(i)->nr_running;
1966 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1967 }
1968
1969 if (unlikely((long)uninterruptible < 0))
1970 uninterruptible = 0;
1971
1972 return running + uninterruptible;
1973}
1974
48f24c4d 1975/*
dd41f596
IM
1976 * Update rq->cpu_load[] statistics. This function is usually called every
1977 * scheduler tick (TICK_NSEC).
48f24c4d 1978 */
dd41f596 1979static void update_cpu_load(struct rq *this_rq)
48f24c4d 1980{
495eca49 1981 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
1982 int i, scale;
1983
1984 this_rq->nr_load_updates++;
dd41f596
IM
1985
1986 /* Update our load: */
1987 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1988 unsigned long old_load, new_load;
1989
1990 /* scale is effectively 1 << i now, and >> i divides by scale */
1991
1992 old_load = this_rq->cpu_load[i];
1993 new_load = this_load;
a25707f3
IM
1994 /*
1995 * Round up the averaging division if load is increasing. This
1996 * prevents us from getting stuck on 9 if the load is 10, for
1997 * example.
1998 */
1999 if (new_load > old_load)
2000 new_load += scale-1;
dd41f596
IM
2001 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2002 }
48f24c4d
IM
2003}
2004
dd41f596
IM
2005#ifdef CONFIG_SMP
2006
1da177e4
LT
2007/*
2008 * double_rq_lock - safely lock two runqueues
2009 *
2010 * Note this does not disable interrupts like task_rq_lock,
2011 * you need to do so manually before calling.
2012 */
70b97a7f 2013static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2014 __acquires(rq1->lock)
2015 __acquires(rq2->lock)
2016{
054b9108 2017 BUG_ON(!irqs_disabled());
1da177e4
LT
2018 if (rq1 == rq2) {
2019 spin_lock(&rq1->lock);
2020 __acquire(rq2->lock); /* Fake it out ;) */
2021 } else {
c96d145e 2022 if (rq1 < rq2) {
1da177e4
LT
2023 spin_lock(&rq1->lock);
2024 spin_lock(&rq2->lock);
2025 } else {
2026 spin_lock(&rq2->lock);
2027 spin_lock(&rq1->lock);
2028 }
2029 }
6e82a3be
IM
2030 update_rq_clock(rq1);
2031 update_rq_clock(rq2);
1da177e4
LT
2032}
2033
2034/*
2035 * double_rq_unlock - safely unlock two runqueues
2036 *
2037 * Note this does not restore interrupts like task_rq_unlock,
2038 * you need to do so manually after calling.
2039 */
70b97a7f 2040static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2041 __releases(rq1->lock)
2042 __releases(rq2->lock)
2043{
2044 spin_unlock(&rq1->lock);
2045 if (rq1 != rq2)
2046 spin_unlock(&rq2->lock);
2047 else
2048 __release(rq2->lock);
2049}
2050
2051/*
2052 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2053 */
70b97a7f 2054static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2055 __releases(this_rq->lock)
2056 __acquires(busiest->lock)
2057 __acquires(this_rq->lock)
2058{
054b9108
KK
2059 if (unlikely(!irqs_disabled())) {
2060 /* printk() doesn't work good under rq->lock */
2061 spin_unlock(&this_rq->lock);
2062 BUG_ON(1);
2063 }
1da177e4 2064 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2065 if (busiest < this_rq) {
1da177e4
LT
2066 spin_unlock(&this_rq->lock);
2067 spin_lock(&busiest->lock);
2068 spin_lock(&this_rq->lock);
2069 } else
2070 spin_lock(&busiest->lock);
2071 }
2072}
2073
1da177e4
LT
2074/*
2075 * If dest_cpu is allowed for this process, migrate the task to it.
2076 * This is accomplished by forcing the cpu_allowed mask to only
2077 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2078 * the cpu_allowed mask is restored.
2079 */
36c8b586 2080static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2081{
70b97a7f 2082 struct migration_req req;
1da177e4 2083 unsigned long flags;
70b97a7f 2084 struct rq *rq;
1da177e4
LT
2085
2086 rq = task_rq_lock(p, &flags);
2087 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2088 || unlikely(cpu_is_offline(dest_cpu)))
2089 goto out;
2090
2091 /* force the process onto the specified CPU */
2092 if (migrate_task(p, dest_cpu, &req)) {
2093 /* Need to wait for migration thread (might exit: take ref). */
2094 struct task_struct *mt = rq->migration_thread;
36c8b586 2095
1da177e4
LT
2096 get_task_struct(mt);
2097 task_rq_unlock(rq, &flags);
2098 wake_up_process(mt);
2099 put_task_struct(mt);
2100 wait_for_completion(&req.done);
36c8b586 2101
1da177e4
LT
2102 return;
2103 }
2104out:
2105 task_rq_unlock(rq, &flags);
2106}
2107
2108/*
476d139c
NP
2109 * sched_exec - execve() is a valuable balancing opportunity, because at
2110 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2111 */
2112void sched_exec(void)
2113{
1da177e4 2114 int new_cpu, this_cpu = get_cpu();
476d139c 2115 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2116 put_cpu();
476d139c
NP
2117 if (new_cpu != this_cpu)
2118 sched_migrate_task(current, new_cpu);
1da177e4
LT
2119}
2120
2121/*
2122 * pull_task - move a task from a remote runqueue to the local runqueue.
2123 * Both runqueues must be locked.
2124 */
dd41f596
IM
2125static void pull_task(struct rq *src_rq, struct task_struct *p,
2126 struct rq *this_rq, int this_cpu)
1da177e4 2127{
2e1cb74a 2128 deactivate_task(src_rq, p, 0);
1da177e4 2129 set_task_cpu(p, this_cpu);
dd41f596 2130 activate_task(this_rq, p, 0);
1da177e4
LT
2131 /*
2132 * Note that idle threads have a prio of MAX_PRIO, for this test
2133 * to be always true for them.
2134 */
dd41f596 2135 check_preempt_curr(this_rq, p);
1da177e4
LT
2136}
2137
2138/*
2139 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2140 */
858119e1 2141static
70b97a7f 2142int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2143 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2144 int *all_pinned)
1da177e4
LT
2145{
2146 /*
2147 * We do not migrate tasks that are:
2148 * 1) running (obviously), or
2149 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2150 * 3) are cache-hot on their current CPU.
2151 */
1da177e4
LT
2152 if (!cpu_isset(this_cpu, p->cpus_allowed))
2153 return 0;
81026794
NP
2154 *all_pinned = 0;
2155
2156 if (task_running(rq, p))
2157 return 0;
1da177e4 2158
1da177e4
LT
2159 return 1;
2160}
2161
dd41f596 2162static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f 2163 unsigned long max_nr_move, unsigned long max_load_move,
d15bcfdb 2164 struct sched_domain *sd, enum cpu_idle_type idle,
dd41f596 2165 int *all_pinned, unsigned long *load_moved,
a4ac01c3 2166 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2167{
dd41f596
IM
2168 int pulled = 0, pinned = 0, skip_for_load;
2169 struct task_struct *p;
2170 long rem_load_move = max_load_move;
1da177e4 2171
2dd73a4f 2172 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2173 goto out;
2174
81026794
NP
2175 pinned = 1;
2176
1da177e4 2177 /*
dd41f596 2178 * Start the load-balancing iterator:
1da177e4 2179 */
dd41f596
IM
2180 p = iterator->start(iterator->arg);
2181next:
2182 if (!p)
1da177e4 2183 goto out;
50ddd969
PW
2184 /*
2185 * To help distribute high priority tasks accross CPUs we don't
2186 * skip a task if it will be the highest priority task (i.e. smallest
2187 * prio value) on its new queue regardless of its load weight
2188 */
dd41f596
IM
2189 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2190 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2191 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2192 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2193 p = iterator->next(iterator->arg);
2194 goto next;
1da177e4
LT
2195 }
2196
dd41f596 2197 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2198 pulled++;
dd41f596 2199 rem_load_move -= p->se.load.weight;
1da177e4 2200
2dd73a4f
PW
2201 /*
2202 * We only want to steal up to the prescribed number of tasks
2203 * and the prescribed amount of weighted load.
2204 */
2205 if (pulled < max_nr_move && rem_load_move > 0) {
a4ac01c3
PW
2206 if (p->prio < *this_best_prio)
2207 *this_best_prio = p->prio;
dd41f596
IM
2208 p = iterator->next(iterator->arg);
2209 goto next;
1da177e4
LT
2210 }
2211out:
2212 /*
2213 * Right now, this is the only place pull_task() is called,
2214 * so we can safely collect pull_task() stats here rather than
2215 * inside pull_task().
2216 */
2217 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2218
2219 if (all_pinned)
2220 *all_pinned = pinned;
dd41f596 2221 *load_moved = max_load_move - rem_load_move;
1da177e4
LT
2222 return pulled;
2223}
2224
dd41f596 2225/*
43010659
PW
2226 * move_tasks tries to move up to max_load_move weighted load from busiest to
2227 * this_rq, as part of a balancing operation within domain "sd".
2228 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2229 *
2230 * Called with both runqueues locked.
2231 */
2232static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2233 unsigned long max_load_move,
dd41f596
IM
2234 struct sched_domain *sd, enum cpu_idle_type idle,
2235 int *all_pinned)
2236{
2237 struct sched_class *class = sched_class_highest;
43010659 2238 unsigned long total_load_moved = 0;
a4ac01c3 2239 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2240
2241 do {
43010659
PW
2242 total_load_moved +=
2243 class->load_balance(this_rq, this_cpu, busiest,
2244 ULONG_MAX, max_load_move - total_load_moved,
a4ac01c3 2245 sd, idle, all_pinned, &this_best_prio);
dd41f596 2246 class = class->next;
43010659 2247 } while (class && max_load_move > total_load_moved);
dd41f596 2248
43010659
PW
2249 return total_load_moved > 0;
2250}
2251
2252/*
2253 * move_one_task tries to move exactly one task from busiest to this_rq, as
2254 * part of active balancing operations within "domain".
2255 * Returns 1 if successful and 0 otherwise.
2256 *
2257 * Called with both runqueues locked.
2258 */
2259static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2260 struct sched_domain *sd, enum cpu_idle_type idle)
2261{
2262 struct sched_class *class;
a4ac01c3 2263 int this_best_prio = MAX_PRIO;
43010659
PW
2264
2265 for (class = sched_class_highest; class; class = class->next)
2266 if (class->load_balance(this_rq, this_cpu, busiest,
a4ac01c3
PW
2267 1, ULONG_MAX, sd, idle, NULL,
2268 &this_best_prio))
43010659
PW
2269 return 1;
2270
2271 return 0;
dd41f596
IM
2272}
2273
1da177e4
LT
2274/*
2275 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2276 * domain. It calculates and returns the amount of weighted load which
2277 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2278 */
2279static struct sched_group *
2280find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2281 unsigned long *imbalance, enum cpu_idle_type idle,
2282 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2283{
2284 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2285 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2286 unsigned long max_pull;
2dd73a4f
PW
2287 unsigned long busiest_load_per_task, busiest_nr_running;
2288 unsigned long this_load_per_task, this_nr_running;
7897986b 2289 int load_idx;
5c45bf27
SS
2290#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2291 int power_savings_balance = 1;
2292 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2293 unsigned long min_nr_running = ULONG_MAX;
2294 struct sched_group *group_min = NULL, *group_leader = NULL;
2295#endif
1da177e4
LT
2296
2297 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2298 busiest_load_per_task = busiest_nr_running = 0;
2299 this_load_per_task = this_nr_running = 0;
d15bcfdb 2300 if (idle == CPU_NOT_IDLE)
7897986b 2301 load_idx = sd->busy_idx;
d15bcfdb 2302 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2303 load_idx = sd->newidle_idx;
2304 else
2305 load_idx = sd->idle_idx;
1da177e4
LT
2306
2307 do {
5c45bf27 2308 unsigned long load, group_capacity;
1da177e4
LT
2309 int local_group;
2310 int i;
783609c6 2311 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2312 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2313
2314 local_group = cpu_isset(this_cpu, group->cpumask);
2315
783609c6
SS
2316 if (local_group)
2317 balance_cpu = first_cpu(group->cpumask);
2318
1da177e4 2319 /* Tally up the load of all CPUs in the group */
2dd73a4f 2320 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2321
2322 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2323 struct rq *rq;
2324
2325 if (!cpu_isset(i, *cpus))
2326 continue;
2327
2328 rq = cpu_rq(i);
2dd73a4f 2329
9439aab8 2330 if (*sd_idle && rq->nr_running)
5969fe06
NP
2331 *sd_idle = 0;
2332
1da177e4 2333 /* Bias balancing toward cpus of our domain */
783609c6
SS
2334 if (local_group) {
2335 if (idle_cpu(i) && !first_idle_cpu) {
2336 first_idle_cpu = 1;
2337 balance_cpu = i;
2338 }
2339
a2000572 2340 load = target_load(i, load_idx);
783609c6 2341 } else
a2000572 2342 load = source_load(i, load_idx);
1da177e4
LT
2343
2344 avg_load += load;
2dd73a4f 2345 sum_nr_running += rq->nr_running;
dd41f596 2346 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2347 }
2348
783609c6
SS
2349 /*
2350 * First idle cpu or the first cpu(busiest) in this sched group
2351 * is eligible for doing load balancing at this and above
9439aab8
SS
2352 * domains. In the newly idle case, we will allow all the cpu's
2353 * to do the newly idle load balance.
783609c6 2354 */
9439aab8
SS
2355 if (idle != CPU_NEWLY_IDLE && local_group &&
2356 balance_cpu != this_cpu && balance) {
783609c6
SS
2357 *balance = 0;
2358 goto ret;
2359 }
2360
1da177e4 2361 total_load += avg_load;
5517d86b 2362 total_pwr += group->__cpu_power;
1da177e4
LT
2363
2364 /* Adjust by relative CPU power of the group */
5517d86b
ED
2365 avg_load = sg_div_cpu_power(group,
2366 avg_load * SCHED_LOAD_SCALE);
1da177e4 2367
5517d86b 2368 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2369
1da177e4
LT
2370 if (local_group) {
2371 this_load = avg_load;
2372 this = group;
2dd73a4f
PW
2373 this_nr_running = sum_nr_running;
2374 this_load_per_task = sum_weighted_load;
2375 } else if (avg_load > max_load &&
5c45bf27 2376 sum_nr_running > group_capacity) {
1da177e4
LT
2377 max_load = avg_load;
2378 busiest = group;
2dd73a4f
PW
2379 busiest_nr_running = sum_nr_running;
2380 busiest_load_per_task = sum_weighted_load;
1da177e4 2381 }
5c45bf27
SS
2382
2383#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2384 /*
2385 * Busy processors will not participate in power savings
2386 * balance.
2387 */
dd41f596
IM
2388 if (idle == CPU_NOT_IDLE ||
2389 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2390 goto group_next;
5c45bf27
SS
2391
2392 /*
2393 * If the local group is idle or completely loaded
2394 * no need to do power savings balance at this domain
2395 */
2396 if (local_group && (this_nr_running >= group_capacity ||
2397 !this_nr_running))
2398 power_savings_balance = 0;
2399
dd41f596 2400 /*
5c45bf27
SS
2401 * If a group is already running at full capacity or idle,
2402 * don't include that group in power savings calculations
dd41f596
IM
2403 */
2404 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2405 || !sum_nr_running)
dd41f596 2406 goto group_next;
5c45bf27 2407
dd41f596 2408 /*
5c45bf27 2409 * Calculate the group which has the least non-idle load.
dd41f596
IM
2410 * This is the group from where we need to pick up the load
2411 * for saving power
2412 */
2413 if ((sum_nr_running < min_nr_running) ||
2414 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2415 first_cpu(group->cpumask) <
2416 first_cpu(group_min->cpumask))) {
dd41f596
IM
2417 group_min = group;
2418 min_nr_running = sum_nr_running;
5c45bf27
SS
2419 min_load_per_task = sum_weighted_load /
2420 sum_nr_running;
dd41f596 2421 }
5c45bf27 2422
dd41f596 2423 /*
5c45bf27 2424 * Calculate the group which is almost near its
dd41f596
IM
2425 * capacity but still has some space to pick up some load
2426 * from other group and save more power
2427 */
2428 if (sum_nr_running <= group_capacity - 1) {
2429 if (sum_nr_running > leader_nr_running ||
2430 (sum_nr_running == leader_nr_running &&
2431 first_cpu(group->cpumask) >
2432 first_cpu(group_leader->cpumask))) {
2433 group_leader = group;
2434 leader_nr_running = sum_nr_running;
2435 }
48f24c4d 2436 }
5c45bf27
SS
2437group_next:
2438#endif
1da177e4
LT
2439 group = group->next;
2440 } while (group != sd->groups);
2441
2dd73a4f 2442 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2443 goto out_balanced;
2444
2445 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2446
2447 if (this_load >= avg_load ||
2448 100*max_load <= sd->imbalance_pct*this_load)
2449 goto out_balanced;
2450
2dd73a4f 2451 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2452 /*
2453 * We're trying to get all the cpus to the average_load, so we don't
2454 * want to push ourselves above the average load, nor do we wish to
2455 * reduce the max loaded cpu below the average load, as either of these
2456 * actions would just result in more rebalancing later, and ping-pong
2457 * tasks around. Thus we look for the minimum possible imbalance.
2458 * Negative imbalances (*we* are more loaded than anyone else) will
2459 * be counted as no imbalance for these purposes -- we can't fix that
2460 * by pulling tasks to us. Be careful of negative numbers as they'll
2461 * appear as very large values with unsigned longs.
2462 */
2dd73a4f
PW
2463 if (max_load <= busiest_load_per_task)
2464 goto out_balanced;
2465
2466 /*
2467 * In the presence of smp nice balancing, certain scenarios can have
2468 * max load less than avg load(as we skip the groups at or below
2469 * its cpu_power, while calculating max_load..)
2470 */
2471 if (max_load < avg_load) {
2472 *imbalance = 0;
2473 goto small_imbalance;
2474 }
0c117f1b
SS
2475
2476 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2477 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2478
1da177e4 2479 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2480 *imbalance = min(max_pull * busiest->__cpu_power,
2481 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2482 / SCHED_LOAD_SCALE;
2483
2dd73a4f
PW
2484 /*
2485 * if *imbalance is less than the average load per runnable task
2486 * there is no gaurantee that any tasks will be moved so we'll have
2487 * a think about bumping its value to force at least one task to be
2488 * moved
2489 */
7fd0d2dd 2490 if (*imbalance < busiest_load_per_task) {
48f24c4d 2491 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2492 unsigned int imbn;
2493
2494small_imbalance:
2495 pwr_move = pwr_now = 0;
2496 imbn = 2;
2497 if (this_nr_running) {
2498 this_load_per_task /= this_nr_running;
2499 if (busiest_load_per_task > this_load_per_task)
2500 imbn = 1;
2501 } else
2502 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2503
dd41f596
IM
2504 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2505 busiest_load_per_task * imbn) {
2dd73a4f 2506 *imbalance = busiest_load_per_task;
1da177e4
LT
2507 return busiest;
2508 }
2509
2510 /*
2511 * OK, we don't have enough imbalance to justify moving tasks,
2512 * however we may be able to increase total CPU power used by
2513 * moving them.
2514 */
2515
5517d86b
ED
2516 pwr_now += busiest->__cpu_power *
2517 min(busiest_load_per_task, max_load);
2518 pwr_now += this->__cpu_power *
2519 min(this_load_per_task, this_load);
1da177e4
LT
2520 pwr_now /= SCHED_LOAD_SCALE;
2521
2522 /* Amount of load we'd subtract */
5517d86b
ED
2523 tmp = sg_div_cpu_power(busiest,
2524 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2525 if (max_load > tmp)
5517d86b 2526 pwr_move += busiest->__cpu_power *
2dd73a4f 2527 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2528
2529 /* Amount of load we'd add */
5517d86b 2530 if (max_load * busiest->__cpu_power <
33859f7f 2531 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2532 tmp = sg_div_cpu_power(this,
2533 max_load * busiest->__cpu_power);
1da177e4 2534 else
5517d86b
ED
2535 tmp = sg_div_cpu_power(this,
2536 busiest_load_per_task * SCHED_LOAD_SCALE);
2537 pwr_move += this->__cpu_power *
2538 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2539 pwr_move /= SCHED_LOAD_SCALE;
2540
2541 /* Move if we gain throughput */
7fd0d2dd
SS
2542 if (pwr_move > pwr_now)
2543 *imbalance = busiest_load_per_task;
1da177e4
LT
2544 }
2545
1da177e4
LT
2546 return busiest;
2547
2548out_balanced:
5c45bf27 2549#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2550 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2551 goto ret;
1da177e4 2552
5c45bf27
SS
2553 if (this == group_leader && group_leader != group_min) {
2554 *imbalance = min_load_per_task;
2555 return group_min;
2556 }
5c45bf27 2557#endif
783609c6 2558ret:
1da177e4
LT
2559 *imbalance = 0;
2560 return NULL;
2561}
2562
2563/*
2564 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2565 */
70b97a7f 2566static struct rq *
d15bcfdb 2567find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2568 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2569{
70b97a7f 2570 struct rq *busiest = NULL, *rq;
2dd73a4f 2571 unsigned long max_load = 0;
1da177e4
LT
2572 int i;
2573
2574 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2575 unsigned long wl;
0a2966b4
CL
2576
2577 if (!cpu_isset(i, *cpus))
2578 continue;
2579
48f24c4d 2580 rq = cpu_rq(i);
dd41f596 2581 wl = weighted_cpuload(i);
2dd73a4f 2582
dd41f596 2583 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2584 continue;
1da177e4 2585
dd41f596
IM
2586 if (wl > max_load) {
2587 max_load = wl;
48f24c4d 2588 busiest = rq;
1da177e4
LT
2589 }
2590 }
2591
2592 return busiest;
2593}
2594
77391d71
NP
2595/*
2596 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2597 * so long as it is large enough.
2598 */
2599#define MAX_PINNED_INTERVAL 512
2600
1da177e4
LT
2601/*
2602 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2603 * tasks if there is an imbalance.
1da177e4 2604 */
70b97a7f 2605static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2606 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2607 int *balance)
1da177e4 2608{
43010659 2609 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2610 struct sched_group *group;
1da177e4 2611 unsigned long imbalance;
70b97a7f 2612 struct rq *busiest;
0a2966b4 2613 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2614 unsigned long flags;
5969fe06 2615
89c4710e
SS
2616 /*
2617 * When power savings policy is enabled for the parent domain, idle
2618 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2619 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2620 * portraying it as CPU_NOT_IDLE.
89c4710e 2621 */
d15bcfdb 2622 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2623 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2624 sd_idle = 1;
1da177e4 2625
1da177e4
LT
2626 schedstat_inc(sd, lb_cnt[idle]);
2627
0a2966b4
CL
2628redo:
2629 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2630 &cpus, balance);
2631
06066714 2632 if (*balance == 0)
783609c6 2633 goto out_balanced;
783609c6 2634
1da177e4
LT
2635 if (!group) {
2636 schedstat_inc(sd, lb_nobusyg[idle]);
2637 goto out_balanced;
2638 }
2639
0a2966b4 2640 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2641 if (!busiest) {
2642 schedstat_inc(sd, lb_nobusyq[idle]);
2643 goto out_balanced;
2644 }
2645
db935dbd 2646 BUG_ON(busiest == this_rq);
1da177e4
LT
2647
2648 schedstat_add(sd, lb_imbalance[idle], imbalance);
2649
43010659 2650 ld_moved = 0;
1da177e4
LT
2651 if (busiest->nr_running > 1) {
2652 /*
2653 * Attempt to move tasks. If find_busiest_group has found
2654 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2655 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2656 * correctly treated as an imbalance.
2657 */
fe2eea3f 2658 local_irq_save(flags);
e17224bf 2659 double_rq_lock(this_rq, busiest);
43010659 2660 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2661 imbalance, sd, idle, &all_pinned);
e17224bf 2662 double_rq_unlock(this_rq, busiest);
fe2eea3f 2663 local_irq_restore(flags);
81026794 2664
46cb4b7c
SS
2665 /*
2666 * some other cpu did the load balance for us.
2667 */
43010659 2668 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2669 resched_cpu(this_cpu);
2670
81026794 2671 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2672 if (unlikely(all_pinned)) {
2673 cpu_clear(cpu_of(busiest), cpus);
2674 if (!cpus_empty(cpus))
2675 goto redo;
81026794 2676 goto out_balanced;
0a2966b4 2677 }
1da177e4 2678 }
81026794 2679
43010659 2680 if (!ld_moved) {
1da177e4
LT
2681 schedstat_inc(sd, lb_failed[idle]);
2682 sd->nr_balance_failed++;
2683
2684 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2685
fe2eea3f 2686 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2687
2688 /* don't kick the migration_thread, if the curr
2689 * task on busiest cpu can't be moved to this_cpu
2690 */
2691 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2692 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2693 all_pinned = 1;
2694 goto out_one_pinned;
2695 }
2696
1da177e4
LT
2697 if (!busiest->active_balance) {
2698 busiest->active_balance = 1;
2699 busiest->push_cpu = this_cpu;
81026794 2700 active_balance = 1;
1da177e4 2701 }
fe2eea3f 2702 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2703 if (active_balance)
1da177e4
LT
2704 wake_up_process(busiest->migration_thread);
2705
2706 /*
2707 * We've kicked active balancing, reset the failure
2708 * counter.
2709 */
39507451 2710 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2711 }
81026794 2712 } else
1da177e4
LT
2713 sd->nr_balance_failed = 0;
2714
81026794 2715 if (likely(!active_balance)) {
1da177e4
LT
2716 /* We were unbalanced, so reset the balancing interval */
2717 sd->balance_interval = sd->min_interval;
81026794
NP
2718 } else {
2719 /*
2720 * If we've begun active balancing, start to back off. This
2721 * case may not be covered by the all_pinned logic if there
2722 * is only 1 task on the busy runqueue (because we don't call
2723 * move_tasks).
2724 */
2725 if (sd->balance_interval < sd->max_interval)
2726 sd->balance_interval *= 2;
1da177e4
LT
2727 }
2728
43010659 2729 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2730 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2731 return -1;
43010659 2732 return ld_moved;
1da177e4
LT
2733
2734out_balanced:
1da177e4
LT
2735 schedstat_inc(sd, lb_balanced[idle]);
2736
16cfb1c0 2737 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2738
2739out_one_pinned:
1da177e4 2740 /* tune up the balancing interval */
77391d71
NP
2741 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2742 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2743 sd->balance_interval *= 2;
2744
48f24c4d 2745 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2746 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2747 return -1;
1da177e4
LT
2748 return 0;
2749}
2750
2751/*
2752 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2753 * tasks if there is an imbalance.
2754 *
d15bcfdb 2755 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2756 * this_rq is locked.
2757 */
48f24c4d 2758static int
70b97a7f 2759load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2760{
2761 struct sched_group *group;
70b97a7f 2762 struct rq *busiest = NULL;
1da177e4 2763 unsigned long imbalance;
43010659 2764 int ld_moved = 0;
5969fe06 2765 int sd_idle = 0;
969bb4e4 2766 int all_pinned = 0;
0a2966b4 2767 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2768
89c4710e
SS
2769 /*
2770 * When power savings policy is enabled for the parent domain, idle
2771 * sibling can pick up load irrespective of busy siblings. In this case,
2772 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2773 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2774 */
2775 if (sd->flags & SD_SHARE_CPUPOWER &&
2776 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2777 sd_idle = 1;
1da177e4 2778
d15bcfdb 2779 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
0a2966b4 2780redo:
d15bcfdb 2781 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2782 &sd_idle, &cpus, NULL);
1da177e4 2783 if (!group) {
d15bcfdb 2784 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2785 goto out_balanced;
1da177e4
LT
2786 }
2787
d15bcfdb 2788 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2789 &cpus);
db935dbd 2790 if (!busiest) {
d15bcfdb 2791 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2792 goto out_balanced;
1da177e4
LT
2793 }
2794
db935dbd
NP
2795 BUG_ON(busiest == this_rq);
2796
d15bcfdb 2797 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2798
43010659 2799 ld_moved = 0;
d6d5cfaf
NP
2800 if (busiest->nr_running > 1) {
2801 /* Attempt to move tasks */
2802 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2803 /* this_rq->clock is already updated */
2804 update_rq_clock(busiest);
43010659 2805 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2806 imbalance, sd, CPU_NEWLY_IDLE,
2807 &all_pinned);
d6d5cfaf 2808 spin_unlock(&busiest->lock);
0a2966b4 2809
969bb4e4 2810 if (unlikely(all_pinned)) {
0a2966b4
CL
2811 cpu_clear(cpu_of(busiest), cpus);
2812 if (!cpus_empty(cpus))
2813 goto redo;
2814 }
d6d5cfaf
NP
2815 }
2816
43010659 2817 if (!ld_moved) {
d15bcfdb 2818 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2819 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2820 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2821 return -1;
2822 } else
16cfb1c0 2823 sd->nr_balance_failed = 0;
1da177e4 2824
43010659 2825 return ld_moved;
16cfb1c0
NP
2826
2827out_balanced:
d15bcfdb 2828 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2829 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2830 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2831 return -1;
16cfb1c0 2832 sd->nr_balance_failed = 0;
48f24c4d 2833
16cfb1c0 2834 return 0;
1da177e4
LT
2835}
2836
2837/*
2838 * idle_balance is called by schedule() if this_cpu is about to become
2839 * idle. Attempts to pull tasks from other CPUs.
2840 */
70b97a7f 2841static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2842{
2843 struct sched_domain *sd;
dd41f596
IM
2844 int pulled_task = -1;
2845 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2846
2847 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2848 unsigned long interval;
2849
2850 if (!(sd->flags & SD_LOAD_BALANCE))
2851 continue;
2852
2853 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2854 /* If we've pulled tasks over stop searching: */
1bd77f2d 2855 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2856 this_rq, sd);
2857
2858 interval = msecs_to_jiffies(sd->balance_interval);
2859 if (time_after(next_balance, sd->last_balance + interval))
2860 next_balance = sd->last_balance + interval;
2861 if (pulled_task)
2862 break;
1da177e4 2863 }
dd41f596 2864 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2865 /*
2866 * We are going idle. next_balance may be set based on
2867 * a busy processor. So reset next_balance.
2868 */
2869 this_rq->next_balance = next_balance;
dd41f596 2870 }
1da177e4
LT
2871}
2872
2873/*
2874 * active_load_balance is run by migration threads. It pushes running tasks
2875 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2876 * running on each physical CPU where possible, and avoids physical /
2877 * logical imbalances.
2878 *
2879 * Called with busiest_rq locked.
2880 */
70b97a7f 2881static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2882{
39507451 2883 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2884 struct sched_domain *sd;
2885 struct rq *target_rq;
39507451 2886
48f24c4d 2887 /* Is there any task to move? */
39507451 2888 if (busiest_rq->nr_running <= 1)
39507451
NP
2889 return;
2890
2891 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2892
2893 /*
39507451
NP
2894 * This condition is "impossible", if it occurs
2895 * we need to fix it. Originally reported by
2896 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2897 */
39507451 2898 BUG_ON(busiest_rq == target_rq);
1da177e4 2899
39507451
NP
2900 /* move a task from busiest_rq to target_rq */
2901 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
2902 update_rq_clock(busiest_rq);
2903 update_rq_clock(target_rq);
39507451
NP
2904
2905 /* Search for an sd spanning us and the target CPU. */
c96d145e 2906 for_each_domain(target_cpu, sd) {
39507451 2907 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2908 cpu_isset(busiest_cpu, sd->span))
39507451 2909 break;
c96d145e 2910 }
39507451 2911
48f24c4d
IM
2912 if (likely(sd)) {
2913 schedstat_inc(sd, alb_cnt);
39507451 2914
43010659
PW
2915 if (move_one_task(target_rq, target_cpu, busiest_rq,
2916 sd, CPU_IDLE))
48f24c4d
IM
2917 schedstat_inc(sd, alb_pushed);
2918 else
2919 schedstat_inc(sd, alb_failed);
2920 }
39507451 2921 spin_unlock(&target_rq->lock);
1da177e4
LT
2922}
2923
46cb4b7c
SS
2924#ifdef CONFIG_NO_HZ
2925static struct {
2926 atomic_t load_balancer;
2927 cpumask_t cpu_mask;
2928} nohz ____cacheline_aligned = {
2929 .load_balancer = ATOMIC_INIT(-1),
2930 .cpu_mask = CPU_MASK_NONE,
2931};
2932
7835b98b 2933/*
46cb4b7c
SS
2934 * This routine will try to nominate the ilb (idle load balancing)
2935 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2936 * load balancing on behalf of all those cpus. If all the cpus in the system
2937 * go into this tickless mode, then there will be no ilb owner (as there is
2938 * no need for one) and all the cpus will sleep till the next wakeup event
2939 * arrives...
2940 *
2941 * For the ilb owner, tick is not stopped. And this tick will be used
2942 * for idle load balancing. ilb owner will still be part of
2943 * nohz.cpu_mask..
7835b98b 2944 *
46cb4b7c
SS
2945 * While stopping the tick, this cpu will become the ilb owner if there
2946 * is no other owner. And will be the owner till that cpu becomes busy
2947 * or if all cpus in the system stop their ticks at which point
2948 * there is no need for ilb owner.
2949 *
2950 * When the ilb owner becomes busy, it nominates another owner, during the
2951 * next busy scheduler_tick()
2952 */
2953int select_nohz_load_balancer(int stop_tick)
2954{
2955 int cpu = smp_processor_id();
2956
2957 if (stop_tick) {
2958 cpu_set(cpu, nohz.cpu_mask);
2959 cpu_rq(cpu)->in_nohz_recently = 1;
2960
2961 /*
2962 * If we are going offline and still the leader, give up!
2963 */
2964 if (cpu_is_offline(cpu) &&
2965 atomic_read(&nohz.load_balancer) == cpu) {
2966 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2967 BUG();
2968 return 0;
2969 }
2970
2971 /* time for ilb owner also to sleep */
2972 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2973 if (atomic_read(&nohz.load_balancer) == cpu)
2974 atomic_set(&nohz.load_balancer, -1);
2975 return 0;
2976 }
2977
2978 if (atomic_read(&nohz.load_balancer) == -1) {
2979 /* make me the ilb owner */
2980 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2981 return 1;
2982 } else if (atomic_read(&nohz.load_balancer) == cpu)
2983 return 1;
2984 } else {
2985 if (!cpu_isset(cpu, nohz.cpu_mask))
2986 return 0;
2987
2988 cpu_clear(cpu, nohz.cpu_mask);
2989
2990 if (atomic_read(&nohz.load_balancer) == cpu)
2991 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2992 BUG();
2993 }
2994 return 0;
2995}
2996#endif
2997
2998static DEFINE_SPINLOCK(balancing);
2999
3000/*
7835b98b
CL
3001 * It checks each scheduling domain to see if it is due to be balanced,
3002 * and initiates a balancing operation if so.
3003 *
3004 * Balancing parameters are set up in arch_init_sched_domains.
3005 */
d15bcfdb 3006static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3007{
46cb4b7c
SS
3008 int balance = 1;
3009 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3010 unsigned long interval;
3011 struct sched_domain *sd;
46cb4b7c 3012 /* Earliest time when we have to do rebalance again */
c9819f45 3013 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3014 int update_next_balance = 0;
1da177e4 3015
46cb4b7c 3016 for_each_domain(cpu, sd) {
1da177e4
LT
3017 if (!(sd->flags & SD_LOAD_BALANCE))
3018 continue;
3019
3020 interval = sd->balance_interval;
d15bcfdb 3021 if (idle != CPU_IDLE)
1da177e4
LT
3022 interval *= sd->busy_factor;
3023
3024 /* scale ms to jiffies */
3025 interval = msecs_to_jiffies(interval);
3026 if (unlikely(!interval))
3027 interval = 1;
dd41f596
IM
3028 if (interval > HZ*NR_CPUS/10)
3029 interval = HZ*NR_CPUS/10;
3030
1da177e4 3031
08c183f3
CL
3032 if (sd->flags & SD_SERIALIZE) {
3033 if (!spin_trylock(&balancing))
3034 goto out;
3035 }
3036
c9819f45 3037 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3038 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3039 /*
3040 * We've pulled tasks over so either we're no
5969fe06
NP
3041 * longer idle, or one of our SMT siblings is
3042 * not idle.
3043 */
d15bcfdb 3044 idle = CPU_NOT_IDLE;
1da177e4 3045 }
1bd77f2d 3046 sd->last_balance = jiffies;
1da177e4 3047 }
08c183f3
CL
3048 if (sd->flags & SD_SERIALIZE)
3049 spin_unlock(&balancing);
3050out:
f549da84 3051 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3052 next_balance = sd->last_balance + interval;
f549da84
SS
3053 update_next_balance = 1;
3054 }
783609c6
SS
3055
3056 /*
3057 * Stop the load balance at this level. There is another
3058 * CPU in our sched group which is doing load balancing more
3059 * actively.
3060 */
3061 if (!balance)
3062 break;
1da177e4 3063 }
f549da84
SS
3064
3065 /*
3066 * next_balance will be updated only when there is a need.
3067 * When the cpu is attached to null domain for ex, it will not be
3068 * updated.
3069 */
3070 if (likely(update_next_balance))
3071 rq->next_balance = next_balance;
46cb4b7c
SS
3072}
3073
3074/*
3075 * run_rebalance_domains is triggered when needed from the scheduler tick.
3076 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3077 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3078 */
3079static void run_rebalance_domains(struct softirq_action *h)
3080{
dd41f596
IM
3081 int this_cpu = smp_processor_id();
3082 struct rq *this_rq = cpu_rq(this_cpu);
3083 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3084 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3085
dd41f596 3086 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3087
3088#ifdef CONFIG_NO_HZ
3089 /*
3090 * If this cpu is the owner for idle load balancing, then do the
3091 * balancing on behalf of the other idle cpus whose ticks are
3092 * stopped.
3093 */
dd41f596
IM
3094 if (this_rq->idle_at_tick &&
3095 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3096 cpumask_t cpus = nohz.cpu_mask;
3097 struct rq *rq;
3098 int balance_cpu;
3099
dd41f596 3100 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3101 for_each_cpu_mask(balance_cpu, cpus) {
3102 /*
3103 * If this cpu gets work to do, stop the load balancing
3104 * work being done for other cpus. Next load
3105 * balancing owner will pick it up.
3106 */
3107 if (need_resched())
3108 break;
3109
de0cf899 3110 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3111
3112 rq = cpu_rq(balance_cpu);
dd41f596
IM
3113 if (time_after(this_rq->next_balance, rq->next_balance))
3114 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3115 }
3116 }
3117#endif
3118}
3119
3120/*
3121 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3122 *
3123 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3124 * idle load balancing owner or decide to stop the periodic load balancing,
3125 * if the whole system is idle.
3126 */
dd41f596 3127static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3128{
46cb4b7c
SS
3129#ifdef CONFIG_NO_HZ
3130 /*
3131 * If we were in the nohz mode recently and busy at the current
3132 * scheduler tick, then check if we need to nominate new idle
3133 * load balancer.
3134 */
3135 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3136 rq->in_nohz_recently = 0;
3137
3138 if (atomic_read(&nohz.load_balancer) == cpu) {
3139 cpu_clear(cpu, nohz.cpu_mask);
3140 atomic_set(&nohz.load_balancer, -1);
3141 }
3142
3143 if (atomic_read(&nohz.load_balancer) == -1) {
3144 /*
3145 * simple selection for now: Nominate the
3146 * first cpu in the nohz list to be the next
3147 * ilb owner.
3148 *
3149 * TBD: Traverse the sched domains and nominate
3150 * the nearest cpu in the nohz.cpu_mask.
3151 */
3152 int ilb = first_cpu(nohz.cpu_mask);
3153
3154 if (ilb != NR_CPUS)
3155 resched_cpu(ilb);
3156 }
3157 }
3158
3159 /*
3160 * If this cpu is idle and doing idle load balancing for all the
3161 * cpus with ticks stopped, is it time for that to stop?
3162 */
3163 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3164 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3165 resched_cpu(cpu);
3166 return;
3167 }
3168
3169 /*
3170 * If this cpu is idle and the idle load balancing is done by
3171 * someone else, then no need raise the SCHED_SOFTIRQ
3172 */
3173 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3174 cpu_isset(cpu, nohz.cpu_mask))
3175 return;
3176#endif
3177 if (time_after_eq(jiffies, rq->next_balance))
3178 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3179}
dd41f596
IM
3180
3181#else /* CONFIG_SMP */
3182
1da177e4
LT
3183/*
3184 * on UP we do not need to balance between CPUs:
3185 */
70b97a7f 3186static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3187{
3188}
dd41f596
IM
3189
3190/* Avoid "used but not defined" warning on UP */
3191static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3192 unsigned long max_nr_move, unsigned long max_load_move,
3193 struct sched_domain *sd, enum cpu_idle_type idle,
3194 int *all_pinned, unsigned long *load_moved,
a4ac01c3 3195 int *this_best_prio, struct rq_iterator *iterator)
dd41f596
IM
3196{
3197 *load_moved = 0;
3198
3199 return 0;
3200}
3201
1da177e4
LT
3202#endif
3203
1da177e4
LT
3204DEFINE_PER_CPU(struct kernel_stat, kstat);
3205
3206EXPORT_PER_CPU_SYMBOL(kstat);
3207
3208/*
41b86e9c
IM
3209 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3210 * that have not yet been banked in case the task is currently running.
1da177e4 3211 */
41b86e9c 3212unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3213{
1da177e4 3214 unsigned long flags;
41b86e9c
IM
3215 u64 ns, delta_exec;
3216 struct rq *rq;
48f24c4d 3217
41b86e9c
IM
3218 rq = task_rq_lock(p, &flags);
3219 ns = p->se.sum_exec_runtime;
3220 if (rq->curr == p) {
a8e504d2
IM
3221 update_rq_clock(rq);
3222 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3223 if ((s64)delta_exec > 0)
3224 ns += delta_exec;
3225 }
3226 task_rq_unlock(rq, &flags);
48f24c4d 3227
1da177e4
LT
3228 return ns;
3229}
3230
1da177e4
LT
3231/*
3232 * Account user cpu time to a process.
3233 * @p: the process that the cpu time gets accounted to
3234 * @hardirq_offset: the offset to subtract from hardirq_count()
3235 * @cputime: the cpu time spent in user space since the last update
3236 */
3237void account_user_time(struct task_struct *p, cputime_t cputime)
3238{
3239 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3240 cputime64_t tmp;
3241
3242 p->utime = cputime_add(p->utime, cputime);
3243
3244 /* Add user time to cpustat. */
3245 tmp = cputime_to_cputime64(cputime);
3246 if (TASK_NICE(p) > 0)
3247 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3248 else
3249 cpustat->user = cputime64_add(cpustat->user, tmp);
3250}
3251
3252/*
3253 * Account system cpu time to a process.
3254 * @p: the process that the cpu time gets accounted to
3255 * @hardirq_offset: the offset to subtract from hardirq_count()
3256 * @cputime: the cpu time spent in kernel space since the last update
3257 */
3258void account_system_time(struct task_struct *p, int hardirq_offset,
3259 cputime_t cputime)
3260{
3261 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3262 struct rq *rq = this_rq();
1da177e4
LT
3263 cputime64_t tmp;
3264
3265 p->stime = cputime_add(p->stime, cputime);
3266
3267 /* Add system time to cpustat. */
3268 tmp = cputime_to_cputime64(cputime);
3269 if (hardirq_count() - hardirq_offset)
3270 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3271 else if (softirq_count())
3272 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3273 else if (p != rq->idle)
3274 cpustat->system = cputime64_add(cpustat->system, tmp);
3275 else if (atomic_read(&rq->nr_iowait) > 0)
3276 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3277 else
3278 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3279 /* Account for system time used */
3280 acct_update_integrals(p);
1da177e4
LT
3281}
3282
3283/*
3284 * Account for involuntary wait time.
3285 * @p: the process from which the cpu time has been stolen
3286 * @steal: the cpu time spent in involuntary wait
3287 */
3288void account_steal_time(struct task_struct *p, cputime_t steal)
3289{
3290 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3291 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3292 struct rq *rq = this_rq();
1da177e4
LT
3293
3294 if (p == rq->idle) {
3295 p->stime = cputime_add(p->stime, steal);
3296 if (atomic_read(&rq->nr_iowait) > 0)
3297 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3298 else
3299 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3300 } else
3301 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3302}
3303
7835b98b
CL
3304/*
3305 * This function gets called by the timer code, with HZ frequency.
3306 * We call it with interrupts disabled.
3307 *
3308 * It also gets called by the fork code, when changing the parent's
3309 * timeslices.
3310 */
3311void scheduler_tick(void)
3312{
7835b98b
CL
3313 int cpu = smp_processor_id();
3314 struct rq *rq = cpu_rq(cpu);
dd41f596 3315 struct task_struct *curr = rq->curr;
529c7726 3316 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3317
3318 spin_lock(&rq->lock);
546fe3c9 3319 __update_rq_clock(rq);
529c7726
IM
3320 /*
3321 * Let rq->clock advance by at least TICK_NSEC:
3322 */
3323 if (unlikely(rq->clock < next_tick))
3324 rq->clock = next_tick;
3325 rq->tick_timestamp = rq->clock;
f1a438d8 3326 update_cpu_load(rq);
dd41f596
IM
3327 if (curr != rq->idle) /* FIXME: needed? */
3328 curr->sched_class->task_tick(rq, curr);
dd41f596 3329 spin_unlock(&rq->lock);
7835b98b 3330
e418e1c2 3331#ifdef CONFIG_SMP
dd41f596
IM
3332 rq->idle_at_tick = idle_cpu(cpu);
3333 trigger_load_balance(rq, cpu);
e418e1c2 3334#endif
1da177e4
LT
3335}
3336
1da177e4
LT
3337#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3338
3339void fastcall add_preempt_count(int val)
3340{
3341 /*
3342 * Underflow?
3343 */
9a11b49a
IM
3344 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3345 return;
1da177e4
LT
3346 preempt_count() += val;
3347 /*
3348 * Spinlock count overflowing soon?
3349 */
33859f7f
MOS
3350 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3351 PREEMPT_MASK - 10);
1da177e4
LT
3352}
3353EXPORT_SYMBOL(add_preempt_count);
3354
3355void fastcall sub_preempt_count(int val)
3356{
3357 /*
3358 * Underflow?
3359 */
9a11b49a
IM
3360 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3361 return;
1da177e4
LT
3362 /*
3363 * Is the spinlock portion underflowing?
3364 */
9a11b49a
IM
3365 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3366 !(preempt_count() & PREEMPT_MASK)))
3367 return;
3368
1da177e4
LT
3369 preempt_count() -= val;
3370}
3371EXPORT_SYMBOL(sub_preempt_count);
3372
3373#endif
3374
3375/*
dd41f596 3376 * Print scheduling while atomic bug:
1da177e4 3377 */
dd41f596 3378static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3379{
dd41f596
IM
3380 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3381 prev->comm, preempt_count(), prev->pid);
3382 debug_show_held_locks(prev);
3383 if (irqs_disabled())
3384 print_irqtrace_events(prev);
3385 dump_stack();
3386}
1da177e4 3387
dd41f596
IM
3388/*
3389 * Various schedule()-time debugging checks and statistics:
3390 */
3391static inline void schedule_debug(struct task_struct *prev)
3392{
1da177e4
LT
3393 /*
3394 * Test if we are atomic. Since do_exit() needs to call into
3395 * schedule() atomically, we ignore that path for now.
3396 * Otherwise, whine if we are scheduling when we should not be.
3397 */
dd41f596
IM
3398 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3399 __schedule_bug(prev);
3400
1da177e4
LT
3401 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3402
dd41f596
IM
3403 schedstat_inc(this_rq(), sched_cnt);
3404}
3405
3406/*
3407 * Pick up the highest-prio task:
3408 */
3409static inline struct task_struct *
ff95f3df 3410pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596
IM
3411{
3412 struct sched_class *class;
3413 struct task_struct *p;
1da177e4
LT
3414
3415 /*
dd41f596
IM
3416 * Optimization: we know that if all tasks are in
3417 * the fair class we can call that function directly:
1da177e4 3418 */
dd41f596 3419 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3420 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3421 if (likely(p))
3422 return p;
1da177e4
LT
3423 }
3424
dd41f596
IM
3425 class = sched_class_highest;
3426 for ( ; ; ) {
fb8d4724 3427 p = class->pick_next_task(rq);
dd41f596
IM
3428 if (p)
3429 return p;
3430 /*
3431 * Will never be NULL as the idle class always
3432 * returns a non-NULL p:
3433 */
3434 class = class->next;
3435 }
3436}
1da177e4 3437
dd41f596
IM
3438/*
3439 * schedule() is the main scheduler function.
3440 */
3441asmlinkage void __sched schedule(void)
3442{
3443 struct task_struct *prev, *next;
3444 long *switch_count;
3445 struct rq *rq;
dd41f596
IM
3446 int cpu;
3447
3448need_resched:
3449 preempt_disable();
3450 cpu = smp_processor_id();
3451 rq = cpu_rq(cpu);
3452 rcu_qsctr_inc(cpu);
3453 prev = rq->curr;
3454 switch_count = &prev->nivcsw;
3455
3456 release_kernel_lock(prev);
3457need_resched_nonpreemptible:
3458
3459 schedule_debug(prev);
1da177e4
LT
3460
3461 spin_lock_irq(&rq->lock);
dd41f596 3462 clear_tsk_need_resched(prev);
c1b3da3e 3463 __update_rq_clock(rq);
1da177e4 3464
1da177e4 3465 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3466 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3467 unlikely(signal_pending(prev)))) {
1da177e4 3468 prev->state = TASK_RUNNING;
dd41f596 3469 } else {
2e1cb74a 3470 deactivate_task(rq, prev, 1);
1da177e4 3471 }
dd41f596 3472 switch_count = &prev->nvcsw;
1da177e4
LT
3473 }
3474
dd41f596 3475 if (unlikely(!rq->nr_running))
1da177e4 3476 idle_balance(cpu, rq);
1da177e4 3477
31ee529c 3478 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3479 next = pick_next_task(rq, prev);
1da177e4
LT
3480
3481 sched_info_switch(prev, next);
dd41f596 3482
1da177e4 3483 if (likely(prev != next)) {
1da177e4
LT
3484 rq->nr_switches++;
3485 rq->curr = next;
3486 ++*switch_count;
3487
dd41f596 3488 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3489 } else
3490 spin_unlock_irq(&rq->lock);
3491
dd41f596
IM
3492 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3493 cpu = smp_processor_id();
3494 rq = cpu_rq(cpu);
1da177e4 3495 goto need_resched_nonpreemptible;
dd41f596 3496 }
1da177e4
LT
3497 preempt_enable_no_resched();
3498 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3499 goto need_resched;
3500}
1da177e4
LT
3501EXPORT_SYMBOL(schedule);
3502
3503#ifdef CONFIG_PREEMPT
3504/*
2ed6e34f 3505 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3506 * off of preempt_enable. Kernel preemptions off return from interrupt
3507 * occur there and call schedule directly.
3508 */
3509asmlinkage void __sched preempt_schedule(void)
3510{
3511 struct thread_info *ti = current_thread_info();
3512#ifdef CONFIG_PREEMPT_BKL
3513 struct task_struct *task = current;
3514 int saved_lock_depth;
3515#endif
3516 /*
3517 * If there is a non-zero preempt_count or interrupts are disabled,
3518 * we do not want to preempt the current task. Just return..
3519 */
beed33a8 3520 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3521 return;
3522
3523need_resched:
3524 add_preempt_count(PREEMPT_ACTIVE);
3525 /*
3526 * We keep the big kernel semaphore locked, but we
3527 * clear ->lock_depth so that schedule() doesnt
3528 * auto-release the semaphore:
3529 */
3530#ifdef CONFIG_PREEMPT_BKL
3531 saved_lock_depth = task->lock_depth;
3532 task->lock_depth = -1;
3533#endif
3534 schedule();
3535#ifdef CONFIG_PREEMPT_BKL
3536 task->lock_depth = saved_lock_depth;
3537#endif
3538 sub_preempt_count(PREEMPT_ACTIVE);
3539
3540 /* we could miss a preemption opportunity between schedule and now */
3541 barrier();
3542 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3543 goto need_resched;
3544}
1da177e4
LT
3545EXPORT_SYMBOL(preempt_schedule);
3546
3547/*
2ed6e34f 3548 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3549 * off of irq context.
3550 * Note, that this is called and return with irqs disabled. This will
3551 * protect us against recursive calling from irq.
3552 */
3553asmlinkage void __sched preempt_schedule_irq(void)
3554{
3555 struct thread_info *ti = current_thread_info();
3556#ifdef CONFIG_PREEMPT_BKL
3557 struct task_struct *task = current;
3558 int saved_lock_depth;
3559#endif
2ed6e34f 3560 /* Catch callers which need to be fixed */
1da177e4
LT
3561 BUG_ON(ti->preempt_count || !irqs_disabled());
3562
3563need_resched:
3564 add_preempt_count(PREEMPT_ACTIVE);
3565 /*
3566 * We keep the big kernel semaphore locked, but we
3567 * clear ->lock_depth so that schedule() doesnt
3568 * auto-release the semaphore:
3569 */
3570#ifdef CONFIG_PREEMPT_BKL
3571 saved_lock_depth = task->lock_depth;
3572 task->lock_depth = -1;
3573#endif
3574 local_irq_enable();
3575 schedule();
3576 local_irq_disable();
3577#ifdef CONFIG_PREEMPT_BKL
3578 task->lock_depth = saved_lock_depth;
3579#endif
3580 sub_preempt_count(PREEMPT_ACTIVE);
3581
3582 /* we could miss a preemption opportunity between schedule and now */
3583 barrier();
3584 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3585 goto need_resched;
3586}
3587
3588#endif /* CONFIG_PREEMPT */
3589
95cdf3b7
IM
3590int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3591 void *key)
1da177e4 3592{
48f24c4d 3593 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3594}
1da177e4
LT
3595EXPORT_SYMBOL(default_wake_function);
3596
3597/*
3598 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3599 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3600 * number) then we wake all the non-exclusive tasks and one exclusive task.
3601 *
3602 * There are circumstances in which we can try to wake a task which has already
3603 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3604 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3605 */
3606static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3607 int nr_exclusive, int sync, void *key)
3608{
2e45874c 3609 wait_queue_t *curr, *next;
1da177e4 3610
2e45874c 3611 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3612 unsigned flags = curr->flags;
3613
1da177e4 3614 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3615 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3616 break;
3617 }
3618}
3619
3620/**
3621 * __wake_up - wake up threads blocked on a waitqueue.
3622 * @q: the waitqueue
3623 * @mode: which threads
3624 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3625 * @key: is directly passed to the wakeup function
1da177e4
LT
3626 */
3627void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3628 int nr_exclusive, void *key)
1da177e4
LT
3629{
3630 unsigned long flags;
3631
3632 spin_lock_irqsave(&q->lock, flags);
3633 __wake_up_common(q, mode, nr_exclusive, 0, key);
3634 spin_unlock_irqrestore(&q->lock, flags);
3635}
1da177e4
LT
3636EXPORT_SYMBOL(__wake_up);
3637
3638/*
3639 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3640 */
3641void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3642{
3643 __wake_up_common(q, mode, 1, 0, NULL);
3644}
3645
3646/**
67be2dd1 3647 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3648 * @q: the waitqueue
3649 * @mode: which threads
3650 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3651 *
3652 * The sync wakeup differs that the waker knows that it will schedule
3653 * away soon, so while the target thread will be woken up, it will not
3654 * be migrated to another CPU - ie. the two threads are 'synchronized'
3655 * with each other. This can prevent needless bouncing between CPUs.
3656 *
3657 * On UP it can prevent extra preemption.
3658 */
95cdf3b7
IM
3659void fastcall
3660__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3661{
3662 unsigned long flags;
3663 int sync = 1;
3664
3665 if (unlikely(!q))
3666 return;
3667
3668 if (unlikely(!nr_exclusive))
3669 sync = 0;
3670
3671 spin_lock_irqsave(&q->lock, flags);
3672 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3673 spin_unlock_irqrestore(&q->lock, flags);
3674}
3675EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3676
3677void fastcall complete(struct completion *x)
3678{
3679 unsigned long flags;
3680
3681 spin_lock_irqsave(&x->wait.lock, flags);
3682 x->done++;
3683 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3684 1, 0, NULL);
3685 spin_unlock_irqrestore(&x->wait.lock, flags);
3686}
3687EXPORT_SYMBOL(complete);
3688
3689void fastcall complete_all(struct completion *x)
3690{
3691 unsigned long flags;
3692
3693 spin_lock_irqsave(&x->wait.lock, flags);
3694 x->done += UINT_MAX/2;
3695 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3696 0, 0, NULL);
3697 spin_unlock_irqrestore(&x->wait.lock, flags);
3698}
3699EXPORT_SYMBOL(complete_all);
3700
3701void fastcall __sched wait_for_completion(struct completion *x)
3702{
3703 might_sleep();
48f24c4d 3704
1da177e4
LT
3705 spin_lock_irq(&x->wait.lock);
3706 if (!x->done) {
3707 DECLARE_WAITQUEUE(wait, current);
3708
3709 wait.flags |= WQ_FLAG_EXCLUSIVE;
3710 __add_wait_queue_tail(&x->wait, &wait);
3711 do {
3712 __set_current_state(TASK_UNINTERRUPTIBLE);
3713 spin_unlock_irq(&x->wait.lock);
3714 schedule();
3715 spin_lock_irq(&x->wait.lock);
3716 } while (!x->done);
3717 __remove_wait_queue(&x->wait, &wait);
3718 }
3719 x->done--;
3720 spin_unlock_irq(&x->wait.lock);
3721}
3722EXPORT_SYMBOL(wait_for_completion);
3723
3724unsigned long fastcall __sched
3725wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3726{
3727 might_sleep();
3728
3729 spin_lock_irq(&x->wait.lock);
3730 if (!x->done) {
3731 DECLARE_WAITQUEUE(wait, current);
3732
3733 wait.flags |= WQ_FLAG_EXCLUSIVE;
3734 __add_wait_queue_tail(&x->wait, &wait);
3735 do {
3736 __set_current_state(TASK_UNINTERRUPTIBLE);
3737 spin_unlock_irq(&x->wait.lock);
3738 timeout = schedule_timeout(timeout);
3739 spin_lock_irq(&x->wait.lock);
3740 if (!timeout) {
3741 __remove_wait_queue(&x->wait, &wait);
3742 goto out;
3743 }
3744 } while (!x->done);
3745 __remove_wait_queue(&x->wait, &wait);
3746 }
3747 x->done--;
3748out:
3749 spin_unlock_irq(&x->wait.lock);
3750 return timeout;
3751}
3752EXPORT_SYMBOL(wait_for_completion_timeout);
3753
3754int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3755{
3756 int ret = 0;
3757
3758 might_sleep();
3759
3760 spin_lock_irq(&x->wait.lock);
3761 if (!x->done) {
3762 DECLARE_WAITQUEUE(wait, current);
3763
3764 wait.flags |= WQ_FLAG_EXCLUSIVE;
3765 __add_wait_queue_tail(&x->wait, &wait);
3766 do {
3767 if (signal_pending(current)) {
3768 ret = -ERESTARTSYS;
3769 __remove_wait_queue(&x->wait, &wait);
3770 goto out;
3771 }
3772 __set_current_state(TASK_INTERRUPTIBLE);
3773 spin_unlock_irq(&x->wait.lock);
3774 schedule();
3775 spin_lock_irq(&x->wait.lock);
3776 } while (!x->done);
3777 __remove_wait_queue(&x->wait, &wait);
3778 }
3779 x->done--;
3780out:
3781 spin_unlock_irq(&x->wait.lock);
3782
3783 return ret;
3784}
3785EXPORT_SYMBOL(wait_for_completion_interruptible);
3786
3787unsigned long fastcall __sched
3788wait_for_completion_interruptible_timeout(struct completion *x,
3789 unsigned long timeout)
3790{
3791 might_sleep();
3792
3793 spin_lock_irq(&x->wait.lock);
3794 if (!x->done) {
3795 DECLARE_WAITQUEUE(wait, current);
3796
3797 wait.flags |= WQ_FLAG_EXCLUSIVE;
3798 __add_wait_queue_tail(&x->wait, &wait);
3799 do {
3800 if (signal_pending(current)) {
3801 timeout = -ERESTARTSYS;
3802 __remove_wait_queue(&x->wait, &wait);
3803 goto out;
3804 }
3805 __set_current_state(TASK_INTERRUPTIBLE);
3806 spin_unlock_irq(&x->wait.lock);
3807 timeout = schedule_timeout(timeout);
3808 spin_lock_irq(&x->wait.lock);
3809 if (!timeout) {
3810 __remove_wait_queue(&x->wait, &wait);
3811 goto out;
3812 }
3813 } while (!x->done);
3814 __remove_wait_queue(&x->wait, &wait);
3815 }
3816 x->done--;
3817out:
3818 spin_unlock_irq(&x->wait.lock);
3819 return timeout;
3820}
3821EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3822
0fec171c
IM
3823static inline void
3824sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3825{
3826 spin_lock_irqsave(&q->lock, *flags);
3827 __add_wait_queue(q, wait);
1da177e4 3828 spin_unlock(&q->lock);
0fec171c 3829}
1da177e4 3830
0fec171c
IM
3831static inline void
3832sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3833{
3834 spin_lock_irq(&q->lock);
3835 __remove_wait_queue(q, wait);
3836 spin_unlock_irqrestore(&q->lock, *flags);
3837}
1da177e4 3838
0fec171c 3839void __sched interruptible_sleep_on(wait_queue_head_t *q)
1da177e4 3840{
0fec171c
IM
3841 unsigned long flags;
3842 wait_queue_t wait;
3843
3844 init_waitqueue_entry(&wait, current);
1da177e4
LT
3845
3846 current->state = TASK_INTERRUPTIBLE;
3847
0fec171c 3848 sleep_on_head(q, &wait, &flags);
1da177e4 3849 schedule();
0fec171c 3850 sleep_on_tail(q, &wait, &flags);
1da177e4 3851}
1da177e4
LT
3852EXPORT_SYMBOL(interruptible_sleep_on);
3853
0fec171c 3854long __sched
95cdf3b7 3855interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3856{
0fec171c
IM
3857 unsigned long flags;
3858 wait_queue_t wait;
3859
3860 init_waitqueue_entry(&wait, current);
1da177e4
LT
3861
3862 current->state = TASK_INTERRUPTIBLE;
3863
0fec171c 3864 sleep_on_head(q, &wait, &flags);
1da177e4 3865 timeout = schedule_timeout(timeout);
0fec171c 3866 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3867
3868 return timeout;
3869}
1da177e4
LT
3870EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3871
0fec171c 3872void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3873{
0fec171c
IM
3874 unsigned long flags;
3875 wait_queue_t wait;
3876
3877 init_waitqueue_entry(&wait, current);
1da177e4
LT
3878
3879 current->state = TASK_UNINTERRUPTIBLE;
3880
0fec171c 3881 sleep_on_head(q, &wait, &flags);
1da177e4 3882 schedule();
0fec171c 3883 sleep_on_tail(q, &wait, &flags);
1da177e4 3884}
1da177e4
LT
3885EXPORT_SYMBOL(sleep_on);
3886
0fec171c 3887long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3888{
0fec171c
IM
3889 unsigned long flags;
3890 wait_queue_t wait;
3891
3892 init_waitqueue_entry(&wait, current);
1da177e4
LT
3893
3894 current->state = TASK_UNINTERRUPTIBLE;
3895
0fec171c 3896 sleep_on_head(q, &wait, &flags);
1da177e4 3897 timeout = schedule_timeout(timeout);
0fec171c 3898 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3899
3900 return timeout;
3901}
1da177e4
LT
3902EXPORT_SYMBOL(sleep_on_timeout);
3903
b29739f9
IM
3904#ifdef CONFIG_RT_MUTEXES
3905
3906/*
3907 * rt_mutex_setprio - set the current priority of a task
3908 * @p: task
3909 * @prio: prio value (kernel-internal form)
3910 *
3911 * This function changes the 'effective' priority of a task. It does
3912 * not touch ->normal_prio like __setscheduler().
3913 *
3914 * Used by the rt_mutex code to implement priority inheritance logic.
3915 */
36c8b586 3916void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
3917{
3918 unsigned long flags;
83b699ed 3919 int oldprio, on_rq, running;
70b97a7f 3920 struct rq *rq;
b29739f9
IM
3921
3922 BUG_ON(prio < 0 || prio > MAX_PRIO);
3923
3924 rq = task_rq_lock(p, &flags);
a8e504d2 3925 update_rq_clock(rq);
b29739f9 3926
d5f9f942 3927 oldprio = p->prio;
dd41f596 3928 on_rq = p->se.on_rq;
83b699ed
SV
3929 running = task_running(rq, p);
3930 if (on_rq) {
69be72c1 3931 dequeue_task(rq, p, 0);
83b699ed
SV
3932 if (running)
3933 p->sched_class->put_prev_task(rq, p);
3934 }
dd41f596
IM
3935
3936 if (rt_prio(prio))
3937 p->sched_class = &rt_sched_class;
3938 else
3939 p->sched_class = &fair_sched_class;
3940
b29739f9
IM
3941 p->prio = prio;
3942
dd41f596 3943 if (on_rq) {
83b699ed
SV
3944 if (running)
3945 p->sched_class->set_curr_task(rq);
8159f87e 3946 enqueue_task(rq, p, 0);
b29739f9
IM
3947 /*
3948 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
3949 * our priority decreased, or if we are not currently running on
3950 * this runqueue and our priority is higher than the current's
b29739f9 3951 */
83b699ed 3952 if (running) {
d5f9f942
AM
3953 if (p->prio > oldprio)
3954 resched_task(rq->curr);
dd41f596
IM
3955 } else {
3956 check_preempt_curr(rq, p);
3957 }
b29739f9
IM
3958 }
3959 task_rq_unlock(rq, &flags);
3960}
3961
3962#endif
3963
36c8b586 3964void set_user_nice(struct task_struct *p, long nice)
1da177e4 3965{
dd41f596 3966 int old_prio, delta, on_rq;
1da177e4 3967 unsigned long flags;
70b97a7f 3968 struct rq *rq;
1da177e4
LT
3969
3970 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3971 return;
3972 /*
3973 * We have to be careful, if called from sys_setpriority(),
3974 * the task might be in the middle of scheduling on another CPU.
3975 */
3976 rq = task_rq_lock(p, &flags);
a8e504d2 3977 update_rq_clock(rq);
1da177e4
LT
3978 /*
3979 * The RT priorities are set via sched_setscheduler(), but we still
3980 * allow the 'normal' nice value to be set - but as expected
3981 * it wont have any effect on scheduling until the task is
dd41f596 3982 * SCHED_FIFO/SCHED_RR:
1da177e4 3983 */
e05606d3 3984 if (task_has_rt_policy(p)) {
1da177e4
LT
3985 p->static_prio = NICE_TO_PRIO(nice);
3986 goto out_unlock;
3987 }
dd41f596
IM
3988 on_rq = p->se.on_rq;
3989 if (on_rq) {
69be72c1 3990 dequeue_task(rq, p, 0);
79b5dddf 3991 dec_load(rq, p);
2dd73a4f 3992 }
1da177e4 3993
1da177e4 3994 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3995 set_load_weight(p);
b29739f9
IM
3996 old_prio = p->prio;
3997 p->prio = effective_prio(p);
3998 delta = p->prio - old_prio;
1da177e4 3999
dd41f596 4000 if (on_rq) {
8159f87e 4001 enqueue_task(rq, p, 0);
29b4b623 4002 inc_load(rq, p);
1da177e4 4003 /*
d5f9f942
AM
4004 * If the task increased its priority or is running and
4005 * lowered its priority, then reschedule its CPU:
1da177e4 4006 */
d5f9f942 4007 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4008 resched_task(rq->curr);
4009 }
4010out_unlock:
4011 task_rq_unlock(rq, &flags);
4012}
1da177e4
LT
4013EXPORT_SYMBOL(set_user_nice);
4014
e43379f1
MM
4015/*
4016 * can_nice - check if a task can reduce its nice value
4017 * @p: task
4018 * @nice: nice value
4019 */
36c8b586 4020int can_nice(const struct task_struct *p, const int nice)
e43379f1 4021{
024f4747
MM
4022 /* convert nice value [19,-20] to rlimit style value [1,40] */
4023 int nice_rlim = 20 - nice;
48f24c4d 4024
e43379f1
MM
4025 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4026 capable(CAP_SYS_NICE));
4027}
4028
1da177e4
LT
4029#ifdef __ARCH_WANT_SYS_NICE
4030
4031/*
4032 * sys_nice - change the priority of the current process.
4033 * @increment: priority increment
4034 *
4035 * sys_setpriority is a more generic, but much slower function that
4036 * does similar things.
4037 */
4038asmlinkage long sys_nice(int increment)
4039{
48f24c4d 4040 long nice, retval;
1da177e4
LT
4041
4042 /*
4043 * Setpriority might change our priority at the same moment.
4044 * We don't have to worry. Conceptually one call occurs first
4045 * and we have a single winner.
4046 */
e43379f1
MM
4047 if (increment < -40)
4048 increment = -40;
1da177e4
LT
4049 if (increment > 40)
4050 increment = 40;
4051
4052 nice = PRIO_TO_NICE(current->static_prio) + increment;
4053 if (nice < -20)
4054 nice = -20;
4055 if (nice > 19)
4056 nice = 19;
4057
e43379f1
MM
4058 if (increment < 0 && !can_nice(current, nice))
4059 return -EPERM;
4060
1da177e4
LT
4061 retval = security_task_setnice(current, nice);
4062 if (retval)
4063 return retval;
4064
4065 set_user_nice(current, nice);
4066 return 0;
4067}
4068
4069#endif
4070
4071/**
4072 * task_prio - return the priority value of a given task.
4073 * @p: the task in question.
4074 *
4075 * This is the priority value as seen by users in /proc.
4076 * RT tasks are offset by -200. Normal tasks are centered
4077 * around 0, value goes from -16 to +15.
4078 */
36c8b586 4079int task_prio(const struct task_struct *p)
1da177e4
LT
4080{
4081 return p->prio - MAX_RT_PRIO;
4082}
4083
4084/**
4085 * task_nice - return the nice value of a given task.
4086 * @p: the task in question.
4087 */
36c8b586 4088int task_nice(const struct task_struct *p)
1da177e4
LT
4089{
4090 return TASK_NICE(p);
4091}
1da177e4 4092EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4093
4094/**
4095 * idle_cpu - is a given cpu idle currently?
4096 * @cpu: the processor in question.
4097 */
4098int idle_cpu(int cpu)
4099{
4100 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4101}
4102
1da177e4
LT
4103/**
4104 * idle_task - return the idle task for a given cpu.
4105 * @cpu: the processor in question.
4106 */
36c8b586 4107struct task_struct *idle_task(int cpu)
1da177e4
LT
4108{
4109 return cpu_rq(cpu)->idle;
4110}
4111
4112/**
4113 * find_process_by_pid - find a process with a matching PID value.
4114 * @pid: the pid in question.
4115 */
36c8b586 4116static inline struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4117{
4118 return pid ? find_task_by_pid(pid) : current;
4119}
4120
4121/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4122static void
4123__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4124{
dd41f596 4125 BUG_ON(p->se.on_rq);
48f24c4d 4126
1da177e4 4127 p->policy = policy;
dd41f596
IM
4128 switch (p->policy) {
4129 case SCHED_NORMAL:
4130 case SCHED_BATCH:
4131 case SCHED_IDLE:
4132 p->sched_class = &fair_sched_class;
4133 break;
4134 case SCHED_FIFO:
4135 case SCHED_RR:
4136 p->sched_class = &rt_sched_class;
4137 break;
4138 }
4139
1da177e4 4140 p->rt_priority = prio;
b29739f9
IM
4141 p->normal_prio = normal_prio(p);
4142 /* we are holding p->pi_lock already */
4143 p->prio = rt_mutex_getprio(p);
2dd73a4f 4144 set_load_weight(p);
1da177e4
LT
4145}
4146
4147/**
72fd4a35 4148 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4149 * @p: the task in question.
4150 * @policy: new policy.
4151 * @param: structure containing the new RT priority.
5fe1d75f 4152 *
72fd4a35 4153 * NOTE that the task may be already dead.
1da177e4 4154 */
95cdf3b7
IM
4155int sched_setscheduler(struct task_struct *p, int policy,
4156 struct sched_param *param)
1da177e4 4157{
83b699ed 4158 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4159 unsigned long flags;
70b97a7f 4160 struct rq *rq;
1da177e4 4161
66e5393a
SR
4162 /* may grab non-irq protected spin_locks */
4163 BUG_ON(in_interrupt());
1da177e4
LT
4164recheck:
4165 /* double check policy once rq lock held */
4166 if (policy < 0)
4167 policy = oldpolicy = p->policy;
4168 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4169 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4170 policy != SCHED_IDLE)
b0a9499c 4171 return -EINVAL;
1da177e4
LT
4172 /*
4173 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4174 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4175 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4176 */
4177 if (param->sched_priority < 0 ||
95cdf3b7 4178 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4179 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4180 return -EINVAL;
e05606d3 4181 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4182 return -EINVAL;
4183
37e4ab3f
OC
4184 /*
4185 * Allow unprivileged RT tasks to decrease priority:
4186 */
4187 if (!capable(CAP_SYS_NICE)) {
e05606d3 4188 if (rt_policy(policy)) {
8dc3e909 4189 unsigned long rlim_rtprio;
8dc3e909
ON
4190
4191 if (!lock_task_sighand(p, &flags))
4192 return -ESRCH;
4193 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4194 unlock_task_sighand(p, &flags);
4195
4196 /* can't set/change the rt policy */
4197 if (policy != p->policy && !rlim_rtprio)
4198 return -EPERM;
4199
4200 /* can't increase priority */
4201 if (param->sched_priority > p->rt_priority &&
4202 param->sched_priority > rlim_rtprio)
4203 return -EPERM;
4204 }
dd41f596
IM
4205 /*
4206 * Like positive nice levels, dont allow tasks to
4207 * move out of SCHED_IDLE either:
4208 */
4209 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4210 return -EPERM;
5fe1d75f 4211
37e4ab3f
OC
4212 /* can't change other user's priorities */
4213 if ((current->euid != p->euid) &&
4214 (current->euid != p->uid))
4215 return -EPERM;
4216 }
1da177e4
LT
4217
4218 retval = security_task_setscheduler(p, policy, param);
4219 if (retval)
4220 return retval;
b29739f9
IM
4221 /*
4222 * make sure no PI-waiters arrive (or leave) while we are
4223 * changing the priority of the task:
4224 */
4225 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4226 /*
4227 * To be able to change p->policy safely, the apropriate
4228 * runqueue lock must be held.
4229 */
b29739f9 4230 rq = __task_rq_lock(p);
1da177e4
LT
4231 /* recheck policy now with rq lock held */
4232 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4233 policy = oldpolicy = -1;
b29739f9
IM
4234 __task_rq_unlock(rq);
4235 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4236 goto recheck;
4237 }
2daa3577 4238 update_rq_clock(rq);
dd41f596 4239 on_rq = p->se.on_rq;
83b699ed
SV
4240 running = task_running(rq, p);
4241 if (on_rq) {
2e1cb74a 4242 deactivate_task(rq, p, 0);
83b699ed
SV
4243 if (running)
4244 p->sched_class->put_prev_task(rq, p);
4245 }
f6b53205 4246
1da177e4 4247 oldprio = p->prio;
dd41f596 4248 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4249
dd41f596 4250 if (on_rq) {
83b699ed
SV
4251 if (running)
4252 p->sched_class->set_curr_task(rq);
dd41f596 4253 activate_task(rq, p, 0);
1da177e4
LT
4254 /*
4255 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4256 * our priority decreased, or if we are not currently running on
4257 * this runqueue and our priority is higher than the current's
1da177e4 4258 */
83b699ed 4259 if (running) {
d5f9f942
AM
4260 if (p->prio > oldprio)
4261 resched_task(rq->curr);
dd41f596
IM
4262 } else {
4263 check_preempt_curr(rq, p);
4264 }
1da177e4 4265 }
b29739f9
IM
4266 __task_rq_unlock(rq);
4267 spin_unlock_irqrestore(&p->pi_lock, flags);
4268
95e02ca9
TG
4269 rt_mutex_adjust_pi(p);
4270
1da177e4
LT
4271 return 0;
4272}
4273EXPORT_SYMBOL_GPL(sched_setscheduler);
4274
95cdf3b7
IM
4275static int
4276do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4277{
1da177e4
LT
4278 struct sched_param lparam;
4279 struct task_struct *p;
36c8b586 4280 int retval;
1da177e4
LT
4281
4282 if (!param || pid < 0)
4283 return -EINVAL;
4284 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4285 return -EFAULT;
5fe1d75f
ON
4286
4287 rcu_read_lock();
4288 retval = -ESRCH;
1da177e4 4289 p = find_process_by_pid(pid);
5fe1d75f
ON
4290 if (p != NULL)
4291 retval = sched_setscheduler(p, policy, &lparam);
4292 rcu_read_unlock();
36c8b586 4293
1da177e4
LT
4294 return retval;
4295}
4296
4297/**
4298 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4299 * @pid: the pid in question.
4300 * @policy: new policy.
4301 * @param: structure containing the new RT priority.
4302 */
4303asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4304 struct sched_param __user *param)
4305{
c21761f1
JB
4306 /* negative values for policy are not valid */
4307 if (policy < 0)
4308 return -EINVAL;
4309
1da177e4
LT
4310 return do_sched_setscheduler(pid, policy, param);
4311}
4312
4313/**
4314 * sys_sched_setparam - set/change the RT priority of a thread
4315 * @pid: the pid in question.
4316 * @param: structure containing the new RT priority.
4317 */
4318asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4319{
4320 return do_sched_setscheduler(pid, -1, param);
4321}
4322
4323/**
4324 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4325 * @pid: the pid in question.
4326 */
4327asmlinkage long sys_sched_getscheduler(pid_t pid)
4328{
36c8b586 4329 struct task_struct *p;
1da177e4 4330 int retval = -EINVAL;
1da177e4
LT
4331
4332 if (pid < 0)
4333 goto out_nounlock;
4334
4335 retval = -ESRCH;
4336 read_lock(&tasklist_lock);
4337 p = find_process_by_pid(pid);
4338 if (p) {
4339 retval = security_task_getscheduler(p);
4340 if (!retval)
4341 retval = p->policy;
4342 }
4343 read_unlock(&tasklist_lock);
4344
4345out_nounlock:
4346 return retval;
4347}
4348
4349/**
4350 * sys_sched_getscheduler - get the RT priority of a thread
4351 * @pid: the pid in question.
4352 * @param: structure containing the RT priority.
4353 */
4354asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4355{
4356 struct sched_param lp;
36c8b586 4357 struct task_struct *p;
1da177e4 4358 int retval = -EINVAL;
1da177e4
LT
4359
4360 if (!param || pid < 0)
4361 goto out_nounlock;
4362
4363 read_lock(&tasklist_lock);
4364 p = find_process_by_pid(pid);
4365 retval = -ESRCH;
4366 if (!p)
4367 goto out_unlock;
4368
4369 retval = security_task_getscheduler(p);
4370 if (retval)
4371 goto out_unlock;
4372
4373 lp.sched_priority = p->rt_priority;
4374 read_unlock(&tasklist_lock);
4375
4376 /*
4377 * This one might sleep, we cannot do it with a spinlock held ...
4378 */
4379 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4380
4381out_nounlock:
4382 return retval;
4383
4384out_unlock:
4385 read_unlock(&tasklist_lock);
4386 return retval;
4387}
4388
4389long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4390{
1da177e4 4391 cpumask_t cpus_allowed;
36c8b586
IM
4392 struct task_struct *p;
4393 int retval;
1da177e4 4394
5be9361c 4395 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4396 read_lock(&tasklist_lock);
4397
4398 p = find_process_by_pid(pid);
4399 if (!p) {
4400 read_unlock(&tasklist_lock);
5be9361c 4401 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4402 return -ESRCH;
4403 }
4404
4405 /*
4406 * It is not safe to call set_cpus_allowed with the
4407 * tasklist_lock held. We will bump the task_struct's
4408 * usage count and then drop tasklist_lock.
4409 */
4410 get_task_struct(p);
4411 read_unlock(&tasklist_lock);
4412
4413 retval = -EPERM;
4414 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4415 !capable(CAP_SYS_NICE))
4416 goto out_unlock;
4417
e7834f8f
DQ
4418 retval = security_task_setscheduler(p, 0, NULL);
4419 if (retval)
4420 goto out_unlock;
4421
1da177e4
LT
4422 cpus_allowed = cpuset_cpus_allowed(p);
4423 cpus_and(new_mask, new_mask, cpus_allowed);
4424 retval = set_cpus_allowed(p, new_mask);
4425
4426out_unlock:
4427 put_task_struct(p);
5be9361c 4428 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4429 return retval;
4430}
4431
4432static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4433 cpumask_t *new_mask)
4434{
4435 if (len < sizeof(cpumask_t)) {
4436 memset(new_mask, 0, sizeof(cpumask_t));
4437 } else if (len > sizeof(cpumask_t)) {
4438 len = sizeof(cpumask_t);
4439 }
4440 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4441}
4442
4443/**
4444 * sys_sched_setaffinity - set the cpu affinity of a process
4445 * @pid: pid of the process
4446 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4447 * @user_mask_ptr: user-space pointer to the new cpu mask
4448 */
4449asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4450 unsigned long __user *user_mask_ptr)
4451{
4452 cpumask_t new_mask;
4453 int retval;
4454
4455 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4456 if (retval)
4457 return retval;
4458
4459 return sched_setaffinity(pid, new_mask);
4460}
4461
4462/*
4463 * Represents all cpu's present in the system
4464 * In systems capable of hotplug, this map could dynamically grow
4465 * as new cpu's are detected in the system via any platform specific
4466 * method, such as ACPI for e.g.
4467 */
4468
4cef0c61 4469cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4470EXPORT_SYMBOL(cpu_present_map);
4471
4472#ifndef CONFIG_SMP
4cef0c61 4473cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4474EXPORT_SYMBOL(cpu_online_map);
4475
4cef0c61 4476cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4477EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4478#endif
4479
4480long sched_getaffinity(pid_t pid, cpumask_t *mask)
4481{
36c8b586 4482 struct task_struct *p;
1da177e4 4483 int retval;
1da177e4 4484
5be9361c 4485 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4486 read_lock(&tasklist_lock);
4487
4488 retval = -ESRCH;
4489 p = find_process_by_pid(pid);
4490 if (!p)
4491 goto out_unlock;
4492
e7834f8f
DQ
4493 retval = security_task_getscheduler(p);
4494 if (retval)
4495 goto out_unlock;
4496
2f7016d9 4497 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4498
4499out_unlock:
4500 read_unlock(&tasklist_lock);
5be9361c 4501 mutex_unlock(&sched_hotcpu_mutex);
1da177e4 4502
9531b62f 4503 return retval;
1da177e4
LT
4504}
4505
4506/**
4507 * sys_sched_getaffinity - get the cpu affinity of a process
4508 * @pid: pid of the process
4509 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4510 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4511 */
4512asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4513 unsigned long __user *user_mask_ptr)
4514{
4515 int ret;
4516 cpumask_t mask;
4517
4518 if (len < sizeof(cpumask_t))
4519 return -EINVAL;
4520
4521 ret = sched_getaffinity(pid, &mask);
4522 if (ret < 0)
4523 return ret;
4524
4525 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4526 return -EFAULT;
4527
4528 return sizeof(cpumask_t);
4529}
4530
4531/**
4532 * sys_sched_yield - yield the current processor to other threads.
4533 *
dd41f596
IM
4534 * This function yields the current CPU to other tasks. If there are no
4535 * other threads running on this CPU then this function will return.
1da177e4
LT
4536 */
4537asmlinkage long sys_sched_yield(void)
4538{
70b97a7f 4539 struct rq *rq = this_rq_lock();
1da177e4
LT
4540
4541 schedstat_inc(rq, yld_cnt);
4530d7ab 4542 current->sched_class->yield_task(rq);
1da177e4
LT
4543
4544 /*
4545 * Since we are going to call schedule() anyway, there's
4546 * no need to preempt or enable interrupts:
4547 */
4548 __release(rq->lock);
8a25d5de 4549 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4550 _raw_spin_unlock(&rq->lock);
4551 preempt_enable_no_resched();
4552
4553 schedule();
4554
4555 return 0;
4556}
4557
e7b38404 4558static void __cond_resched(void)
1da177e4 4559{
8e0a43d8
IM
4560#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4561 __might_sleep(__FILE__, __LINE__);
4562#endif
5bbcfd90
IM
4563 /*
4564 * The BKS might be reacquired before we have dropped
4565 * PREEMPT_ACTIVE, which could trigger a second
4566 * cond_resched() call.
4567 */
1da177e4
LT
4568 do {
4569 add_preempt_count(PREEMPT_ACTIVE);
4570 schedule();
4571 sub_preempt_count(PREEMPT_ACTIVE);
4572 } while (need_resched());
4573}
4574
4575int __sched cond_resched(void)
4576{
9414232f
IM
4577 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4578 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4579 __cond_resched();
4580 return 1;
4581 }
4582 return 0;
4583}
1da177e4
LT
4584EXPORT_SYMBOL(cond_resched);
4585
4586/*
4587 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4588 * call schedule, and on return reacquire the lock.
4589 *
4590 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4591 * operations here to prevent schedule() from being called twice (once via
4592 * spin_unlock(), once by hand).
4593 */
95cdf3b7 4594int cond_resched_lock(spinlock_t *lock)
1da177e4 4595{
6df3cecb
JK
4596 int ret = 0;
4597
1da177e4
LT
4598 if (need_lockbreak(lock)) {
4599 spin_unlock(lock);
4600 cpu_relax();
6df3cecb 4601 ret = 1;
1da177e4
LT
4602 spin_lock(lock);
4603 }
9414232f 4604 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4605 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4606 _raw_spin_unlock(lock);
4607 preempt_enable_no_resched();
4608 __cond_resched();
6df3cecb 4609 ret = 1;
1da177e4 4610 spin_lock(lock);
1da177e4 4611 }
6df3cecb 4612 return ret;
1da177e4 4613}
1da177e4
LT
4614EXPORT_SYMBOL(cond_resched_lock);
4615
4616int __sched cond_resched_softirq(void)
4617{
4618 BUG_ON(!in_softirq());
4619
9414232f 4620 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4621 local_bh_enable();
1da177e4
LT
4622 __cond_resched();
4623 local_bh_disable();
4624 return 1;
4625 }
4626 return 0;
4627}
1da177e4
LT
4628EXPORT_SYMBOL(cond_resched_softirq);
4629
1da177e4
LT
4630/**
4631 * yield - yield the current processor to other threads.
4632 *
72fd4a35 4633 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4634 * thread runnable and calls sys_sched_yield().
4635 */
4636void __sched yield(void)
4637{
4638 set_current_state(TASK_RUNNING);
4639 sys_sched_yield();
4640}
1da177e4
LT
4641EXPORT_SYMBOL(yield);
4642
4643/*
4644 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4645 * that process accounting knows that this is a task in IO wait state.
4646 *
4647 * But don't do that if it is a deliberate, throttling IO wait (this task
4648 * has set its backing_dev_info: the queue against which it should throttle)
4649 */
4650void __sched io_schedule(void)
4651{
70b97a7f 4652 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4653
0ff92245 4654 delayacct_blkio_start();
1da177e4
LT
4655 atomic_inc(&rq->nr_iowait);
4656 schedule();
4657 atomic_dec(&rq->nr_iowait);
0ff92245 4658 delayacct_blkio_end();
1da177e4 4659}
1da177e4
LT
4660EXPORT_SYMBOL(io_schedule);
4661
4662long __sched io_schedule_timeout(long timeout)
4663{
70b97a7f 4664 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4665 long ret;
4666
0ff92245 4667 delayacct_blkio_start();
1da177e4
LT
4668 atomic_inc(&rq->nr_iowait);
4669 ret = schedule_timeout(timeout);
4670 atomic_dec(&rq->nr_iowait);
0ff92245 4671 delayacct_blkio_end();
1da177e4
LT
4672 return ret;
4673}
4674
4675/**
4676 * sys_sched_get_priority_max - return maximum RT priority.
4677 * @policy: scheduling class.
4678 *
4679 * this syscall returns the maximum rt_priority that can be used
4680 * by a given scheduling class.
4681 */
4682asmlinkage long sys_sched_get_priority_max(int policy)
4683{
4684 int ret = -EINVAL;
4685
4686 switch (policy) {
4687 case SCHED_FIFO:
4688 case SCHED_RR:
4689 ret = MAX_USER_RT_PRIO-1;
4690 break;
4691 case SCHED_NORMAL:
b0a9499c 4692 case SCHED_BATCH:
dd41f596 4693 case SCHED_IDLE:
1da177e4
LT
4694 ret = 0;
4695 break;
4696 }
4697 return ret;
4698}
4699
4700/**
4701 * sys_sched_get_priority_min - return minimum RT priority.
4702 * @policy: scheduling class.
4703 *
4704 * this syscall returns the minimum rt_priority that can be used
4705 * by a given scheduling class.
4706 */
4707asmlinkage long sys_sched_get_priority_min(int policy)
4708{
4709 int ret = -EINVAL;
4710
4711 switch (policy) {
4712 case SCHED_FIFO:
4713 case SCHED_RR:
4714 ret = 1;
4715 break;
4716 case SCHED_NORMAL:
b0a9499c 4717 case SCHED_BATCH:
dd41f596 4718 case SCHED_IDLE:
1da177e4
LT
4719 ret = 0;
4720 }
4721 return ret;
4722}
4723
4724/**
4725 * sys_sched_rr_get_interval - return the default timeslice of a process.
4726 * @pid: pid of the process.
4727 * @interval: userspace pointer to the timeslice value.
4728 *
4729 * this syscall writes the default timeslice value of a given process
4730 * into the user-space timespec buffer. A value of '0' means infinity.
4731 */
4732asmlinkage
4733long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4734{
36c8b586 4735 struct task_struct *p;
1da177e4
LT
4736 int retval = -EINVAL;
4737 struct timespec t;
1da177e4
LT
4738
4739 if (pid < 0)
4740 goto out_nounlock;
4741
4742 retval = -ESRCH;
4743 read_lock(&tasklist_lock);
4744 p = find_process_by_pid(pid);
4745 if (!p)
4746 goto out_unlock;
4747
4748 retval = security_task_getscheduler(p);
4749 if (retval)
4750 goto out_unlock;
4751
b78709cf 4752 jiffies_to_timespec(p->policy == SCHED_FIFO ?
dd41f596 4753 0 : static_prio_timeslice(p->static_prio), &t);
1da177e4
LT
4754 read_unlock(&tasklist_lock);
4755 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4756out_nounlock:
4757 return retval;
4758out_unlock:
4759 read_unlock(&tasklist_lock);
4760 return retval;
4761}
4762
2ed6e34f 4763static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4764
4765static void show_task(struct task_struct *p)
1da177e4 4766{
1da177e4 4767 unsigned long free = 0;
36c8b586 4768 unsigned state;
1da177e4 4769
1da177e4 4770 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4771 printk("%-13.13s %c", p->comm,
4772 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4773#if BITS_PER_LONG == 32
1da177e4 4774 if (state == TASK_RUNNING)
4bd77321 4775 printk(" running ");
1da177e4 4776 else
4bd77321 4777 printk(" %08lx ", thread_saved_pc(p));
1da177e4
LT
4778#else
4779 if (state == TASK_RUNNING)
4bd77321 4780 printk(" running task ");
1da177e4
LT
4781 else
4782 printk(" %016lx ", thread_saved_pc(p));
4783#endif
4784#ifdef CONFIG_DEBUG_STACK_USAGE
4785 {
10ebffde 4786 unsigned long *n = end_of_stack(p);
1da177e4
LT
4787 while (!*n)
4788 n++;
10ebffde 4789 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4790 }
4791#endif
4bd77321 4792 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
1da177e4
LT
4793
4794 if (state != TASK_RUNNING)
4795 show_stack(p, NULL);
4796}
4797
e59e2ae2 4798void show_state_filter(unsigned long state_filter)
1da177e4 4799{
36c8b586 4800 struct task_struct *g, *p;
1da177e4 4801
4bd77321
IM
4802#if BITS_PER_LONG == 32
4803 printk(KERN_INFO
4804 " task PC stack pid father\n");
1da177e4 4805#else
4bd77321
IM
4806 printk(KERN_INFO
4807 " task PC stack pid father\n");
1da177e4
LT
4808#endif
4809 read_lock(&tasklist_lock);
4810 do_each_thread(g, p) {
4811 /*
4812 * reset the NMI-timeout, listing all files on a slow
4813 * console might take alot of time:
4814 */
4815 touch_nmi_watchdog();
39bc89fd 4816 if (!state_filter || (p->state & state_filter))
e59e2ae2 4817 show_task(p);
1da177e4
LT
4818 } while_each_thread(g, p);
4819
04c9167f
JF
4820 touch_all_softlockup_watchdogs();
4821
dd41f596
IM
4822#ifdef CONFIG_SCHED_DEBUG
4823 sysrq_sched_debug_show();
4824#endif
1da177e4 4825 read_unlock(&tasklist_lock);
e59e2ae2
IM
4826 /*
4827 * Only show locks if all tasks are dumped:
4828 */
4829 if (state_filter == -1)
4830 debug_show_all_locks();
1da177e4
LT
4831}
4832
1df21055
IM
4833void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4834{
dd41f596 4835 idle->sched_class = &idle_sched_class;
1df21055
IM
4836}
4837
f340c0d1
IM
4838/**
4839 * init_idle - set up an idle thread for a given CPU
4840 * @idle: task in question
4841 * @cpu: cpu the idle task belongs to
4842 *
4843 * NOTE: this function does not set the idle thread's NEED_RESCHED
4844 * flag, to make booting more robust.
4845 */
5c1e1767 4846void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4847{
70b97a7f 4848 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4849 unsigned long flags;
4850
dd41f596
IM
4851 __sched_fork(idle);
4852 idle->se.exec_start = sched_clock();
4853
b29739f9 4854 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4855 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4856 __set_task_cpu(idle, cpu);
1da177e4
LT
4857
4858 spin_lock_irqsave(&rq->lock, flags);
4859 rq->curr = rq->idle = idle;
4866cde0
NP
4860#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4861 idle->oncpu = 1;
4862#endif
1da177e4
LT
4863 spin_unlock_irqrestore(&rq->lock, flags);
4864
4865 /* Set the preempt count _outside_ the spinlocks! */
4866#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4867 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4868#else
a1261f54 4869 task_thread_info(idle)->preempt_count = 0;
1da177e4 4870#endif
dd41f596
IM
4871 /*
4872 * The idle tasks have their own, simple scheduling class:
4873 */
4874 idle->sched_class = &idle_sched_class;
1da177e4
LT
4875}
4876
4877/*
4878 * In a system that switches off the HZ timer nohz_cpu_mask
4879 * indicates which cpus entered this state. This is used
4880 * in the rcu update to wait only for active cpus. For system
4881 * which do not switch off the HZ timer nohz_cpu_mask should
4882 * always be CPU_MASK_NONE.
4883 */
4884cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4885
4886#ifdef CONFIG_SMP
4887/*
4888 * This is how migration works:
4889 *
70b97a7f 4890 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4891 * runqueue and wake up that CPU's migration thread.
4892 * 2) we down() the locked semaphore => thread blocks.
4893 * 3) migration thread wakes up (implicitly it forces the migrated
4894 * thread off the CPU)
4895 * 4) it gets the migration request and checks whether the migrated
4896 * task is still in the wrong runqueue.
4897 * 5) if it's in the wrong runqueue then the migration thread removes
4898 * it and puts it into the right queue.
4899 * 6) migration thread up()s the semaphore.
4900 * 7) we wake up and the migration is done.
4901 */
4902
4903/*
4904 * Change a given task's CPU affinity. Migrate the thread to a
4905 * proper CPU and schedule it away if the CPU it's executing on
4906 * is removed from the allowed bitmask.
4907 *
4908 * NOTE: the caller must have a valid reference to the task, the
4909 * task must not exit() & deallocate itself prematurely. The
4910 * call is not atomic; no spinlocks may be held.
4911 */
36c8b586 4912int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4913{
70b97a7f 4914 struct migration_req req;
1da177e4 4915 unsigned long flags;
70b97a7f 4916 struct rq *rq;
48f24c4d 4917 int ret = 0;
1da177e4
LT
4918
4919 rq = task_rq_lock(p, &flags);
4920 if (!cpus_intersects(new_mask, cpu_online_map)) {
4921 ret = -EINVAL;
4922 goto out;
4923 }
4924
4925 p->cpus_allowed = new_mask;
4926 /* Can the task run on the task's current CPU? If so, we're done */
4927 if (cpu_isset(task_cpu(p), new_mask))
4928 goto out;
4929
4930 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4931 /* Need help from migration thread: drop lock and wait. */
4932 task_rq_unlock(rq, &flags);
4933 wake_up_process(rq->migration_thread);
4934 wait_for_completion(&req.done);
4935 tlb_migrate_finish(p->mm);
4936 return 0;
4937 }
4938out:
4939 task_rq_unlock(rq, &flags);
48f24c4d 4940
1da177e4
LT
4941 return ret;
4942}
1da177e4
LT
4943EXPORT_SYMBOL_GPL(set_cpus_allowed);
4944
4945/*
4946 * Move (not current) task off this cpu, onto dest cpu. We're doing
4947 * this because either it can't run here any more (set_cpus_allowed()
4948 * away from this CPU, or CPU going down), or because we're
4949 * attempting to rebalance this task on exec (sched_exec).
4950 *
4951 * So we race with normal scheduler movements, but that's OK, as long
4952 * as the task is no longer on this CPU.
efc30814
KK
4953 *
4954 * Returns non-zero if task was successfully migrated.
1da177e4 4955 */
efc30814 4956static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4957{
70b97a7f 4958 struct rq *rq_dest, *rq_src;
dd41f596 4959 int ret = 0, on_rq;
1da177e4
LT
4960
4961 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4962 return ret;
1da177e4
LT
4963
4964 rq_src = cpu_rq(src_cpu);
4965 rq_dest = cpu_rq(dest_cpu);
4966
4967 double_rq_lock(rq_src, rq_dest);
4968 /* Already moved. */
4969 if (task_cpu(p) != src_cpu)
4970 goto out;
4971 /* Affinity changed (again). */
4972 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4973 goto out;
4974
dd41f596 4975 on_rq = p->se.on_rq;
6e82a3be 4976 if (on_rq)
2e1cb74a 4977 deactivate_task(rq_src, p, 0);
6e82a3be 4978
1da177e4 4979 set_task_cpu(p, dest_cpu);
dd41f596
IM
4980 if (on_rq) {
4981 activate_task(rq_dest, p, 0);
4982 check_preempt_curr(rq_dest, p);
1da177e4 4983 }
efc30814 4984 ret = 1;
1da177e4
LT
4985out:
4986 double_rq_unlock(rq_src, rq_dest);
efc30814 4987 return ret;
1da177e4
LT
4988}
4989
4990/*
4991 * migration_thread - this is a highprio system thread that performs
4992 * thread migration by bumping thread off CPU then 'pushing' onto
4993 * another runqueue.
4994 */
95cdf3b7 4995static int migration_thread(void *data)
1da177e4 4996{
1da177e4 4997 int cpu = (long)data;
70b97a7f 4998 struct rq *rq;
1da177e4
LT
4999
5000 rq = cpu_rq(cpu);
5001 BUG_ON(rq->migration_thread != current);
5002
5003 set_current_state(TASK_INTERRUPTIBLE);
5004 while (!kthread_should_stop()) {
70b97a7f 5005 struct migration_req *req;
1da177e4 5006 struct list_head *head;
1da177e4 5007
1da177e4
LT
5008 spin_lock_irq(&rq->lock);
5009
5010 if (cpu_is_offline(cpu)) {
5011 spin_unlock_irq(&rq->lock);
5012 goto wait_to_die;
5013 }
5014
5015 if (rq->active_balance) {
5016 active_load_balance(rq, cpu);
5017 rq->active_balance = 0;
5018 }
5019
5020 head = &rq->migration_queue;
5021
5022 if (list_empty(head)) {
5023 spin_unlock_irq(&rq->lock);
5024 schedule();
5025 set_current_state(TASK_INTERRUPTIBLE);
5026 continue;
5027 }
70b97a7f 5028 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5029 list_del_init(head->next);
5030
674311d5
NP
5031 spin_unlock(&rq->lock);
5032 __migrate_task(req->task, cpu, req->dest_cpu);
5033 local_irq_enable();
1da177e4
LT
5034
5035 complete(&req->done);
5036 }
5037 __set_current_state(TASK_RUNNING);
5038 return 0;
5039
5040wait_to_die:
5041 /* Wait for kthread_stop */
5042 set_current_state(TASK_INTERRUPTIBLE);
5043 while (!kthread_should_stop()) {
5044 schedule();
5045 set_current_state(TASK_INTERRUPTIBLE);
5046 }
5047 __set_current_state(TASK_RUNNING);
5048 return 0;
5049}
5050
5051#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
5052/*
5053 * Figure out where task on dead CPU should go, use force if neccessary.
5054 * NOTE: interrupts should be disabled by the caller
5055 */
48f24c4d 5056static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5057{
efc30814 5058 unsigned long flags;
1da177e4 5059 cpumask_t mask;
70b97a7f
IM
5060 struct rq *rq;
5061 int dest_cpu;
1da177e4 5062
efc30814 5063restart:
1da177e4
LT
5064 /* On same node? */
5065 mask = node_to_cpumask(cpu_to_node(dead_cpu));
48f24c4d 5066 cpus_and(mask, mask, p->cpus_allowed);
1da177e4
LT
5067 dest_cpu = any_online_cpu(mask);
5068
5069 /* On any allowed CPU? */
5070 if (dest_cpu == NR_CPUS)
48f24c4d 5071 dest_cpu = any_online_cpu(p->cpus_allowed);
1da177e4
LT
5072
5073 /* No more Mr. Nice Guy. */
5074 if (dest_cpu == NR_CPUS) {
48f24c4d
IM
5075 rq = task_rq_lock(p, &flags);
5076 cpus_setall(p->cpus_allowed);
5077 dest_cpu = any_online_cpu(p->cpus_allowed);
efc30814 5078 task_rq_unlock(rq, &flags);
1da177e4
LT
5079
5080 /*
5081 * Don't tell them about moving exiting tasks or
5082 * kernel threads (both mm NULL), since they never
5083 * leave kernel.
5084 */
48f24c4d 5085 if (p->mm && printk_ratelimit())
1da177e4
LT
5086 printk(KERN_INFO "process %d (%s) no "
5087 "longer affine to cpu%d\n",
48f24c4d 5088 p->pid, p->comm, dead_cpu);
1da177e4 5089 }
48f24c4d 5090 if (!__migrate_task(p, dead_cpu, dest_cpu))
efc30814 5091 goto restart;
1da177e4
LT
5092}
5093
5094/*
5095 * While a dead CPU has no uninterruptible tasks queued at this point,
5096 * it might still have a nonzero ->nr_uninterruptible counter, because
5097 * for performance reasons the counter is not stricly tracking tasks to
5098 * their home CPUs. So we just add the counter to another CPU's counter,
5099 * to keep the global sum constant after CPU-down:
5100 */
70b97a7f 5101static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5102{
70b97a7f 5103 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5104 unsigned long flags;
5105
5106 local_irq_save(flags);
5107 double_rq_lock(rq_src, rq_dest);
5108 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5109 rq_src->nr_uninterruptible = 0;
5110 double_rq_unlock(rq_src, rq_dest);
5111 local_irq_restore(flags);
5112}
5113
5114/* Run through task list and migrate tasks from the dead cpu. */
5115static void migrate_live_tasks(int src_cpu)
5116{
48f24c4d 5117 struct task_struct *p, *t;
1da177e4
LT
5118
5119 write_lock_irq(&tasklist_lock);
5120
48f24c4d
IM
5121 do_each_thread(t, p) {
5122 if (p == current)
1da177e4
LT
5123 continue;
5124
48f24c4d
IM
5125 if (task_cpu(p) == src_cpu)
5126 move_task_off_dead_cpu(src_cpu, p);
5127 } while_each_thread(t, p);
1da177e4
LT
5128
5129 write_unlock_irq(&tasklist_lock);
5130}
5131
dd41f596
IM
5132/*
5133 * Schedules idle task to be the next runnable task on current CPU.
1da177e4 5134 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5135 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5136 */
5137void sched_idle_next(void)
5138{
48f24c4d 5139 int this_cpu = smp_processor_id();
70b97a7f 5140 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5141 struct task_struct *p = rq->idle;
5142 unsigned long flags;
5143
5144 /* cpu has to be offline */
48f24c4d 5145 BUG_ON(cpu_online(this_cpu));
1da177e4 5146
48f24c4d
IM
5147 /*
5148 * Strictly not necessary since rest of the CPUs are stopped by now
5149 * and interrupts disabled on the current cpu.
1da177e4
LT
5150 */
5151 spin_lock_irqsave(&rq->lock, flags);
5152
dd41f596 5153 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5154
5155 /* Add idle task to the _front_ of its priority queue: */
dd41f596 5156 activate_idle_task(p, rq);
1da177e4
LT
5157
5158 spin_unlock_irqrestore(&rq->lock, flags);
5159}
5160
48f24c4d
IM
5161/*
5162 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5163 * offline.
5164 */
5165void idle_task_exit(void)
5166{
5167 struct mm_struct *mm = current->active_mm;
5168
5169 BUG_ON(cpu_online(smp_processor_id()));
5170
5171 if (mm != &init_mm)
5172 switch_mm(mm, &init_mm, current);
5173 mmdrop(mm);
5174}
5175
054b9108 5176/* called under rq->lock with disabled interrupts */
36c8b586 5177static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5178{
70b97a7f 5179 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5180
5181 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5182 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5183
5184 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5185 BUG_ON(p->state == TASK_DEAD);
1da177e4 5186
48f24c4d 5187 get_task_struct(p);
1da177e4
LT
5188
5189 /*
5190 * Drop lock around migration; if someone else moves it,
5191 * that's OK. No task can be added to this CPU, so iteration is
5192 * fine.
054b9108 5193 * NOTE: interrupts should be left disabled --dev@
1da177e4 5194 */
054b9108 5195 spin_unlock(&rq->lock);
48f24c4d 5196 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5197 spin_lock(&rq->lock);
1da177e4 5198
48f24c4d 5199 put_task_struct(p);
1da177e4
LT
5200}
5201
5202/* release_task() removes task from tasklist, so we won't find dead tasks. */
5203static void migrate_dead_tasks(unsigned int dead_cpu)
5204{
70b97a7f 5205 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5206 struct task_struct *next;
48f24c4d 5207
dd41f596
IM
5208 for ( ; ; ) {
5209 if (!rq->nr_running)
5210 break;
a8e504d2 5211 update_rq_clock(rq);
ff95f3df 5212 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5213 if (!next)
5214 break;
5215 migrate_dead(dead_cpu, next);
e692ab53 5216
1da177e4
LT
5217 }
5218}
5219#endif /* CONFIG_HOTPLUG_CPU */
5220
e692ab53
NP
5221#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5222
5223static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5224 {
5225 .procname = "sched_domain",
c57baf1e 5226 .mode = 0555,
e0361851 5227 },
e692ab53
NP
5228 {0,},
5229};
5230
5231static struct ctl_table sd_ctl_root[] = {
e0361851 5232 {
c57baf1e 5233 .ctl_name = CTL_KERN,
e0361851 5234 .procname = "kernel",
c57baf1e 5235 .mode = 0555,
e0361851
AD
5236 .child = sd_ctl_dir,
5237 },
e692ab53
NP
5238 {0,},
5239};
5240
5241static struct ctl_table *sd_alloc_ctl_entry(int n)
5242{
5243 struct ctl_table *entry =
5244 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5245
5246 BUG_ON(!entry);
5247 memset(entry, 0, n * sizeof(struct ctl_table));
5248
5249 return entry;
5250}
5251
5252static void
e0361851 5253set_table_entry(struct ctl_table *entry,
e692ab53
NP
5254 const char *procname, void *data, int maxlen,
5255 mode_t mode, proc_handler *proc_handler)
5256{
e692ab53
NP
5257 entry->procname = procname;
5258 entry->data = data;
5259 entry->maxlen = maxlen;
5260 entry->mode = mode;
5261 entry->proc_handler = proc_handler;
5262}
5263
5264static struct ctl_table *
5265sd_alloc_ctl_domain_table(struct sched_domain *sd)
5266{
5267 struct ctl_table *table = sd_alloc_ctl_entry(14);
5268
e0361851 5269 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5270 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5271 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5272 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5273 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5274 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5275 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5276 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5277 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5278 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5279 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5280 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5281 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5282 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5283 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5284 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5285 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5286 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5287 set_table_entry(&table[10], "cache_nice_tries",
e692ab53
NP
5288 &sd->cache_nice_tries,
5289 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5290 set_table_entry(&table[12], "flags", &sd->flags,
e692ab53
NP
5291 sizeof(int), 0644, proc_dointvec_minmax);
5292
5293 return table;
5294}
5295
5296static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5297{
5298 struct ctl_table *entry, *table;
5299 struct sched_domain *sd;
5300 int domain_num = 0, i;
5301 char buf[32];
5302
5303 for_each_domain(cpu, sd)
5304 domain_num++;
5305 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5306
5307 i = 0;
5308 for_each_domain(cpu, sd) {
5309 snprintf(buf, 32, "domain%d", i);
e692ab53 5310 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5311 entry->mode = 0555;
e692ab53
NP
5312 entry->child = sd_alloc_ctl_domain_table(sd);
5313 entry++;
5314 i++;
5315 }
5316 return table;
5317}
5318
5319static struct ctl_table_header *sd_sysctl_header;
5320static void init_sched_domain_sysctl(void)
5321{
5322 int i, cpu_num = num_online_cpus();
5323 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5324 char buf[32];
5325
5326 sd_ctl_dir[0].child = entry;
5327
5328 for (i = 0; i < cpu_num; i++, entry++) {
5329 snprintf(buf, 32, "cpu%d", i);
e692ab53 5330 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5331 entry->mode = 0555;
e692ab53
NP
5332 entry->child = sd_alloc_ctl_cpu_table(i);
5333 }
5334 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5335}
5336#else
5337static void init_sched_domain_sysctl(void)
5338{
5339}
5340#endif
5341
1da177e4
LT
5342/*
5343 * migration_call - callback that gets triggered when a CPU is added.
5344 * Here we can start up the necessary migration thread for the new CPU.
5345 */
48f24c4d
IM
5346static int __cpuinit
5347migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5348{
1da177e4 5349 struct task_struct *p;
48f24c4d 5350 int cpu = (long)hcpu;
1da177e4 5351 unsigned long flags;
70b97a7f 5352 struct rq *rq;
1da177e4
LT
5353
5354 switch (action) {
5be9361c
GS
5355 case CPU_LOCK_ACQUIRE:
5356 mutex_lock(&sched_hotcpu_mutex);
5357 break;
5358
1da177e4 5359 case CPU_UP_PREPARE:
8bb78442 5360 case CPU_UP_PREPARE_FROZEN:
dd41f596 5361 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5362 if (IS_ERR(p))
5363 return NOTIFY_BAD;
1da177e4
LT
5364 kthread_bind(p, cpu);
5365 /* Must be high prio: stop_machine expects to yield to it. */
5366 rq = task_rq_lock(p, &flags);
dd41f596 5367 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5368 task_rq_unlock(rq, &flags);
5369 cpu_rq(cpu)->migration_thread = p;
5370 break;
48f24c4d 5371
1da177e4 5372 case CPU_ONLINE:
8bb78442 5373 case CPU_ONLINE_FROZEN:
1da177e4
LT
5374 /* Strictly unneccessary, as first user will wake it. */
5375 wake_up_process(cpu_rq(cpu)->migration_thread);
5376 break;
48f24c4d 5377
1da177e4
LT
5378#ifdef CONFIG_HOTPLUG_CPU
5379 case CPU_UP_CANCELED:
8bb78442 5380 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5381 if (!cpu_rq(cpu)->migration_thread)
5382 break;
1da177e4 5383 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5384 kthread_bind(cpu_rq(cpu)->migration_thread,
5385 any_online_cpu(cpu_online_map));
1da177e4
LT
5386 kthread_stop(cpu_rq(cpu)->migration_thread);
5387 cpu_rq(cpu)->migration_thread = NULL;
5388 break;
48f24c4d 5389
1da177e4 5390 case CPU_DEAD:
8bb78442 5391 case CPU_DEAD_FROZEN:
1da177e4
LT
5392 migrate_live_tasks(cpu);
5393 rq = cpu_rq(cpu);
5394 kthread_stop(rq->migration_thread);
5395 rq->migration_thread = NULL;
5396 /* Idle task back to normal (off runqueue, low prio) */
5397 rq = task_rq_lock(rq->idle, &flags);
a8e504d2 5398 update_rq_clock(rq);
2e1cb74a 5399 deactivate_task(rq, rq->idle, 0);
1da177e4 5400 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5401 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5402 rq->idle->sched_class = &idle_sched_class;
1da177e4
LT
5403 migrate_dead_tasks(cpu);
5404 task_rq_unlock(rq, &flags);
5405 migrate_nr_uninterruptible(rq);
5406 BUG_ON(rq->nr_running != 0);
5407
5408 /* No need to migrate the tasks: it was best-effort if
5be9361c 5409 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5410 * the requestors. */
5411 spin_lock_irq(&rq->lock);
5412 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5413 struct migration_req *req;
5414
1da177e4 5415 req = list_entry(rq->migration_queue.next,
70b97a7f 5416 struct migration_req, list);
1da177e4
LT
5417 list_del_init(&req->list);
5418 complete(&req->done);
5419 }
5420 spin_unlock_irq(&rq->lock);
5421 break;
5422#endif
5be9361c
GS
5423 case CPU_LOCK_RELEASE:
5424 mutex_unlock(&sched_hotcpu_mutex);
5425 break;
1da177e4
LT
5426 }
5427 return NOTIFY_OK;
5428}
5429
5430/* Register at highest priority so that task migration (migrate_all_tasks)
5431 * happens before everything else.
5432 */
26c2143b 5433static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5434 .notifier_call = migration_call,
5435 .priority = 10
5436};
5437
5438int __init migration_init(void)
5439{
5440 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5441 int err;
48f24c4d
IM
5442
5443 /* Start one for the boot CPU: */
07dccf33
AM
5444 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5445 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5446 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5447 register_cpu_notifier(&migration_notifier);
48f24c4d 5448
1da177e4
LT
5449 return 0;
5450}
5451#endif
5452
5453#ifdef CONFIG_SMP
476f3534
CL
5454
5455/* Number of possible processor ids */
5456int nr_cpu_ids __read_mostly = NR_CPUS;
5457EXPORT_SYMBOL(nr_cpu_ids);
5458
1a20ff27 5459#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
5460#ifdef SCHED_DOMAIN_DEBUG
5461static void sched_domain_debug(struct sched_domain *sd, int cpu)
5462{
5463 int level = 0;
5464
41c7ce9a
NP
5465 if (!sd) {
5466 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5467 return;
5468 }
5469
1da177e4
LT
5470 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5471
5472 do {
5473 int i;
5474 char str[NR_CPUS];
5475 struct sched_group *group = sd->groups;
5476 cpumask_t groupmask;
5477
5478 cpumask_scnprintf(str, NR_CPUS, sd->span);
5479 cpus_clear(groupmask);
5480
5481 printk(KERN_DEBUG);
5482 for (i = 0; i < level + 1; i++)
5483 printk(" ");
5484 printk("domain %d: ", level);
5485
5486 if (!(sd->flags & SD_LOAD_BALANCE)) {
5487 printk("does not load-balance\n");
5488 if (sd->parent)
33859f7f
MOS
5489 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5490 " has parent");
1da177e4
LT
5491 break;
5492 }
5493
5494 printk("span %s\n", str);
5495
5496 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5497 printk(KERN_ERR "ERROR: domain->span does not contain "
5498 "CPU%d\n", cpu);
1da177e4 5499 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5500 printk(KERN_ERR "ERROR: domain->groups does not contain"
5501 " CPU%d\n", cpu);
1da177e4
LT
5502
5503 printk(KERN_DEBUG);
5504 for (i = 0; i < level + 2; i++)
5505 printk(" ");
5506 printk("groups:");
5507 do {
5508 if (!group) {
5509 printk("\n");
5510 printk(KERN_ERR "ERROR: group is NULL\n");
5511 break;
5512 }
5513
5517d86b 5514 if (!group->__cpu_power) {
1da177e4 5515 printk("\n");
33859f7f
MOS
5516 printk(KERN_ERR "ERROR: domain->cpu_power not "
5517 "set\n");
1da177e4
LT
5518 }
5519
5520 if (!cpus_weight(group->cpumask)) {
5521 printk("\n");
5522 printk(KERN_ERR "ERROR: empty group\n");
5523 }
5524
5525 if (cpus_intersects(groupmask, group->cpumask)) {
5526 printk("\n");
5527 printk(KERN_ERR "ERROR: repeated CPUs\n");
5528 }
5529
5530 cpus_or(groupmask, groupmask, group->cpumask);
5531
5532 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5533 printk(" %s", str);
5534
5535 group = group->next;
5536 } while (group != sd->groups);
5537 printk("\n");
5538
5539 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5540 printk(KERN_ERR "ERROR: groups don't span "
5541 "domain->span\n");
1da177e4
LT
5542
5543 level++;
5544 sd = sd->parent;
33859f7f
MOS
5545 if (!sd)
5546 continue;
1da177e4 5547
33859f7f
MOS
5548 if (!cpus_subset(groupmask, sd->span))
5549 printk(KERN_ERR "ERROR: parent span is not a superset "
5550 "of domain->span\n");
1da177e4
LT
5551
5552 } while (sd);
5553}
5554#else
48f24c4d 5555# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5556#endif
5557
1a20ff27 5558static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5559{
5560 if (cpus_weight(sd->span) == 1)
5561 return 1;
5562
5563 /* Following flags need at least 2 groups */
5564 if (sd->flags & (SD_LOAD_BALANCE |
5565 SD_BALANCE_NEWIDLE |
5566 SD_BALANCE_FORK |
89c4710e
SS
5567 SD_BALANCE_EXEC |
5568 SD_SHARE_CPUPOWER |
5569 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5570 if (sd->groups != sd->groups->next)
5571 return 0;
5572 }
5573
5574 /* Following flags don't use groups */
5575 if (sd->flags & (SD_WAKE_IDLE |
5576 SD_WAKE_AFFINE |
5577 SD_WAKE_BALANCE))
5578 return 0;
5579
5580 return 1;
5581}
5582
48f24c4d
IM
5583static int
5584sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5585{
5586 unsigned long cflags = sd->flags, pflags = parent->flags;
5587
5588 if (sd_degenerate(parent))
5589 return 1;
5590
5591 if (!cpus_equal(sd->span, parent->span))
5592 return 0;
5593
5594 /* Does parent contain flags not in child? */
5595 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5596 if (cflags & SD_WAKE_AFFINE)
5597 pflags &= ~SD_WAKE_BALANCE;
5598 /* Flags needing groups don't count if only 1 group in parent */
5599 if (parent->groups == parent->groups->next) {
5600 pflags &= ~(SD_LOAD_BALANCE |
5601 SD_BALANCE_NEWIDLE |
5602 SD_BALANCE_FORK |
89c4710e
SS
5603 SD_BALANCE_EXEC |
5604 SD_SHARE_CPUPOWER |
5605 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5606 }
5607 if (~cflags & pflags)
5608 return 0;
5609
5610 return 1;
5611}
5612
1da177e4
LT
5613/*
5614 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5615 * hold the hotplug lock.
5616 */
9c1cfda2 5617static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5618{
70b97a7f 5619 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5620 struct sched_domain *tmp;
5621
5622 /* Remove the sched domains which do not contribute to scheduling. */
5623 for (tmp = sd; tmp; tmp = tmp->parent) {
5624 struct sched_domain *parent = tmp->parent;
5625 if (!parent)
5626 break;
1a848870 5627 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5628 tmp->parent = parent->parent;
1a848870
SS
5629 if (parent->parent)
5630 parent->parent->child = tmp;
5631 }
245af2c7
SS
5632 }
5633
1a848870 5634 if (sd && sd_degenerate(sd)) {
245af2c7 5635 sd = sd->parent;
1a848870
SS
5636 if (sd)
5637 sd->child = NULL;
5638 }
1da177e4
LT
5639
5640 sched_domain_debug(sd, cpu);
5641
674311d5 5642 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5643}
5644
5645/* cpus with isolated domains */
67af63a6 5646static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5647
5648/* Setup the mask of cpus configured for isolated domains */
5649static int __init isolated_cpu_setup(char *str)
5650{
5651 int ints[NR_CPUS], i;
5652
5653 str = get_options(str, ARRAY_SIZE(ints), ints);
5654 cpus_clear(cpu_isolated_map);
5655 for (i = 1; i <= ints[0]; i++)
5656 if (ints[i] < NR_CPUS)
5657 cpu_set(ints[i], cpu_isolated_map);
5658 return 1;
5659}
5660
5661__setup ("isolcpus=", isolated_cpu_setup);
5662
5663/*
6711cab4
SS
5664 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5665 * to a function which identifies what group(along with sched group) a CPU
5666 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5667 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5668 *
5669 * init_sched_build_groups will build a circular linked list of the groups
5670 * covered by the given span, and will set each group's ->cpumask correctly,
5671 * and ->cpu_power to 0.
5672 */
a616058b 5673static void
6711cab4
SS
5674init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5675 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5676 struct sched_group **sg))
1da177e4
LT
5677{
5678 struct sched_group *first = NULL, *last = NULL;
5679 cpumask_t covered = CPU_MASK_NONE;
5680 int i;
5681
5682 for_each_cpu_mask(i, span) {
6711cab4
SS
5683 struct sched_group *sg;
5684 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5685 int j;
5686
5687 if (cpu_isset(i, covered))
5688 continue;
5689
5690 sg->cpumask = CPU_MASK_NONE;
5517d86b 5691 sg->__cpu_power = 0;
1da177e4
LT
5692
5693 for_each_cpu_mask(j, span) {
6711cab4 5694 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5695 continue;
5696
5697 cpu_set(j, covered);
5698 cpu_set(j, sg->cpumask);
5699 }
5700 if (!first)
5701 first = sg;
5702 if (last)
5703 last->next = sg;
5704 last = sg;
5705 }
5706 last->next = first;
5707}
5708
9c1cfda2 5709#define SD_NODES_PER_DOMAIN 16
1da177e4 5710
9c1cfda2 5711#ifdef CONFIG_NUMA
198e2f18 5712
9c1cfda2
JH
5713/**
5714 * find_next_best_node - find the next node to include in a sched_domain
5715 * @node: node whose sched_domain we're building
5716 * @used_nodes: nodes already in the sched_domain
5717 *
5718 * Find the next node to include in a given scheduling domain. Simply
5719 * finds the closest node not already in the @used_nodes map.
5720 *
5721 * Should use nodemask_t.
5722 */
5723static int find_next_best_node(int node, unsigned long *used_nodes)
5724{
5725 int i, n, val, min_val, best_node = 0;
5726
5727 min_val = INT_MAX;
5728
5729 for (i = 0; i < MAX_NUMNODES; i++) {
5730 /* Start at @node */
5731 n = (node + i) % MAX_NUMNODES;
5732
5733 if (!nr_cpus_node(n))
5734 continue;
5735
5736 /* Skip already used nodes */
5737 if (test_bit(n, used_nodes))
5738 continue;
5739
5740 /* Simple min distance search */
5741 val = node_distance(node, n);
5742
5743 if (val < min_val) {
5744 min_val = val;
5745 best_node = n;
5746 }
5747 }
5748
5749 set_bit(best_node, used_nodes);
5750 return best_node;
5751}
5752
5753/**
5754 * sched_domain_node_span - get a cpumask for a node's sched_domain
5755 * @node: node whose cpumask we're constructing
5756 * @size: number of nodes to include in this span
5757 *
5758 * Given a node, construct a good cpumask for its sched_domain to span. It
5759 * should be one that prevents unnecessary balancing, but also spreads tasks
5760 * out optimally.
5761 */
5762static cpumask_t sched_domain_node_span(int node)
5763{
9c1cfda2 5764 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5765 cpumask_t span, nodemask;
5766 int i;
9c1cfda2
JH
5767
5768 cpus_clear(span);
5769 bitmap_zero(used_nodes, MAX_NUMNODES);
5770
5771 nodemask = node_to_cpumask(node);
5772 cpus_or(span, span, nodemask);
5773 set_bit(node, used_nodes);
5774
5775 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5776 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5777
9c1cfda2
JH
5778 nodemask = node_to_cpumask(next_node);
5779 cpus_or(span, span, nodemask);
5780 }
5781
5782 return span;
5783}
5784#endif
5785
5c45bf27 5786int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5787
9c1cfda2 5788/*
48f24c4d 5789 * SMT sched-domains:
9c1cfda2 5790 */
1da177e4
LT
5791#ifdef CONFIG_SCHED_SMT
5792static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5793static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5794
6711cab4
SS
5795static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5796 struct sched_group **sg)
1da177e4 5797{
6711cab4
SS
5798 if (sg)
5799 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5800 return cpu;
5801}
5802#endif
5803
48f24c4d
IM
5804/*
5805 * multi-core sched-domains:
5806 */
1e9f28fa
SS
5807#ifdef CONFIG_SCHED_MC
5808static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5809static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5810#endif
5811
5812#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
5813static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5814 struct sched_group **sg)
1e9f28fa 5815{
6711cab4 5816 int group;
a616058b
SS
5817 cpumask_t mask = cpu_sibling_map[cpu];
5818 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
5819 group = first_cpu(mask);
5820 if (sg)
5821 *sg = &per_cpu(sched_group_core, group);
5822 return group;
1e9f28fa
SS
5823}
5824#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
5825static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5826 struct sched_group **sg)
1e9f28fa 5827{
6711cab4
SS
5828 if (sg)
5829 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
5830 return cpu;
5831}
5832#endif
5833
1da177e4 5834static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 5835static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 5836
6711cab4
SS
5837static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5838 struct sched_group **sg)
1da177e4 5839{
6711cab4 5840 int group;
48f24c4d 5841#ifdef CONFIG_SCHED_MC
1e9f28fa 5842 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 5843 cpus_and(mask, mask, *cpu_map);
6711cab4 5844 group = first_cpu(mask);
1e9f28fa 5845#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
5846 cpumask_t mask = cpu_sibling_map[cpu];
5847 cpus_and(mask, mask, *cpu_map);
6711cab4 5848 group = first_cpu(mask);
1da177e4 5849#else
6711cab4 5850 group = cpu;
1da177e4 5851#endif
6711cab4
SS
5852 if (sg)
5853 *sg = &per_cpu(sched_group_phys, group);
5854 return group;
1da177e4
LT
5855}
5856
5857#ifdef CONFIG_NUMA
1da177e4 5858/*
9c1cfda2
JH
5859 * The init_sched_build_groups can't handle what we want to do with node
5860 * groups, so roll our own. Now each node has its own list of groups which
5861 * gets dynamically allocated.
1da177e4 5862 */
9c1cfda2 5863static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5864static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5865
9c1cfda2 5866static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 5867static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 5868
6711cab4
SS
5869static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5870 struct sched_group **sg)
9c1cfda2 5871{
6711cab4
SS
5872 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5873 int group;
5874
5875 cpus_and(nodemask, nodemask, *cpu_map);
5876 group = first_cpu(nodemask);
5877
5878 if (sg)
5879 *sg = &per_cpu(sched_group_allnodes, group);
5880 return group;
1da177e4 5881}
6711cab4 5882
08069033
SS
5883static void init_numa_sched_groups_power(struct sched_group *group_head)
5884{
5885 struct sched_group *sg = group_head;
5886 int j;
5887
5888 if (!sg)
5889 return;
5890next_sg:
5891 for_each_cpu_mask(j, sg->cpumask) {
5892 struct sched_domain *sd;
5893
5894 sd = &per_cpu(phys_domains, j);
5895 if (j != first_cpu(sd->groups->cpumask)) {
5896 /*
5897 * Only add "power" once for each
5898 * physical package.
5899 */
5900 continue;
5901 }
5902
5517d86b 5903 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
08069033
SS
5904 }
5905 sg = sg->next;
5906 if (sg != group_head)
5907 goto next_sg;
5908}
1da177e4
LT
5909#endif
5910
a616058b 5911#ifdef CONFIG_NUMA
51888ca2
SV
5912/* Free memory allocated for various sched_group structures */
5913static void free_sched_groups(const cpumask_t *cpu_map)
5914{
a616058b 5915 int cpu, i;
51888ca2
SV
5916
5917 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
5918 struct sched_group **sched_group_nodes
5919 = sched_group_nodes_bycpu[cpu];
5920
51888ca2
SV
5921 if (!sched_group_nodes)
5922 continue;
5923
5924 for (i = 0; i < MAX_NUMNODES; i++) {
5925 cpumask_t nodemask = node_to_cpumask(i);
5926 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5927
5928 cpus_and(nodemask, nodemask, *cpu_map);
5929 if (cpus_empty(nodemask))
5930 continue;
5931
5932 if (sg == NULL)
5933 continue;
5934 sg = sg->next;
5935next_sg:
5936 oldsg = sg;
5937 sg = sg->next;
5938 kfree(oldsg);
5939 if (oldsg != sched_group_nodes[i])
5940 goto next_sg;
5941 }
5942 kfree(sched_group_nodes);
5943 sched_group_nodes_bycpu[cpu] = NULL;
5944 }
51888ca2 5945}
a616058b
SS
5946#else
5947static void free_sched_groups(const cpumask_t *cpu_map)
5948{
5949}
5950#endif
51888ca2 5951
89c4710e
SS
5952/*
5953 * Initialize sched groups cpu_power.
5954 *
5955 * cpu_power indicates the capacity of sched group, which is used while
5956 * distributing the load between different sched groups in a sched domain.
5957 * Typically cpu_power for all the groups in a sched domain will be same unless
5958 * there are asymmetries in the topology. If there are asymmetries, group
5959 * having more cpu_power will pickup more load compared to the group having
5960 * less cpu_power.
5961 *
5962 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5963 * the maximum number of tasks a group can handle in the presence of other idle
5964 * or lightly loaded groups in the same sched domain.
5965 */
5966static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5967{
5968 struct sched_domain *child;
5969 struct sched_group *group;
5970
5971 WARN_ON(!sd || !sd->groups);
5972
5973 if (cpu != first_cpu(sd->groups->cpumask))
5974 return;
5975
5976 child = sd->child;
5977
5517d86b
ED
5978 sd->groups->__cpu_power = 0;
5979
89c4710e
SS
5980 /*
5981 * For perf policy, if the groups in child domain share resources
5982 * (for example cores sharing some portions of the cache hierarchy
5983 * or SMT), then set this domain groups cpu_power such that each group
5984 * can handle only one task, when there are other idle groups in the
5985 * same sched domain.
5986 */
5987 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5988 (child->flags &
5989 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 5990 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
5991 return;
5992 }
5993
89c4710e
SS
5994 /*
5995 * add cpu_power of each child group to this groups cpu_power
5996 */
5997 group = child->groups;
5998 do {
5517d86b 5999 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6000 group = group->next;
6001 } while (group != child->groups);
6002}
6003
1da177e4 6004/*
1a20ff27
DG
6005 * Build sched domains for a given set of cpus and attach the sched domains
6006 * to the individual cpus
1da177e4 6007 */
51888ca2 6008static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6009{
6010 int i;
d1b55138
JH
6011#ifdef CONFIG_NUMA
6012 struct sched_group **sched_group_nodes = NULL;
6711cab4 6013 int sd_allnodes = 0;
d1b55138
JH
6014
6015 /*
6016 * Allocate the per-node list of sched groups
6017 */
dd41f596 6018 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
d3a5aa98 6019 GFP_KERNEL);
d1b55138
JH
6020 if (!sched_group_nodes) {
6021 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6022 return -ENOMEM;
d1b55138
JH
6023 }
6024 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6025#endif
1da177e4
LT
6026
6027 /*
1a20ff27 6028 * Set up domains for cpus specified by the cpu_map.
1da177e4 6029 */
1a20ff27 6030 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6031 struct sched_domain *sd = NULL, *p;
6032 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6033
1a20ff27 6034 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6035
6036#ifdef CONFIG_NUMA
dd41f596
IM
6037 if (cpus_weight(*cpu_map) >
6038 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6039 sd = &per_cpu(allnodes_domains, i);
6040 *sd = SD_ALLNODES_INIT;
6041 sd->span = *cpu_map;
6711cab4 6042 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6043 p = sd;
6711cab4 6044 sd_allnodes = 1;
9c1cfda2
JH
6045 } else
6046 p = NULL;
6047
1da177e4 6048 sd = &per_cpu(node_domains, i);
1da177e4 6049 *sd = SD_NODE_INIT;
9c1cfda2
JH
6050 sd->span = sched_domain_node_span(cpu_to_node(i));
6051 sd->parent = p;
1a848870
SS
6052 if (p)
6053 p->child = sd;
9c1cfda2 6054 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6055#endif
6056
6057 p = sd;
6058 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6059 *sd = SD_CPU_INIT;
6060 sd->span = nodemask;
6061 sd->parent = p;
1a848870
SS
6062 if (p)
6063 p->child = sd;
6711cab4 6064 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6065
1e9f28fa
SS
6066#ifdef CONFIG_SCHED_MC
6067 p = sd;
6068 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6069 *sd = SD_MC_INIT;
6070 sd->span = cpu_coregroup_map(i);
6071 cpus_and(sd->span, sd->span, *cpu_map);
6072 sd->parent = p;
1a848870 6073 p->child = sd;
6711cab4 6074 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6075#endif
6076
1da177e4
LT
6077#ifdef CONFIG_SCHED_SMT
6078 p = sd;
6079 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
6080 *sd = SD_SIBLING_INIT;
6081 sd->span = cpu_sibling_map[i];
1a20ff27 6082 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6083 sd->parent = p;
1a848870 6084 p->child = sd;
6711cab4 6085 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6086#endif
6087 }
6088
6089#ifdef CONFIG_SCHED_SMT
6090 /* Set up CPU (sibling) groups */
9c1cfda2 6091 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6092 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6093 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6094 if (i != first_cpu(this_sibling_map))
6095 continue;
6096
dd41f596
IM
6097 init_sched_build_groups(this_sibling_map, cpu_map,
6098 &cpu_to_cpu_group);
1da177e4
LT
6099 }
6100#endif
6101
1e9f28fa
SS
6102#ifdef CONFIG_SCHED_MC
6103 /* Set up multi-core groups */
6104 for_each_cpu_mask(i, *cpu_map) {
6105 cpumask_t this_core_map = cpu_coregroup_map(i);
6106 cpus_and(this_core_map, this_core_map, *cpu_map);
6107 if (i != first_cpu(this_core_map))
6108 continue;
dd41f596
IM
6109 init_sched_build_groups(this_core_map, cpu_map,
6110 &cpu_to_core_group);
1e9f28fa
SS
6111 }
6112#endif
6113
1da177e4
LT
6114 /* Set up physical groups */
6115 for (i = 0; i < MAX_NUMNODES; i++) {
6116 cpumask_t nodemask = node_to_cpumask(i);
6117
1a20ff27 6118 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6119 if (cpus_empty(nodemask))
6120 continue;
6121
6711cab4 6122 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6123 }
6124
6125#ifdef CONFIG_NUMA
6126 /* Set up node groups */
6711cab4 6127 if (sd_allnodes)
dd41f596
IM
6128 init_sched_build_groups(*cpu_map, cpu_map,
6129 &cpu_to_allnodes_group);
9c1cfda2
JH
6130
6131 for (i = 0; i < MAX_NUMNODES; i++) {
6132 /* Set up node groups */
6133 struct sched_group *sg, *prev;
6134 cpumask_t nodemask = node_to_cpumask(i);
6135 cpumask_t domainspan;
6136 cpumask_t covered = CPU_MASK_NONE;
6137 int j;
6138
6139 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6140 if (cpus_empty(nodemask)) {
6141 sched_group_nodes[i] = NULL;
9c1cfda2 6142 continue;
d1b55138 6143 }
9c1cfda2
JH
6144
6145 domainspan = sched_domain_node_span(i);
6146 cpus_and(domainspan, domainspan, *cpu_map);
6147
15f0b676 6148 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6149 if (!sg) {
6150 printk(KERN_WARNING "Can not alloc domain group for "
6151 "node %d\n", i);
6152 goto error;
6153 }
9c1cfda2
JH
6154 sched_group_nodes[i] = sg;
6155 for_each_cpu_mask(j, nodemask) {
6156 struct sched_domain *sd;
9761eea8 6157
9c1cfda2
JH
6158 sd = &per_cpu(node_domains, j);
6159 sd->groups = sg;
9c1cfda2 6160 }
5517d86b 6161 sg->__cpu_power = 0;
9c1cfda2 6162 sg->cpumask = nodemask;
51888ca2 6163 sg->next = sg;
9c1cfda2
JH
6164 cpus_or(covered, covered, nodemask);
6165 prev = sg;
6166
6167 for (j = 0; j < MAX_NUMNODES; j++) {
6168 cpumask_t tmp, notcovered;
6169 int n = (i + j) % MAX_NUMNODES;
6170
6171 cpus_complement(notcovered, covered);
6172 cpus_and(tmp, notcovered, *cpu_map);
6173 cpus_and(tmp, tmp, domainspan);
6174 if (cpus_empty(tmp))
6175 break;
6176
6177 nodemask = node_to_cpumask(n);
6178 cpus_and(tmp, tmp, nodemask);
6179 if (cpus_empty(tmp))
6180 continue;
6181
15f0b676
SV
6182 sg = kmalloc_node(sizeof(struct sched_group),
6183 GFP_KERNEL, i);
9c1cfda2
JH
6184 if (!sg) {
6185 printk(KERN_WARNING
6186 "Can not alloc domain group for node %d\n", j);
51888ca2 6187 goto error;
9c1cfda2 6188 }
5517d86b 6189 sg->__cpu_power = 0;
9c1cfda2 6190 sg->cpumask = tmp;
51888ca2 6191 sg->next = prev->next;
9c1cfda2
JH
6192 cpus_or(covered, covered, tmp);
6193 prev->next = sg;
6194 prev = sg;
6195 }
9c1cfda2 6196 }
1da177e4
LT
6197#endif
6198
6199 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6200#ifdef CONFIG_SCHED_SMT
1a20ff27 6201 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6202 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6203
89c4710e 6204 init_sched_groups_power(i, sd);
5c45bf27 6205 }
1da177e4 6206#endif
1e9f28fa 6207#ifdef CONFIG_SCHED_MC
5c45bf27 6208 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6209 struct sched_domain *sd = &per_cpu(core_domains, i);
6210
89c4710e 6211 init_sched_groups_power(i, sd);
5c45bf27
SS
6212 }
6213#endif
1e9f28fa 6214
5c45bf27 6215 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6216 struct sched_domain *sd = &per_cpu(phys_domains, i);
6217
89c4710e 6218 init_sched_groups_power(i, sd);
1da177e4
LT
6219 }
6220
9c1cfda2 6221#ifdef CONFIG_NUMA
08069033
SS
6222 for (i = 0; i < MAX_NUMNODES; i++)
6223 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6224
6711cab4
SS
6225 if (sd_allnodes) {
6226 struct sched_group *sg;
f712c0c7 6227
6711cab4 6228 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6229 init_numa_sched_groups_power(sg);
6230 }
9c1cfda2
JH
6231#endif
6232
1da177e4 6233 /* Attach the domains */
1a20ff27 6234 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6235 struct sched_domain *sd;
6236#ifdef CONFIG_SCHED_SMT
6237 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6238#elif defined(CONFIG_SCHED_MC)
6239 sd = &per_cpu(core_domains, i);
1da177e4
LT
6240#else
6241 sd = &per_cpu(phys_domains, i);
6242#endif
6243 cpu_attach_domain(sd, i);
6244 }
51888ca2
SV
6245
6246 return 0;
6247
a616058b 6248#ifdef CONFIG_NUMA
51888ca2
SV
6249error:
6250 free_sched_groups(cpu_map);
6251 return -ENOMEM;
a616058b 6252#endif
1da177e4 6253}
1a20ff27
DG
6254/*
6255 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6256 */
51888ca2 6257static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6258{
6259 cpumask_t cpu_default_map;
51888ca2 6260 int err;
1da177e4 6261
1a20ff27
DG
6262 /*
6263 * Setup mask for cpus without special case scheduling requirements.
6264 * For now this just excludes isolated cpus, but could be used to
6265 * exclude other special cases in the future.
6266 */
6267 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6268
51888ca2
SV
6269 err = build_sched_domains(&cpu_default_map);
6270
6271 return err;
1a20ff27
DG
6272}
6273
6274static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6275{
51888ca2 6276 free_sched_groups(cpu_map);
9c1cfda2 6277}
1da177e4 6278
1a20ff27
DG
6279/*
6280 * Detach sched domains from a group of cpus specified in cpu_map
6281 * These cpus will now be attached to the NULL domain
6282 */
858119e1 6283static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6284{
6285 int i;
6286
6287 for_each_cpu_mask(i, *cpu_map)
6288 cpu_attach_domain(NULL, i);
6289 synchronize_sched();
6290 arch_destroy_sched_domains(cpu_map);
6291}
6292
6293/*
6294 * Partition sched domains as specified by the cpumasks below.
6295 * This attaches all cpus from the cpumasks to the NULL domain,
6296 * waits for a RCU quiescent period, recalculates sched
6297 * domain information and then attaches them back to the
6298 * correct sched domains
6299 * Call with hotplug lock held
6300 */
51888ca2 6301int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6302{
6303 cpumask_t change_map;
51888ca2 6304 int err = 0;
1a20ff27
DG
6305
6306 cpus_and(*partition1, *partition1, cpu_online_map);
6307 cpus_and(*partition2, *partition2, cpu_online_map);
6308 cpus_or(change_map, *partition1, *partition2);
6309
6310 /* Detach sched domains from all of the affected cpus */
6311 detach_destroy_domains(&change_map);
6312 if (!cpus_empty(*partition1))
51888ca2
SV
6313 err = build_sched_domains(partition1);
6314 if (!err && !cpus_empty(*partition2))
6315 err = build_sched_domains(partition2);
6316
6317 return err;
1a20ff27
DG
6318}
6319
5c45bf27 6320#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6321static int arch_reinit_sched_domains(void)
5c45bf27
SS
6322{
6323 int err;
6324
5be9361c 6325 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6326 detach_destroy_domains(&cpu_online_map);
6327 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6328 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6329
6330 return err;
6331}
6332
6333static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6334{
6335 int ret;
6336
6337 if (buf[0] != '0' && buf[0] != '1')
6338 return -EINVAL;
6339
6340 if (smt)
6341 sched_smt_power_savings = (buf[0] == '1');
6342 else
6343 sched_mc_power_savings = (buf[0] == '1');
6344
6345 ret = arch_reinit_sched_domains();
6346
6347 return ret ? ret : count;
6348}
6349
5c45bf27
SS
6350#ifdef CONFIG_SCHED_MC
6351static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6352{
6353 return sprintf(page, "%u\n", sched_mc_power_savings);
6354}
48f24c4d
IM
6355static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6356 const char *buf, size_t count)
5c45bf27
SS
6357{
6358 return sched_power_savings_store(buf, count, 0);
6359}
6707de00
AB
6360static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6361 sched_mc_power_savings_store);
5c45bf27
SS
6362#endif
6363
6364#ifdef CONFIG_SCHED_SMT
6365static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6366{
6367 return sprintf(page, "%u\n", sched_smt_power_savings);
6368}
48f24c4d
IM
6369static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6370 const char *buf, size_t count)
5c45bf27
SS
6371{
6372 return sched_power_savings_store(buf, count, 1);
6373}
6707de00
AB
6374static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6375 sched_smt_power_savings_store);
6376#endif
6377
6378int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6379{
6380 int err = 0;
6381
6382#ifdef CONFIG_SCHED_SMT
6383 if (smt_capable())
6384 err = sysfs_create_file(&cls->kset.kobj,
6385 &attr_sched_smt_power_savings.attr);
6386#endif
6387#ifdef CONFIG_SCHED_MC
6388 if (!err && mc_capable())
6389 err = sysfs_create_file(&cls->kset.kobj,
6390 &attr_sched_mc_power_savings.attr);
6391#endif
6392 return err;
6393}
5c45bf27
SS
6394#endif
6395
1da177e4
LT
6396/*
6397 * Force a reinitialization of the sched domains hierarchy. The domains
6398 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6399 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6400 * which will prevent rebalancing while the sched domains are recalculated.
6401 */
6402static int update_sched_domains(struct notifier_block *nfb,
6403 unsigned long action, void *hcpu)
6404{
1da177e4
LT
6405 switch (action) {
6406 case CPU_UP_PREPARE:
8bb78442 6407 case CPU_UP_PREPARE_FROZEN:
1da177e4 6408 case CPU_DOWN_PREPARE:
8bb78442 6409 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6410 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6411 return NOTIFY_OK;
6412
6413 case CPU_UP_CANCELED:
8bb78442 6414 case CPU_UP_CANCELED_FROZEN:
1da177e4 6415 case CPU_DOWN_FAILED:
8bb78442 6416 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6417 case CPU_ONLINE:
8bb78442 6418 case CPU_ONLINE_FROZEN:
1da177e4 6419 case CPU_DEAD:
8bb78442 6420 case CPU_DEAD_FROZEN:
1da177e4
LT
6421 /*
6422 * Fall through and re-initialise the domains.
6423 */
6424 break;
6425 default:
6426 return NOTIFY_DONE;
6427 }
6428
6429 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6430 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6431
6432 return NOTIFY_OK;
6433}
1da177e4
LT
6434
6435void __init sched_init_smp(void)
6436{
5c1e1767
NP
6437 cpumask_t non_isolated_cpus;
6438
5be9361c 6439 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6440 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6441 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6442 if (cpus_empty(non_isolated_cpus))
6443 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6444 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6445 /* XXX: Theoretical race here - CPU may be hotplugged now */
6446 hotcpu_notifier(update_sched_domains, 0);
5c1e1767 6447
e692ab53
NP
6448 init_sched_domain_sysctl();
6449
5c1e1767
NP
6450 /* Move init over to a non-isolated CPU */
6451 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6452 BUG();
1da177e4
LT
6453}
6454#else
6455void __init sched_init_smp(void)
6456{
6457}
6458#endif /* CONFIG_SMP */
6459
6460int in_sched_functions(unsigned long addr)
6461{
6462 /* Linker adds these: start and end of __sched functions */
6463 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6464
1da177e4
LT
6465 return in_lock_functions(addr) ||
6466 (addr >= (unsigned long)__sched_text_start
6467 && addr < (unsigned long)__sched_text_end);
6468}
6469
dd41f596
IM
6470static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6471{
6472 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
6473#ifdef CONFIG_FAIR_GROUP_SCHED
6474 cfs_rq->rq = rq;
6475#endif
6476}
6477
1da177e4
LT
6478void __init sched_init(void)
6479{
476f3534 6480 int highest_cpu = 0;
dd41f596
IM
6481 int i, j;
6482
6483 /*
6484 * Link up the scheduling class hierarchy:
6485 */
6486 rt_sched_class.next = &fair_sched_class;
6487 fair_sched_class.next = &idle_sched_class;
6488 idle_sched_class.next = NULL;
1da177e4 6489
0a945022 6490 for_each_possible_cpu(i) {
dd41f596 6491 struct rt_prio_array *array;
70b97a7f 6492 struct rq *rq;
1da177e4
LT
6493
6494 rq = cpu_rq(i);
6495 spin_lock_init(&rq->lock);
fcb99371 6496 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6497 rq->nr_running = 0;
dd41f596
IM
6498 rq->clock = 1;
6499 init_cfs_rq(&rq->cfs, rq);
6500#ifdef CONFIG_FAIR_GROUP_SCHED
6501 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
29f59db3
SV
6502 {
6503 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6504 struct sched_entity *se =
6505 &per_cpu(init_sched_entity, i);
6506
6507 init_cfs_rq_p[i] = cfs_rq;
6508 init_cfs_rq(cfs_rq, rq);
6509 cfs_rq->tg = &init_task_grp;
6510 list_add(&cfs_rq->leaf_cfs_rq_list,
6511 &rq->leaf_cfs_rq_list);
6512
6513 init_sched_entity_p[i] = se;
6514 se->cfs_rq = &rq->cfs;
6515 se->my_q = cfs_rq;
6516 se->load.weight = NICE_0_LOAD;
6517 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6518 se->parent = NULL;
6519 }
6520 init_task_grp.shares = NICE_0_LOAD;
dd41f596 6521#endif
1da177e4 6522
dd41f596
IM
6523 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6524 rq->cpu_load[j] = 0;
1da177e4 6525#ifdef CONFIG_SMP
41c7ce9a 6526 rq->sd = NULL;
1da177e4 6527 rq->active_balance = 0;
dd41f596 6528 rq->next_balance = jiffies;
1da177e4 6529 rq->push_cpu = 0;
0a2966b4 6530 rq->cpu = i;
1da177e4
LT
6531 rq->migration_thread = NULL;
6532 INIT_LIST_HEAD(&rq->migration_queue);
6533#endif
6534 atomic_set(&rq->nr_iowait, 0);
6535
dd41f596
IM
6536 array = &rq->rt.active;
6537 for (j = 0; j < MAX_RT_PRIO; j++) {
6538 INIT_LIST_HEAD(array->queue + j);
6539 __clear_bit(j, array->bitmap);
1da177e4 6540 }
476f3534 6541 highest_cpu = i;
dd41f596
IM
6542 /* delimiter for bitsearch: */
6543 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6544 }
6545
2dd73a4f 6546 set_load_weight(&init_task);
b50f60ce 6547
e107be36
AK
6548#ifdef CONFIG_PREEMPT_NOTIFIERS
6549 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6550#endif
6551
c9819f45 6552#ifdef CONFIG_SMP
476f3534 6553 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6554 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6555#endif
6556
b50f60ce
HC
6557#ifdef CONFIG_RT_MUTEXES
6558 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6559#endif
6560
1da177e4
LT
6561 /*
6562 * The boot idle thread does lazy MMU switching as well:
6563 */
6564 atomic_inc(&init_mm.mm_count);
6565 enter_lazy_tlb(&init_mm, current);
6566
6567 /*
6568 * Make us the idle thread. Technically, schedule() should not be
6569 * called from this thread, however somewhere below it might be,
6570 * but because we are the idle thread, we just pick up running again
6571 * when this runqueue becomes "idle".
6572 */
6573 init_idle(current, smp_processor_id());
dd41f596
IM
6574 /*
6575 * During early bootup we pretend to be a normal task:
6576 */
6577 current->sched_class = &fair_sched_class;
1da177e4
LT
6578}
6579
6580#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6581void __might_sleep(char *file, int line)
6582{
48f24c4d 6583#ifdef in_atomic
1da177e4
LT
6584 static unsigned long prev_jiffy; /* ratelimiting */
6585
6586 if ((in_atomic() || irqs_disabled()) &&
6587 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6588 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6589 return;
6590 prev_jiffy = jiffies;
91368d73 6591 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6592 " context at %s:%d\n", file, line);
6593 printk("in_atomic():%d, irqs_disabled():%d\n",
6594 in_atomic(), irqs_disabled());
a4c410f0 6595 debug_show_held_locks(current);
3117df04
IM
6596 if (irqs_disabled())
6597 print_irqtrace_events(current);
1da177e4
LT
6598 dump_stack();
6599 }
6600#endif
6601}
6602EXPORT_SYMBOL(__might_sleep);
6603#endif
6604
6605#ifdef CONFIG_MAGIC_SYSRQ
6606void normalize_rt_tasks(void)
6607{
a0f98a1c 6608 struct task_struct *g, *p;
1da177e4 6609 unsigned long flags;
70b97a7f 6610 struct rq *rq;
dd41f596 6611 int on_rq;
1da177e4
LT
6612
6613 read_lock_irq(&tasklist_lock);
a0f98a1c 6614 do_each_thread(g, p) {
6cfb0d5d 6615 p->se.exec_start = 0;
6cfb0d5d 6616#ifdef CONFIG_SCHEDSTATS
dd41f596 6617 p->se.wait_start = 0;
dd41f596 6618 p->se.sleep_start = 0;
dd41f596 6619 p->se.block_start = 0;
6cfb0d5d 6620#endif
dd41f596
IM
6621 task_rq(p)->clock = 0;
6622
6623 if (!rt_task(p)) {
6624 /*
6625 * Renice negative nice level userspace
6626 * tasks back to 0:
6627 */
6628 if (TASK_NICE(p) < 0 && p->mm)
6629 set_user_nice(p, 0);
1da177e4 6630 continue;
dd41f596 6631 }
1da177e4 6632
b29739f9
IM
6633 spin_lock_irqsave(&p->pi_lock, flags);
6634 rq = __task_rq_lock(p);
dd41f596
IM
6635#ifdef CONFIG_SMP
6636 /*
6637 * Do not touch the migration thread:
6638 */
6639 if (p == rq->migration_thread)
6640 goto out_unlock;
6641#endif
1da177e4 6642
2daa3577 6643 update_rq_clock(rq);
dd41f596 6644 on_rq = p->se.on_rq;
2daa3577
IM
6645 if (on_rq)
6646 deactivate_task(rq, p, 0);
dd41f596
IM
6647 __setscheduler(rq, p, SCHED_NORMAL, 0);
6648 if (on_rq) {
2daa3577 6649 activate_task(rq, p, 0);
1da177e4
LT
6650 resched_task(rq->curr);
6651 }
dd41f596
IM
6652#ifdef CONFIG_SMP
6653 out_unlock:
6654#endif
b29739f9
IM
6655 __task_rq_unlock(rq);
6656 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6657 } while_each_thread(g, p);
6658
1da177e4
LT
6659 read_unlock_irq(&tasklist_lock);
6660}
6661
6662#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6663
6664#ifdef CONFIG_IA64
6665/*
6666 * These functions are only useful for the IA64 MCA handling.
6667 *
6668 * They can only be called when the whole system has been
6669 * stopped - every CPU needs to be quiescent, and no scheduling
6670 * activity can take place. Using them for anything else would
6671 * be a serious bug, and as a result, they aren't even visible
6672 * under any other configuration.
6673 */
6674
6675/**
6676 * curr_task - return the current task for a given cpu.
6677 * @cpu: the processor in question.
6678 *
6679 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6680 */
36c8b586 6681struct task_struct *curr_task(int cpu)
1df5c10a
LT
6682{
6683 return cpu_curr(cpu);
6684}
6685
6686/**
6687 * set_curr_task - set the current task for a given cpu.
6688 * @cpu: the processor in question.
6689 * @p: the task pointer to set.
6690 *
6691 * Description: This function must only be used when non-maskable interrupts
6692 * are serviced on a separate stack. It allows the architecture to switch the
6693 * notion of the current task on a cpu in a non-blocking manner. This function
6694 * must be called with all CPU's synchronized, and interrupts disabled, the
6695 * and caller must save the original value of the current task (see
6696 * curr_task() above) and restore that value before reenabling interrupts and
6697 * re-starting the system.
6698 *
6699 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6700 */
36c8b586 6701void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6702{
6703 cpu_curr(cpu) = p;
6704}
6705
6706#endif
29f59db3
SV
6707
6708#ifdef CONFIG_FAIR_GROUP_SCHED
6709
6710/* return corresponding task_grp object of a container */
6711static inline struct task_grp *container_tg(struct container *cont)
6712{
6713 return container_of(container_subsys_state(cont, cpu_subsys_id),
6714 struct task_grp, css);
6715}
6716
6717/* allocate runqueue etc for a new task group */
6718static struct container_subsys_state *
6719sched_create_group(struct container_subsys *ss, struct container *cont)
6720{
6721 struct task_grp *tg;
6722 struct cfs_rq *cfs_rq;
6723 struct sched_entity *se;
6724 int i;
6725
6726 if (!cont->parent) {
6727 /* This is early initialization for the top container */
6728 init_task_grp.css.container = cont;
6729 return &init_task_grp.css;
6730 }
6731
6732 /* we support only 1-level deep hierarchical scheduler atm */
6733 if (cont->parent->parent)
6734 return ERR_PTR(-EINVAL);
6735
6736 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6737 if (!tg)
6738 return ERR_PTR(-ENOMEM);
6739
6740 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * num_possible_cpus(), GFP_KERNEL);
6741 if (!tg->cfs_rq)
6742 goto err;
6743 tg->se = kzalloc(sizeof(se) * num_possible_cpus(), GFP_KERNEL);
6744 if (!tg->se)
6745 goto err;
6746
6747 for_each_possible_cpu(i) {
6748 struct rq *rq = cpu_rq(i);
6749
6750 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6751 cpu_to_node(i));
6752 if (!cfs_rq)
6753 goto err;
6754
6755 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6756 cpu_to_node(i));
6757 if (!se)
6758 goto err;
6759
6760 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6761 memset(se, 0, sizeof(struct sched_entity));
6762
6763 tg->cfs_rq[i] = cfs_rq;
6764 init_cfs_rq(cfs_rq, rq);
6765 cfs_rq->tg = tg;
6766 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6767
6768 tg->se[i] = se;
6769 se->cfs_rq = &rq->cfs;
6770 se->my_q = cfs_rq;
6771 se->load.weight = NICE_0_LOAD;
6772 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6773 se->parent = NULL;
6774 }
6775
6776 tg->shares = NICE_0_LOAD;
6777
6778 /* Bind the container to task_grp object we just created */
6779 tg->css.container = cont;
6780
6781 return &tg->css;
6782
6783err:
6784 for_each_possible_cpu(i) {
6785 if (tg->cfs_rq && tg->cfs_rq[i])
6786 kfree(tg->cfs_rq[i]);
6787 if (tg->se && tg->se[i])
6788 kfree(tg->se[i]);
6789 }
6790 if (tg->cfs_rq)
6791 kfree(tg->cfs_rq);
6792 if (tg->se)
6793 kfree(tg->se);
6794 if (tg)
6795 kfree(tg);
6796
6797 return ERR_PTR(-ENOMEM);
6798}
6799
6800
6801/* destroy runqueue etc associated with a task group */
6802static void sched_destroy_group(struct container_subsys *ss,
6803 struct container *cont)
6804{
6805 struct task_grp *tg = container_tg(cont);
6806 struct cfs_rq *cfs_rq;
6807 struct sched_entity *se;
6808 int i;
6809
6810 for_each_possible_cpu(i) {
6811 cfs_rq = tg->cfs_rq[i];
6812 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6813 }
6814
6815 /* wait for possible concurrent references to cfs_rqs complete */
6816 synchronize_sched();
6817
6818 /* now it should be safe to free those cfs_rqs */
6819 for_each_possible_cpu(i) {
6820 cfs_rq = tg->cfs_rq[i];
6821 kfree(cfs_rq);
6822
6823 se = tg->se[i];
6824 kfree(se);
6825 }
6826
6827 kfree(tg->cfs_rq);
6828 kfree(tg->se);
6829 kfree(tg);
6830}
6831
6832static int sched_can_attach(struct container_subsys *ss,
6833 struct container *cont, struct task_struct *tsk)
6834{
6835 /* We don't support RT-tasks being in separate groups */
6836 if (tsk->sched_class != &fair_sched_class)
6837 return -EINVAL;
6838
6839 return 0;
6840}
6841
6842/* change task's runqueue when it moves between groups */
6843static void sched_move_task(struct container_subsys *ss, struct container *cont,
6844 struct container *old_cont, struct task_struct *tsk)
6845{
6846 int on_rq, running;
6847 unsigned long flags;
6848 struct rq *rq;
6849
6850 rq = task_rq_lock(tsk, &flags);
6851
6852 if (tsk->sched_class != &fair_sched_class)
6853 goto done;
6854
6855 update_rq_clock(rq);
6856
6857 running = task_running(rq, tsk);
6858 on_rq = tsk->se.on_rq;
6859
83b699ed 6860 if (on_rq) {
29f59db3 6861 dequeue_task(rq, tsk, 0);
83b699ed
SV
6862 if (unlikely(running))
6863 tsk->sched_class->put_prev_task(rq, tsk);
6864 }
29f59db3
SV
6865
6866 set_task_cfs_rq(tsk);
6867
83b699ed
SV
6868 if (on_rq) {
6869 if (unlikely(running))
6870 tsk->sched_class->set_curr_task(rq);
7074badb 6871 enqueue_task(rq, tsk, 0);
83b699ed 6872 }
29f59db3
SV
6873
6874done:
6875 task_rq_unlock(rq, &flags);
6876}
6877
6878static void set_se_shares(struct sched_entity *se, unsigned long shares)
6879{
6880 struct cfs_rq *cfs_rq = se->cfs_rq;
6881 struct rq *rq = cfs_rq->rq;
6882 int on_rq;
6883
6884 spin_lock_irq(&rq->lock);
6885
6886 on_rq = se->on_rq;
6887 if (on_rq)
6888 dequeue_entity(cfs_rq, se, 0);
6889
6890 se->load.weight = shares;
6891 se->load.inv_weight = div64_64((1ULL<<32), shares);
6892
6893 if (on_rq)
6894 enqueue_entity(cfs_rq, se, 0);
6895
6896 spin_unlock_irq(&rq->lock);
6897}
6898
6899static ssize_t cpu_shares_write(struct container *cont, struct cftype *cftype,
6900 struct file *file, const char __user *userbuf,
6901 size_t nbytes, loff_t *ppos)
6902{
6903 int i;
6904 unsigned long shareval;
6905 struct task_grp *tg = container_tg(cont);
6906 char buffer[2*sizeof(unsigned long) + 1];
6907
6908 if (nbytes > 2*sizeof(unsigned long)) /* safety check */
6909 return -E2BIG;
6910
6911 if (copy_from_user(buffer, userbuf, nbytes))
6912 return -EFAULT;
6913
6914 buffer[nbytes] = 0; /* nul-terminate */
6915 shareval = simple_strtoul(buffer, NULL, 10);
6916
6917 tg->shares = shareval;
6918 for_each_possible_cpu(i)
6919 set_se_shares(tg->se[i], shareval);
6920
6921 return nbytes;
6922}
6923
6924static u64 cpu_shares_read_uint(struct container *cont, struct cftype *cft)
6925{
6926 struct task_grp *tg = container_tg(cont);
6927
6928 return (u64) tg->shares;
6929}
6930
6931struct cftype cpuctl_share = {
6932 .name = "shares",
6933 .read_uint = cpu_shares_read_uint,
6934 .write = cpu_shares_write,
6935};
6936
6937static int sched_populate(struct container_subsys *ss, struct container *cont)
6938{
6939 return container_add_file(cont, ss, &cpuctl_share);
6940}
6941
6942struct container_subsys cpu_subsys = {
6943 .name = "cpu",
6944 .create = sched_create_group,
6945 .destroy = sched_destroy_group,
6946 .can_attach = sched_can_attach,
6947 .attach = sched_move_task,
6948 .populate = sched_populate,
6949 .subsys_id = cpu_subsys_id,
6950 .early_init = 1,
6951};
6952
6953#endif /* CONFIG_FAIR_GROUP_SCHED */