]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
Fix AGP compile on non-x86 architectures
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
30#include <linux/completion.h>
31#include <linux/kernel_stat.h>
32#include <linux/security.h>
33#include <linux/notifier.h>
34#include <linux/profile.h>
35#include <linux/suspend.h>
36#include <linux/blkdev.h>
37#include <linux/delay.h>
38#include <linux/smp.h>
39#include <linux/threads.h>
40#include <linux/timer.h>
41#include <linux/rcupdate.h>
42#include <linux/cpu.h>
43#include <linux/cpuset.h>
44#include <linux/percpu.h>
45#include <linux/kthread.h>
46#include <linux/seq_file.h>
47#include <linux/syscalls.h>
48#include <linux/times.h>
49#include <linux/acct.h>
50#include <asm/tlb.h>
51
52#include <asm/unistd.h>
53
54/*
55 * Convert user-nice values [ -20 ... 0 ... 19 ]
56 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57 * and back.
58 */
59#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
60#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
61#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
62
63/*
64 * 'User priority' is the nice value converted to something we
65 * can work with better when scaling various scheduler parameters,
66 * it's a [ 0 ... 39 ] range.
67 */
68#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
69#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
70#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
71
72/*
73 * Some helpers for converting nanosecond timing to jiffy resolution
74 */
75#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
76#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
77
78/*
79 * These are the 'tuning knobs' of the scheduler:
80 *
81 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83 * Timeslices get refilled after they expire.
84 */
85#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
86#define DEF_TIMESLICE (100 * HZ / 1000)
87#define ON_RUNQUEUE_WEIGHT 30
88#define CHILD_PENALTY 95
89#define PARENT_PENALTY 100
90#define EXIT_WEIGHT 3
91#define PRIO_BONUS_RATIO 25
92#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93#define INTERACTIVE_DELTA 2
94#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
95#define STARVATION_LIMIT (MAX_SLEEP_AVG)
96#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98/*
99 * If a task is 'interactive' then we reinsert it in the active
100 * array after it has expired its current timeslice. (it will not
101 * continue to run immediately, it will still roundrobin with
102 * other interactive tasks.)
103 *
104 * This part scales the interactivity limit depending on niceness.
105 *
106 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107 * Here are a few examples of different nice levels:
108 *
109 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
112 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114 *
115 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116 * priority range a task can explore, a value of '1' means the
117 * task is rated interactive.)
118 *
119 * Ie. nice +19 tasks can never get 'interactive' enough to be
120 * reinserted into the active array. And only heavily CPU-hog nice -20
121 * tasks will be expired. Default nice 0 tasks are somewhere between,
122 * it takes some effort for them to get interactive, but it's not
123 * too hard.
124 */
125
126#define CURRENT_BONUS(p) \
127 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128 MAX_SLEEP_AVG)
129
130#define GRANULARITY (10 * HZ / 1000 ? : 1)
131
132#ifdef CONFIG_SMP
133#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
134 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135 num_online_cpus())
136#else
137#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139#endif
140
141#define SCALE(v1,v1_max,v2_max) \
142 (v1) * (v2_max) / (v1_max)
143
144#define DELTA(p) \
145 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147#define TASK_INTERACTIVE(p) \
148 ((p)->prio <= (p)->static_prio - DELTA(p))
149
150#define INTERACTIVE_SLEEP(p) \
151 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154#define TASK_PREEMPTS_CURR(p, rq) \
155 ((p)->prio < (rq)->curr->prio)
156
157/*
158 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159 * to time slice values: [800ms ... 100ms ... 5ms]
160 *
161 * The higher a thread's priority, the bigger timeslices
162 * it gets during one round of execution. But even the lowest
163 * priority thread gets MIN_TIMESLICE worth of execution time.
164 */
165
166#define SCALE_PRIO(x, prio) \
167 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
48c08d3f 169static unsigned int task_timeslice(task_t *p)
1da177e4
LT
170{
171 if (p->static_prio < NICE_TO_PRIO(0))
172 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173 else
174 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175}
176#define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
177 < (long long) (sd)->cache_hot_time)
178
179/*
180 * These are the runqueue data structures:
181 */
182
183#define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185typedef struct runqueue runqueue_t;
186
187struct prio_array {
188 unsigned int nr_active;
189 unsigned long bitmap[BITMAP_SIZE];
190 struct list_head queue[MAX_PRIO];
191};
192
193/*
194 * This is the main, per-CPU runqueue data structure.
195 *
196 * Locking rule: those places that want to lock multiple runqueues
197 * (such as the load balancing or the thread migration code), lock
198 * acquire operations must be ordered by ascending &runqueue.
199 */
200struct runqueue {
201 spinlock_t lock;
202
203 /*
204 * nr_running and cpu_load should be in the same cacheline because
205 * remote CPUs use both these fields when doing load calculation.
206 */
207 unsigned long nr_running;
208#ifdef CONFIG_SMP
b910472d 209 unsigned long prio_bias;
7897986b 210 unsigned long cpu_load[3];
1da177e4
LT
211#endif
212 unsigned long long nr_switches;
213
214 /*
215 * This is part of a global counter where only the total sum
216 * over all CPUs matters. A task can increase this counter on
217 * one CPU and if it got migrated afterwards it may decrease
218 * it on another CPU. Always updated under the runqueue lock:
219 */
220 unsigned long nr_uninterruptible;
221
222 unsigned long expired_timestamp;
223 unsigned long long timestamp_last_tick;
224 task_t *curr, *idle;
225 struct mm_struct *prev_mm;
226 prio_array_t *active, *expired, arrays[2];
227 int best_expired_prio;
228 atomic_t nr_iowait;
229
230#ifdef CONFIG_SMP
231 struct sched_domain *sd;
232
233 /* For active balancing */
234 int active_balance;
235 int push_cpu;
236
237 task_t *migration_thread;
238 struct list_head migration_queue;
239#endif
240
241#ifdef CONFIG_SCHEDSTATS
242 /* latency stats */
243 struct sched_info rq_sched_info;
244
245 /* sys_sched_yield() stats */
246 unsigned long yld_exp_empty;
247 unsigned long yld_act_empty;
248 unsigned long yld_both_empty;
249 unsigned long yld_cnt;
250
251 /* schedule() stats */
252 unsigned long sched_switch;
253 unsigned long sched_cnt;
254 unsigned long sched_goidle;
255
256 /* try_to_wake_up() stats */
257 unsigned long ttwu_cnt;
258 unsigned long ttwu_local;
259#endif
260};
261
262static DEFINE_PER_CPU(struct runqueue, runqueues);
263
674311d5
NP
264/*
265 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 266 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
267 *
268 * The domain tree of any CPU may only be accessed from within
269 * preempt-disabled sections.
270 */
1da177e4 271#define for_each_domain(cpu, domain) \
674311d5 272for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
1da177e4
LT
273
274#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
275#define this_rq() (&__get_cpu_var(runqueues))
276#define task_rq(p) cpu_rq(task_cpu(p))
277#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
278
1da177e4 279#ifndef prepare_arch_switch
4866cde0
NP
280# define prepare_arch_switch(next) do { } while (0)
281#endif
282#ifndef finish_arch_switch
283# define finish_arch_switch(prev) do { } while (0)
284#endif
285
286#ifndef __ARCH_WANT_UNLOCKED_CTXSW
287static inline int task_running(runqueue_t *rq, task_t *p)
288{
289 return rq->curr == p;
290}
291
292static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
293{
294}
295
296static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
297{
da04c035
IM
298#ifdef CONFIG_DEBUG_SPINLOCK
299 /* this is a valid case when another task releases the spinlock */
300 rq->lock.owner = current;
301#endif
4866cde0
NP
302 spin_unlock_irq(&rq->lock);
303}
304
305#else /* __ARCH_WANT_UNLOCKED_CTXSW */
306static inline int task_running(runqueue_t *rq, task_t *p)
307{
308#ifdef CONFIG_SMP
309 return p->oncpu;
310#else
311 return rq->curr == p;
312#endif
313}
314
315static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
316{
317#ifdef CONFIG_SMP
318 /*
319 * We can optimise this out completely for !SMP, because the
320 * SMP rebalancing from interrupt is the only thing that cares
321 * here.
322 */
323 next->oncpu = 1;
324#endif
325#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
326 spin_unlock_irq(&rq->lock);
327#else
328 spin_unlock(&rq->lock);
329#endif
330}
331
332static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
333{
334#ifdef CONFIG_SMP
335 /*
336 * After ->oncpu is cleared, the task can be moved to a different CPU.
337 * We must ensure this doesn't happen until the switch is completely
338 * finished.
339 */
340 smp_wmb();
341 prev->oncpu = 0;
342#endif
343#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
344 local_irq_enable();
1da177e4 345#endif
4866cde0
NP
346}
347#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4
LT
348
349/*
350 * task_rq_lock - lock the runqueue a given task resides on and disable
351 * interrupts. Note the ordering: we can safely lookup the task_rq without
352 * explicitly disabling preemption.
353 */
354static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
355 __acquires(rq->lock)
356{
357 struct runqueue *rq;
358
359repeat_lock_task:
360 local_irq_save(*flags);
361 rq = task_rq(p);
362 spin_lock(&rq->lock);
363 if (unlikely(rq != task_rq(p))) {
364 spin_unlock_irqrestore(&rq->lock, *flags);
365 goto repeat_lock_task;
366 }
367 return rq;
368}
369
370static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
371 __releases(rq->lock)
372{
373 spin_unlock_irqrestore(&rq->lock, *flags);
374}
375
376#ifdef CONFIG_SCHEDSTATS
377/*
378 * bump this up when changing the output format or the meaning of an existing
379 * format, so that tools can adapt (or abort)
380 */
68767a0a 381#define SCHEDSTAT_VERSION 12
1da177e4
LT
382
383static int show_schedstat(struct seq_file *seq, void *v)
384{
385 int cpu;
386
387 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
388 seq_printf(seq, "timestamp %lu\n", jiffies);
389 for_each_online_cpu(cpu) {
390 runqueue_t *rq = cpu_rq(cpu);
391#ifdef CONFIG_SMP
392 struct sched_domain *sd;
393 int dcnt = 0;
394#endif
395
396 /* runqueue-specific stats */
397 seq_printf(seq,
398 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
399 cpu, rq->yld_both_empty,
400 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
401 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
402 rq->ttwu_cnt, rq->ttwu_local,
403 rq->rq_sched_info.cpu_time,
404 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
405
406 seq_printf(seq, "\n");
407
408#ifdef CONFIG_SMP
409 /* domain-specific stats */
674311d5 410 preempt_disable();
1da177e4
LT
411 for_each_domain(cpu, sd) {
412 enum idle_type itype;
413 char mask_str[NR_CPUS];
414
415 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
416 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
417 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
418 itype++) {
419 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
420 sd->lb_cnt[itype],
421 sd->lb_balanced[itype],
422 sd->lb_failed[itype],
423 sd->lb_imbalance[itype],
424 sd->lb_gained[itype],
425 sd->lb_hot_gained[itype],
426 sd->lb_nobusyq[itype],
427 sd->lb_nobusyg[itype]);
428 }
68767a0a 429 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
1da177e4 430 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
68767a0a
NP
431 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
432 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
1da177e4
LT
433 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
434 }
674311d5 435 preempt_enable();
1da177e4
LT
436#endif
437 }
438 return 0;
439}
440
441static int schedstat_open(struct inode *inode, struct file *file)
442{
443 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
444 char *buf = kmalloc(size, GFP_KERNEL);
445 struct seq_file *m;
446 int res;
447
448 if (!buf)
449 return -ENOMEM;
450 res = single_open(file, show_schedstat, NULL);
451 if (!res) {
452 m = file->private_data;
453 m->buf = buf;
454 m->size = size;
455 } else
456 kfree(buf);
457 return res;
458}
459
460struct file_operations proc_schedstat_operations = {
461 .open = schedstat_open,
462 .read = seq_read,
463 .llseek = seq_lseek,
464 .release = single_release,
465};
466
467# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
468# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
469#else /* !CONFIG_SCHEDSTATS */
470# define schedstat_inc(rq, field) do { } while (0)
471# define schedstat_add(rq, field, amt) do { } while (0)
472#endif
473
474/*
475 * rq_lock - lock a given runqueue and disable interrupts.
476 */
477static inline runqueue_t *this_rq_lock(void)
478 __acquires(rq->lock)
479{
480 runqueue_t *rq;
481
482 local_irq_disable();
483 rq = this_rq();
484 spin_lock(&rq->lock);
485
486 return rq;
487}
488
1da177e4
LT
489#ifdef CONFIG_SCHEDSTATS
490/*
491 * Called when a process is dequeued from the active array and given
492 * the cpu. We should note that with the exception of interactive
493 * tasks, the expired queue will become the active queue after the active
494 * queue is empty, without explicitly dequeuing and requeuing tasks in the
495 * expired queue. (Interactive tasks may be requeued directly to the
496 * active queue, thus delaying tasks in the expired queue from running;
497 * see scheduler_tick()).
498 *
499 * This function is only called from sched_info_arrive(), rather than
500 * dequeue_task(). Even though a task may be queued and dequeued multiple
501 * times as it is shuffled about, we're really interested in knowing how
502 * long it was from the *first* time it was queued to the time that it
503 * finally hit a cpu.
504 */
505static inline void sched_info_dequeued(task_t *t)
506{
507 t->sched_info.last_queued = 0;
508}
509
510/*
511 * Called when a task finally hits the cpu. We can now calculate how
512 * long it was waiting to run. We also note when it began so that we
513 * can keep stats on how long its timeslice is.
514 */
515static inline void sched_info_arrive(task_t *t)
516{
517 unsigned long now = jiffies, diff = 0;
518 struct runqueue *rq = task_rq(t);
519
520 if (t->sched_info.last_queued)
521 diff = now - t->sched_info.last_queued;
522 sched_info_dequeued(t);
523 t->sched_info.run_delay += diff;
524 t->sched_info.last_arrival = now;
525 t->sched_info.pcnt++;
526
527 if (!rq)
528 return;
529
530 rq->rq_sched_info.run_delay += diff;
531 rq->rq_sched_info.pcnt++;
532}
533
534/*
535 * Called when a process is queued into either the active or expired
536 * array. The time is noted and later used to determine how long we
537 * had to wait for us to reach the cpu. Since the expired queue will
538 * become the active queue after active queue is empty, without dequeuing
539 * and requeuing any tasks, we are interested in queuing to either. It
540 * is unusual but not impossible for tasks to be dequeued and immediately
541 * requeued in the same or another array: this can happen in sched_yield(),
542 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
543 * to runqueue.
544 *
545 * This function is only called from enqueue_task(), but also only updates
546 * the timestamp if it is already not set. It's assumed that
547 * sched_info_dequeued() will clear that stamp when appropriate.
548 */
549static inline void sched_info_queued(task_t *t)
550{
551 if (!t->sched_info.last_queued)
552 t->sched_info.last_queued = jiffies;
553}
554
555/*
556 * Called when a process ceases being the active-running process, either
557 * voluntarily or involuntarily. Now we can calculate how long we ran.
558 */
559static inline void sched_info_depart(task_t *t)
560{
561 struct runqueue *rq = task_rq(t);
562 unsigned long diff = jiffies - t->sched_info.last_arrival;
563
564 t->sched_info.cpu_time += diff;
565
566 if (rq)
567 rq->rq_sched_info.cpu_time += diff;
568}
569
570/*
571 * Called when tasks are switched involuntarily due, typically, to expiring
572 * their time slice. (This may also be called when switching to or from
573 * the idle task.) We are only called when prev != next.
574 */
575static inline void sched_info_switch(task_t *prev, task_t *next)
576{
577 struct runqueue *rq = task_rq(prev);
578
579 /*
580 * prev now departs the cpu. It's not interesting to record
581 * stats about how efficient we were at scheduling the idle
582 * process, however.
583 */
584 if (prev != rq->idle)
585 sched_info_depart(prev);
586
587 if (next != rq->idle)
588 sched_info_arrive(next);
589}
590#else
591#define sched_info_queued(t) do { } while (0)
592#define sched_info_switch(t, next) do { } while (0)
593#endif /* CONFIG_SCHEDSTATS */
594
595/*
596 * Adding/removing a task to/from a priority array:
597 */
598static void dequeue_task(struct task_struct *p, prio_array_t *array)
599{
600 array->nr_active--;
601 list_del(&p->run_list);
602 if (list_empty(array->queue + p->prio))
603 __clear_bit(p->prio, array->bitmap);
604}
605
606static void enqueue_task(struct task_struct *p, prio_array_t *array)
607{
608 sched_info_queued(p);
609 list_add_tail(&p->run_list, array->queue + p->prio);
610 __set_bit(p->prio, array->bitmap);
611 array->nr_active++;
612 p->array = array;
613}
614
615/*
616 * Put task to the end of the run list without the overhead of dequeue
617 * followed by enqueue.
618 */
619static void requeue_task(struct task_struct *p, prio_array_t *array)
620{
621 list_move_tail(&p->run_list, array->queue + p->prio);
622}
623
624static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
625{
626 list_add(&p->run_list, array->queue + p->prio);
627 __set_bit(p->prio, array->bitmap);
628 array->nr_active++;
629 p->array = array;
630}
631
632/*
633 * effective_prio - return the priority that is based on the static
634 * priority but is modified by bonuses/penalties.
635 *
636 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
637 * into the -5 ... 0 ... +5 bonus/penalty range.
638 *
639 * We use 25% of the full 0...39 priority range so that:
640 *
641 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
642 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
643 *
644 * Both properties are important to certain workloads.
645 */
646static int effective_prio(task_t *p)
647{
648 int bonus, prio;
649
650 if (rt_task(p))
651 return p->prio;
652
653 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
654
655 prio = p->static_prio - bonus;
656 if (prio < MAX_RT_PRIO)
657 prio = MAX_RT_PRIO;
658 if (prio > MAX_PRIO-1)
659 prio = MAX_PRIO-1;
660 return prio;
661}
662
b910472d 663#ifdef CONFIG_SMP
dad1c65c 664static inline void inc_prio_bias(runqueue_t *rq, int prio)
b910472d 665{
dad1c65c 666 rq->prio_bias += MAX_PRIO - prio;
b910472d
CK
667}
668
dad1c65c 669static inline void dec_prio_bias(runqueue_t *rq, int prio)
b910472d 670{
dad1c65c 671 rq->prio_bias -= MAX_PRIO - prio;
b910472d 672}
ede3d0fb
CK
673
674static inline void inc_nr_running(task_t *p, runqueue_t *rq)
675{
676 rq->nr_running++;
677 if (rt_task(p)) {
678 if (p != rq->migration_thread)
679 /*
680 * The migration thread does the actual balancing. Do
681 * not bias by its priority as the ultra high priority
682 * will skew balancing adversely.
683 */
684 inc_prio_bias(rq, p->prio);
685 } else
686 inc_prio_bias(rq, p->static_prio);
687}
688
689static inline void dec_nr_running(task_t *p, runqueue_t *rq)
690{
691 rq->nr_running--;
692 if (rt_task(p)) {
693 if (p != rq->migration_thread)
694 dec_prio_bias(rq, p->prio);
695 } else
696 dec_prio_bias(rq, p->static_prio);
697}
b910472d 698#else
dad1c65c 699static inline void inc_prio_bias(runqueue_t *rq, int prio)
b910472d
CK
700{
701}
702
dad1c65c 703static inline void dec_prio_bias(runqueue_t *rq, int prio)
b910472d
CK
704{
705}
b910472d
CK
706
707static inline void inc_nr_running(task_t *p, runqueue_t *rq)
708{
709 rq->nr_running++;
b910472d
CK
710}
711
712static inline void dec_nr_running(task_t *p, runqueue_t *rq)
713{
714 rq->nr_running--;
b910472d 715}
ede3d0fb 716#endif
b910472d 717
1da177e4
LT
718/*
719 * __activate_task - move a task to the runqueue.
720 */
721static inline void __activate_task(task_t *p, runqueue_t *rq)
722{
723 enqueue_task(p, rq->active);
b910472d 724 inc_nr_running(p, rq);
1da177e4
LT
725}
726
727/*
728 * __activate_idle_task - move idle task to the _front_ of runqueue.
729 */
730static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
731{
732 enqueue_task_head(p, rq->active);
b910472d 733 inc_nr_running(p, rq);
1da177e4
LT
734}
735
a3464a10 736static int recalc_task_prio(task_t *p, unsigned long long now)
1da177e4
LT
737{
738 /* Caller must always ensure 'now >= p->timestamp' */
739 unsigned long long __sleep_time = now - p->timestamp;
740 unsigned long sleep_time;
741
742 if (__sleep_time > NS_MAX_SLEEP_AVG)
743 sleep_time = NS_MAX_SLEEP_AVG;
744 else
745 sleep_time = (unsigned long)__sleep_time;
746
747 if (likely(sleep_time > 0)) {
748 /*
749 * User tasks that sleep a long time are categorised as
750 * idle and will get just interactive status to stay active &
751 * prevent them suddenly becoming cpu hogs and starving
752 * other processes.
753 */
754 if (p->mm && p->activated != -1 &&
755 sleep_time > INTERACTIVE_SLEEP(p)) {
756 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
757 DEF_TIMESLICE);
758 } else {
759 /*
760 * The lower the sleep avg a task has the more
761 * rapidly it will rise with sleep time.
762 */
763 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
764
765 /*
766 * Tasks waking from uninterruptible sleep are
767 * limited in their sleep_avg rise as they
768 * are likely to be waiting on I/O
769 */
770 if (p->activated == -1 && p->mm) {
771 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
772 sleep_time = 0;
773 else if (p->sleep_avg + sleep_time >=
774 INTERACTIVE_SLEEP(p)) {
775 p->sleep_avg = INTERACTIVE_SLEEP(p);
776 sleep_time = 0;
777 }
778 }
779
780 /*
781 * This code gives a bonus to interactive tasks.
782 *
783 * The boost works by updating the 'average sleep time'
784 * value here, based on ->timestamp. The more time a
785 * task spends sleeping, the higher the average gets -
786 * and the higher the priority boost gets as well.
787 */
788 p->sleep_avg += sleep_time;
789
790 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
791 p->sleep_avg = NS_MAX_SLEEP_AVG;
792 }
793 }
794
a3464a10 795 return effective_prio(p);
1da177e4
LT
796}
797
798/*
799 * activate_task - move a task to the runqueue and do priority recalculation
800 *
801 * Update all the scheduling statistics stuff. (sleep average
802 * calculation, priority modifiers, etc.)
803 */
804static void activate_task(task_t *p, runqueue_t *rq, int local)
805{
806 unsigned long long now;
807
808 now = sched_clock();
809#ifdef CONFIG_SMP
810 if (!local) {
811 /* Compensate for drifting sched_clock */
812 runqueue_t *this_rq = this_rq();
813 now = (now - this_rq->timestamp_last_tick)
814 + rq->timestamp_last_tick;
815 }
816#endif
817
a3464a10 818 p->prio = recalc_task_prio(p, now);
1da177e4
LT
819
820 /*
821 * This checks to make sure it's not an uninterruptible task
822 * that is now waking up.
823 */
824 if (!p->activated) {
825 /*
826 * Tasks which were woken up by interrupts (ie. hw events)
827 * are most likely of interactive nature. So we give them
828 * the credit of extending their sleep time to the period
829 * of time they spend on the runqueue, waiting for execution
830 * on a CPU, first time around:
831 */
832 if (in_interrupt())
833 p->activated = 2;
834 else {
835 /*
836 * Normal first-time wakeups get a credit too for
837 * on-runqueue time, but it will be weighted down:
838 */
839 p->activated = 1;
840 }
841 }
842 p->timestamp = now;
843
844 __activate_task(p, rq);
845}
846
847/*
848 * deactivate_task - remove a task from the runqueue.
849 */
850static void deactivate_task(struct task_struct *p, runqueue_t *rq)
851{
b910472d 852 dec_nr_running(p, rq);
1da177e4
LT
853 dequeue_task(p, p->array);
854 p->array = NULL;
855}
856
857/*
858 * resched_task - mark a task 'to be rescheduled now'.
859 *
860 * On UP this means the setting of the need_resched flag, on SMP it
861 * might also involve a cross-CPU call to trigger the scheduler on
862 * the target CPU.
863 */
864#ifdef CONFIG_SMP
865static void resched_task(task_t *p)
866{
64c7c8f8 867 int cpu;
1da177e4
LT
868
869 assert_spin_locked(&task_rq(p)->lock);
870
64c7c8f8
NP
871 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
872 return;
873
874 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1da177e4 875
64c7c8f8
NP
876 cpu = task_cpu(p);
877 if (cpu == smp_processor_id())
878 return;
879
880 /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
881 smp_mb();
882 if (!test_tsk_thread_flag(p, TIF_POLLING_NRFLAG))
883 smp_send_reschedule(cpu);
1da177e4
LT
884}
885#else
886static inline void resched_task(task_t *p)
887{
64c7c8f8 888 assert_spin_locked(&task_rq(p)->lock);
1da177e4
LT
889 set_tsk_need_resched(p);
890}
891#endif
892
893/**
894 * task_curr - is this task currently executing on a CPU?
895 * @p: the task in question.
896 */
897inline int task_curr(const task_t *p)
898{
899 return cpu_curr(task_cpu(p)) == p;
900}
901
902#ifdef CONFIG_SMP
1da177e4
LT
903typedef struct {
904 struct list_head list;
1da177e4 905
1da177e4
LT
906 task_t *task;
907 int dest_cpu;
908
1da177e4
LT
909 struct completion done;
910} migration_req_t;
911
912/*
913 * The task's runqueue lock must be held.
914 * Returns true if you have to wait for migration thread.
915 */
916static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
917{
918 runqueue_t *rq = task_rq(p);
919
920 /*
921 * If the task is not on a runqueue (and not running), then
922 * it is sufficient to simply update the task's cpu field.
923 */
924 if (!p->array && !task_running(rq, p)) {
925 set_task_cpu(p, dest_cpu);
926 return 0;
927 }
928
929 init_completion(&req->done);
1da177e4
LT
930 req->task = p;
931 req->dest_cpu = dest_cpu;
932 list_add(&req->list, &rq->migration_queue);
933 return 1;
934}
935
936/*
937 * wait_task_inactive - wait for a thread to unschedule.
938 *
939 * The caller must ensure that the task *will* unschedule sometime soon,
940 * else this function might spin for a *long* time. This function can't
941 * be called with interrupts off, or it may introduce deadlock with
942 * smp_call_function() if an IPI is sent by the same process we are
943 * waiting to become inactive.
944 */
95cdf3b7 945void wait_task_inactive(task_t *p)
1da177e4
LT
946{
947 unsigned long flags;
948 runqueue_t *rq;
949 int preempted;
950
951repeat:
952 rq = task_rq_lock(p, &flags);
953 /* Must be off runqueue entirely, not preempted. */
954 if (unlikely(p->array || task_running(rq, p))) {
955 /* If it's preempted, we yield. It could be a while. */
956 preempted = !task_running(rq, p);
957 task_rq_unlock(rq, &flags);
958 cpu_relax();
959 if (preempted)
960 yield();
961 goto repeat;
962 }
963 task_rq_unlock(rq, &flags);
964}
965
966/***
967 * kick_process - kick a running thread to enter/exit the kernel
968 * @p: the to-be-kicked thread
969 *
970 * Cause a process which is running on another CPU to enter
971 * kernel-mode, without any delay. (to get signals handled.)
972 *
973 * NOTE: this function doesnt have to take the runqueue lock,
974 * because all it wants to ensure is that the remote task enters
975 * the kernel. If the IPI races and the task has been migrated
976 * to another CPU then no harm is done and the purpose has been
977 * achieved as well.
978 */
979void kick_process(task_t *p)
980{
981 int cpu;
982
983 preempt_disable();
984 cpu = task_cpu(p);
985 if ((cpu != smp_processor_id()) && task_curr(p))
986 smp_send_reschedule(cpu);
987 preempt_enable();
988}
989
990/*
991 * Return a low guess at the load of a migration-source cpu.
992 *
993 * We want to under-estimate the load of migration sources, to
994 * balance conservatively.
995 */
b910472d 996static inline unsigned long __source_load(int cpu, int type, enum idle_type idle)
1da177e4
LT
997{
998 runqueue_t *rq = cpu_rq(cpu);
6dd4a85b 999 unsigned long running = rq->nr_running;
3b0bd9bc 1000 unsigned long source_load, cpu_load = rq->cpu_load[type-1],
6dd4a85b 1001 load_now = running * SCHED_LOAD_SCALE;
b910472d 1002
3b0bd9bc
CK
1003 if (type == 0)
1004 source_load = load_now;
1005 else
1006 source_load = min(cpu_load, load_now);
1007
6dd4a85b 1008 if (running > 1 || (idle == NOT_IDLE && running))
b910472d 1009 /*
3b0bd9bc
CK
1010 * If we are busy rebalancing the load is biased by
1011 * priority to create 'nice' support across cpus. When
1012 * idle rebalancing we should only bias the source_load if
1013 * there is more than one task running on that queue to
1014 * prevent idle rebalance from trying to pull tasks from a
1015 * queue with only one running task.
b910472d 1016 */
6dd4a85b 1017 source_load = source_load * rq->prio_bias / running;
b910472d 1018
3b0bd9bc 1019 return source_load;
b910472d
CK
1020}
1021
1022static inline unsigned long source_load(int cpu, int type)
1023{
1024 return __source_load(cpu, type, NOT_IDLE);
1da177e4
LT
1025}
1026
1027/*
1028 * Return a high guess at the load of a migration-target cpu
1029 */
b910472d 1030static inline unsigned long __target_load(int cpu, int type, enum idle_type idle)
1da177e4
LT
1031{
1032 runqueue_t *rq = cpu_rq(cpu);
6dd4a85b 1033 unsigned long running = rq->nr_running;
3b0bd9bc 1034 unsigned long target_load, cpu_load = rq->cpu_load[type-1],
6dd4a85b 1035 load_now = running * SCHED_LOAD_SCALE;
b910472d 1036
7897986b 1037 if (type == 0)
3b0bd9bc
CK
1038 target_load = load_now;
1039 else
1040 target_load = max(cpu_load, load_now);
1da177e4 1041
6dd4a85b
CK
1042 if (running > 1 || (idle == NOT_IDLE && running))
1043 target_load = target_load * rq->prio_bias / running;
3b0bd9bc
CK
1044
1045 return target_load;
b910472d
CK
1046}
1047
1048static inline unsigned long target_load(int cpu, int type)
1049{
1050 return __target_load(cpu, type, NOT_IDLE);
1da177e4
LT
1051}
1052
147cbb4b
NP
1053/*
1054 * find_idlest_group finds and returns the least busy CPU group within the
1055 * domain.
1056 */
1057static struct sched_group *
1058find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1059{
1060 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1061 unsigned long min_load = ULONG_MAX, this_load = 0;
1062 int load_idx = sd->forkexec_idx;
1063 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1064
1065 do {
1066 unsigned long load, avg_load;
1067 int local_group;
1068 int i;
1069
da5a5522
BD
1070 /* Skip over this group if it has no CPUs allowed */
1071 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1072 goto nextgroup;
1073
147cbb4b 1074 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1075
1076 /* Tally up the load of all CPUs in the group */
1077 avg_load = 0;
1078
1079 for_each_cpu_mask(i, group->cpumask) {
1080 /* Bias balancing toward cpus of our domain */
1081 if (local_group)
1082 load = source_load(i, load_idx);
1083 else
1084 load = target_load(i, load_idx);
1085
1086 avg_load += load;
1087 }
1088
1089 /* Adjust by relative CPU power of the group */
1090 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1091
1092 if (local_group) {
1093 this_load = avg_load;
1094 this = group;
1095 } else if (avg_load < min_load) {
1096 min_load = avg_load;
1097 idlest = group;
1098 }
da5a5522 1099nextgroup:
147cbb4b
NP
1100 group = group->next;
1101 } while (group != sd->groups);
1102
1103 if (!idlest || 100*this_load < imbalance*min_load)
1104 return NULL;
1105 return idlest;
1106}
1107
1108/*
1109 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1110 */
95cdf3b7
IM
1111static int
1112find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1113{
da5a5522 1114 cpumask_t tmp;
147cbb4b
NP
1115 unsigned long load, min_load = ULONG_MAX;
1116 int idlest = -1;
1117 int i;
1118
da5a5522
BD
1119 /* Traverse only the allowed CPUs */
1120 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1121
1122 for_each_cpu_mask(i, tmp) {
147cbb4b
NP
1123 load = source_load(i, 0);
1124
1125 if (load < min_load || (load == min_load && i == this_cpu)) {
1126 min_load = load;
1127 idlest = i;
1128 }
1129 }
1130
1131 return idlest;
1132}
1133
476d139c
NP
1134/*
1135 * sched_balance_self: balance the current task (running on cpu) in domains
1136 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1137 * SD_BALANCE_EXEC.
1138 *
1139 * Balance, ie. select the least loaded group.
1140 *
1141 * Returns the target CPU number, or the same CPU if no balancing is needed.
1142 *
1143 * preempt must be disabled.
1144 */
1145static int sched_balance_self(int cpu, int flag)
1146{
1147 struct task_struct *t = current;
1148 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1149
476d139c
NP
1150 for_each_domain(cpu, tmp)
1151 if (tmp->flags & flag)
1152 sd = tmp;
1153
1154 while (sd) {
1155 cpumask_t span;
1156 struct sched_group *group;
1157 int new_cpu;
1158 int weight;
1159
1160 span = sd->span;
1161 group = find_idlest_group(sd, t, cpu);
1162 if (!group)
1163 goto nextlevel;
1164
da5a5522 1165 new_cpu = find_idlest_cpu(group, t, cpu);
476d139c
NP
1166 if (new_cpu == -1 || new_cpu == cpu)
1167 goto nextlevel;
1168
1169 /* Now try balancing at a lower domain level */
1170 cpu = new_cpu;
1171nextlevel:
1172 sd = NULL;
1173 weight = cpus_weight(span);
1174 for_each_domain(cpu, tmp) {
1175 if (weight <= cpus_weight(tmp->span))
1176 break;
1177 if (tmp->flags & flag)
1178 sd = tmp;
1179 }
1180 /* while loop will break here if sd == NULL */
1181 }
1182
1183 return cpu;
1184}
1185
1186#endif /* CONFIG_SMP */
1da177e4
LT
1187
1188/*
1189 * wake_idle() will wake a task on an idle cpu if task->cpu is
1190 * not idle and an idle cpu is available. The span of cpus to
1191 * search starts with cpus closest then further out as needed,
1192 * so we always favor a closer, idle cpu.
1193 *
1194 * Returns the CPU we should wake onto.
1195 */
1196#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1197static int wake_idle(int cpu, task_t *p)
1198{
1199 cpumask_t tmp;
1200 struct sched_domain *sd;
1201 int i;
1202
1203 if (idle_cpu(cpu))
1204 return cpu;
1205
1206 for_each_domain(cpu, sd) {
1207 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1208 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1209 for_each_cpu_mask(i, tmp) {
1210 if (idle_cpu(i))
1211 return i;
1212 }
1213 }
e0f364f4
NP
1214 else
1215 break;
1da177e4
LT
1216 }
1217 return cpu;
1218}
1219#else
1220static inline int wake_idle(int cpu, task_t *p)
1221{
1222 return cpu;
1223}
1224#endif
1225
1226/***
1227 * try_to_wake_up - wake up a thread
1228 * @p: the to-be-woken-up thread
1229 * @state: the mask of task states that can be woken
1230 * @sync: do a synchronous wakeup?
1231 *
1232 * Put it on the run-queue if it's not already there. The "current"
1233 * thread is always on the run-queue (except when the actual
1234 * re-schedule is in progress), and as such you're allowed to do
1235 * the simpler "current->state = TASK_RUNNING" to mark yourself
1236 * runnable without the overhead of this.
1237 *
1238 * returns failure only if the task is already active.
1239 */
95cdf3b7 1240static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1da177e4
LT
1241{
1242 int cpu, this_cpu, success = 0;
1243 unsigned long flags;
1244 long old_state;
1245 runqueue_t *rq;
1246#ifdef CONFIG_SMP
1247 unsigned long load, this_load;
7897986b 1248 struct sched_domain *sd, *this_sd = NULL;
1da177e4
LT
1249 int new_cpu;
1250#endif
1251
1252 rq = task_rq_lock(p, &flags);
1253 old_state = p->state;
1254 if (!(old_state & state))
1255 goto out;
1256
1257 if (p->array)
1258 goto out_running;
1259
1260 cpu = task_cpu(p);
1261 this_cpu = smp_processor_id();
1262
1263#ifdef CONFIG_SMP
1264 if (unlikely(task_running(rq, p)))
1265 goto out_activate;
1266
7897986b
NP
1267 new_cpu = cpu;
1268
1da177e4
LT
1269 schedstat_inc(rq, ttwu_cnt);
1270 if (cpu == this_cpu) {
1271 schedstat_inc(rq, ttwu_local);
7897986b
NP
1272 goto out_set_cpu;
1273 }
1274
1275 for_each_domain(this_cpu, sd) {
1276 if (cpu_isset(cpu, sd->span)) {
1277 schedstat_inc(sd, ttwu_wake_remote);
1278 this_sd = sd;
1279 break;
1da177e4
LT
1280 }
1281 }
1da177e4 1282
7897986b 1283 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1284 goto out_set_cpu;
1285
1da177e4 1286 /*
7897986b 1287 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1288 */
7897986b
NP
1289 if (this_sd) {
1290 int idx = this_sd->wake_idx;
1291 unsigned int imbalance;
1da177e4 1292
a3f21bce
NP
1293 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1294
7897986b
NP
1295 load = source_load(cpu, idx);
1296 this_load = target_load(this_cpu, idx);
1da177e4 1297
7897986b
NP
1298 new_cpu = this_cpu; /* Wake to this CPU if we can */
1299
a3f21bce
NP
1300 if (this_sd->flags & SD_WAKE_AFFINE) {
1301 unsigned long tl = this_load;
1da177e4 1302 /*
a3f21bce
NP
1303 * If sync wakeup then subtract the (maximum possible)
1304 * effect of the currently running task from the load
1305 * of the current CPU:
1da177e4 1306 */
a3f21bce
NP
1307 if (sync)
1308 tl -= SCHED_LOAD_SCALE;
1309
1310 if ((tl <= load &&
1311 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1312 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1313 /*
1314 * This domain has SD_WAKE_AFFINE and
1315 * p is cache cold in this domain, and
1316 * there is no bad imbalance.
1317 */
1318 schedstat_inc(this_sd, ttwu_move_affine);
1319 goto out_set_cpu;
1320 }
1321 }
1322
1323 /*
1324 * Start passive balancing when half the imbalance_pct
1325 * limit is reached.
1326 */
1327 if (this_sd->flags & SD_WAKE_BALANCE) {
1328 if (imbalance*this_load <= 100*load) {
1329 schedstat_inc(this_sd, ttwu_move_balance);
1330 goto out_set_cpu;
1331 }
1da177e4
LT
1332 }
1333 }
1334
1335 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1336out_set_cpu:
1337 new_cpu = wake_idle(new_cpu, p);
1338 if (new_cpu != cpu) {
1339 set_task_cpu(p, new_cpu);
1340 task_rq_unlock(rq, &flags);
1341 /* might preempt at this point */
1342 rq = task_rq_lock(p, &flags);
1343 old_state = p->state;
1344 if (!(old_state & state))
1345 goto out;
1346 if (p->array)
1347 goto out_running;
1348
1349 this_cpu = smp_processor_id();
1350 cpu = task_cpu(p);
1351 }
1352
1353out_activate:
1354#endif /* CONFIG_SMP */
1355 if (old_state == TASK_UNINTERRUPTIBLE) {
1356 rq->nr_uninterruptible--;
1357 /*
1358 * Tasks on involuntary sleep don't earn
1359 * sleep_avg beyond just interactive state.
1360 */
1361 p->activated = -1;
1362 }
1363
d79fc0fc
IM
1364 /*
1365 * Tasks that have marked their sleep as noninteractive get
1366 * woken up without updating their sleep average. (i.e. their
1367 * sleep is handled in a priority-neutral manner, no priority
1368 * boost and no penalty.)
1369 */
1370 if (old_state & TASK_NONINTERACTIVE)
1371 __activate_task(p, rq);
1372 else
1373 activate_task(p, rq, cpu == this_cpu);
1da177e4
LT
1374 /*
1375 * Sync wakeups (i.e. those types of wakeups where the waker
1376 * has indicated that it will leave the CPU in short order)
1377 * don't trigger a preemption, if the woken up task will run on
1378 * this cpu. (in this case the 'I will reschedule' promise of
1379 * the waker guarantees that the freshly woken up task is going
1380 * to be considered on this CPU.)
1381 */
1da177e4
LT
1382 if (!sync || cpu != this_cpu) {
1383 if (TASK_PREEMPTS_CURR(p, rq))
1384 resched_task(rq->curr);
1385 }
1386 success = 1;
1387
1388out_running:
1389 p->state = TASK_RUNNING;
1390out:
1391 task_rq_unlock(rq, &flags);
1392
1393 return success;
1394}
1395
95cdf3b7 1396int fastcall wake_up_process(task_t *p)
1da177e4
LT
1397{
1398 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1399 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1400}
1401
1402EXPORT_SYMBOL(wake_up_process);
1403
1404int fastcall wake_up_state(task_t *p, unsigned int state)
1405{
1406 return try_to_wake_up(p, state, 0);
1407}
1408
1da177e4
LT
1409/*
1410 * Perform scheduler related setup for a newly forked process p.
1411 * p is forked by current.
1412 */
476d139c 1413void fastcall sched_fork(task_t *p, int clone_flags)
1da177e4 1414{
476d139c
NP
1415 int cpu = get_cpu();
1416
1417#ifdef CONFIG_SMP
1418 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1419#endif
1420 set_task_cpu(p, cpu);
1421
1da177e4
LT
1422 /*
1423 * We mark the process as running here, but have not actually
1424 * inserted it onto the runqueue yet. This guarantees that
1425 * nobody will actually run it, and a signal or other external
1426 * event cannot wake it up and insert it on the runqueue either.
1427 */
1428 p->state = TASK_RUNNING;
1429 INIT_LIST_HEAD(&p->run_list);
1430 p->array = NULL;
1da177e4
LT
1431#ifdef CONFIG_SCHEDSTATS
1432 memset(&p->sched_info, 0, sizeof(p->sched_info));
1433#endif
4866cde0
NP
1434#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1435 p->oncpu = 0;
1436#endif
1da177e4 1437#ifdef CONFIG_PREEMPT
4866cde0 1438 /* Want to start with kernel preemption disabled. */
1da177e4
LT
1439 p->thread_info->preempt_count = 1;
1440#endif
1441 /*
1442 * Share the timeslice between parent and child, thus the
1443 * total amount of pending timeslices in the system doesn't change,
1444 * resulting in more scheduling fairness.
1445 */
1446 local_irq_disable();
1447 p->time_slice = (current->time_slice + 1) >> 1;
1448 /*
1449 * The remainder of the first timeslice might be recovered by
1450 * the parent if the child exits early enough.
1451 */
1452 p->first_time_slice = 1;
1453 current->time_slice >>= 1;
1454 p->timestamp = sched_clock();
1455 if (unlikely(!current->time_slice)) {
1456 /*
1457 * This case is rare, it happens when the parent has only
1458 * a single jiffy left from its timeslice. Taking the
1459 * runqueue lock is not a problem.
1460 */
1461 current->time_slice = 1;
1da177e4 1462 scheduler_tick();
476d139c
NP
1463 }
1464 local_irq_enable();
1465 put_cpu();
1da177e4
LT
1466}
1467
1468/*
1469 * wake_up_new_task - wake up a newly created task for the first time.
1470 *
1471 * This function will do some initial scheduler statistics housekeeping
1472 * that must be done for every newly created context, then puts the task
1473 * on the runqueue and wakes it.
1474 */
95cdf3b7 1475void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1da177e4
LT
1476{
1477 unsigned long flags;
1478 int this_cpu, cpu;
1479 runqueue_t *rq, *this_rq;
1480
1481 rq = task_rq_lock(p, &flags);
147cbb4b 1482 BUG_ON(p->state != TASK_RUNNING);
1da177e4 1483 this_cpu = smp_processor_id();
147cbb4b 1484 cpu = task_cpu(p);
1da177e4 1485
1da177e4
LT
1486 /*
1487 * We decrease the sleep average of forking parents
1488 * and children as well, to keep max-interactive tasks
1489 * from forking tasks that are max-interactive. The parent
1490 * (current) is done further down, under its lock.
1491 */
1492 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1493 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1494
1495 p->prio = effective_prio(p);
1496
1497 if (likely(cpu == this_cpu)) {
1498 if (!(clone_flags & CLONE_VM)) {
1499 /*
1500 * The VM isn't cloned, so we're in a good position to
1501 * do child-runs-first in anticipation of an exec. This
1502 * usually avoids a lot of COW overhead.
1503 */
1504 if (unlikely(!current->array))
1505 __activate_task(p, rq);
1506 else {
1507 p->prio = current->prio;
1508 list_add_tail(&p->run_list, &current->run_list);
1509 p->array = current->array;
1510 p->array->nr_active++;
b910472d 1511 inc_nr_running(p, rq);
1da177e4
LT
1512 }
1513 set_need_resched();
1514 } else
1515 /* Run child last */
1516 __activate_task(p, rq);
1517 /*
1518 * We skip the following code due to cpu == this_cpu
1519 *
1520 * task_rq_unlock(rq, &flags);
1521 * this_rq = task_rq_lock(current, &flags);
1522 */
1523 this_rq = rq;
1524 } else {
1525 this_rq = cpu_rq(this_cpu);
1526
1527 /*
1528 * Not the local CPU - must adjust timestamp. This should
1529 * get optimised away in the !CONFIG_SMP case.
1530 */
1531 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1532 + rq->timestamp_last_tick;
1533 __activate_task(p, rq);
1534 if (TASK_PREEMPTS_CURR(p, rq))
1535 resched_task(rq->curr);
1536
1537 /*
1538 * Parent and child are on different CPUs, now get the
1539 * parent runqueue to update the parent's ->sleep_avg:
1540 */
1541 task_rq_unlock(rq, &flags);
1542 this_rq = task_rq_lock(current, &flags);
1543 }
1544 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1545 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1546 task_rq_unlock(this_rq, &flags);
1547}
1548
1549/*
1550 * Potentially available exiting-child timeslices are
1551 * retrieved here - this way the parent does not get
1552 * penalized for creating too many threads.
1553 *
1554 * (this cannot be used to 'generate' timeslices
1555 * artificially, because any timeslice recovered here
1556 * was given away by the parent in the first place.)
1557 */
95cdf3b7 1558void fastcall sched_exit(task_t *p)
1da177e4
LT
1559{
1560 unsigned long flags;
1561 runqueue_t *rq;
1562
1563 /*
1564 * If the child was a (relative-) CPU hog then decrease
1565 * the sleep_avg of the parent as well.
1566 */
1567 rq = task_rq_lock(p->parent, &flags);
889dfafe 1568 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1da177e4
LT
1569 p->parent->time_slice += p->time_slice;
1570 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1571 p->parent->time_slice = task_timeslice(p);
1572 }
1573 if (p->sleep_avg < p->parent->sleep_avg)
1574 p->parent->sleep_avg = p->parent->sleep_avg /
1575 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1576 (EXIT_WEIGHT + 1);
1577 task_rq_unlock(rq, &flags);
1578}
1579
4866cde0
NP
1580/**
1581 * prepare_task_switch - prepare to switch tasks
1582 * @rq: the runqueue preparing to switch
1583 * @next: the task we are going to switch to.
1584 *
1585 * This is called with the rq lock held and interrupts off. It must
1586 * be paired with a subsequent finish_task_switch after the context
1587 * switch.
1588 *
1589 * prepare_task_switch sets up locking and calls architecture specific
1590 * hooks.
1591 */
1592static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1593{
1594 prepare_lock_switch(rq, next);
1595 prepare_arch_switch(next);
1596}
1597
1da177e4
LT
1598/**
1599 * finish_task_switch - clean up after a task-switch
344babaa 1600 * @rq: runqueue associated with task-switch
1da177e4
LT
1601 * @prev: the thread we just switched away from.
1602 *
4866cde0
NP
1603 * finish_task_switch must be called after the context switch, paired
1604 * with a prepare_task_switch call before the context switch.
1605 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1606 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1607 *
1608 * Note that we may have delayed dropping an mm in context_switch(). If
1609 * so, we finish that here outside of the runqueue lock. (Doing it
1610 * with the lock held can cause deadlocks; see schedule() for
1611 * details.)
1612 */
4866cde0 1613static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1da177e4
LT
1614 __releases(rq->lock)
1615{
1da177e4
LT
1616 struct mm_struct *mm = rq->prev_mm;
1617 unsigned long prev_task_flags;
1618
1619 rq->prev_mm = NULL;
1620
1621 /*
1622 * A task struct has one reference for the use as "current".
1623 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1624 * calls schedule one last time. The schedule call will never return,
1625 * and the scheduled task must drop that reference.
1626 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1627 * still held, otherwise prev could be scheduled on another cpu, die
1628 * there before we look at prev->state, and then the reference would
1629 * be dropped twice.
1630 * Manfred Spraul <manfred@colorfullife.com>
1631 */
1632 prev_task_flags = prev->flags;
4866cde0
NP
1633 finish_arch_switch(prev);
1634 finish_lock_switch(rq, prev);
1da177e4
LT
1635 if (mm)
1636 mmdrop(mm);
1637 if (unlikely(prev_task_flags & PF_DEAD))
1638 put_task_struct(prev);
1639}
1640
1641/**
1642 * schedule_tail - first thing a freshly forked thread must call.
1643 * @prev: the thread we just switched away from.
1644 */
1645asmlinkage void schedule_tail(task_t *prev)
1646 __releases(rq->lock)
1647{
4866cde0
NP
1648 runqueue_t *rq = this_rq();
1649 finish_task_switch(rq, prev);
1650#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1651 /* In this case, finish_task_switch does not reenable preemption */
1652 preempt_enable();
1653#endif
1da177e4
LT
1654 if (current->set_child_tid)
1655 put_user(current->pid, current->set_child_tid);
1656}
1657
1658/*
1659 * context_switch - switch to the new MM and the new
1660 * thread's register state.
1661 */
1662static inline
1663task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1664{
1665 struct mm_struct *mm = next->mm;
1666 struct mm_struct *oldmm = prev->active_mm;
1667
1668 if (unlikely(!mm)) {
1669 next->active_mm = oldmm;
1670 atomic_inc(&oldmm->mm_count);
1671 enter_lazy_tlb(oldmm, next);
1672 } else
1673 switch_mm(oldmm, mm, next);
1674
1675 if (unlikely(!prev->mm)) {
1676 prev->active_mm = NULL;
1677 WARN_ON(rq->prev_mm);
1678 rq->prev_mm = oldmm;
1679 }
1680
1681 /* Here we just switch the register state and the stack. */
1682 switch_to(prev, next, prev);
1683
1684 return prev;
1685}
1686
1687/*
1688 * nr_running, nr_uninterruptible and nr_context_switches:
1689 *
1690 * externally visible scheduler statistics: current number of runnable
1691 * threads, current number of uninterruptible-sleeping threads, total
1692 * number of context switches performed since bootup.
1693 */
1694unsigned long nr_running(void)
1695{
1696 unsigned long i, sum = 0;
1697
1698 for_each_online_cpu(i)
1699 sum += cpu_rq(i)->nr_running;
1700
1701 return sum;
1702}
1703
1704unsigned long nr_uninterruptible(void)
1705{
1706 unsigned long i, sum = 0;
1707
1708 for_each_cpu(i)
1709 sum += cpu_rq(i)->nr_uninterruptible;
1710
1711 /*
1712 * Since we read the counters lockless, it might be slightly
1713 * inaccurate. Do not allow it to go below zero though:
1714 */
1715 if (unlikely((long)sum < 0))
1716 sum = 0;
1717
1718 return sum;
1719}
1720
1721unsigned long long nr_context_switches(void)
1722{
1723 unsigned long long i, sum = 0;
1724
1725 for_each_cpu(i)
1726 sum += cpu_rq(i)->nr_switches;
1727
1728 return sum;
1729}
1730
1731unsigned long nr_iowait(void)
1732{
1733 unsigned long i, sum = 0;
1734
1735 for_each_cpu(i)
1736 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1737
1738 return sum;
1739}
1740
1741#ifdef CONFIG_SMP
1742
1743/*
1744 * double_rq_lock - safely lock two runqueues
1745 *
1746 * Note this does not disable interrupts like task_rq_lock,
1747 * you need to do so manually before calling.
1748 */
1749static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1750 __acquires(rq1->lock)
1751 __acquires(rq2->lock)
1752{
1753 if (rq1 == rq2) {
1754 spin_lock(&rq1->lock);
1755 __acquire(rq2->lock); /* Fake it out ;) */
1756 } else {
1757 if (rq1 < rq2) {
1758 spin_lock(&rq1->lock);
1759 spin_lock(&rq2->lock);
1760 } else {
1761 spin_lock(&rq2->lock);
1762 spin_lock(&rq1->lock);
1763 }
1764 }
1765}
1766
1767/*
1768 * double_rq_unlock - safely unlock two runqueues
1769 *
1770 * Note this does not restore interrupts like task_rq_unlock,
1771 * you need to do so manually after calling.
1772 */
1773static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1774 __releases(rq1->lock)
1775 __releases(rq2->lock)
1776{
1777 spin_unlock(&rq1->lock);
1778 if (rq1 != rq2)
1779 spin_unlock(&rq2->lock);
1780 else
1781 __release(rq2->lock);
1782}
1783
1784/*
1785 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1786 */
1787static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1788 __releases(this_rq->lock)
1789 __acquires(busiest->lock)
1790 __acquires(this_rq->lock)
1791{
1792 if (unlikely(!spin_trylock(&busiest->lock))) {
1793 if (busiest < this_rq) {
1794 spin_unlock(&this_rq->lock);
1795 spin_lock(&busiest->lock);
1796 spin_lock(&this_rq->lock);
1797 } else
1798 spin_lock(&busiest->lock);
1799 }
1800}
1801
1da177e4
LT
1802/*
1803 * If dest_cpu is allowed for this process, migrate the task to it.
1804 * This is accomplished by forcing the cpu_allowed mask to only
1805 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1806 * the cpu_allowed mask is restored.
1807 */
1808static void sched_migrate_task(task_t *p, int dest_cpu)
1809{
1810 migration_req_t req;
1811 runqueue_t *rq;
1812 unsigned long flags;
1813
1814 rq = task_rq_lock(p, &flags);
1815 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1816 || unlikely(cpu_is_offline(dest_cpu)))
1817 goto out;
1818
1819 /* force the process onto the specified CPU */
1820 if (migrate_task(p, dest_cpu, &req)) {
1821 /* Need to wait for migration thread (might exit: take ref). */
1822 struct task_struct *mt = rq->migration_thread;
1823 get_task_struct(mt);
1824 task_rq_unlock(rq, &flags);
1825 wake_up_process(mt);
1826 put_task_struct(mt);
1827 wait_for_completion(&req.done);
1828 return;
1829 }
1830out:
1831 task_rq_unlock(rq, &flags);
1832}
1833
1834/*
476d139c
NP
1835 * sched_exec - execve() is a valuable balancing opportunity, because at
1836 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
1837 */
1838void sched_exec(void)
1839{
1da177e4 1840 int new_cpu, this_cpu = get_cpu();
476d139c 1841 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 1842 put_cpu();
476d139c
NP
1843 if (new_cpu != this_cpu)
1844 sched_migrate_task(current, new_cpu);
1da177e4
LT
1845}
1846
1847/*
1848 * pull_task - move a task from a remote runqueue to the local runqueue.
1849 * Both runqueues must be locked.
1850 */
1851static inline
1852void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1853 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1854{
1855 dequeue_task(p, src_array);
b910472d 1856 dec_nr_running(p, src_rq);
1da177e4 1857 set_task_cpu(p, this_cpu);
b910472d 1858 inc_nr_running(p, this_rq);
1da177e4
LT
1859 enqueue_task(p, this_array);
1860 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1861 + this_rq->timestamp_last_tick;
1862 /*
1863 * Note that idle threads have a prio of MAX_PRIO, for this test
1864 * to be always true for them.
1865 */
1866 if (TASK_PREEMPTS_CURR(p, this_rq))
1867 resched_task(this_rq->curr);
1868}
1869
1870/*
1871 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1872 */
1873static inline
1874int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
95cdf3b7
IM
1875 struct sched_domain *sd, enum idle_type idle,
1876 int *all_pinned)
1da177e4
LT
1877{
1878 /*
1879 * We do not migrate tasks that are:
1880 * 1) running (obviously), or
1881 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1882 * 3) are cache-hot on their current CPU.
1883 */
1da177e4
LT
1884 if (!cpu_isset(this_cpu, p->cpus_allowed))
1885 return 0;
81026794
NP
1886 *all_pinned = 0;
1887
1888 if (task_running(rq, p))
1889 return 0;
1da177e4
LT
1890
1891 /*
1892 * Aggressive migration if:
cafb20c1 1893 * 1) task is cache cold, or
1da177e4
LT
1894 * 2) too many balance attempts have failed.
1895 */
1896
cafb20c1 1897 if (sd->nr_balance_failed > sd->cache_nice_tries)
1da177e4
LT
1898 return 1;
1899
1900 if (task_hot(p, rq->timestamp_last_tick, sd))
81026794 1901 return 0;
1da177e4
LT
1902 return 1;
1903}
1904
1905/*
1906 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1907 * as part of a balancing operation within "domain". Returns the number of
1908 * tasks moved.
1909 *
1910 * Called with both runqueues locked.
1911 */
1912static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1913 unsigned long max_nr_move, struct sched_domain *sd,
81026794 1914 enum idle_type idle, int *all_pinned)
1da177e4
LT
1915{
1916 prio_array_t *array, *dst_array;
1917 struct list_head *head, *curr;
81026794 1918 int idx, pulled = 0, pinned = 0;
1da177e4
LT
1919 task_t *tmp;
1920
81026794 1921 if (max_nr_move == 0)
1da177e4
LT
1922 goto out;
1923
81026794
NP
1924 pinned = 1;
1925
1da177e4
LT
1926 /*
1927 * We first consider expired tasks. Those will likely not be
1928 * executed in the near future, and they are most likely to
1929 * be cache-cold, thus switching CPUs has the least effect
1930 * on them.
1931 */
1932 if (busiest->expired->nr_active) {
1933 array = busiest->expired;
1934 dst_array = this_rq->expired;
1935 } else {
1936 array = busiest->active;
1937 dst_array = this_rq->active;
1938 }
1939
1940new_array:
1941 /* Start searching at priority 0: */
1942 idx = 0;
1943skip_bitmap:
1944 if (!idx)
1945 idx = sched_find_first_bit(array->bitmap);
1946 else
1947 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1948 if (idx >= MAX_PRIO) {
1949 if (array == busiest->expired && busiest->active->nr_active) {
1950 array = busiest->active;
1951 dst_array = this_rq->active;
1952 goto new_array;
1953 }
1954 goto out;
1955 }
1956
1957 head = array->queue + idx;
1958 curr = head->prev;
1959skip_queue:
1960 tmp = list_entry(curr, task_t, run_list);
1961
1962 curr = curr->prev;
1963
81026794 1964 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1da177e4
LT
1965 if (curr != head)
1966 goto skip_queue;
1967 idx++;
1968 goto skip_bitmap;
1969 }
1970
1971#ifdef CONFIG_SCHEDSTATS
1972 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1973 schedstat_inc(sd, lb_hot_gained[idle]);
1974#endif
1975
1976 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1977 pulled++;
1978
1979 /* We only want to steal up to the prescribed number of tasks. */
1980 if (pulled < max_nr_move) {
1981 if (curr != head)
1982 goto skip_queue;
1983 idx++;
1984 goto skip_bitmap;
1985 }
1986out:
1987 /*
1988 * Right now, this is the only place pull_task() is called,
1989 * so we can safely collect pull_task() stats here rather than
1990 * inside pull_task().
1991 */
1992 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
1993
1994 if (all_pinned)
1995 *all_pinned = pinned;
1da177e4
LT
1996 return pulled;
1997}
1998
1999/*
2000 * find_busiest_group finds and returns the busiest CPU group within the
2001 * domain. It calculates and returns the number of tasks which should be
2002 * moved to restore balance via the imbalance parameter.
2003 */
2004static struct sched_group *
2005find_busiest_group(struct sched_domain *sd, int this_cpu,
5969fe06 2006 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1da177e4
LT
2007{
2008 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2009 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2010 unsigned long max_pull;
7897986b 2011 int load_idx;
1da177e4
LT
2012
2013 max_load = this_load = total_load = total_pwr = 0;
7897986b
NP
2014 if (idle == NOT_IDLE)
2015 load_idx = sd->busy_idx;
2016 else if (idle == NEWLY_IDLE)
2017 load_idx = sd->newidle_idx;
2018 else
2019 load_idx = sd->idle_idx;
1da177e4
LT
2020
2021 do {
2022 unsigned long load;
2023 int local_group;
2024 int i;
2025
2026 local_group = cpu_isset(this_cpu, group->cpumask);
2027
2028 /* Tally up the load of all CPUs in the group */
2029 avg_load = 0;
2030
2031 for_each_cpu_mask(i, group->cpumask) {
5969fe06
NP
2032 if (*sd_idle && !idle_cpu(i))
2033 *sd_idle = 0;
2034
1da177e4
LT
2035 /* Bias balancing toward cpus of our domain */
2036 if (local_group)
b910472d 2037 load = __target_load(i, load_idx, idle);
1da177e4 2038 else
b910472d 2039 load = __source_load(i, load_idx, idle);
1da177e4
LT
2040
2041 avg_load += load;
2042 }
2043
2044 total_load += avg_load;
2045 total_pwr += group->cpu_power;
2046
2047 /* Adjust by relative CPU power of the group */
2048 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2049
2050 if (local_group) {
2051 this_load = avg_load;
2052 this = group;
1da177e4
LT
2053 } else if (avg_load > max_load) {
2054 max_load = avg_load;
2055 busiest = group;
2056 }
1da177e4
LT
2057 group = group->next;
2058 } while (group != sd->groups);
2059
0c117f1b 2060 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
1da177e4
LT
2061 goto out_balanced;
2062
2063 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2064
2065 if (this_load >= avg_load ||
2066 100*max_load <= sd->imbalance_pct*this_load)
2067 goto out_balanced;
2068
2069 /*
2070 * We're trying to get all the cpus to the average_load, so we don't
2071 * want to push ourselves above the average load, nor do we wish to
2072 * reduce the max loaded cpu below the average load, as either of these
2073 * actions would just result in more rebalancing later, and ping-pong
2074 * tasks around. Thus we look for the minimum possible imbalance.
2075 * Negative imbalances (*we* are more loaded than anyone else) will
2076 * be counted as no imbalance for these purposes -- we can't fix that
2077 * by pulling tasks to us. Be careful of negative numbers as they'll
2078 * appear as very large values with unsigned longs.
2079 */
0c117f1b
SS
2080
2081 /* Don't want to pull so many tasks that a group would go idle */
2082 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2083
1da177e4 2084 /* How much load to actually move to equalise the imbalance */
0c117f1b 2085 *imbalance = min(max_pull * busiest->cpu_power,
1da177e4
LT
2086 (avg_load - this_load) * this->cpu_power)
2087 / SCHED_LOAD_SCALE;
2088
2089 if (*imbalance < SCHED_LOAD_SCALE) {
2090 unsigned long pwr_now = 0, pwr_move = 0;
2091 unsigned long tmp;
2092
2093 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2094 *imbalance = 1;
2095 return busiest;
2096 }
2097
2098 /*
2099 * OK, we don't have enough imbalance to justify moving tasks,
2100 * however we may be able to increase total CPU power used by
2101 * moving them.
2102 */
2103
2104 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2105 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2106 pwr_now /= SCHED_LOAD_SCALE;
2107
2108 /* Amount of load we'd subtract */
2109 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2110 if (max_load > tmp)
2111 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2112 max_load - tmp);
2113
2114 /* Amount of load we'd add */
2115 if (max_load*busiest->cpu_power <
2116 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2117 tmp = max_load*busiest->cpu_power/this->cpu_power;
2118 else
2119 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2120 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2121 pwr_move /= SCHED_LOAD_SCALE;
2122
2123 /* Move if we gain throughput */
2124 if (pwr_move <= pwr_now)
2125 goto out_balanced;
2126
2127 *imbalance = 1;
2128 return busiest;
2129 }
2130
2131 /* Get rid of the scaling factor, rounding down as we divide */
2132 *imbalance = *imbalance / SCHED_LOAD_SCALE;
1da177e4
LT
2133 return busiest;
2134
2135out_balanced:
1da177e4
LT
2136
2137 *imbalance = 0;
2138 return NULL;
2139}
2140
2141/*
2142 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2143 */
b910472d
CK
2144static runqueue_t *find_busiest_queue(struct sched_group *group,
2145 enum idle_type idle)
1da177e4
LT
2146{
2147 unsigned long load, max_load = 0;
2148 runqueue_t *busiest = NULL;
2149 int i;
2150
2151 for_each_cpu_mask(i, group->cpumask) {
b910472d 2152 load = __source_load(i, 0, idle);
1da177e4
LT
2153
2154 if (load > max_load) {
2155 max_load = load;
2156 busiest = cpu_rq(i);
2157 }
2158 }
2159
2160 return busiest;
2161}
2162
77391d71
NP
2163/*
2164 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2165 * so long as it is large enough.
2166 */
2167#define MAX_PINNED_INTERVAL 512
2168
1da177e4
LT
2169/*
2170 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2171 * tasks if there is an imbalance.
2172 *
2173 * Called with this_rq unlocked.
2174 */
2175static int load_balance(int this_cpu, runqueue_t *this_rq,
2176 struct sched_domain *sd, enum idle_type idle)
2177{
2178 struct sched_group *group;
2179 runqueue_t *busiest;
2180 unsigned long imbalance;
77391d71 2181 int nr_moved, all_pinned = 0;
81026794 2182 int active_balance = 0;
5969fe06
NP
2183 int sd_idle = 0;
2184
2185 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2186 sd_idle = 1;
1da177e4 2187
1da177e4
LT
2188 schedstat_inc(sd, lb_cnt[idle]);
2189
5969fe06 2190 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
1da177e4
LT
2191 if (!group) {
2192 schedstat_inc(sd, lb_nobusyg[idle]);
2193 goto out_balanced;
2194 }
2195
b910472d 2196 busiest = find_busiest_queue(group, idle);
1da177e4
LT
2197 if (!busiest) {
2198 schedstat_inc(sd, lb_nobusyq[idle]);
2199 goto out_balanced;
2200 }
2201
db935dbd 2202 BUG_ON(busiest == this_rq);
1da177e4
LT
2203
2204 schedstat_add(sd, lb_imbalance[idle], imbalance);
2205
2206 nr_moved = 0;
2207 if (busiest->nr_running > 1) {
2208 /*
2209 * Attempt to move tasks. If find_busiest_group has found
2210 * an imbalance but busiest->nr_running <= 1, the group is
2211 * still unbalanced. nr_moved simply stays zero, so it is
2212 * correctly treated as an imbalance.
2213 */
e17224bf 2214 double_rq_lock(this_rq, busiest);
1da177e4 2215 nr_moved = move_tasks(this_rq, this_cpu, busiest,
d6d5cfaf 2216 imbalance, sd, idle, &all_pinned);
e17224bf 2217 double_rq_unlock(this_rq, busiest);
81026794
NP
2218
2219 /* All tasks on this runqueue were pinned by CPU affinity */
2220 if (unlikely(all_pinned))
2221 goto out_balanced;
1da177e4 2222 }
81026794 2223
1da177e4
LT
2224 if (!nr_moved) {
2225 schedstat_inc(sd, lb_failed[idle]);
2226 sd->nr_balance_failed++;
2227
2228 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4
LT
2229
2230 spin_lock(&busiest->lock);
fa3b6ddc
SS
2231
2232 /* don't kick the migration_thread, if the curr
2233 * task on busiest cpu can't be moved to this_cpu
2234 */
2235 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2236 spin_unlock(&busiest->lock);
2237 all_pinned = 1;
2238 goto out_one_pinned;
2239 }
2240
1da177e4
LT
2241 if (!busiest->active_balance) {
2242 busiest->active_balance = 1;
2243 busiest->push_cpu = this_cpu;
81026794 2244 active_balance = 1;
1da177e4
LT
2245 }
2246 spin_unlock(&busiest->lock);
81026794 2247 if (active_balance)
1da177e4
LT
2248 wake_up_process(busiest->migration_thread);
2249
2250 /*
2251 * We've kicked active balancing, reset the failure
2252 * counter.
2253 */
39507451 2254 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2255 }
81026794 2256 } else
1da177e4
LT
2257 sd->nr_balance_failed = 0;
2258
81026794 2259 if (likely(!active_balance)) {
1da177e4
LT
2260 /* We were unbalanced, so reset the balancing interval */
2261 sd->balance_interval = sd->min_interval;
81026794
NP
2262 } else {
2263 /*
2264 * If we've begun active balancing, start to back off. This
2265 * case may not be covered by the all_pinned logic if there
2266 * is only 1 task on the busy runqueue (because we don't call
2267 * move_tasks).
2268 */
2269 if (sd->balance_interval < sd->max_interval)
2270 sd->balance_interval *= 2;
1da177e4
LT
2271 }
2272
5969fe06
NP
2273 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2274 return -1;
1da177e4
LT
2275 return nr_moved;
2276
2277out_balanced:
1da177e4
LT
2278 schedstat_inc(sd, lb_balanced[idle]);
2279
16cfb1c0 2280 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2281
2282out_one_pinned:
1da177e4 2283 /* tune up the balancing interval */
77391d71
NP
2284 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2285 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2286 sd->balance_interval *= 2;
2287
5969fe06
NP
2288 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2289 return -1;
1da177e4
LT
2290 return 0;
2291}
2292
2293/*
2294 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2295 * tasks if there is an imbalance.
2296 *
2297 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2298 * this_rq is locked.
2299 */
2300static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2301 struct sched_domain *sd)
2302{
2303 struct sched_group *group;
2304 runqueue_t *busiest = NULL;
2305 unsigned long imbalance;
2306 int nr_moved = 0;
5969fe06
NP
2307 int sd_idle = 0;
2308
2309 if (sd->flags & SD_SHARE_CPUPOWER)
2310 sd_idle = 1;
1da177e4
LT
2311
2312 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
5969fe06 2313 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
1da177e4 2314 if (!group) {
1da177e4 2315 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
16cfb1c0 2316 goto out_balanced;
1da177e4
LT
2317 }
2318
b910472d 2319 busiest = find_busiest_queue(group, NEWLY_IDLE);
db935dbd 2320 if (!busiest) {
1da177e4 2321 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
16cfb1c0 2322 goto out_balanced;
1da177e4
LT
2323 }
2324
db935dbd
NP
2325 BUG_ON(busiest == this_rq);
2326
1da177e4 2327 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
d6d5cfaf
NP
2328
2329 nr_moved = 0;
2330 if (busiest->nr_running > 1) {
2331 /* Attempt to move tasks */
2332 double_lock_balance(this_rq, busiest);
2333 nr_moved = move_tasks(this_rq, this_cpu, busiest,
81026794 2334 imbalance, sd, NEWLY_IDLE, NULL);
d6d5cfaf
NP
2335 spin_unlock(&busiest->lock);
2336 }
2337
5969fe06 2338 if (!nr_moved) {
1da177e4 2339 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
5969fe06
NP
2340 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2341 return -1;
2342 } else
16cfb1c0 2343 sd->nr_balance_failed = 0;
1da177e4 2344
1da177e4 2345 return nr_moved;
16cfb1c0
NP
2346
2347out_balanced:
2348 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
5969fe06
NP
2349 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2350 return -1;
16cfb1c0
NP
2351 sd->nr_balance_failed = 0;
2352 return 0;
1da177e4
LT
2353}
2354
2355/*
2356 * idle_balance is called by schedule() if this_cpu is about to become
2357 * idle. Attempts to pull tasks from other CPUs.
2358 */
2359static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2360{
2361 struct sched_domain *sd;
2362
2363 for_each_domain(this_cpu, sd) {
2364 if (sd->flags & SD_BALANCE_NEWIDLE) {
2365 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2366 /* We've pulled tasks over so stop searching */
2367 break;
2368 }
2369 }
2370 }
2371}
2372
2373/*
2374 * active_load_balance is run by migration threads. It pushes running tasks
2375 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2376 * running on each physical CPU where possible, and avoids physical /
2377 * logical imbalances.
2378 *
2379 * Called with busiest_rq locked.
2380 */
2381static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2382{
2383 struct sched_domain *sd;
1da177e4 2384 runqueue_t *target_rq;
39507451
NP
2385 int target_cpu = busiest_rq->push_cpu;
2386
2387 if (busiest_rq->nr_running <= 1)
2388 /* no task to move */
2389 return;
2390
2391 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2392
2393 /*
39507451
NP
2394 * This condition is "impossible", if it occurs
2395 * we need to fix it. Originally reported by
2396 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2397 */
39507451 2398 BUG_ON(busiest_rq == target_rq);
1da177e4 2399
39507451
NP
2400 /* move a task from busiest_rq to target_rq */
2401 double_lock_balance(busiest_rq, target_rq);
2402
2403 /* Search for an sd spanning us and the target CPU. */
2404 for_each_domain(target_cpu, sd)
2405 if ((sd->flags & SD_LOAD_BALANCE) &&
2406 cpu_isset(busiest_cpu, sd->span))
2407 break;
2408
2409 if (unlikely(sd == NULL))
2410 goto out;
2411
2412 schedstat_inc(sd, alb_cnt);
2413
2414 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2415 schedstat_inc(sd, alb_pushed);
2416 else
2417 schedstat_inc(sd, alb_failed);
2418out:
2419 spin_unlock(&target_rq->lock);
1da177e4
LT
2420}
2421
2422/*
2423 * rebalance_tick will get called every timer tick, on every CPU.
2424 *
2425 * It checks each scheduling domain to see if it is due to be balanced,
2426 * and initiates a balancing operation if so.
2427 *
2428 * Balancing parameters are set up in arch_init_sched_domains.
2429 */
2430
2431/* Don't have all balancing operations going off at once */
2432#define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2433
2434static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2435 enum idle_type idle)
2436{
2437 unsigned long old_load, this_load;
2438 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2439 struct sched_domain *sd;
7897986b 2440 int i;
1da177e4 2441
1da177e4 2442 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
7897986b
NP
2443 /* Update our load */
2444 for (i = 0; i < 3; i++) {
2445 unsigned long new_load = this_load;
2446 int scale = 1 << i;
2447 old_load = this_rq->cpu_load[i];
2448 /*
2449 * Round up the averaging division if load is increasing. This
2450 * prevents us from getting stuck on 9 if the load is 10, for
2451 * example.
2452 */
2453 if (new_load > old_load)
2454 new_load += scale-1;
2455 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2456 }
1da177e4
LT
2457
2458 for_each_domain(this_cpu, sd) {
2459 unsigned long interval;
2460
2461 if (!(sd->flags & SD_LOAD_BALANCE))
2462 continue;
2463
2464 interval = sd->balance_interval;
2465 if (idle != SCHED_IDLE)
2466 interval *= sd->busy_factor;
2467
2468 /* scale ms to jiffies */
2469 interval = msecs_to_jiffies(interval);
2470 if (unlikely(!interval))
2471 interval = 1;
2472
2473 if (j - sd->last_balance >= interval) {
2474 if (load_balance(this_cpu, this_rq, sd, idle)) {
fa3b6ddc
SS
2475 /*
2476 * We've pulled tasks over so either we're no
5969fe06
NP
2477 * longer idle, or one of our SMT siblings is
2478 * not idle.
2479 */
1da177e4
LT
2480 idle = NOT_IDLE;
2481 }
2482 sd->last_balance += interval;
2483 }
2484 }
2485}
2486#else
2487/*
2488 * on UP we do not need to balance between CPUs:
2489 */
2490static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2491{
2492}
2493static inline void idle_balance(int cpu, runqueue_t *rq)
2494{
2495}
2496#endif
2497
2498static inline int wake_priority_sleeper(runqueue_t *rq)
2499{
2500 int ret = 0;
2501#ifdef CONFIG_SCHED_SMT
2502 spin_lock(&rq->lock);
2503 /*
2504 * If an SMT sibling task has been put to sleep for priority
2505 * reasons reschedule the idle task to see if it can now run.
2506 */
2507 if (rq->nr_running) {
2508 resched_task(rq->idle);
2509 ret = 1;
2510 }
2511 spin_unlock(&rq->lock);
2512#endif
2513 return ret;
2514}
2515
2516DEFINE_PER_CPU(struct kernel_stat, kstat);
2517
2518EXPORT_PER_CPU_SYMBOL(kstat);
2519
2520/*
2521 * This is called on clock ticks and on context switches.
2522 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2523 */
2524static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2525 unsigned long long now)
2526{
2527 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2528 p->sched_time += now - last;
2529}
2530
2531/*
2532 * Return current->sched_time plus any more ns on the sched_clock
2533 * that have not yet been banked.
2534 */
2535unsigned long long current_sched_time(const task_t *tsk)
2536{
2537 unsigned long long ns;
2538 unsigned long flags;
2539 local_irq_save(flags);
2540 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2541 ns = tsk->sched_time + (sched_clock() - ns);
2542 local_irq_restore(flags);
2543 return ns;
2544}
2545
2546/*
2547 * We place interactive tasks back into the active array, if possible.
2548 *
2549 * To guarantee that this does not starve expired tasks we ignore the
2550 * interactivity of a task if the first expired task had to wait more
2551 * than a 'reasonable' amount of time. This deadline timeout is
2552 * load-dependent, as the frequency of array switched decreases with
2553 * increasing number of running tasks. We also ignore the interactivity
2554 * if a better static_prio task has expired:
2555 */
2556#define EXPIRED_STARVING(rq) \
2557 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2558 (jiffies - (rq)->expired_timestamp >= \
2559 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2560 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2561
2562/*
2563 * Account user cpu time to a process.
2564 * @p: the process that the cpu time gets accounted to
2565 * @hardirq_offset: the offset to subtract from hardirq_count()
2566 * @cputime: the cpu time spent in user space since the last update
2567 */
2568void account_user_time(struct task_struct *p, cputime_t cputime)
2569{
2570 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2571 cputime64_t tmp;
2572
2573 p->utime = cputime_add(p->utime, cputime);
2574
2575 /* Add user time to cpustat. */
2576 tmp = cputime_to_cputime64(cputime);
2577 if (TASK_NICE(p) > 0)
2578 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2579 else
2580 cpustat->user = cputime64_add(cpustat->user, tmp);
2581}
2582
2583/*
2584 * Account system cpu time to a process.
2585 * @p: the process that the cpu time gets accounted to
2586 * @hardirq_offset: the offset to subtract from hardirq_count()
2587 * @cputime: the cpu time spent in kernel space since the last update
2588 */
2589void account_system_time(struct task_struct *p, int hardirq_offset,
2590 cputime_t cputime)
2591{
2592 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2593 runqueue_t *rq = this_rq();
2594 cputime64_t tmp;
2595
2596 p->stime = cputime_add(p->stime, cputime);
2597
2598 /* Add system time to cpustat. */
2599 tmp = cputime_to_cputime64(cputime);
2600 if (hardirq_count() - hardirq_offset)
2601 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2602 else if (softirq_count())
2603 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2604 else if (p != rq->idle)
2605 cpustat->system = cputime64_add(cpustat->system, tmp);
2606 else if (atomic_read(&rq->nr_iowait) > 0)
2607 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2608 else
2609 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2610 /* Account for system time used */
2611 acct_update_integrals(p);
1da177e4
LT
2612}
2613
2614/*
2615 * Account for involuntary wait time.
2616 * @p: the process from which the cpu time has been stolen
2617 * @steal: the cpu time spent in involuntary wait
2618 */
2619void account_steal_time(struct task_struct *p, cputime_t steal)
2620{
2621 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2622 cputime64_t tmp = cputime_to_cputime64(steal);
2623 runqueue_t *rq = this_rq();
2624
2625 if (p == rq->idle) {
2626 p->stime = cputime_add(p->stime, steal);
2627 if (atomic_read(&rq->nr_iowait) > 0)
2628 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2629 else
2630 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2631 } else
2632 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2633}
2634
2635/*
2636 * This function gets called by the timer code, with HZ frequency.
2637 * We call it with interrupts disabled.
2638 *
2639 * It also gets called by the fork code, when changing the parent's
2640 * timeslices.
2641 */
2642void scheduler_tick(void)
2643{
2644 int cpu = smp_processor_id();
2645 runqueue_t *rq = this_rq();
2646 task_t *p = current;
2647 unsigned long long now = sched_clock();
2648
2649 update_cpu_clock(p, rq, now);
2650
2651 rq->timestamp_last_tick = now;
2652
2653 if (p == rq->idle) {
2654 if (wake_priority_sleeper(rq))
2655 goto out;
2656 rebalance_tick(cpu, rq, SCHED_IDLE);
2657 return;
2658 }
2659
2660 /* Task might have expired already, but not scheduled off yet */
2661 if (p->array != rq->active) {
2662 set_tsk_need_resched(p);
2663 goto out;
2664 }
2665 spin_lock(&rq->lock);
2666 /*
2667 * The task was running during this tick - update the
2668 * time slice counter. Note: we do not update a thread's
2669 * priority until it either goes to sleep or uses up its
2670 * timeslice. This makes it possible for interactive tasks
2671 * to use up their timeslices at their highest priority levels.
2672 */
2673 if (rt_task(p)) {
2674 /*
2675 * RR tasks need a special form of timeslice management.
2676 * FIFO tasks have no timeslices.
2677 */
2678 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2679 p->time_slice = task_timeslice(p);
2680 p->first_time_slice = 0;
2681 set_tsk_need_resched(p);
2682
2683 /* put it at the end of the queue: */
2684 requeue_task(p, rq->active);
2685 }
2686 goto out_unlock;
2687 }
2688 if (!--p->time_slice) {
2689 dequeue_task(p, rq->active);
2690 set_tsk_need_resched(p);
2691 p->prio = effective_prio(p);
2692 p->time_slice = task_timeslice(p);
2693 p->first_time_slice = 0;
2694
2695 if (!rq->expired_timestamp)
2696 rq->expired_timestamp = jiffies;
2697 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2698 enqueue_task(p, rq->expired);
2699 if (p->static_prio < rq->best_expired_prio)
2700 rq->best_expired_prio = p->static_prio;
2701 } else
2702 enqueue_task(p, rq->active);
2703 } else {
2704 /*
2705 * Prevent a too long timeslice allowing a task to monopolize
2706 * the CPU. We do this by splitting up the timeslice into
2707 * smaller pieces.
2708 *
2709 * Note: this does not mean the task's timeslices expire or
2710 * get lost in any way, they just might be preempted by
2711 * another task of equal priority. (one with higher
2712 * priority would have preempted this task already.) We
2713 * requeue this task to the end of the list on this priority
2714 * level, which is in essence a round-robin of tasks with
2715 * equal priority.
2716 *
2717 * This only applies to tasks in the interactive
2718 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2719 */
2720 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2721 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2722 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2723 (p->array == rq->active)) {
2724
2725 requeue_task(p, rq->active);
2726 set_tsk_need_resched(p);
2727 }
2728 }
2729out_unlock:
2730 spin_unlock(&rq->lock);
2731out:
2732 rebalance_tick(cpu, rq, NOT_IDLE);
2733}
2734
2735#ifdef CONFIG_SCHED_SMT
fc38ed75
CK
2736static inline void wakeup_busy_runqueue(runqueue_t *rq)
2737{
2738 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2739 if (rq->curr == rq->idle && rq->nr_running)
2740 resched_task(rq->idle);
2741}
2742
1da177e4
LT
2743static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2744{
41c7ce9a 2745 struct sched_domain *tmp, *sd = NULL;
1da177e4
LT
2746 cpumask_t sibling_map;
2747 int i;
2748
41c7ce9a
NP
2749 for_each_domain(this_cpu, tmp)
2750 if (tmp->flags & SD_SHARE_CPUPOWER)
2751 sd = tmp;
2752
2753 if (!sd)
1da177e4
LT
2754 return;
2755
2756 /*
2757 * Unlock the current runqueue because we have to lock in
2758 * CPU order to avoid deadlocks. Caller knows that we might
2759 * unlock. We keep IRQs disabled.
2760 */
2761 spin_unlock(&this_rq->lock);
2762
2763 sibling_map = sd->span;
2764
2765 for_each_cpu_mask(i, sibling_map)
2766 spin_lock(&cpu_rq(i)->lock);
2767 /*
2768 * We clear this CPU from the mask. This both simplifies the
2769 * inner loop and keps this_rq locked when we exit:
2770 */
2771 cpu_clear(this_cpu, sibling_map);
2772
2773 for_each_cpu_mask(i, sibling_map) {
2774 runqueue_t *smt_rq = cpu_rq(i);
2775
fc38ed75 2776 wakeup_busy_runqueue(smt_rq);
1da177e4
LT
2777 }
2778
2779 for_each_cpu_mask(i, sibling_map)
2780 spin_unlock(&cpu_rq(i)->lock);
2781 /*
2782 * We exit with this_cpu's rq still held and IRQs
2783 * still disabled:
2784 */
2785}
2786
67f9a619
IM
2787/*
2788 * number of 'lost' timeslices this task wont be able to fully
2789 * utilize, if another task runs on a sibling. This models the
2790 * slowdown effect of other tasks running on siblings:
2791 */
2792static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2793{
2794 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2795}
2796
1da177e4
LT
2797static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2798{
41c7ce9a 2799 struct sched_domain *tmp, *sd = NULL;
1da177e4
LT
2800 cpumask_t sibling_map;
2801 prio_array_t *array;
2802 int ret = 0, i;
2803 task_t *p;
2804
41c7ce9a
NP
2805 for_each_domain(this_cpu, tmp)
2806 if (tmp->flags & SD_SHARE_CPUPOWER)
2807 sd = tmp;
2808
2809 if (!sd)
1da177e4
LT
2810 return 0;
2811
2812 /*
2813 * The same locking rules and details apply as for
2814 * wake_sleeping_dependent():
2815 */
2816 spin_unlock(&this_rq->lock);
2817 sibling_map = sd->span;
2818 for_each_cpu_mask(i, sibling_map)
2819 spin_lock(&cpu_rq(i)->lock);
2820 cpu_clear(this_cpu, sibling_map);
2821
2822 /*
2823 * Establish next task to be run - it might have gone away because
2824 * we released the runqueue lock above:
2825 */
2826 if (!this_rq->nr_running)
2827 goto out_unlock;
2828 array = this_rq->active;
2829 if (!array->nr_active)
2830 array = this_rq->expired;
2831 BUG_ON(!array->nr_active);
2832
2833 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2834 task_t, run_list);
2835
2836 for_each_cpu_mask(i, sibling_map) {
2837 runqueue_t *smt_rq = cpu_rq(i);
2838 task_t *smt_curr = smt_rq->curr;
2839
fc38ed75
CK
2840 /* Kernel threads do not participate in dependent sleeping */
2841 if (!p->mm || !smt_curr->mm || rt_task(p))
2842 goto check_smt_task;
2843
1da177e4
LT
2844 /*
2845 * If a user task with lower static priority than the
2846 * running task on the SMT sibling is trying to schedule,
2847 * delay it till there is proportionately less timeslice
2848 * left of the sibling task to prevent a lower priority
2849 * task from using an unfair proportion of the
2850 * physical cpu's resources. -ck
2851 */
fc38ed75
CK
2852 if (rt_task(smt_curr)) {
2853 /*
2854 * With real time tasks we run non-rt tasks only
2855 * per_cpu_gain% of the time.
2856 */
2857 if ((jiffies % DEF_TIMESLICE) >
2858 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2859 ret = 1;
2860 } else
67f9a619
IM
2861 if (smt_curr->static_prio < p->static_prio &&
2862 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2863 smt_slice(smt_curr, sd) > task_timeslice(p))
fc38ed75
CK
2864 ret = 1;
2865
2866check_smt_task:
2867 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2868 rt_task(smt_curr))
2869 continue;
2870 if (!p->mm) {
2871 wakeup_busy_runqueue(smt_rq);
2872 continue;
2873 }
1da177e4
LT
2874
2875 /*
fc38ed75
CK
2876 * Reschedule a lower priority task on the SMT sibling for
2877 * it to be put to sleep, or wake it up if it has been put to
2878 * sleep for priority reasons to see if it should run now.
1da177e4 2879 */
fc38ed75
CK
2880 if (rt_task(p)) {
2881 if ((jiffies % DEF_TIMESLICE) >
2882 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2883 resched_task(smt_curr);
2884 } else {
67f9a619
IM
2885 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2886 smt_slice(p, sd) > task_timeslice(smt_curr))
fc38ed75
CK
2887 resched_task(smt_curr);
2888 else
2889 wakeup_busy_runqueue(smt_rq);
2890 }
1da177e4
LT
2891 }
2892out_unlock:
2893 for_each_cpu_mask(i, sibling_map)
2894 spin_unlock(&cpu_rq(i)->lock);
2895 return ret;
2896}
2897#else
2898static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2899{
2900}
2901
2902static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2903{
2904 return 0;
2905}
2906#endif
2907
2908#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2909
2910void fastcall add_preempt_count(int val)
2911{
2912 /*
2913 * Underflow?
2914 */
be5b4fbd 2915 BUG_ON((preempt_count() < 0));
1da177e4
LT
2916 preempt_count() += val;
2917 /*
2918 * Spinlock count overflowing soon?
2919 */
2920 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2921}
2922EXPORT_SYMBOL(add_preempt_count);
2923
2924void fastcall sub_preempt_count(int val)
2925{
2926 /*
2927 * Underflow?
2928 */
2929 BUG_ON(val > preempt_count());
2930 /*
2931 * Is the spinlock portion underflowing?
2932 */
2933 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2934 preempt_count() -= val;
2935}
2936EXPORT_SYMBOL(sub_preempt_count);
2937
2938#endif
2939
2940/*
2941 * schedule() is the main scheduler function.
2942 */
2943asmlinkage void __sched schedule(void)
2944{
2945 long *switch_count;
2946 task_t *prev, *next;
2947 runqueue_t *rq;
2948 prio_array_t *array;
2949 struct list_head *queue;
2950 unsigned long long now;
2951 unsigned long run_time;
a3464a10 2952 int cpu, idx, new_prio;
1da177e4
LT
2953
2954 /*
2955 * Test if we are atomic. Since do_exit() needs to call into
2956 * schedule() atomically, we ignore that path for now.
2957 * Otherwise, whine if we are scheduling when we should not be.
2958 */
2959 if (likely(!current->exit_state)) {
2960 if (unlikely(in_atomic())) {
2961 printk(KERN_ERR "scheduling while atomic: "
2962 "%s/0x%08x/%d\n",
2963 current->comm, preempt_count(), current->pid);
2964 dump_stack();
2965 }
2966 }
2967 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2968
2969need_resched:
2970 preempt_disable();
2971 prev = current;
2972 release_kernel_lock(prev);
2973need_resched_nonpreemptible:
2974 rq = this_rq();
2975
2976 /*
2977 * The idle thread is not allowed to schedule!
2978 * Remove this check after it has been exercised a bit.
2979 */
2980 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2981 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2982 dump_stack();
2983 }
2984
2985 schedstat_inc(rq, sched_cnt);
2986 now = sched_clock();
238628ed 2987 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
1da177e4 2988 run_time = now - prev->timestamp;
238628ed 2989 if (unlikely((long long)(now - prev->timestamp) < 0))
1da177e4
LT
2990 run_time = 0;
2991 } else
2992 run_time = NS_MAX_SLEEP_AVG;
2993
2994 /*
2995 * Tasks charged proportionately less run_time at high sleep_avg to
2996 * delay them losing their interactive status
2997 */
2998 run_time /= (CURRENT_BONUS(prev) ? : 1);
2999
3000 spin_lock_irq(&rq->lock);
3001
3002 if (unlikely(prev->flags & PF_DEAD))
3003 prev->state = EXIT_DEAD;
3004
3005 switch_count = &prev->nivcsw;
3006 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3007 switch_count = &prev->nvcsw;
3008 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3009 unlikely(signal_pending(prev))))
3010 prev->state = TASK_RUNNING;
3011 else {
3012 if (prev->state == TASK_UNINTERRUPTIBLE)
3013 rq->nr_uninterruptible++;
3014 deactivate_task(prev, rq);
3015 }
3016 }
3017
3018 cpu = smp_processor_id();
3019 if (unlikely(!rq->nr_running)) {
3020go_idle:
3021 idle_balance(cpu, rq);
3022 if (!rq->nr_running) {
3023 next = rq->idle;
3024 rq->expired_timestamp = 0;
3025 wake_sleeping_dependent(cpu, rq);
3026 /*
3027 * wake_sleeping_dependent() might have released
3028 * the runqueue, so break out if we got new
3029 * tasks meanwhile:
3030 */
3031 if (!rq->nr_running)
3032 goto switch_tasks;
3033 }
3034 } else {
3035 if (dependent_sleeper(cpu, rq)) {
3036 next = rq->idle;
3037 goto switch_tasks;
3038 }
3039 /*
3040 * dependent_sleeper() releases and reacquires the runqueue
3041 * lock, hence go into the idle loop if the rq went
3042 * empty meanwhile:
3043 */
3044 if (unlikely(!rq->nr_running))
3045 goto go_idle;
3046 }
3047
3048 array = rq->active;
3049 if (unlikely(!array->nr_active)) {
3050 /*
3051 * Switch the active and expired arrays.
3052 */
3053 schedstat_inc(rq, sched_switch);
3054 rq->active = rq->expired;
3055 rq->expired = array;
3056 array = rq->active;
3057 rq->expired_timestamp = 0;
3058 rq->best_expired_prio = MAX_PRIO;
3059 }
3060
3061 idx = sched_find_first_bit(array->bitmap);
3062 queue = array->queue + idx;
3063 next = list_entry(queue->next, task_t, run_list);
3064
3065 if (!rt_task(next) && next->activated > 0) {
3066 unsigned long long delta = now - next->timestamp;
238628ed 3067 if (unlikely((long long)(now - next->timestamp) < 0))
1da177e4
LT
3068 delta = 0;
3069
3070 if (next->activated == 1)
3071 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3072
3073 array = next->array;
a3464a10
CS
3074 new_prio = recalc_task_prio(next, next->timestamp + delta);
3075
3076 if (unlikely(next->prio != new_prio)) {
3077 dequeue_task(next, array);
3078 next->prio = new_prio;
3079 enqueue_task(next, array);
3080 } else
3081 requeue_task(next, array);
1da177e4
LT
3082 }
3083 next->activated = 0;
3084switch_tasks:
3085 if (next == rq->idle)
3086 schedstat_inc(rq, sched_goidle);
3087 prefetch(next);
383f2835 3088 prefetch_stack(next);
1da177e4
LT
3089 clear_tsk_need_resched(prev);
3090 rcu_qsctr_inc(task_cpu(prev));
3091
3092 update_cpu_clock(prev, rq, now);
3093
3094 prev->sleep_avg -= run_time;
3095 if ((long)prev->sleep_avg <= 0)
3096 prev->sleep_avg = 0;
3097 prev->timestamp = prev->last_ran = now;
3098
3099 sched_info_switch(prev, next);
3100 if (likely(prev != next)) {
3101 next->timestamp = now;
3102 rq->nr_switches++;
3103 rq->curr = next;
3104 ++*switch_count;
3105
4866cde0 3106 prepare_task_switch(rq, next);
1da177e4
LT
3107 prev = context_switch(rq, prev, next);
3108 barrier();
4866cde0
NP
3109 /*
3110 * this_rq must be evaluated again because prev may have moved
3111 * CPUs since it called schedule(), thus the 'rq' on its stack
3112 * frame will be invalid.
3113 */
3114 finish_task_switch(this_rq(), prev);
1da177e4
LT
3115 } else
3116 spin_unlock_irq(&rq->lock);
3117
3118 prev = current;
3119 if (unlikely(reacquire_kernel_lock(prev) < 0))
3120 goto need_resched_nonpreemptible;
3121 preempt_enable_no_resched();
3122 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3123 goto need_resched;
3124}
3125
3126EXPORT_SYMBOL(schedule);
3127
3128#ifdef CONFIG_PREEMPT
3129/*
3130 * this is is the entry point to schedule() from in-kernel preemption
3131 * off of preempt_enable. Kernel preemptions off return from interrupt
3132 * occur there and call schedule directly.
3133 */
3134asmlinkage void __sched preempt_schedule(void)
3135{
3136 struct thread_info *ti = current_thread_info();
3137#ifdef CONFIG_PREEMPT_BKL
3138 struct task_struct *task = current;
3139 int saved_lock_depth;
3140#endif
3141 /*
3142 * If there is a non-zero preempt_count or interrupts are disabled,
3143 * we do not want to preempt the current task. Just return..
3144 */
3145 if (unlikely(ti->preempt_count || irqs_disabled()))
3146 return;
3147
3148need_resched:
3149 add_preempt_count(PREEMPT_ACTIVE);
3150 /*
3151 * We keep the big kernel semaphore locked, but we
3152 * clear ->lock_depth so that schedule() doesnt
3153 * auto-release the semaphore:
3154 */
3155#ifdef CONFIG_PREEMPT_BKL
3156 saved_lock_depth = task->lock_depth;
3157 task->lock_depth = -1;
3158#endif
3159 schedule();
3160#ifdef CONFIG_PREEMPT_BKL
3161 task->lock_depth = saved_lock_depth;
3162#endif
3163 sub_preempt_count(PREEMPT_ACTIVE);
3164
3165 /* we could miss a preemption opportunity between schedule and now */
3166 barrier();
3167 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3168 goto need_resched;
3169}
3170
3171EXPORT_SYMBOL(preempt_schedule);
3172
3173/*
3174 * this is is the entry point to schedule() from kernel preemption
3175 * off of irq context.
3176 * Note, that this is called and return with irqs disabled. This will
3177 * protect us against recursive calling from irq.
3178 */
3179asmlinkage void __sched preempt_schedule_irq(void)
3180{
3181 struct thread_info *ti = current_thread_info();
3182#ifdef CONFIG_PREEMPT_BKL
3183 struct task_struct *task = current;
3184 int saved_lock_depth;
3185#endif
3186 /* Catch callers which need to be fixed*/
3187 BUG_ON(ti->preempt_count || !irqs_disabled());
3188
3189need_resched:
3190 add_preempt_count(PREEMPT_ACTIVE);
3191 /*
3192 * We keep the big kernel semaphore locked, but we
3193 * clear ->lock_depth so that schedule() doesnt
3194 * auto-release the semaphore:
3195 */
3196#ifdef CONFIG_PREEMPT_BKL
3197 saved_lock_depth = task->lock_depth;
3198 task->lock_depth = -1;
3199#endif
3200 local_irq_enable();
3201 schedule();
3202 local_irq_disable();
3203#ifdef CONFIG_PREEMPT_BKL
3204 task->lock_depth = saved_lock_depth;
3205#endif
3206 sub_preempt_count(PREEMPT_ACTIVE);
3207
3208 /* we could miss a preemption opportunity between schedule and now */
3209 barrier();
3210 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3211 goto need_resched;
3212}
3213
3214#endif /* CONFIG_PREEMPT */
3215
95cdf3b7
IM
3216int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3217 void *key)
1da177e4 3218{
c43dc2fd 3219 task_t *p = curr->private;
1da177e4
LT
3220 return try_to_wake_up(p, mode, sync);
3221}
3222
3223EXPORT_SYMBOL(default_wake_function);
3224
3225/*
3226 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3227 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3228 * number) then we wake all the non-exclusive tasks and one exclusive task.
3229 *
3230 * There are circumstances in which we can try to wake a task which has already
3231 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3232 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3233 */
3234static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3235 int nr_exclusive, int sync, void *key)
3236{
3237 struct list_head *tmp, *next;
3238
3239 list_for_each_safe(tmp, next, &q->task_list) {
3240 wait_queue_t *curr;
3241 unsigned flags;
3242 curr = list_entry(tmp, wait_queue_t, task_list);
3243 flags = curr->flags;
3244 if (curr->func(curr, mode, sync, key) &&
3245 (flags & WQ_FLAG_EXCLUSIVE) &&
3246 !--nr_exclusive)
3247 break;
3248 }
3249}
3250
3251/**
3252 * __wake_up - wake up threads blocked on a waitqueue.
3253 * @q: the waitqueue
3254 * @mode: which threads
3255 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3256 * @key: is directly passed to the wakeup function
1da177e4
LT
3257 */
3258void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3259 int nr_exclusive, void *key)
1da177e4
LT
3260{
3261 unsigned long flags;
3262
3263 spin_lock_irqsave(&q->lock, flags);
3264 __wake_up_common(q, mode, nr_exclusive, 0, key);
3265 spin_unlock_irqrestore(&q->lock, flags);
3266}
3267
3268EXPORT_SYMBOL(__wake_up);
3269
3270/*
3271 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3272 */
3273void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3274{
3275 __wake_up_common(q, mode, 1, 0, NULL);
3276}
3277
3278/**
67be2dd1 3279 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3280 * @q: the waitqueue
3281 * @mode: which threads
3282 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3283 *
3284 * The sync wakeup differs that the waker knows that it will schedule
3285 * away soon, so while the target thread will be woken up, it will not
3286 * be migrated to another CPU - ie. the two threads are 'synchronized'
3287 * with each other. This can prevent needless bouncing between CPUs.
3288 *
3289 * On UP it can prevent extra preemption.
3290 */
95cdf3b7
IM
3291void fastcall
3292__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3293{
3294 unsigned long flags;
3295 int sync = 1;
3296
3297 if (unlikely(!q))
3298 return;
3299
3300 if (unlikely(!nr_exclusive))
3301 sync = 0;
3302
3303 spin_lock_irqsave(&q->lock, flags);
3304 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3305 spin_unlock_irqrestore(&q->lock, flags);
3306}
3307EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3308
3309void fastcall complete(struct completion *x)
3310{
3311 unsigned long flags;
3312
3313 spin_lock_irqsave(&x->wait.lock, flags);
3314 x->done++;
3315 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3316 1, 0, NULL);
3317 spin_unlock_irqrestore(&x->wait.lock, flags);
3318}
3319EXPORT_SYMBOL(complete);
3320
3321void fastcall complete_all(struct completion *x)
3322{
3323 unsigned long flags;
3324
3325 spin_lock_irqsave(&x->wait.lock, flags);
3326 x->done += UINT_MAX/2;
3327 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3328 0, 0, NULL);
3329 spin_unlock_irqrestore(&x->wait.lock, flags);
3330}
3331EXPORT_SYMBOL(complete_all);
3332
3333void fastcall __sched wait_for_completion(struct completion *x)
3334{
3335 might_sleep();
3336 spin_lock_irq(&x->wait.lock);
3337 if (!x->done) {
3338 DECLARE_WAITQUEUE(wait, current);
3339
3340 wait.flags |= WQ_FLAG_EXCLUSIVE;
3341 __add_wait_queue_tail(&x->wait, &wait);
3342 do {
3343 __set_current_state(TASK_UNINTERRUPTIBLE);
3344 spin_unlock_irq(&x->wait.lock);
3345 schedule();
3346 spin_lock_irq(&x->wait.lock);
3347 } while (!x->done);
3348 __remove_wait_queue(&x->wait, &wait);
3349 }
3350 x->done--;
3351 spin_unlock_irq(&x->wait.lock);
3352}
3353EXPORT_SYMBOL(wait_for_completion);
3354
3355unsigned long fastcall __sched
3356wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3357{
3358 might_sleep();
3359
3360 spin_lock_irq(&x->wait.lock);
3361 if (!x->done) {
3362 DECLARE_WAITQUEUE(wait, current);
3363
3364 wait.flags |= WQ_FLAG_EXCLUSIVE;
3365 __add_wait_queue_tail(&x->wait, &wait);
3366 do {
3367 __set_current_state(TASK_UNINTERRUPTIBLE);
3368 spin_unlock_irq(&x->wait.lock);
3369 timeout = schedule_timeout(timeout);
3370 spin_lock_irq(&x->wait.lock);
3371 if (!timeout) {
3372 __remove_wait_queue(&x->wait, &wait);
3373 goto out;
3374 }
3375 } while (!x->done);
3376 __remove_wait_queue(&x->wait, &wait);
3377 }
3378 x->done--;
3379out:
3380 spin_unlock_irq(&x->wait.lock);
3381 return timeout;
3382}
3383EXPORT_SYMBOL(wait_for_completion_timeout);
3384
3385int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3386{
3387 int ret = 0;
3388
3389 might_sleep();
3390
3391 spin_lock_irq(&x->wait.lock);
3392 if (!x->done) {
3393 DECLARE_WAITQUEUE(wait, current);
3394
3395 wait.flags |= WQ_FLAG_EXCLUSIVE;
3396 __add_wait_queue_tail(&x->wait, &wait);
3397 do {
3398 if (signal_pending(current)) {
3399 ret = -ERESTARTSYS;
3400 __remove_wait_queue(&x->wait, &wait);
3401 goto out;
3402 }
3403 __set_current_state(TASK_INTERRUPTIBLE);
3404 spin_unlock_irq(&x->wait.lock);
3405 schedule();
3406 spin_lock_irq(&x->wait.lock);
3407 } while (!x->done);
3408 __remove_wait_queue(&x->wait, &wait);
3409 }
3410 x->done--;
3411out:
3412 spin_unlock_irq(&x->wait.lock);
3413
3414 return ret;
3415}
3416EXPORT_SYMBOL(wait_for_completion_interruptible);
3417
3418unsigned long fastcall __sched
3419wait_for_completion_interruptible_timeout(struct completion *x,
3420 unsigned long timeout)
3421{
3422 might_sleep();
3423
3424 spin_lock_irq(&x->wait.lock);
3425 if (!x->done) {
3426 DECLARE_WAITQUEUE(wait, current);
3427
3428 wait.flags |= WQ_FLAG_EXCLUSIVE;
3429 __add_wait_queue_tail(&x->wait, &wait);
3430 do {
3431 if (signal_pending(current)) {
3432 timeout = -ERESTARTSYS;
3433 __remove_wait_queue(&x->wait, &wait);
3434 goto out;
3435 }
3436 __set_current_state(TASK_INTERRUPTIBLE);
3437 spin_unlock_irq(&x->wait.lock);
3438 timeout = schedule_timeout(timeout);
3439 spin_lock_irq(&x->wait.lock);
3440 if (!timeout) {
3441 __remove_wait_queue(&x->wait, &wait);
3442 goto out;
3443 }
3444 } while (!x->done);
3445 __remove_wait_queue(&x->wait, &wait);
3446 }
3447 x->done--;
3448out:
3449 spin_unlock_irq(&x->wait.lock);
3450 return timeout;
3451}
3452EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3453
3454
3455#define SLEEP_ON_VAR \
3456 unsigned long flags; \
3457 wait_queue_t wait; \
3458 init_waitqueue_entry(&wait, current);
3459
3460#define SLEEP_ON_HEAD \
3461 spin_lock_irqsave(&q->lock,flags); \
3462 __add_wait_queue(q, &wait); \
3463 spin_unlock(&q->lock);
3464
3465#define SLEEP_ON_TAIL \
3466 spin_lock_irq(&q->lock); \
3467 __remove_wait_queue(q, &wait); \
3468 spin_unlock_irqrestore(&q->lock, flags);
3469
3470void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3471{
3472 SLEEP_ON_VAR
3473
3474 current->state = TASK_INTERRUPTIBLE;
3475
3476 SLEEP_ON_HEAD
3477 schedule();
3478 SLEEP_ON_TAIL
3479}
3480
3481EXPORT_SYMBOL(interruptible_sleep_on);
3482
95cdf3b7
IM
3483long fastcall __sched
3484interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4
LT
3485{
3486 SLEEP_ON_VAR
3487
3488 current->state = TASK_INTERRUPTIBLE;
3489
3490 SLEEP_ON_HEAD
3491 timeout = schedule_timeout(timeout);
3492 SLEEP_ON_TAIL
3493
3494 return timeout;
3495}
3496
3497EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3498
3499void fastcall __sched sleep_on(wait_queue_head_t *q)
3500{
3501 SLEEP_ON_VAR
3502
3503 current->state = TASK_UNINTERRUPTIBLE;
3504
3505 SLEEP_ON_HEAD
3506 schedule();
3507 SLEEP_ON_TAIL
3508}
3509
3510EXPORT_SYMBOL(sleep_on);
3511
3512long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3513{
3514 SLEEP_ON_VAR
3515
3516 current->state = TASK_UNINTERRUPTIBLE;
3517
3518 SLEEP_ON_HEAD
3519 timeout = schedule_timeout(timeout);
3520 SLEEP_ON_TAIL
3521
3522 return timeout;
3523}
3524
3525EXPORT_SYMBOL(sleep_on_timeout);
3526
3527void set_user_nice(task_t *p, long nice)
3528{
3529 unsigned long flags;
3530 prio_array_t *array;
3531 runqueue_t *rq;
3532 int old_prio, new_prio, delta;
3533
3534 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3535 return;
3536 /*
3537 * We have to be careful, if called from sys_setpriority(),
3538 * the task might be in the middle of scheduling on another CPU.
3539 */
3540 rq = task_rq_lock(p, &flags);
3541 /*
3542 * The RT priorities are set via sched_setscheduler(), but we still
3543 * allow the 'normal' nice value to be set - but as expected
3544 * it wont have any effect on scheduling until the task is
3545 * not SCHED_NORMAL:
3546 */
3547 if (rt_task(p)) {
3548 p->static_prio = NICE_TO_PRIO(nice);
3549 goto out_unlock;
3550 }
3551 array = p->array;
738a2ccb 3552 if (array) {
1da177e4 3553 dequeue_task(p, array);
738a2ccb
CK
3554 dec_prio_bias(rq, p->static_prio);
3555 }
1da177e4
LT
3556
3557 old_prio = p->prio;
3558 new_prio = NICE_TO_PRIO(nice);
3559 delta = new_prio - old_prio;
3560 p->static_prio = NICE_TO_PRIO(nice);
3561 p->prio += delta;
3562
3563 if (array) {
3564 enqueue_task(p, array);
738a2ccb 3565 inc_prio_bias(rq, p->static_prio);
1da177e4
LT
3566 /*
3567 * If the task increased its priority or is running and
3568 * lowered its priority, then reschedule its CPU:
3569 */
3570 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3571 resched_task(rq->curr);
3572 }
3573out_unlock:
3574 task_rq_unlock(rq, &flags);
3575}
3576
3577EXPORT_SYMBOL(set_user_nice);
3578
e43379f1
MM
3579/*
3580 * can_nice - check if a task can reduce its nice value
3581 * @p: task
3582 * @nice: nice value
3583 */
3584int can_nice(const task_t *p, const int nice)
3585{
024f4747
MM
3586 /* convert nice value [19,-20] to rlimit style value [1,40] */
3587 int nice_rlim = 20 - nice;
e43379f1
MM
3588 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3589 capable(CAP_SYS_NICE));
3590}
3591
1da177e4
LT
3592#ifdef __ARCH_WANT_SYS_NICE
3593
3594/*
3595 * sys_nice - change the priority of the current process.
3596 * @increment: priority increment
3597 *
3598 * sys_setpriority is a more generic, but much slower function that
3599 * does similar things.
3600 */
3601asmlinkage long sys_nice(int increment)
3602{
3603 int retval;
3604 long nice;
3605
3606 /*
3607 * Setpriority might change our priority at the same moment.
3608 * We don't have to worry. Conceptually one call occurs first
3609 * and we have a single winner.
3610 */
e43379f1
MM
3611 if (increment < -40)
3612 increment = -40;
1da177e4
LT
3613 if (increment > 40)
3614 increment = 40;
3615
3616 nice = PRIO_TO_NICE(current->static_prio) + increment;
3617 if (nice < -20)
3618 nice = -20;
3619 if (nice > 19)
3620 nice = 19;
3621
e43379f1
MM
3622 if (increment < 0 && !can_nice(current, nice))
3623 return -EPERM;
3624
1da177e4
LT
3625 retval = security_task_setnice(current, nice);
3626 if (retval)
3627 return retval;
3628
3629 set_user_nice(current, nice);
3630 return 0;
3631}
3632
3633#endif
3634
3635/**
3636 * task_prio - return the priority value of a given task.
3637 * @p: the task in question.
3638 *
3639 * This is the priority value as seen by users in /proc.
3640 * RT tasks are offset by -200. Normal tasks are centered
3641 * around 0, value goes from -16 to +15.
3642 */
3643int task_prio(const task_t *p)
3644{
3645 return p->prio - MAX_RT_PRIO;
3646}
3647
3648/**
3649 * task_nice - return the nice value of a given task.
3650 * @p: the task in question.
3651 */
3652int task_nice(const task_t *p)
3653{
3654 return TASK_NICE(p);
3655}
1da177e4 3656EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
3657
3658/**
3659 * idle_cpu - is a given cpu idle currently?
3660 * @cpu: the processor in question.
3661 */
3662int idle_cpu(int cpu)
3663{
3664 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3665}
3666
1da177e4
LT
3667/**
3668 * idle_task - return the idle task for a given cpu.
3669 * @cpu: the processor in question.
3670 */
3671task_t *idle_task(int cpu)
3672{
3673 return cpu_rq(cpu)->idle;
3674}
3675
3676/**
3677 * find_process_by_pid - find a process with a matching PID value.
3678 * @pid: the pid in question.
3679 */
3680static inline task_t *find_process_by_pid(pid_t pid)
3681{
3682 return pid ? find_task_by_pid(pid) : current;
3683}
3684
3685/* Actually do priority change: must hold rq lock. */
3686static void __setscheduler(struct task_struct *p, int policy, int prio)
3687{
3688 BUG_ON(p->array);
3689 p->policy = policy;
3690 p->rt_priority = prio;
3691 if (policy != SCHED_NORMAL)
d46523ea 3692 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
1da177e4
LT
3693 else
3694 p->prio = p->static_prio;
3695}
3696
3697/**
3698 * sched_setscheduler - change the scheduling policy and/or RT priority of
3699 * a thread.
3700 * @p: the task in question.
3701 * @policy: new policy.
3702 * @param: structure containing the new RT priority.
3703 */
95cdf3b7
IM
3704int sched_setscheduler(struct task_struct *p, int policy,
3705 struct sched_param *param)
1da177e4
LT
3706{
3707 int retval;
3708 int oldprio, oldpolicy = -1;
3709 prio_array_t *array;
3710 unsigned long flags;
3711 runqueue_t *rq;
3712
3713recheck:
3714 /* double check policy once rq lock held */
3715 if (policy < 0)
3716 policy = oldpolicy = p->policy;
3717 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3718 policy != SCHED_NORMAL)
3719 return -EINVAL;
3720 /*
3721 * Valid priorities for SCHED_FIFO and SCHED_RR are
3722 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3723 */
3724 if (param->sched_priority < 0 ||
95cdf3b7 3725 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3726 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4
LT
3727 return -EINVAL;
3728 if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3729 return -EINVAL;
3730
37e4ab3f
OC
3731 /*
3732 * Allow unprivileged RT tasks to decrease priority:
3733 */
3734 if (!capable(CAP_SYS_NICE)) {
3735 /* can't change policy */
18586e72
AS
3736 if (policy != p->policy &&
3737 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
37e4ab3f
OC
3738 return -EPERM;
3739 /* can't increase priority */
3740 if (policy != SCHED_NORMAL &&
3741 param->sched_priority > p->rt_priority &&
3742 param->sched_priority >
3743 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3744 return -EPERM;
3745 /* can't change other user's priorities */
3746 if ((current->euid != p->euid) &&
3747 (current->euid != p->uid))
3748 return -EPERM;
3749 }
1da177e4
LT
3750
3751 retval = security_task_setscheduler(p, policy, param);
3752 if (retval)
3753 return retval;
3754 /*
3755 * To be able to change p->policy safely, the apropriate
3756 * runqueue lock must be held.
3757 */
3758 rq = task_rq_lock(p, &flags);
3759 /* recheck policy now with rq lock held */
3760 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3761 policy = oldpolicy = -1;
3762 task_rq_unlock(rq, &flags);
3763 goto recheck;
3764 }
3765 array = p->array;
3766 if (array)
3767 deactivate_task(p, rq);
3768 oldprio = p->prio;
3769 __setscheduler(p, policy, param->sched_priority);
3770 if (array) {
3771 __activate_task(p, rq);
3772 /*
3773 * Reschedule if we are currently running on this runqueue and
3774 * our priority decreased, or if we are not currently running on
3775 * this runqueue and our priority is higher than the current's
3776 */
3777 if (task_running(rq, p)) {
3778 if (p->prio > oldprio)
3779 resched_task(rq->curr);
3780 } else if (TASK_PREEMPTS_CURR(p, rq))
3781 resched_task(rq->curr);
3782 }
3783 task_rq_unlock(rq, &flags);
3784 return 0;
3785}
3786EXPORT_SYMBOL_GPL(sched_setscheduler);
3787
95cdf3b7
IM
3788static int
3789do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4
LT
3790{
3791 int retval;
3792 struct sched_param lparam;
3793 struct task_struct *p;
3794
3795 if (!param || pid < 0)
3796 return -EINVAL;
3797 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3798 return -EFAULT;
3799 read_lock_irq(&tasklist_lock);
3800 p = find_process_by_pid(pid);
3801 if (!p) {
3802 read_unlock_irq(&tasklist_lock);
3803 return -ESRCH;
3804 }
3805 retval = sched_setscheduler(p, policy, &lparam);
3806 read_unlock_irq(&tasklist_lock);
3807 return retval;
3808}
3809
3810/**
3811 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3812 * @pid: the pid in question.
3813 * @policy: new policy.
3814 * @param: structure containing the new RT priority.
3815 */
3816asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3817 struct sched_param __user *param)
3818{
3819 return do_sched_setscheduler(pid, policy, param);
3820}
3821
3822/**
3823 * sys_sched_setparam - set/change the RT priority of a thread
3824 * @pid: the pid in question.
3825 * @param: structure containing the new RT priority.
3826 */
3827asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3828{
3829 return do_sched_setscheduler(pid, -1, param);
3830}
3831
3832/**
3833 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3834 * @pid: the pid in question.
3835 */
3836asmlinkage long sys_sched_getscheduler(pid_t pid)
3837{
3838 int retval = -EINVAL;
3839 task_t *p;
3840
3841 if (pid < 0)
3842 goto out_nounlock;
3843
3844 retval = -ESRCH;
3845 read_lock(&tasklist_lock);
3846 p = find_process_by_pid(pid);
3847 if (p) {
3848 retval = security_task_getscheduler(p);
3849 if (!retval)
3850 retval = p->policy;
3851 }
3852 read_unlock(&tasklist_lock);
3853
3854out_nounlock:
3855 return retval;
3856}
3857
3858/**
3859 * sys_sched_getscheduler - get the RT priority of a thread
3860 * @pid: the pid in question.
3861 * @param: structure containing the RT priority.
3862 */
3863asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3864{
3865 struct sched_param lp;
3866 int retval = -EINVAL;
3867 task_t *p;
3868
3869 if (!param || pid < 0)
3870 goto out_nounlock;
3871
3872 read_lock(&tasklist_lock);
3873 p = find_process_by_pid(pid);
3874 retval = -ESRCH;
3875 if (!p)
3876 goto out_unlock;
3877
3878 retval = security_task_getscheduler(p);
3879 if (retval)
3880 goto out_unlock;
3881
3882 lp.sched_priority = p->rt_priority;
3883 read_unlock(&tasklist_lock);
3884
3885 /*
3886 * This one might sleep, we cannot do it with a spinlock held ...
3887 */
3888 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3889
3890out_nounlock:
3891 return retval;
3892
3893out_unlock:
3894 read_unlock(&tasklist_lock);
3895 return retval;
3896}
3897
3898long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3899{
3900 task_t *p;
3901 int retval;
3902 cpumask_t cpus_allowed;
3903
3904 lock_cpu_hotplug();
3905 read_lock(&tasklist_lock);
3906
3907 p = find_process_by_pid(pid);
3908 if (!p) {
3909 read_unlock(&tasklist_lock);
3910 unlock_cpu_hotplug();
3911 return -ESRCH;
3912 }
3913
3914 /*
3915 * It is not safe to call set_cpus_allowed with the
3916 * tasklist_lock held. We will bump the task_struct's
3917 * usage count and then drop tasklist_lock.
3918 */
3919 get_task_struct(p);
3920 read_unlock(&tasklist_lock);
3921
3922 retval = -EPERM;
3923 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3924 !capable(CAP_SYS_NICE))
3925 goto out_unlock;
3926
3927 cpus_allowed = cpuset_cpus_allowed(p);
3928 cpus_and(new_mask, new_mask, cpus_allowed);
3929 retval = set_cpus_allowed(p, new_mask);
3930
3931out_unlock:
3932 put_task_struct(p);
3933 unlock_cpu_hotplug();
3934 return retval;
3935}
3936
3937static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3938 cpumask_t *new_mask)
3939{
3940 if (len < sizeof(cpumask_t)) {
3941 memset(new_mask, 0, sizeof(cpumask_t));
3942 } else if (len > sizeof(cpumask_t)) {
3943 len = sizeof(cpumask_t);
3944 }
3945 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3946}
3947
3948/**
3949 * sys_sched_setaffinity - set the cpu affinity of a process
3950 * @pid: pid of the process
3951 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3952 * @user_mask_ptr: user-space pointer to the new cpu mask
3953 */
3954asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3955 unsigned long __user *user_mask_ptr)
3956{
3957 cpumask_t new_mask;
3958 int retval;
3959
3960 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3961 if (retval)
3962 return retval;
3963
3964 return sched_setaffinity(pid, new_mask);
3965}
3966
3967/*
3968 * Represents all cpu's present in the system
3969 * In systems capable of hotplug, this map could dynamically grow
3970 * as new cpu's are detected in the system via any platform specific
3971 * method, such as ACPI for e.g.
3972 */
3973
3974cpumask_t cpu_present_map;
3975EXPORT_SYMBOL(cpu_present_map);
3976
3977#ifndef CONFIG_SMP
3978cpumask_t cpu_online_map = CPU_MASK_ALL;
3979cpumask_t cpu_possible_map = CPU_MASK_ALL;
3980#endif
3981
3982long sched_getaffinity(pid_t pid, cpumask_t *mask)
3983{
3984 int retval;
3985 task_t *p;
3986
3987 lock_cpu_hotplug();
3988 read_lock(&tasklist_lock);
3989
3990 retval = -ESRCH;
3991 p = find_process_by_pid(pid);
3992 if (!p)
3993 goto out_unlock;
3994
3995 retval = 0;
3996 cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3997
3998out_unlock:
3999 read_unlock(&tasklist_lock);
4000 unlock_cpu_hotplug();
4001 if (retval)
4002 return retval;
4003
4004 return 0;
4005}
4006
4007/**
4008 * sys_sched_getaffinity - get the cpu affinity of a process
4009 * @pid: pid of the process
4010 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4011 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4012 */
4013asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4014 unsigned long __user *user_mask_ptr)
4015{
4016 int ret;
4017 cpumask_t mask;
4018
4019 if (len < sizeof(cpumask_t))
4020 return -EINVAL;
4021
4022 ret = sched_getaffinity(pid, &mask);
4023 if (ret < 0)
4024 return ret;
4025
4026 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4027 return -EFAULT;
4028
4029 return sizeof(cpumask_t);
4030}
4031
4032/**
4033 * sys_sched_yield - yield the current processor to other threads.
4034 *
4035 * this function yields the current CPU by moving the calling thread
4036 * to the expired array. If there are no other threads running on this
4037 * CPU then this function will return.
4038 */
4039asmlinkage long sys_sched_yield(void)
4040{
4041 runqueue_t *rq = this_rq_lock();
4042 prio_array_t *array = current->array;
4043 prio_array_t *target = rq->expired;
4044
4045 schedstat_inc(rq, yld_cnt);
4046 /*
4047 * We implement yielding by moving the task into the expired
4048 * queue.
4049 *
4050 * (special rule: RT tasks will just roundrobin in the active
4051 * array.)
4052 */
4053 if (rt_task(current))
4054 target = rq->active;
4055
5927ad78 4056 if (array->nr_active == 1) {
1da177e4
LT
4057 schedstat_inc(rq, yld_act_empty);
4058 if (!rq->expired->nr_active)
4059 schedstat_inc(rq, yld_both_empty);
4060 } else if (!rq->expired->nr_active)
4061 schedstat_inc(rq, yld_exp_empty);
4062
4063 if (array != target) {
4064 dequeue_task(current, array);
4065 enqueue_task(current, target);
4066 } else
4067 /*
4068 * requeue_task is cheaper so perform that if possible.
4069 */
4070 requeue_task(current, array);
4071
4072 /*
4073 * Since we are going to call schedule() anyway, there's
4074 * no need to preempt or enable interrupts:
4075 */
4076 __release(rq->lock);
4077 _raw_spin_unlock(&rq->lock);
4078 preempt_enable_no_resched();
4079
4080 schedule();
4081
4082 return 0;
4083}
4084
4085static inline void __cond_resched(void)
4086{
5bbcfd90
IM
4087 /*
4088 * The BKS might be reacquired before we have dropped
4089 * PREEMPT_ACTIVE, which could trigger a second
4090 * cond_resched() call.
4091 */
4092 if (unlikely(preempt_count()))
4093 return;
1da177e4
LT
4094 do {
4095 add_preempt_count(PREEMPT_ACTIVE);
4096 schedule();
4097 sub_preempt_count(PREEMPT_ACTIVE);
4098 } while (need_resched());
4099}
4100
4101int __sched cond_resched(void)
4102{
4103 if (need_resched()) {
4104 __cond_resched();
4105 return 1;
4106 }
4107 return 0;
4108}
4109
4110EXPORT_SYMBOL(cond_resched);
4111
4112/*
4113 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4114 * call schedule, and on return reacquire the lock.
4115 *
4116 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4117 * operations here to prevent schedule() from being called twice (once via
4118 * spin_unlock(), once by hand).
4119 */
95cdf3b7 4120int cond_resched_lock(spinlock_t *lock)
1da177e4 4121{
6df3cecb
JK
4122 int ret = 0;
4123
1da177e4
LT
4124 if (need_lockbreak(lock)) {
4125 spin_unlock(lock);
4126 cpu_relax();
6df3cecb 4127 ret = 1;
1da177e4
LT
4128 spin_lock(lock);
4129 }
4130 if (need_resched()) {
4131 _raw_spin_unlock(lock);
4132 preempt_enable_no_resched();
4133 __cond_resched();
6df3cecb 4134 ret = 1;
1da177e4 4135 spin_lock(lock);
1da177e4 4136 }
6df3cecb 4137 return ret;
1da177e4
LT
4138}
4139
4140EXPORT_SYMBOL(cond_resched_lock);
4141
4142int __sched cond_resched_softirq(void)
4143{
4144 BUG_ON(!in_softirq());
4145
4146 if (need_resched()) {
4147 __local_bh_enable();
4148 __cond_resched();
4149 local_bh_disable();
4150 return 1;
4151 }
4152 return 0;
4153}
4154
4155EXPORT_SYMBOL(cond_resched_softirq);
4156
4157
4158/**
4159 * yield - yield the current processor to other threads.
4160 *
4161 * this is a shortcut for kernel-space yielding - it marks the
4162 * thread runnable and calls sys_sched_yield().
4163 */
4164void __sched yield(void)
4165{
4166 set_current_state(TASK_RUNNING);
4167 sys_sched_yield();
4168}
4169
4170EXPORT_SYMBOL(yield);
4171
4172/*
4173 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4174 * that process accounting knows that this is a task in IO wait state.
4175 *
4176 * But don't do that if it is a deliberate, throttling IO wait (this task
4177 * has set its backing_dev_info: the queue against which it should throttle)
4178 */
4179void __sched io_schedule(void)
4180{
39c715b7 4181 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
1da177e4
LT
4182
4183 atomic_inc(&rq->nr_iowait);
4184 schedule();
4185 atomic_dec(&rq->nr_iowait);
4186}
4187
4188EXPORT_SYMBOL(io_schedule);
4189
4190long __sched io_schedule_timeout(long timeout)
4191{
39c715b7 4192 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
1da177e4
LT
4193 long ret;
4194
4195 atomic_inc(&rq->nr_iowait);
4196 ret = schedule_timeout(timeout);
4197 atomic_dec(&rq->nr_iowait);
4198 return ret;
4199}
4200
4201/**
4202 * sys_sched_get_priority_max - return maximum RT priority.
4203 * @policy: scheduling class.
4204 *
4205 * this syscall returns the maximum rt_priority that can be used
4206 * by a given scheduling class.
4207 */
4208asmlinkage long sys_sched_get_priority_max(int policy)
4209{
4210 int ret = -EINVAL;
4211
4212 switch (policy) {
4213 case SCHED_FIFO:
4214 case SCHED_RR:
4215 ret = MAX_USER_RT_PRIO-1;
4216 break;
4217 case SCHED_NORMAL:
4218 ret = 0;
4219 break;
4220 }
4221 return ret;
4222}
4223
4224/**
4225 * sys_sched_get_priority_min - return minimum RT priority.
4226 * @policy: scheduling class.
4227 *
4228 * this syscall returns the minimum rt_priority that can be used
4229 * by a given scheduling class.
4230 */
4231asmlinkage long sys_sched_get_priority_min(int policy)
4232{
4233 int ret = -EINVAL;
4234
4235 switch (policy) {
4236 case SCHED_FIFO:
4237 case SCHED_RR:
4238 ret = 1;
4239 break;
4240 case SCHED_NORMAL:
4241 ret = 0;
4242 }
4243 return ret;
4244}
4245
4246/**
4247 * sys_sched_rr_get_interval - return the default timeslice of a process.
4248 * @pid: pid of the process.
4249 * @interval: userspace pointer to the timeslice value.
4250 *
4251 * this syscall writes the default timeslice value of a given process
4252 * into the user-space timespec buffer. A value of '0' means infinity.
4253 */
4254asmlinkage
4255long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4256{
4257 int retval = -EINVAL;
4258 struct timespec t;
4259 task_t *p;
4260
4261 if (pid < 0)
4262 goto out_nounlock;
4263
4264 retval = -ESRCH;
4265 read_lock(&tasklist_lock);
4266 p = find_process_by_pid(pid);
4267 if (!p)
4268 goto out_unlock;
4269
4270 retval = security_task_getscheduler(p);
4271 if (retval)
4272 goto out_unlock;
4273
4274 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4275 0 : task_timeslice(p), &t);
4276 read_unlock(&tasklist_lock);
4277 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4278out_nounlock:
4279 return retval;
4280out_unlock:
4281 read_unlock(&tasklist_lock);
4282 return retval;
4283}
4284
4285static inline struct task_struct *eldest_child(struct task_struct *p)
4286{
4287 if (list_empty(&p->children)) return NULL;
4288 return list_entry(p->children.next,struct task_struct,sibling);
4289}
4290
4291static inline struct task_struct *older_sibling(struct task_struct *p)
4292{
4293 if (p->sibling.prev==&p->parent->children) return NULL;
4294 return list_entry(p->sibling.prev,struct task_struct,sibling);
4295}
4296
4297static inline struct task_struct *younger_sibling(struct task_struct *p)
4298{
4299 if (p->sibling.next==&p->parent->children) return NULL;
4300 return list_entry(p->sibling.next,struct task_struct,sibling);
4301}
4302
95cdf3b7 4303static void show_task(task_t *p)
1da177e4
LT
4304{
4305 task_t *relative;
4306 unsigned state;
4307 unsigned long free = 0;
4308 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4309
4310 printk("%-13.13s ", p->comm);
4311 state = p->state ? __ffs(p->state) + 1 : 0;
4312 if (state < ARRAY_SIZE(stat_nam))
4313 printk(stat_nam[state]);
4314 else
4315 printk("?");
4316#if (BITS_PER_LONG == 32)
4317 if (state == TASK_RUNNING)
4318 printk(" running ");
4319 else
4320 printk(" %08lX ", thread_saved_pc(p));
4321#else
4322 if (state == TASK_RUNNING)
4323 printk(" running task ");
4324 else
4325 printk(" %016lx ", thread_saved_pc(p));
4326#endif
4327#ifdef CONFIG_DEBUG_STACK_USAGE
4328 {
95cdf3b7 4329 unsigned long *n = (unsigned long *) (p->thread_info+1);
1da177e4
LT
4330 while (!*n)
4331 n++;
4332 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4333 }
4334#endif
4335 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4336 if ((relative = eldest_child(p)))
4337 printk("%5d ", relative->pid);
4338 else
4339 printk(" ");
4340 if ((relative = younger_sibling(p)))
4341 printk("%7d", relative->pid);
4342 else
4343 printk(" ");
4344 if ((relative = older_sibling(p)))
4345 printk(" %5d", relative->pid);
4346 else
4347 printk(" ");
4348 if (!p->mm)
4349 printk(" (L-TLB)\n");
4350 else
4351 printk(" (NOTLB)\n");
4352
4353 if (state != TASK_RUNNING)
4354 show_stack(p, NULL);
4355}
4356
4357void show_state(void)
4358{
4359 task_t *g, *p;
4360
4361#if (BITS_PER_LONG == 32)
4362 printk("\n"
4363 " sibling\n");
4364 printk(" task PC pid father child younger older\n");
4365#else
4366 printk("\n"
4367 " sibling\n");
4368 printk(" task PC pid father child younger older\n");
4369#endif
4370 read_lock(&tasklist_lock);
4371 do_each_thread(g, p) {
4372 /*
4373 * reset the NMI-timeout, listing all files on a slow
4374 * console might take alot of time:
4375 */
4376 touch_nmi_watchdog();
4377 show_task(p);
4378 } while_each_thread(g, p);
4379
4380 read_unlock(&tasklist_lock);
4381}
4382
f340c0d1
IM
4383/**
4384 * init_idle - set up an idle thread for a given CPU
4385 * @idle: task in question
4386 * @cpu: cpu the idle task belongs to
4387 *
4388 * NOTE: this function does not set the idle thread's NEED_RESCHED
4389 * flag, to make booting more robust.
4390 */
1da177e4
LT
4391void __devinit init_idle(task_t *idle, int cpu)
4392{
4393 runqueue_t *rq = cpu_rq(cpu);
4394 unsigned long flags;
4395
4396 idle->sleep_avg = 0;
4397 idle->array = NULL;
4398 idle->prio = MAX_PRIO;
4399 idle->state = TASK_RUNNING;
4400 idle->cpus_allowed = cpumask_of_cpu(cpu);
4401 set_task_cpu(idle, cpu);
4402
4403 spin_lock_irqsave(&rq->lock, flags);
4404 rq->curr = rq->idle = idle;
4866cde0
NP
4405#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4406 idle->oncpu = 1;
4407#endif
1da177e4
LT
4408 spin_unlock_irqrestore(&rq->lock, flags);
4409
4410 /* Set the preempt count _outside_ the spinlocks! */
4411#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4412 idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4413#else
4414 idle->thread_info->preempt_count = 0;
4415#endif
4416}
4417
4418/*
4419 * In a system that switches off the HZ timer nohz_cpu_mask
4420 * indicates which cpus entered this state. This is used
4421 * in the rcu update to wait only for active cpus. For system
4422 * which do not switch off the HZ timer nohz_cpu_mask should
4423 * always be CPU_MASK_NONE.
4424 */
4425cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4426
4427#ifdef CONFIG_SMP
4428/*
4429 * This is how migration works:
4430 *
4431 * 1) we queue a migration_req_t structure in the source CPU's
4432 * runqueue and wake up that CPU's migration thread.
4433 * 2) we down() the locked semaphore => thread blocks.
4434 * 3) migration thread wakes up (implicitly it forces the migrated
4435 * thread off the CPU)
4436 * 4) it gets the migration request and checks whether the migrated
4437 * task is still in the wrong runqueue.
4438 * 5) if it's in the wrong runqueue then the migration thread removes
4439 * it and puts it into the right queue.
4440 * 6) migration thread up()s the semaphore.
4441 * 7) we wake up and the migration is done.
4442 */
4443
4444/*
4445 * Change a given task's CPU affinity. Migrate the thread to a
4446 * proper CPU and schedule it away if the CPU it's executing on
4447 * is removed from the allowed bitmask.
4448 *
4449 * NOTE: the caller must have a valid reference to the task, the
4450 * task must not exit() & deallocate itself prematurely. The
4451 * call is not atomic; no spinlocks may be held.
4452 */
4453int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4454{
4455 unsigned long flags;
4456 int ret = 0;
4457 migration_req_t req;
4458 runqueue_t *rq;
4459
4460 rq = task_rq_lock(p, &flags);
4461 if (!cpus_intersects(new_mask, cpu_online_map)) {
4462 ret = -EINVAL;
4463 goto out;
4464 }
4465
4466 p->cpus_allowed = new_mask;
4467 /* Can the task run on the task's current CPU? If so, we're done */
4468 if (cpu_isset(task_cpu(p), new_mask))
4469 goto out;
4470
4471 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4472 /* Need help from migration thread: drop lock and wait. */
4473 task_rq_unlock(rq, &flags);
4474 wake_up_process(rq->migration_thread);
4475 wait_for_completion(&req.done);
4476 tlb_migrate_finish(p->mm);
4477 return 0;
4478 }
4479out:
4480 task_rq_unlock(rq, &flags);
4481 return ret;
4482}
4483
4484EXPORT_SYMBOL_GPL(set_cpus_allowed);
4485
4486/*
4487 * Move (not current) task off this cpu, onto dest cpu. We're doing
4488 * this because either it can't run here any more (set_cpus_allowed()
4489 * away from this CPU, or CPU going down), or because we're
4490 * attempting to rebalance this task on exec (sched_exec).
4491 *
4492 * So we race with normal scheduler movements, but that's OK, as long
4493 * as the task is no longer on this CPU.
4494 */
4495static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4496{
4497 runqueue_t *rq_dest, *rq_src;
4498
4499 if (unlikely(cpu_is_offline(dest_cpu)))
4500 return;
4501
4502 rq_src = cpu_rq(src_cpu);
4503 rq_dest = cpu_rq(dest_cpu);
4504
4505 double_rq_lock(rq_src, rq_dest);
4506 /* Already moved. */
4507 if (task_cpu(p) != src_cpu)
4508 goto out;
4509 /* Affinity changed (again). */
4510 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4511 goto out;
4512
4513 set_task_cpu(p, dest_cpu);
4514 if (p->array) {
4515 /*
4516 * Sync timestamp with rq_dest's before activating.
4517 * The same thing could be achieved by doing this step
4518 * afterwards, and pretending it was a local activate.
4519 * This way is cleaner and logically correct.
4520 */
4521 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4522 + rq_dest->timestamp_last_tick;
4523 deactivate_task(p, rq_src);
4524 activate_task(p, rq_dest, 0);
4525 if (TASK_PREEMPTS_CURR(p, rq_dest))
4526 resched_task(rq_dest->curr);
4527 }
4528
4529out:
4530 double_rq_unlock(rq_src, rq_dest);
4531}
4532
4533/*
4534 * migration_thread - this is a highprio system thread that performs
4535 * thread migration by bumping thread off CPU then 'pushing' onto
4536 * another runqueue.
4537 */
95cdf3b7 4538static int migration_thread(void *data)
1da177e4
LT
4539{
4540 runqueue_t *rq;
4541 int cpu = (long)data;
4542
4543 rq = cpu_rq(cpu);
4544 BUG_ON(rq->migration_thread != current);
4545
4546 set_current_state(TASK_INTERRUPTIBLE);
4547 while (!kthread_should_stop()) {
4548 struct list_head *head;
4549 migration_req_t *req;
4550
3e1d1d28 4551 try_to_freeze();
1da177e4
LT
4552
4553 spin_lock_irq(&rq->lock);
4554
4555 if (cpu_is_offline(cpu)) {
4556 spin_unlock_irq(&rq->lock);
4557 goto wait_to_die;
4558 }
4559
4560 if (rq->active_balance) {
4561 active_load_balance(rq, cpu);
4562 rq->active_balance = 0;
4563 }
4564
4565 head = &rq->migration_queue;
4566
4567 if (list_empty(head)) {
4568 spin_unlock_irq(&rq->lock);
4569 schedule();
4570 set_current_state(TASK_INTERRUPTIBLE);
4571 continue;
4572 }
4573 req = list_entry(head->next, migration_req_t, list);
4574 list_del_init(head->next);
4575
674311d5
NP
4576 spin_unlock(&rq->lock);
4577 __migrate_task(req->task, cpu, req->dest_cpu);
4578 local_irq_enable();
1da177e4
LT
4579
4580 complete(&req->done);
4581 }
4582 __set_current_state(TASK_RUNNING);
4583 return 0;
4584
4585wait_to_die:
4586 /* Wait for kthread_stop */
4587 set_current_state(TASK_INTERRUPTIBLE);
4588 while (!kthread_should_stop()) {
4589 schedule();
4590 set_current_state(TASK_INTERRUPTIBLE);
4591 }
4592 __set_current_state(TASK_RUNNING);
4593 return 0;
4594}
4595
4596#ifdef CONFIG_HOTPLUG_CPU
4597/* Figure out where task on dead CPU should go, use force if neccessary. */
4598static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4599{
4600 int dest_cpu;
4601 cpumask_t mask;
4602
4603 /* On same node? */
4604 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4605 cpus_and(mask, mask, tsk->cpus_allowed);
4606 dest_cpu = any_online_cpu(mask);
4607
4608 /* On any allowed CPU? */
4609 if (dest_cpu == NR_CPUS)
4610 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4611
4612 /* No more Mr. Nice Guy. */
4613 if (dest_cpu == NR_CPUS) {
b39c4fab 4614 cpus_setall(tsk->cpus_allowed);
1da177e4
LT
4615 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4616
4617 /*
4618 * Don't tell them about moving exiting tasks or
4619 * kernel threads (both mm NULL), since they never
4620 * leave kernel.
4621 */
4622 if (tsk->mm && printk_ratelimit())
4623 printk(KERN_INFO "process %d (%s) no "
4624 "longer affine to cpu%d\n",
4625 tsk->pid, tsk->comm, dead_cpu);
4626 }
4627 __migrate_task(tsk, dead_cpu, dest_cpu);
4628}
4629
4630/*
4631 * While a dead CPU has no uninterruptible tasks queued at this point,
4632 * it might still have a nonzero ->nr_uninterruptible counter, because
4633 * for performance reasons the counter is not stricly tracking tasks to
4634 * their home CPUs. So we just add the counter to another CPU's counter,
4635 * to keep the global sum constant after CPU-down:
4636 */
4637static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4638{
4639 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4640 unsigned long flags;
4641
4642 local_irq_save(flags);
4643 double_rq_lock(rq_src, rq_dest);
4644 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4645 rq_src->nr_uninterruptible = 0;
4646 double_rq_unlock(rq_src, rq_dest);
4647 local_irq_restore(flags);
4648}
4649
4650/* Run through task list and migrate tasks from the dead cpu. */
4651static void migrate_live_tasks(int src_cpu)
4652{
4653 struct task_struct *tsk, *t;
4654
4655 write_lock_irq(&tasklist_lock);
4656
4657 do_each_thread(t, tsk) {
4658 if (tsk == current)
4659 continue;
4660
4661 if (task_cpu(tsk) == src_cpu)
4662 move_task_off_dead_cpu(src_cpu, tsk);
4663 } while_each_thread(t, tsk);
4664
4665 write_unlock_irq(&tasklist_lock);
4666}
4667
4668/* Schedules idle task to be the next runnable task on current CPU.
4669 * It does so by boosting its priority to highest possible and adding it to
4670 * the _front_ of runqueue. Used by CPU offline code.
4671 */
4672void sched_idle_next(void)
4673{
4674 int cpu = smp_processor_id();
4675 runqueue_t *rq = this_rq();
4676 struct task_struct *p = rq->idle;
4677 unsigned long flags;
4678
4679 /* cpu has to be offline */
4680 BUG_ON(cpu_online(cpu));
4681
4682 /* Strictly not necessary since rest of the CPUs are stopped by now
4683 * and interrupts disabled on current cpu.
4684 */
4685 spin_lock_irqsave(&rq->lock, flags);
4686
4687 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4688 /* Add idle task to _front_ of it's priority queue */
4689 __activate_idle_task(p, rq);
4690
4691 spin_unlock_irqrestore(&rq->lock, flags);
4692}
4693
4694/* Ensures that the idle task is using init_mm right before its cpu goes
4695 * offline.
4696 */
4697void idle_task_exit(void)
4698{
4699 struct mm_struct *mm = current->active_mm;
4700
4701 BUG_ON(cpu_online(smp_processor_id()));
4702
4703 if (mm != &init_mm)
4704 switch_mm(mm, &init_mm, current);
4705 mmdrop(mm);
4706}
4707
4708static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4709{
4710 struct runqueue *rq = cpu_rq(dead_cpu);
4711
4712 /* Must be exiting, otherwise would be on tasklist. */
4713 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4714
4715 /* Cannot have done final schedule yet: would have vanished. */
4716 BUG_ON(tsk->flags & PF_DEAD);
4717
4718 get_task_struct(tsk);
4719
4720 /*
4721 * Drop lock around migration; if someone else moves it,
4722 * that's OK. No task can be added to this CPU, so iteration is
4723 * fine.
4724 */
4725 spin_unlock_irq(&rq->lock);
4726 move_task_off_dead_cpu(dead_cpu, tsk);
4727 spin_lock_irq(&rq->lock);
4728
4729 put_task_struct(tsk);
4730}
4731
4732/* release_task() removes task from tasklist, so we won't find dead tasks. */
4733static void migrate_dead_tasks(unsigned int dead_cpu)
4734{
4735 unsigned arr, i;
4736 struct runqueue *rq = cpu_rq(dead_cpu);
4737
4738 for (arr = 0; arr < 2; arr++) {
4739 for (i = 0; i < MAX_PRIO; i++) {
4740 struct list_head *list = &rq->arrays[arr].queue[i];
4741 while (!list_empty(list))
4742 migrate_dead(dead_cpu,
4743 list_entry(list->next, task_t,
4744 run_list));
4745 }
4746 }
4747}
4748#endif /* CONFIG_HOTPLUG_CPU */
4749
4750/*
4751 * migration_call - callback that gets triggered when a CPU is added.
4752 * Here we can start up the necessary migration thread for the new CPU.
4753 */
4754static int migration_call(struct notifier_block *nfb, unsigned long action,
4755 void *hcpu)
4756{
4757 int cpu = (long)hcpu;
4758 struct task_struct *p;
4759 struct runqueue *rq;
4760 unsigned long flags;
4761
4762 switch (action) {
4763 case CPU_UP_PREPARE:
4764 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4765 if (IS_ERR(p))
4766 return NOTIFY_BAD;
4767 p->flags |= PF_NOFREEZE;
4768 kthread_bind(p, cpu);
4769 /* Must be high prio: stop_machine expects to yield to it. */
4770 rq = task_rq_lock(p, &flags);
4771 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4772 task_rq_unlock(rq, &flags);
4773 cpu_rq(cpu)->migration_thread = p;
4774 break;
4775 case CPU_ONLINE:
4776 /* Strictly unneccessary, as first user will wake it. */
4777 wake_up_process(cpu_rq(cpu)->migration_thread);
4778 break;
4779#ifdef CONFIG_HOTPLUG_CPU
4780 case CPU_UP_CANCELED:
4781 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
4782 kthread_bind(cpu_rq(cpu)->migration_thread,
4783 any_online_cpu(cpu_online_map));
1da177e4
LT
4784 kthread_stop(cpu_rq(cpu)->migration_thread);
4785 cpu_rq(cpu)->migration_thread = NULL;
4786 break;
4787 case CPU_DEAD:
4788 migrate_live_tasks(cpu);
4789 rq = cpu_rq(cpu);
4790 kthread_stop(rq->migration_thread);
4791 rq->migration_thread = NULL;
4792 /* Idle task back to normal (off runqueue, low prio) */
4793 rq = task_rq_lock(rq->idle, &flags);
4794 deactivate_task(rq->idle, rq);
4795 rq->idle->static_prio = MAX_PRIO;
4796 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4797 migrate_dead_tasks(cpu);
4798 task_rq_unlock(rq, &flags);
4799 migrate_nr_uninterruptible(rq);
4800 BUG_ON(rq->nr_running != 0);
4801
4802 /* No need to migrate the tasks: it was best-effort if
4803 * they didn't do lock_cpu_hotplug(). Just wake up
4804 * the requestors. */
4805 spin_lock_irq(&rq->lock);
4806 while (!list_empty(&rq->migration_queue)) {
4807 migration_req_t *req;
4808 req = list_entry(rq->migration_queue.next,
4809 migration_req_t, list);
1da177e4
LT
4810 list_del_init(&req->list);
4811 complete(&req->done);
4812 }
4813 spin_unlock_irq(&rq->lock);
4814 break;
4815#endif
4816 }
4817 return NOTIFY_OK;
4818}
4819
4820/* Register at highest priority so that task migration (migrate_all_tasks)
4821 * happens before everything else.
4822 */
4823static struct notifier_block __devinitdata migration_notifier = {
4824 .notifier_call = migration_call,
4825 .priority = 10
4826};
4827
4828int __init migration_init(void)
4829{
4830 void *cpu = (void *)(long)smp_processor_id();
4831 /* Start one for boot CPU. */
4832 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4833 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4834 register_cpu_notifier(&migration_notifier);
4835 return 0;
4836}
4837#endif
4838
4839#ifdef CONFIG_SMP
1a20ff27 4840#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
4841#ifdef SCHED_DOMAIN_DEBUG
4842static void sched_domain_debug(struct sched_domain *sd, int cpu)
4843{
4844 int level = 0;
4845
41c7ce9a
NP
4846 if (!sd) {
4847 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4848 return;
4849 }
4850
1da177e4
LT
4851 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4852
4853 do {
4854 int i;
4855 char str[NR_CPUS];
4856 struct sched_group *group = sd->groups;
4857 cpumask_t groupmask;
4858
4859 cpumask_scnprintf(str, NR_CPUS, sd->span);
4860 cpus_clear(groupmask);
4861
4862 printk(KERN_DEBUG);
4863 for (i = 0; i < level + 1; i++)
4864 printk(" ");
4865 printk("domain %d: ", level);
4866
4867 if (!(sd->flags & SD_LOAD_BALANCE)) {
4868 printk("does not load-balance\n");
4869 if (sd->parent)
4870 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4871 break;
4872 }
4873
4874 printk("span %s\n", str);
4875
4876 if (!cpu_isset(cpu, sd->span))
4877 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4878 if (!cpu_isset(cpu, group->cpumask))
4879 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4880
4881 printk(KERN_DEBUG);
4882 for (i = 0; i < level + 2; i++)
4883 printk(" ");
4884 printk("groups:");
4885 do {
4886 if (!group) {
4887 printk("\n");
4888 printk(KERN_ERR "ERROR: group is NULL\n");
4889 break;
4890 }
4891
4892 if (!group->cpu_power) {
4893 printk("\n");
4894 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4895 }
4896
4897 if (!cpus_weight(group->cpumask)) {
4898 printk("\n");
4899 printk(KERN_ERR "ERROR: empty group\n");
4900 }
4901
4902 if (cpus_intersects(groupmask, group->cpumask)) {
4903 printk("\n");
4904 printk(KERN_ERR "ERROR: repeated CPUs\n");
4905 }
4906
4907 cpus_or(groupmask, groupmask, group->cpumask);
4908
4909 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4910 printk(" %s", str);
4911
4912 group = group->next;
4913 } while (group != sd->groups);
4914 printk("\n");
4915
4916 if (!cpus_equal(sd->span, groupmask))
4917 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4918
4919 level++;
4920 sd = sd->parent;
4921
4922 if (sd) {
4923 if (!cpus_subset(groupmask, sd->span))
4924 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4925 }
4926
4927 } while (sd);
4928}
4929#else
4930#define sched_domain_debug(sd, cpu) {}
4931#endif
4932
1a20ff27 4933static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
4934{
4935 if (cpus_weight(sd->span) == 1)
4936 return 1;
4937
4938 /* Following flags need at least 2 groups */
4939 if (sd->flags & (SD_LOAD_BALANCE |
4940 SD_BALANCE_NEWIDLE |
4941 SD_BALANCE_FORK |
4942 SD_BALANCE_EXEC)) {
4943 if (sd->groups != sd->groups->next)
4944 return 0;
4945 }
4946
4947 /* Following flags don't use groups */
4948 if (sd->flags & (SD_WAKE_IDLE |
4949 SD_WAKE_AFFINE |
4950 SD_WAKE_BALANCE))
4951 return 0;
4952
4953 return 1;
4954}
4955
1a20ff27 4956static int sd_parent_degenerate(struct sched_domain *sd,
245af2c7
SS
4957 struct sched_domain *parent)
4958{
4959 unsigned long cflags = sd->flags, pflags = parent->flags;
4960
4961 if (sd_degenerate(parent))
4962 return 1;
4963
4964 if (!cpus_equal(sd->span, parent->span))
4965 return 0;
4966
4967 /* Does parent contain flags not in child? */
4968 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4969 if (cflags & SD_WAKE_AFFINE)
4970 pflags &= ~SD_WAKE_BALANCE;
4971 /* Flags needing groups don't count if only 1 group in parent */
4972 if (parent->groups == parent->groups->next) {
4973 pflags &= ~(SD_LOAD_BALANCE |
4974 SD_BALANCE_NEWIDLE |
4975 SD_BALANCE_FORK |
4976 SD_BALANCE_EXEC);
4977 }
4978 if (~cflags & pflags)
4979 return 0;
4980
4981 return 1;
4982}
4983
1da177e4
LT
4984/*
4985 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4986 * hold the hotplug lock.
4987 */
9c1cfda2 4988static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 4989{
1da177e4 4990 runqueue_t *rq = cpu_rq(cpu);
245af2c7
SS
4991 struct sched_domain *tmp;
4992
4993 /* Remove the sched domains which do not contribute to scheduling. */
4994 for (tmp = sd; tmp; tmp = tmp->parent) {
4995 struct sched_domain *parent = tmp->parent;
4996 if (!parent)
4997 break;
4998 if (sd_parent_degenerate(tmp, parent))
4999 tmp->parent = parent->parent;
5000 }
5001
5002 if (sd && sd_degenerate(sd))
5003 sd = sd->parent;
1da177e4
LT
5004
5005 sched_domain_debug(sd, cpu);
5006
674311d5 5007 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5008}
5009
5010/* cpus with isolated domains */
9c1cfda2 5011static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5012
5013/* Setup the mask of cpus configured for isolated domains */
5014static int __init isolated_cpu_setup(char *str)
5015{
5016 int ints[NR_CPUS], i;
5017
5018 str = get_options(str, ARRAY_SIZE(ints), ints);
5019 cpus_clear(cpu_isolated_map);
5020 for (i = 1; i <= ints[0]; i++)
5021 if (ints[i] < NR_CPUS)
5022 cpu_set(ints[i], cpu_isolated_map);
5023 return 1;
5024}
5025
5026__setup ("isolcpus=", isolated_cpu_setup);
5027
5028/*
5029 * init_sched_build_groups takes an array of groups, the cpumask we wish
5030 * to span, and a pointer to a function which identifies what group a CPU
5031 * belongs to. The return value of group_fn must be a valid index into the
5032 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5033 * keep track of groups covered with a cpumask_t).
5034 *
5035 * init_sched_build_groups will build a circular linked list of the groups
5036 * covered by the given span, and will set each group's ->cpumask correctly,
5037 * and ->cpu_power to 0.
5038 */
9c1cfda2
JH
5039static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5040 int (*group_fn)(int cpu))
1da177e4
LT
5041{
5042 struct sched_group *first = NULL, *last = NULL;
5043 cpumask_t covered = CPU_MASK_NONE;
5044 int i;
5045
5046 for_each_cpu_mask(i, span) {
5047 int group = group_fn(i);
5048 struct sched_group *sg = &groups[group];
5049 int j;
5050
5051 if (cpu_isset(i, covered))
5052 continue;
5053
5054 sg->cpumask = CPU_MASK_NONE;
5055 sg->cpu_power = 0;
5056
5057 for_each_cpu_mask(j, span) {
5058 if (group_fn(j) != group)
5059 continue;
5060
5061 cpu_set(j, covered);
5062 cpu_set(j, sg->cpumask);
5063 }
5064 if (!first)
5065 first = sg;
5066 if (last)
5067 last->next = sg;
5068 last = sg;
5069 }
5070 last->next = first;
5071}
5072
9c1cfda2 5073#define SD_NODES_PER_DOMAIN 16
1da177e4 5074
9c1cfda2
JH
5075#ifdef CONFIG_NUMA
5076/**
5077 * find_next_best_node - find the next node to include in a sched_domain
5078 * @node: node whose sched_domain we're building
5079 * @used_nodes: nodes already in the sched_domain
5080 *
5081 * Find the next node to include in a given scheduling domain. Simply
5082 * finds the closest node not already in the @used_nodes map.
5083 *
5084 * Should use nodemask_t.
5085 */
5086static int find_next_best_node(int node, unsigned long *used_nodes)
5087{
5088 int i, n, val, min_val, best_node = 0;
5089
5090 min_val = INT_MAX;
5091
5092 for (i = 0; i < MAX_NUMNODES; i++) {
5093 /* Start at @node */
5094 n = (node + i) % MAX_NUMNODES;
5095
5096 if (!nr_cpus_node(n))
5097 continue;
5098
5099 /* Skip already used nodes */
5100 if (test_bit(n, used_nodes))
5101 continue;
5102
5103 /* Simple min distance search */
5104 val = node_distance(node, n);
5105
5106 if (val < min_val) {
5107 min_val = val;
5108 best_node = n;
5109 }
5110 }
5111
5112 set_bit(best_node, used_nodes);
5113 return best_node;
5114}
5115
5116/**
5117 * sched_domain_node_span - get a cpumask for a node's sched_domain
5118 * @node: node whose cpumask we're constructing
5119 * @size: number of nodes to include in this span
5120 *
5121 * Given a node, construct a good cpumask for its sched_domain to span. It
5122 * should be one that prevents unnecessary balancing, but also spreads tasks
5123 * out optimally.
5124 */
5125static cpumask_t sched_domain_node_span(int node)
5126{
5127 int i;
5128 cpumask_t span, nodemask;
5129 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5130
5131 cpus_clear(span);
5132 bitmap_zero(used_nodes, MAX_NUMNODES);
5133
5134 nodemask = node_to_cpumask(node);
5135 cpus_or(span, span, nodemask);
5136 set_bit(node, used_nodes);
5137
5138 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5139 int next_node = find_next_best_node(node, used_nodes);
5140 nodemask = node_to_cpumask(next_node);
5141 cpus_or(span, span, nodemask);
5142 }
5143
5144 return span;
5145}
5146#endif
5147
5148/*
5149 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5150 * can switch it on easily if needed.
5151 */
1da177e4
LT
5152#ifdef CONFIG_SCHED_SMT
5153static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5154static struct sched_group sched_group_cpus[NR_CPUS];
1a20ff27 5155static int cpu_to_cpu_group(int cpu)
1da177e4
LT
5156{
5157 return cpu;
5158}
5159#endif
5160
5161static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5162static struct sched_group sched_group_phys[NR_CPUS];
1a20ff27 5163static int cpu_to_phys_group(int cpu)
1da177e4
LT
5164{
5165#ifdef CONFIG_SCHED_SMT
5166 return first_cpu(cpu_sibling_map[cpu]);
5167#else
5168 return cpu;
5169#endif
5170}
5171
5172#ifdef CONFIG_NUMA
1da177e4 5173/*
9c1cfda2
JH
5174 * The init_sched_build_groups can't handle what we want to do with node
5175 * groups, so roll our own. Now each node has its own list of groups which
5176 * gets dynamically allocated.
1da177e4 5177 */
9c1cfda2 5178static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5179static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5180
9c1cfda2 5181static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
d1b55138 5182static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
9c1cfda2
JH
5183
5184static int cpu_to_allnodes_group(int cpu)
5185{
5186 return cpu_to_node(cpu);
1da177e4
LT
5187}
5188#endif
5189
5190/*
1a20ff27
DG
5191 * Build sched domains for a given set of cpus and attach the sched domains
5192 * to the individual cpus
1da177e4 5193 */
9c1cfda2 5194void build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
5195{
5196 int i;
d1b55138
JH
5197#ifdef CONFIG_NUMA
5198 struct sched_group **sched_group_nodes = NULL;
5199 struct sched_group *sched_group_allnodes = NULL;
5200
5201 /*
5202 * Allocate the per-node list of sched groups
5203 */
5204 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5205 GFP_ATOMIC);
5206 if (!sched_group_nodes) {
5207 printk(KERN_WARNING "Can not alloc sched group node list\n");
5208 return;
5209 }
5210 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5211#endif
1da177e4
LT
5212
5213 /*
1a20ff27 5214 * Set up domains for cpus specified by the cpu_map.
1da177e4 5215 */
1a20ff27 5216 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5217 int group;
5218 struct sched_domain *sd = NULL, *p;
5219 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5220
1a20ff27 5221 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
5222
5223#ifdef CONFIG_NUMA
d1b55138 5224 if (cpus_weight(*cpu_map)
9c1cfda2 5225 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
d1b55138
JH
5226 if (!sched_group_allnodes) {
5227 sched_group_allnodes
5228 = kmalloc(sizeof(struct sched_group)
5229 * MAX_NUMNODES,
5230 GFP_KERNEL);
5231 if (!sched_group_allnodes) {
5232 printk(KERN_WARNING
5233 "Can not alloc allnodes sched group\n");
5234 break;
5235 }
5236 sched_group_allnodes_bycpu[i]
5237 = sched_group_allnodes;
5238 }
9c1cfda2
JH
5239 sd = &per_cpu(allnodes_domains, i);
5240 *sd = SD_ALLNODES_INIT;
5241 sd->span = *cpu_map;
5242 group = cpu_to_allnodes_group(i);
5243 sd->groups = &sched_group_allnodes[group];
5244 p = sd;
5245 } else
5246 p = NULL;
5247
1da177e4 5248 sd = &per_cpu(node_domains, i);
1da177e4 5249 *sd = SD_NODE_INIT;
9c1cfda2
JH
5250 sd->span = sched_domain_node_span(cpu_to_node(i));
5251 sd->parent = p;
5252 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
5253#endif
5254
5255 p = sd;
5256 sd = &per_cpu(phys_domains, i);
5257 group = cpu_to_phys_group(i);
5258 *sd = SD_CPU_INIT;
5259 sd->span = nodemask;
5260 sd->parent = p;
5261 sd->groups = &sched_group_phys[group];
5262
5263#ifdef CONFIG_SCHED_SMT
5264 p = sd;
5265 sd = &per_cpu(cpu_domains, i);
5266 group = cpu_to_cpu_group(i);
5267 *sd = SD_SIBLING_INIT;
5268 sd->span = cpu_sibling_map[i];
1a20ff27 5269 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
5270 sd->parent = p;
5271 sd->groups = &sched_group_cpus[group];
5272#endif
5273 }
5274
5275#ifdef CONFIG_SCHED_SMT
5276 /* Set up CPU (sibling) groups */
9c1cfda2 5277 for_each_cpu_mask(i, *cpu_map) {
1da177e4 5278 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 5279 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
5280 if (i != first_cpu(this_sibling_map))
5281 continue;
5282
5283 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5284 &cpu_to_cpu_group);
5285 }
5286#endif
5287
5288 /* Set up physical groups */
5289 for (i = 0; i < MAX_NUMNODES; i++) {
5290 cpumask_t nodemask = node_to_cpumask(i);
5291
1a20ff27 5292 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
5293 if (cpus_empty(nodemask))
5294 continue;
5295
5296 init_sched_build_groups(sched_group_phys, nodemask,
5297 &cpu_to_phys_group);
5298 }
5299
5300#ifdef CONFIG_NUMA
5301 /* Set up node groups */
d1b55138
JH
5302 if (sched_group_allnodes)
5303 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5304 &cpu_to_allnodes_group);
9c1cfda2
JH
5305
5306 for (i = 0; i < MAX_NUMNODES; i++) {
5307 /* Set up node groups */
5308 struct sched_group *sg, *prev;
5309 cpumask_t nodemask = node_to_cpumask(i);
5310 cpumask_t domainspan;
5311 cpumask_t covered = CPU_MASK_NONE;
5312 int j;
5313
5314 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
5315 if (cpus_empty(nodemask)) {
5316 sched_group_nodes[i] = NULL;
9c1cfda2 5317 continue;
d1b55138 5318 }
9c1cfda2
JH
5319
5320 domainspan = sched_domain_node_span(i);
5321 cpus_and(domainspan, domainspan, *cpu_map);
5322
5323 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5324 sched_group_nodes[i] = sg;
5325 for_each_cpu_mask(j, nodemask) {
5326 struct sched_domain *sd;
5327 sd = &per_cpu(node_domains, j);
5328 sd->groups = sg;
5329 if (sd->groups == NULL) {
5330 /* Turn off balancing if we have no groups */
5331 sd->flags = 0;
5332 }
5333 }
5334 if (!sg) {
5335 printk(KERN_WARNING
5336 "Can not alloc domain group for node %d\n", i);
5337 continue;
5338 }
5339 sg->cpu_power = 0;
5340 sg->cpumask = nodemask;
5341 cpus_or(covered, covered, nodemask);
5342 prev = sg;
5343
5344 for (j = 0; j < MAX_NUMNODES; j++) {
5345 cpumask_t tmp, notcovered;
5346 int n = (i + j) % MAX_NUMNODES;
5347
5348 cpus_complement(notcovered, covered);
5349 cpus_and(tmp, notcovered, *cpu_map);
5350 cpus_and(tmp, tmp, domainspan);
5351 if (cpus_empty(tmp))
5352 break;
5353
5354 nodemask = node_to_cpumask(n);
5355 cpus_and(tmp, tmp, nodemask);
5356 if (cpus_empty(tmp))
5357 continue;
5358
5359 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5360 if (!sg) {
5361 printk(KERN_WARNING
5362 "Can not alloc domain group for node %d\n", j);
5363 break;
5364 }
5365 sg->cpu_power = 0;
5366 sg->cpumask = tmp;
5367 cpus_or(covered, covered, tmp);
5368 prev->next = sg;
5369 prev = sg;
5370 }
5371 prev->next = sched_group_nodes[i];
5372 }
1da177e4
LT
5373#endif
5374
5375 /* Calculate CPU power for physical packages and nodes */
1a20ff27 5376 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5377 int power;
5378 struct sched_domain *sd;
5379#ifdef CONFIG_SCHED_SMT
5380 sd = &per_cpu(cpu_domains, i);
5381 power = SCHED_LOAD_SCALE;
5382 sd->groups->cpu_power = power;
5383#endif
5384
5385 sd = &per_cpu(phys_domains, i);
5386 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5387 (cpus_weight(sd->groups->cpumask)-1) / 10;
5388 sd->groups->cpu_power = power;
5389
5390#ifdef CONFIG_NUMA
9c1cfda2
JH
5391 sd = &per_cpu(allnodes_domains, i);
5392 if (sd->groups) {
5393 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5394 (cpus_weight(sd->groups->cpumask)-1) / 10;
5395 sd->groups->cpu_power = power;
1da177e4
LT
5396 }
5397#endif
5398 }
5399
9c1cfda2
JH
5400#ifdef CONFIG_NUMA
5401 for (i = 0; i < MAX_NUMNODES; i++) {
5402 struct sched_group *sg = sched_group_nodes[i];
5403 int j;
5404
5405 if (sg == NULL)
5406 continue;
5407next_sg:
5408 for_each_cpu_mask(j, sg->cpumask) {
5409 struct sched_domain *sd;
5410 int power;
5411
5412 sd = &per_cpu(phys_domains, j);
5413 if (j != first_cpu(sd->groups->cpumask)) {
5414 /*
5415 * Only add "power" once for each
5416 * physical package.
5417 */
5418 continue;
5419 }
5420 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5421 (cpus_weight(sd->groups->cpumask)-1) / 10;
5422
5423 sg->cpu_power += power;
5424 }
5425 sg = sg->next;
5426 if (sg != sched_group_nodes[i])
5427 goto next_sg;
5428 }
5429#endif
5430
1da177e4 5431 /* Attach the domains */
1a20ff27 5432 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5433 struct sched_domain *sd;
5434#ifdef CONFIG_SCHED_SMT
5435 sd = &per_cpu(cpu_domains, i);
5436#else
5437 sd = &per_cpu(phys_domains, i);
5438#endif
5439 cpu_attach_domain(sd, i);
5440 }
5441}
1a20ff27
DG
5442/*
5443 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5444 */
9c1cfda2 5445static void arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
5446{
5447 cpumask_t cpu_default_map;
1da177e4 5448
1a20ff27
DG
5449 /*
5450 * Setup mask for cpus without special case scheduling requirements.
5451 * For now this just excludes isolated cpus, but could be used to
5452 * exclude other special cases in the future.
5453 */
5454 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5455
5456 build_sched_domains(&cpu_default_map);
5457}
5458
5459static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 5460{
9c1cfda2
JH
5461#ifdef CONFIG_NUMA
5462 int i;
d1b55138 5463 int cpu;
1da177e4 5464
d1b55138
JH
5465 for_each_cpu_mask(cpu, *cpu_map) {
5466 struct sched_group *sched_group_allnodes
5467 = sched_group_allnodes_bycpu[cpu];
5468 struct sched_group **sched_group_nodes
5469 = sched_group_nodes_bycpu[cpu];
9c1cfda2 5470
d1b55138
JH
5471 if (sched_group_allnodes) {
5472 kfree(sched_group_allnodes);
5473 sched_group_allnodes_bycpu[cpu] = NULL;
5474 }
5475
5476 if (!sched_group_nodes)
9c1cfda2 5477 continue;
d1b55138
JH
5478
5479 for (i = 0; i < MAX_NUMNODES; i++) {
5480 cpumask_t nodemask = node_to_cpumask(i);
5481 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5482
5483 cpus_and(nodemask, nodemask, *cpu_map);
5484 if (cpus_empty(nodemask))
5485 continue;
5486
5487 if (sg == NULL)
5488 continue;
5489 sg = sg->next;
9c1cfda2 5490next_sg:
d1b55138
JH
5491 oldsg = sg;
5492 sg = sg->next;
5493 kfree(oldsg);
5494 if (oldsg != sched_group_nodes[i])
5495 goto next_sg;
5496 }
5497 kfree(sched_group_nodes);
5498 sched_group_nodes_bycpu[cpu] = NULL;
9c1cfda2
JH
5499 }
5500#endif
5501}
1da177e4 5502
1a20ff27
DG
5503/*
5504 * Detach sched domains from a group of cpus specified in cpu_map
5505 * These cpus will now be attached to the NULL domain
5506 */
5507static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5508{
5509 int i;
5510
5511 for_each_cpu_mask(i, *cpu_map)
5512 cpu_attach_domain(NULL, i);
5513 synchronize_sched();
5514 arch_destroy_sched_domains(cpu_map);
5515}
5516
5517/*
5518 * Partition sched domains as specified by the cpumasks below.
5519 * This attaches all cpus from the cpumasks to the NULL domain,
5520 * waits for a RCU quiescent period, recalculates sched
5521 * domain information and then attaches them back to the
5522 * correct sched domains
5523 * Call with hotplug lock held
5524 */
5525void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5526{
5527 cpumask_t change_map;
5528
5529 cpus_and(*partition1, *partition1, cpu_online_map);
5530 cpus_and(*partition2, *partition2, cpu_online_map);
5531 cpus_or(change_map, *partition1, *partition2);
5532
5533 /* Detach sched domains from all of the affected cpus */
5534 detach_destroy_domains(&change_map);
5535 if (!cpus_empty(*partition1))
5536 build_sched_domains(partition1);
5537 if (!cpus_empty(*partition2))
5538 build_sched_domains(partition2);
5539}
5540
1da177e4
LT
5541#ifdef CONFIG_HOTPLUG_CPU
5542/*
5543 * Force a reinitialization of the sched domains hierarchy. The domains
5544 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 5545 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
5546 * which will prevent rebalancing while the sched domains are recalculated.
5547 */
5548static int update_sched_domains(struct notifier_block *nfb,
5549 unsigned long action, void *hcpu)
5550{
1da177e4
LT
5551 switch (action) {
5552 case CPU_UP_PREPARE:
5553 case CPU_DOWN_PREPARE:
1a20ff27 5554 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
5555 return NOTIFY_OK;
5556
5557 case CPU_UP_CANCELED:
5558 case CPU_DOWN_FAILED:
5559 case CPU_ONLINE:
5560 case CPU_DEAD:
5561 /*
5562 * Fall through and re-initialise the domains.
5563 */
5564 break;
5565 default:
5566 return NOTIFY_DONE;
5567 }
5568
5569 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 5570 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
5571
5572 return NOTIFY_OK;
5573}
5574#endif
5575
5576void __init sched_init_smp(void)
5577{
5578 lock_cpu_hotplug();
1a20ff27 5579 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
5580 unlock_cpu_hotplug();
5581 /* XXX: Theoretical race here - CPU may be hotplugged now */
5582 hotcpu_notifier(update_sched_domains, 0);
5583}
5584#else
5585void __init sched_init_smp(void)
5586{
5587}
5588#endif /* CONFIG_SMP */
5589
5590int in_sched_functions(unsigned long addr)
5591{
5592 /* Linker adds these: start and end of __sched functions */
5593 extern char __sched_text_start[], __sched_text_end[];
5594 return in_lock_functions(addr) ||
5595 (addr >= (unsigned long)__sched_text_start
5596 && addr < (unsigned long)__sched_text_end);
5597}
5598
5599void __init sched_init(void)
5600{
5601 runqueue_t *rq;
5602 int i, j, k;
5603
5604 for (i = 0; i < NR_CPUS; i++) {
5605 prio_array_t *array;
5606
5607 rq = cpu_rq(i);
5608 spin_lock_init(&rq->lock);
7897986b 5609 rq->nr_running = 0;
1da177e4
LT
5610 rq->active = rq->arrays;
5611 rq->expired = rq->arrays + 1;
5612 rq->best_expired_prio = MAX_PRIO;
5613
5614#ifdef CONFIG_SMP
41c7ce9a 5615 rq->sd = NULL;
7897986b
NP
5616 for (j = 1; j < 3; j++)
5617 rq->cpu_load[j] = 0;
1da177e4
LT
5618 rq->active_balance = 0;
5619 rq->push_cpu = 0;
5620 rq->migration_thread = NULL;
5621 INIT_LIST_HEAD(&rq->migration_queue);
5622#endif
5623 atomic_set(&rq->nr_iowait, 0);
5624
5625 for (j = 0; j < 2; j++) {
5626 array = rq->arrays + j;
5627 for (k = 0; k < MAX_PRIO; k++) {
5628 INIT_LIST_HEAD(array->queue + k);
5629 __clear_bit(k, array->bitmap);
5630 }
5631 // delimiter for bitsearch
5632 __set_bit(MAX_PRIO, array->bitmap);
5633 }
5634 }
5635
5636 /*
5637 * The boot idle thread does lazy MMU switching as well:
5638 */
5639 atomic_inc(&init_mm.mm_count);
5640 enter_lazy_tlb(&init_mm, current);
5641
5642 /*
5643 * Make us the idle thread. Technically, schedule() should not be
5644 * called from this thread, however somewhere below it might be,
5645 * but because we are the idle thread, we just pick up running again
5646 * when this runqueue becomes "idle".
5647 */
5648 init_idle(current, smp_processor_id());
5649}
5650
5651#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5652void __might_sleep(char *file, int line)
5653{
5654#if defined(in_atomic)
5655 static unsigned long prev_jiffy; /* ratelimiting */
5656
5657 if ((in_atomic() || irqs_disabled()) &&
5658 system_state == SYSTEM_RUNNING && !oops_in_progress) {
5659 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5660 return;
5661 prev_jiffy = jiffies;
5662 printk(KERN_ERR "Debug: sleeping function called from invalid"
5663 " context at %s:%d\n", file, line);
5664 printk("in_atomic():%d, irqs_disabled():%d\n",
5665 in_atomic(), irqs_disabled());
5666 dump_stack();
5667 }
5668#endif
5669}
5670EXPORT_SYMBOL(__might_sleep);
5671#endif
5672
5673#ifdef CONFIG_MAGIC_SYSRQ
5674void normalize_rt_tasks(void)
5675{
5676 struct task_struct *p;
5677 prio_array_t *array;
5678 unsigned long flags;
5679 runqueue_t *rq;
5680
5681 read_lock_irq(&tasklist_lock);
5682 for_each_process (p) {
5683 if (!rt_task(p))
5684 continue;
5685
5686 rq = task_rq_lock(p, &flags);
5687
5688 array = p->array;
5689 if (array)
5690 deactivate_task(p, task_rq(p));
5691 __setscheduler(p, SCHED_NORMAL, 0);
5692 if (array) {
5693 __activate_task(p, task_rq(p));
5694 resched_task(rq->curr);
5695 }
5696
5697 task_rq_unlock(rq, &flags);
5698 }
5699 read_unlock_irq(&tasklist_lock);
5700}
5701
5702#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
5703
5704#ifdef CONFIG_IA64
5705/*
5706 * These functions are only useful for the IA64 MCA handling.
5707 *
5708 * They can only be called when the whole system has been
5709 * stopped - every CPU needs to be quiescent, and no scheduling
5710 * activity can take place. Using them for anything else would
5711 * be a serious bug, and as a result, they aren't even visible
5712 * under any other configuration.
5713 */
5714
5715/**
5716 * curr_task - return the current task for a given cpu.
5717 * @cpu: the processor in question.
5718 *
5719 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5720 */
5721task_t *curr_task(int cpu)
5722{
5723 return cpu_curr(cpu);
5724}
5725
5726/**
5727 * set_curr_task - set the current task for a given cpu.
5728 * @cpu: the processor in question.
5729 * @p: the task pointer to set.
5730 *
5731 * Description: This function must only be used when non-maskable interrupts
5732 * are serviced on a separate stack. It allows the architecture to switch the
5733 * notion of the current task on a cpu in a non-blocking manner. This function
5734 * must be called with all CPU's synchronized, and interrupts disabled, the
5735 * and caller must save the original value of the current task (see
5736 * curr_task() above) and restore that value before reenabling interrupts and
5737 * re-starting the system.
5738 *
5739 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5740 */
5741void set_curr_task(int cpu, task_t *p)
5742{
5743 cpu_curr(cpu) = p;
5744}
5745
5746#endif