]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
[PATCH] sched: include noninteractive sleep in idle detect
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
c59ede7b 30#include <linux/capability.h>
1da177e4
LT
31#include <linux/completion.h>
32#include <linux/kernel_stat.h>
33#include <linux/security.h>
34#include <linux/notifier.h>
35#include <linux/profile.h>
36#include <linux/suspend.h>
198e2f18 37#include <linux/vmalloc.h>
1da177e4
LT
38#include <linux/blkdev.h>
39#include <linux/delay.h>
40#include <linux/smp.h>
41#include <linux/threads.h>
42#include <linux/timer.h>
43#include <linux/rcupdate.h>
44#include <linux/cpu.h>
45#include <linux/cpuset.h>
46#include <linux/percpu.h>
47#include <linux/kthread.h>
48#include <linux/seq_file.h>
49#include <linux/syscalls.h>
50#include <linux/times.h>
51#include <linux/acct.h>
c6fd91f0 52#include <linux/kprobes.h>
1da177e4
LT
53#include <asm/tlb.h>
54
55#include <asm/unistd.h>
56
57/*
58 * Convert user-nice values [ -20 ... 0 ... 19 ]
59 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
60 * and back.
61 */
62#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
63#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
64#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
65
66/*
67 * 'User priority' is the nice value converted to something we
68 * can work with better when scaling various scheduler parameters,
69 * it's a [ 0 ... 39 ] range.
70 */
71#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
72#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
73#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
74
75/*
76 * Some helpers for converting nanosecond timing to jiffy resolution
77 */
78#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
79#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
80
81/*
82 * These are the 'tuning knobs' of the scheduler:
83 *
84 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
85 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
86 * Timeslices get refilled after they expire.
87 */
88#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
89#define DEF_TIMESLICE (100 * HZ / 1000)
90#define ON_RUNQUEUE_WEIGHT 30
91#define CHILD_PENALTY 95
92#define PARENT_PENALTY 100
93#define EXIT_WEIGHT 3
94#define PRIO_BONUS_RATIO 25
95#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
96#define INTERACTIVE_DELTA 2
97#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
98#define STARVATION_LIMIT (MAX_SLEEP_AVG)
99#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
100
101/*
102 * If a task is 'interactive' then we reinsert it in the active
103 * array after it has expired its current timeslice. (it will not
104 * continue to run immediately, it will still roundrobin with
105 * other interactive tasks.)
106 *
107 * This part scales the interactivity limit depending on niceness.
108 *
109 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
110 * Here are a few examples of different nice levels:
111 *
112 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
113 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
114 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
115 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
116 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
117 *
118 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
119 * priority range a task can explore, a value of '1' means the
120 * task is rated interactive.)
121 *
122 * Ie. nice +19 tasks can never get 'interactive' enough to be
123 * reinserted into the active array. And only heavily CPU-hog nice -20
124 * tasks will be expired. Default nice 0 tasks are somewhere between,
125 * it takes some effort for them to get interactive, but it's not
126 * too hard.
127 */
128
129#define CURRENT_BONUS(p) \
130 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
131 MAX_SLEEP_AVG)
132
133#define GRANULARITY (10 * HZ / 1000 ? : 1)
134
135#ifdef CONFIG_SMP
136#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
137 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
138 num_online_cpus())
139#else
140#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
141 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
142#endif
143
144#define SCALE(v1,v1_max,v2_max) \
145 (v1) * (v2_max) / (v1_max)
146
147#define DELTA(p) \
013d3868
MA
148 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
149 INTERACTIVE_DELTA)
1da177e4
LT
150
151#define TASK_INTERACTIVE(p) \
152 ((p)->prio <= (p)->static_prio - DELTA(p))
153
154#define INTERACTIVE_SLEEP(p) \
155 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
156 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
157
158#define TASK_PREEMPTS_CURR(p, rq) \
159 ((p)->prio < (rq)->curr->prio)
160
161/*
162 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
163 * to time slice values: [800ms ... 100ms ... 5ms]
164 *
165 * The higher a thread's priority, the bigger timeslices
166 * it gets during one round of execution. But even the lowest
167 * priority thread gets MIN_TIMESLICE worth of execution time.
168 */
169
170#define SCALE_PRIO(x, prio) \
171 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
172
48c08d3f 173static unsigned int task_timeslice(task_t *p)
1da177e4
LT
174{
175 if (p->static_prio < NICE_TO_PRIO(0))
176 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
177 else
178 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
179}
180#define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
181 < (long long) (sd)->cache_hot_time)
182
183/*
184 * These are the runqueue data structures:
185 */
186
187#define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
188
189typedef struct runqueue runqueue_t;
190
191struct prio_array {
192 unsigned int nr_active;
193 unsigned long bitmap[BITMAP_SIZE];
194 struct list_head queue[MAX_PRIO];
195};
196
197/*
198 * This is the main, per-CPU runqueue data structure.
199 *
200 * Locking rule: those places that want to lock multiple runqueues
201 * (such as the load balancing or the thread migration code), lock
202 * acquire operations must be ordered by ascending &runqueue.
203 */
204struct runqueue {
205 spinlock_t lock;
206
207 /*
208 * nr_running and cpu_load should be in the same cacheline because
209 * remote CPUs use both these fields when doing load calculation.
210 */
211 unsigned long nr_running;
212#ifdef CONFIG_SMP
7897986b 213 unsigned long cpu_load[3];
1da177e4
LT
214#endif
215 unsigned long long nr_switches;
216
217 /*
218 * This is part of a global counter where only the total sum
219 * over all CPUs matters. A task can increase this counter on
220 * one CPU and if it got migrated afterwards it may decrease
221 * it on another CPU. Always updated under the runqueue lock:
222 */
223 unsigned long nr_uninterruptible;
224
225 unsigned long expired_timestamp;
226 unsigned long long timestamp_last_tick;
227 task_t *curr, *idle;
228 struct mm_struct *prev_mm;
229 prio_array_t *active, *expired, arrays[2];
230 int best_expired_prio;
231 atomic_t nr_iowait;
232
233#ifdef CONFIG_SMP
234 struct sched_domain *sd;
235
236 /* For active balancing */
237 int active_balance;
238 int push_cpu;
239
240 task_t *migration_thread;
241 struct list_head migration_queue;
e9028b0f 242 int cpu;
1da177e4
LT
243#endif
244
245#ifdef CONFIG_SCHEDSTATS
246 /* latency stats */
247 struct sched_info rq_sched_info;
248
249 /* sys_sched_yield() stats */
250 unsigned long yld_exp_empty;
251 unsigned long yld_act_empty;
252 unsigned long yld_both_empty;
253 unsigned long yld_cnt;
254
255 /* schedule() stats */
256 unsigned long sched_switch;
257 unsigned long sched_cnt;
258 unsigned long sched_goidle;
259
260 /* try_to_wake_up() stats */
261 unsigned long ttwu_cnt;
262 unsigned long ttwu_local;
263#endif
264};
265
266static DEFINE_PER_CPU(struct runqueue, runqueues);
267
674311d5
NP
268/*
269 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 270 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
271 *
272 * The domain tree of any CPU may only be accessed from within
273 * preempt-disabled sections.
274 */
1da177e4 275#define for_each_domain(cpu, domain) \
674311d5 276for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
1da177e4
LT
277
278#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
279#define this_rq() (&__get_cpu_var(runqueues))
280#define task_rq(p) cpu_rq(task_cpu(p))
281#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
282
1da177e4 283#ifndef prepare_arch_switch
4866cde0
NP
284# define prepare_arch_switch(next) do { } while (0)
285#endif
286#ifndef finish_arch_switch
287# define finish_arch_switch(prev) do { } while (0)
288#endif
289
290#ifndef __ARCH_WANT_UNLOCKED_CTXSW
291static inline int task_running(runqueue_t *rq, task_t *p)
292{
293 return rq->curr == p;
294}
295
296static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
297{
298}
299
300static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
301{
da04c035
IM
302#ifdef CONFIG_DEBUG_SPINLOCK
303 /* this is a valid case when another task releases the spinlock */
304 rq->lock.owner = current;
305#endif
4866cde0
NP
306 spin_unlock_irq(&rq->lock);
307}
308
309#else /* __ARCH_WANT_UNLOCKED_CTXSW */
310static inline int task_running(runqueue_t *rq, task_t *p)
311{
312#ifdef CONFIG_SMP
313 return p->oncpu;
314#else
315 return rq->curr == p;
316#endif
317}
318
319static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
320{
321#ifdef CONFIG_SMP
322 /*
323 * We can optimise this out completely for !SMP, because the
324 * SMP rebalancing from interrupt is the only thing that cares
325 * here.
326 */
327 next->oncpu = 1;
328#endif
329#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
330 spin_unlock_irq(&rq->lock);
331#else
332 spin_unlock(&rq->lock);
333#endif
334}
335
336static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
337{
338#ifdef CONFIG_SMP
339 /*
340 * After ->oncpu is cleared, the task can be moved to a different CPU.
341 * We must ensure this doesn't happen until the switch is completely
342 * finished.
343 */
344 smp_wmb();
345 prev->oncpu = 0;
346#endif
347#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
348 local_irq_enable();
1da177e4 349#endif
4866cde0
NP
350}
351#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4
LT
352
353/*
354 * task_rq_lock - lock the runqueue a given task resides on and disable
355 * interrupts. Note the ordering: we can safely lookup the task_rq without
356 * explicitly disabling preemption.
357 */
358static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
359 __acquires(rq->lock)
360{
361 struct runqueue *rq;
362
363repeat_lock_task:
364 local_irq_save(*flags);
365 rq = task_rq(p);
366 spin_lock(&rq->lock);
367 if (unlikely(rq != task_rq(p))) {
368 spin_unlock_irqrestore(&rq->lock, *flags);
369 goto repeat_lock_task;
370 }
371 return rq;
372}
373
374static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
375 __releases(rq->lock)
376{
377 spin_unlock_irqrestore(&rq->lock, *flags);
378}
379
380#ifdef CONFIG_SCHEDSTATS
381/*
382 * bump this up when changing the output format or the meaning of an existing
383 * format, so that tools can adapt (or abort)
384 */
68767a0a 385#define SCHEDSTAT_VERSION 12
1da177e4
LT
386
387static int show_schedstat(struct seq_file *seq, void *v)
388{
389 int cpu;
390
391 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
392 seq_printf(seq, "timestamp %lu\n", jiffies);
393 for_each_online_cpu(cpu) {
394 runqueue_t *rq = cpu_rq(cpu);
395#ifdef CONFIG_SMP
396 struct sched_domain *sd;
397 int dcnt = 0;
398#endif
399
400 /* runqueue-specific stats */
401 seq_printf(seq,
402 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
403 cpu, rq->yld_both_empty,
404 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
405 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
406 rq->ttwu_cnt, rq->ttwu_local,
407 rq->rq_sched_info.cpu_time,
408 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
409
410 seq_printf(seq, "\n");
411
412#ifdef CONFIG_SMP
413 /* domain-specific stats */
674311d5 414 preempt_disable();
1da177e4
LT
415 for_each_domain(cpu, sd) {
416 enum idle_type itype;
417 char mask_str[NR_CPUS];
418
419 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
420 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
421 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
422 itype++) {
423 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
424 sd->lb_cnt[itype],
425 sd->lb_balanced[itype],
426 sd->lb_failed[itype],
427 sd->lb_imbalance[itype],
428 sd->lb_gained[itype],
429 sd->lb_hot_gained[itype],
430 sd->lb_nobusyq[itype],
431 sd->lb_nobusyg[itype]);
432 }
68767a0a 433 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
1da177e4 434 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
68767a0a
NP
435 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
436 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
1da177e4
LT
437 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
438 }
674311d5 439 preempt_enable();
1da177e4
LT
440#endif
441 }
442 return 0;
443}
444
445static int schedstat_open(struct inode *inode, struct file *file)
446{
447 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
448 char *buf = kmalloc(size, GFP_KERNEL);
449 struct seq_file *m;
450 int res;
451
452 if (!buf)
453 return -ENOMEM;
454 res = single_open(file, show_schedstat, NULL);
455 if (!res) {
456 m = file->private_data;
457 m->buf = buf;
458 m->size = size;
459 } else
460 kfree(buf);
461 return res;
462}
463
464struct file_operations proc_schedstat_operations = {
465 .open = schedstat_open,
466 .read = seq_read,
467 .llseek = seq_lseek,
468 .release = single_release,
469};
470
471# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
472# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
473#else /* !CONFIG_SCHEDSTATS */
474# define schedstat_inc(rq, field) do { } while (0)
475# define schedstat_add(rq, field, amt) do { } while (0)
476#endif
477
478/*
479 * rq_lock - lock a given runqueue and disable interrupts.
480 */
481static inline runqueue_t *this_rq_lock(void)
482 __acquires(rq->lock)
483{
484 runqueue_t *rq;
485
486 local_irq_disable();
487 rq = this_rq();
488 spin_lock(&rq->lock);
489
490 return rq;
491}
492
1da177e4
LT
493#ifdef CONFIG_SCHEDSTATS
494/*
495 * Called when a process is dequeued from the active array and given
496 * the cpu. We should note that with the exception of interactive
497 * tasks, the expired queue will become the active queue after the active
498 * queue is empty, without explicitly dequeuing and requeuing tasks in the
499 * expired queue. (Interactive tasks may be requeued directly to the
500 * active queue, thus delaying tasks in the expired queue from running;
501 * see scheduler_tick()).
502 *
503 * This function is only called from sched_info_arrive(), rather than
504 * dequeue_task(). Even though a task may be queued and dequeued multiple
505 * times as it is shuffled about, we're really interested in knowing how
506 * long it was from the *first* time it was queued to the time that it
507 * finally hit a cpu.
508 */
509static inline void sched_info_dequeued(task_t *t)
510{
511 t->sched_info.last_queued = 0;
512}
513
514/*
515 * Called when a task finally hits the cpu. We can now calculate how
516 * long it was waiting to run. We also note when it began so that we
517 * can keep stats on how long its timeslice is.
518 */
858119e1 519static void sched_info_arrive(task_t *t)
1da177e4
LT
520{
521 unsigned long now = jiffies, diff = 0;
522 struct runqueue *rq = task_rq(t);
523
524 if (t->sched_info.last_queued)
525 diff = now - t->sched_info.last_queued;
526 sched_info_dequeued(t);
527 t->sched_info.run_delay += diff;
528 t->sched_info.last_arrival = now;
529 t->sched_info.pcnt++;
530
531 if (!rq)
532 return;
533
534 rq->rq_sched_info.run_delay += diff;
535 rq->rq_sched_info.pcnt++;
536}
537
538/*
539 * Called when a process is queued into either the active or expired
540 * array. The time is noted and later used to determine how long we
541 * had to wait for us to reach the cpu. Since the expired queue will
542 * become the active queue after active queue is empty, without dequeuing
543 * and requeuing any tasks, we are interested in queuing to either. It
544 * is unusual but not impossible for tasks to be dequeued and immediately
545 * requeued in the same or another array: this can happen in sched_yield(),
546 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
547 * to runqueue.
548 *
549 * This function is only called from enqueue_task(), but also only updates
550 * the timestamp if it is already not set. It's assumed that
551 * sched_info_dequeued() will clear that stamp when appropriate.
552 */
553static inline void sched_info_queued(task_t *t)
554{
555 if (!t->sched_info.last_queued)
556 t->sched_info.last_queued = jiffies;
557}
558
559/*
560 * Called when a process ceases being the active-running process, either
561 * voluntarily or involuntarily. Now we can calculate how long we ran.
562 */
563static inline void sched_info_depart(task_t *t)
564{
565 struct runqueue *rq = task_rq(t);
566 unsigned long diff = jiffies - t->sched_info.last_arrival;
567
568 t->sched_info.cpu_time += diff;
569
570 if (rq)
571 rq->rq_sched_info.cpu_time += diff;
572}
573
574/*
575 * Called when tasks are switched involuntarily due, typically, to expiring
576 * their time slice. (This may also be called when switching to or from
577 * the idle task.) We are only called when prev != next.
578 */
579static inline void sched_info_switch(task_t *prev, task_t *next)
580{
581 struct runqueue *rq = task_rq(prev);
582
583 /*
584 * prev now departs the cpu. It's not interesting to record
585 * stats about how efficient we were at scheduling the idle
586 * process, however.
587 */
588 if (prev != rq->idle)
589 sched_info_depart(prev);
590
591 if (next != rq->idle)
592 sched_info_arrive(next);
593}
594#else
595#define sched_info_queued(t) do { } while (0)
596#define sched_info_switch(t, next) do { } while (0)
597#endif /* CONFIG_SCHEDSTATS */
598
599/*
600 * Adding/removing a task to/from a priority array:
601 */
602static void dequeue_task(struct task_struct *p, prio_array_t *array)
603{
604 array->nr_active--;
605 list_del(&p->run_list);
606 if (list_empty(array->queue + p->prio))
607 __clear_bit(p->prio, array->bitmap);
608}
609
610static void enqueue_task(struct task_struct *p, prio_array_t *array)
611{
612 sched_info_queued(p);
613 list_add_tail(&p->run_list, array->queue + p->prio);
614 __set_bit(p->prio, array->bitmap);
615 array->nr_active++;
616 p->array = array;
617}
618
619/*
620 * Put task to the end of the run list without the overhead of dequeue
621 * followed by enqueue.
622 */
623static void requeue_task(struct task_struct *p, prio_array_t *array)
624{
625 list_move_tail(&p->run_list, array->queue + p->prio);
626}
627
628static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
629{
630 list_add(&p->run_list, array->queue + p->prio);
631 __set_bit(p->prio, array->bitmap);
632 array->nr_active++;
633 p->array = array;
634}
635
636/*
637 * effective_prio - return the priority that is based on the static
638 * priority but is modified by bonuses/penalties.
639 *
640 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
641 * into the -5 ... 0 ... +5 bonus/penalty range.
642 *
643 * We use 25% of the full 0...39 priority range so that:
644 *
645 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
646 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
647 *
648 * Both properties are important to certain workloads.
649 */
650static int effective_prio(task_t *p)
651{
652 int bonus, prio;
653
654 if (rt_task(p))
655 return p->prio;
656
657 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
658
659 prio = p->static_prio - bonus;
660 if (prio < MAX_RT_PRIO)
661 prio = MAX_RT_PRIO;
662 if (prio > MAX_PRIO-1)
663 prio = MAX_PRIO-1;
664 return prio;
665}
666
667/*
668 * __activate_task - move a task to the runqueue.
669 */
670static inline void __activate_task(task_t *p, runqueue_t *rq)
671{
672 enqueue_task(p, rq->active);
a2000572 673 rq->nr_running++;
1da177e4
LT
674}
675
676/*
677 * __activate_idle_task - move idle task to the _front_ of runqueue.
678 */
679static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
680{
681 enqueue_task_head(p, rq->active);
a2000572 682 rq->nr_running++;
1da177e4
LT
683}
684
a3464a10 685static int recalc_task_prio(task_t *p, unsigned long long now)
1da177e4
LT
686{
687 /* Caller must always ensure 'now >= p->timestamp' */
688 unsigned long long __sleep_time = now - p->timestamp;
689 unsigned long sleep_time;
690
b0a9499c
IM
691 if (unlikely(p->policy == SCHED_BATCH))
692 sleep_time = 0;
693 else {
694 if (__sleep_time > NS_MAX_SLEEP_AVG)
695 sleep_time = NS_MAX_SLEEP_AVG;
696 else
697 sleep_time = (unsigned long)__sleep_time;
698 }
1da177e4
LT
699
700 if (likely(sleep_time > 0)) {
701 /*
702 * User tasks that sleep a long time are categorised as
e72ff0bb
CK
703 * idle. They will only have their sleep_avg increased to a
704 * level that makes them just interactive priority to stay
705 * active yet prevent them suddenly becoming cpu hogs and
706 * starving other processes.
1da177e4 707 */
5138930e 708 if (p->mm && sleep_time > INTERACTIVE_SLEEP(p)) {
e72ff0bb
CK
709 unsigned long ceiling;
710
711 ceiling = JIFFIES_TO_NS(MAX_SLEEP_AVG -
712 DEF_TIMESLICE);
713 if (p->sleep_avg < ceiling)
714 p->sleep_avg = ceiling;
1da177e4 715 } else {
1da177e4
LT
716 /*
717 * Tasks waking from uninterruptible sleep are
718 * limited in their sleep_avg rise as they
719 * are likely to be waiting on I/O
720 */
3dee386e 721 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
1da177e4
LT
722 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
723 sleep_time = 0;
724 else if (p->sleep_avg + sleep_time >=
725 INTERACTIVE_SLEEP(p)) {
726 p->sleep_avg = INTERACTIVE_SLEEP(p);
727 sleep_time = 0;
728 }
729 }
730
731 /*
732 * This code gives a bonus to interactive tasks.
733 *
734 * The boost works by updating the 'average sleep time'
735 * value here, based on ->timestamp. The more time a
736 * task spends sleeping, the higher the average gets -
737 * and the higher the priority boost gets as well.
738 */
739 p->sleep_avg += sleep_time;
740
741 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
742 p->sleep_avg = NS_MAX_SLEEP_AVG;
743 }
744 }
745
a3464a10 746 return effective_prio(p);
1da177e4
LT
747}
748
749/*
750 * activate_task - move a task to the runqueue and do priority recalculation
751 *
752 * Update all the scheduling statistics stuff. (sleep average
753 * calculation, priority modifiers, etc.)
754 */
755static void activate_task(task_t *p, runqueue_t *rq, int local)
756{
757 unsigned long long now;
758
759 now = sched_clock();
760#ifdef CONFIG_SMP
761 if (!local) {
762 /* Compensate for drifting sched_clock */
763 runqueue_t *this_rq = this_rq();
764 now = (now - this_rq->timestamp_last_tick)
765 + rq->timestamp_last_tick;
766 }
767#endif
768
a47ab937
KC
769 if (!rt_task(p))
770 p->prio = recalc_task_prio(p, now);
1da177e4
LT
771
772 /*
773 * This checks to make sure it's not an uninterruptible task
774 * that is now waking up.
775 */
3dee386e 776 if (p->sleep_type == SLEEP_NORMAL) {
1da177e4
LT
777 /*
778 * Tasks which were woken up by interrupts (ie. hw events)
779 * are most likely of interactive nature. So we give them
780 * the credit of extending their sleep time to the period
781 * of time they spend on the runqueue, waiting for execution
782 * on a CPU, first time around:
783 */
784 if (in_interrupt())
3dee386e 785 p->sleep_type = SLEEP_INTERRUPTED;
1da177e4
LT
786 else {
787 /*
788 * Normal first-time wakeups get a credit too for
789 * on-runqueue time, but it will be weighted down:
790 */
3dee386e 791 p->sleep_type = SLEEP_INTERACTIVE;
1da177e4
LT
792 }
793 }
794 p->timestamp = now;
795
796 __activate_task(p, rq);
797}
798
799/*
800 * deactivate_task - remove a task from the runqueue.
801 */
802static void deactivate_task(struct task_struct *p, runqueue_t *rq)
803{
a2000572 804 rq->nr_running--;
1da177e4
LT
805 dequeue_task(p, p->array);
806 p->array = NULL;
807}
808
809/*
810 * resched_task - mark a task 'to be rescheduled now'.
811 *
812 * On UP this means the setting of the need_resched flag, on SMP it
813 * might also involve a cross-CPU call to trigger the scheduler on
814 * the target CPU.
815 */
816#ifdef CONFIG_SMP
817static void resched_task(task_t *p)
818{
64c7c8f8 819 int cpu;
1da177e4
LT
820
821 assert_spin_locked(&task_rq(p)->lock);
822
64c7c8f8
NP
823 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
824 return;
825
826 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1da177e4 827
64c7c8f8
NP
828 cpu = task_cpu(p);
829 if (cpu == smp_processor_id())
830 return;
831
832 /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
833 smp_mb();
834 if (!test_tsk_thread_flag(p, TIF_POLLING_NRFLAG))
835 smp_send_reschedule(cpu);
1da177e4
LT
836}
837#else
838static inline void resched_task(task_t *p)
839{
64c7c8f8 840 assert_spin_locked(&task_rq(p)->lock);
1da177e4
LT
841 set_tsk_need_resched(p);
842}
843#endif
844
845/**
846 * task_curr - is this task currently executing on a CPU?
847 * @p: the task in question.
848 */
849inline int task_curr(const task_t *p)
850{
851 return cpu_curr(task_cpu(p)) == p;
852}
853
854#ifdef CONFIG_SMP
1da177e4
LT
855typedef struct {
856 struct list_head list;
1da177e4 857
1da177e4
LT
858 task_t *task;
859 int dest_cpu;
860
1da177e4
LT
861 struct completion done;
862} migration_req_t;
863
864/*
865 * The task's runqueue lock must be held.
866 * Returns true if you have to wait for migration thread.
867 */
868static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
869{
870 runqueue_t *rq = task_rq(p);
871
872 /*
873 * If the task is not on a runqueue (and not running), then
874 * it is sufficient to simply update the task's cpu field.
875 */
876 if (!p->array && !task_running(rq, p)) {
877 set_task_cpu(p, dest_cpu);
878 return 0;
879 }
880
881 init_completion(&req->done);
1da177e4
LT
882 req->task = p;
883 req->dest_cpu = dest_cpu;
884 list_add(&req->list, &rq->migration_queue);
885 return 1;
886}
887
888/*
889 * wait_task_inactive - wait for a thread to unschedule.
890 *
891 * The caller must ensure that the task *will* unschedule sometime soon,
892 * else this function might spin for a *long* time. This function can't
893 * be called with interrupts off, or it may introduce deadlock with
894 * smp_call_function() if an IPI is sent by the same process we are
895 * waiting to become inactive.
896 */
95cdf3b7 897void wait_task_inactive(task_t *p)
1da177e4
LT
898{
899 unsigned long flags;
900 runqueue_t *rq;
901 int preempted;
902
903repeat:
904 rq = task_rq_lock(p, &flags);
905 /* Must be off runqueue entirely, not preempted. */
906 if (unlikely(p->array || task_running(rq, p))) {
907 /* If it's preempted, we yield. It could be a while. */
908 preempted = !task_running(rq, p);
909 task_rq_unlock(rq, &flags);
910 cpu_relax();
911 if (preempted)
912 yield();
913 goto repeat;
914 }
915 task_rq_unlock(rq, &flags);
916}
917
918/***
919 * kick_process - kick a running thread to enter/exit the kernel
920 * @p: the to-be-kicked thread
921 *
922 * Cause a process which is running on another CPU to enter
923 * kernel-mode, without any delay. (to get signals handled.)
924 *
925 * NOTE: this function doesnt have to take the runqueue lock,
926 * because all it wants to ensure is that the remote task enters
927 * the kernel. If the IPI races and the task has been migrated
928 * to another CPU then no harm is done and the purpose has been
929 * achieved as well.
930 */
931void kick_process(task_t *p)
932{
933 int cpu;
934
935 preempt_disable();
936 cpu = task_cpu(p);
937 if ((cpu != smp_processor_id()) && task_curr(p))
938 smp_send_reschedule(cpu);
939 preempt_enable();
940}
941
942/*
943 * Return a low guess at the load of a migration-source cpu.
944 *
945 * We want to under-estimate the load of migration sources, to
946 * balance conservatively.
947 */
a2000572 948static inline unsigned long source_load(int cpu, int type)
1da177e4
LT
949{
950 runqueue_t *rq = cpu_rq(cpu);
a2000572 951 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
3b0bd9bc 952 if (type == 0)
a2000572 953 return load_now;
b910472d 954
a2000572 955 return min(rq->cpu_load[type-1], load_now);
1da177e4
LT
956}
957
958/*
959 * Return a high guess at the load of a migration-target cpu
960 */
a2000572 961static inline unsigned long target_load(int cpu, int type)
1da177e4
LT
962{
963 runqueue_t *rq = cpu_rq(cpu);
a2000572 964 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
7897986b 965 if (type == 0)
a2000572 966 return load_now;
3b0bd9bc 967
a2000572 968 return max(rq->cpu_load[type-1], load_now);
1da177e4
LT
969}
970
147cbb4b
NP
971/*
972 * find_idlest_group finds and returns the least busy CPU group within the
973 * domain.
974 */
975static struct sched_group *
976find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
977{
978 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
979 unsigned long min_load = ULONG_MAX, this_load = 0;
980 int load_idx = sd->forkexec_idx;
981 int imbalance = 100 + (sd->imbalance_pct-100)/2;
982
983 do {
984 unsigned long load, avg_load;
985 int local_group;
986 int i;
987
da5a5522
BD
988 /* Skip over this group if it has no CPUs allowed */
989 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
990 goto nextgroup;
991
147cbb4b 992 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
993
994 /* Tally up the load of all CPUs in the group */
995 avg_load = 0;
996
997 for_each_cpu_mask(i, group->cpumask) {
998 /* Bias balancing toward cpus of our domain */
999 if (local_group)
1000 load = source_load(i, load_idx);
1001 else
1002 load = target_load(i, load_idx);
1003
1004 avg_load += load;
1005 }
1006
1007 /* Adjust by relative CPU power of the group */
1008 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1009
1010 if (local_group) {
1011 this_load = avg_load;
1012 this = group;
1013 } else if (avg_load < min_load) {
1014 min_load = avg_load;
1015 idlest = group;
1016 }
da5a5522 1017nextgroup:
147cbb4b
NP
1018 group = group->next;
1019 } while (group != sd->groups);
1020
1021 if (!idlest || 100*this_load < imbalance*min_load)
1022 return NULL;
1023 return idlest;
1024}
1025
1026/*
1027 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1028 */
95cdf3b7
IM
1029static int
1030find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1031{
da5a5522 1032 cpumask_t tmp;
147cbb4b
NP
1033 unsigned long load, min_load = ULONG_MAX;
1034 int idlest = -1;
1035 int i;
1036
da5a5522
BD
1037 /* Traverse only the allowed CPUs */
1038 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1039
1040 for_each_cpu_mask(i, tmp) {
147cbb4b
NP
1041 load = source_load(i, 0);
1042
1043 if (load < min_load || (load == min_load && i == this_cpu)) {
1044 min_load = load;
1045 idlest = i;
1046 }
1047 }
1048
1049 return idlest;
1050}
1051
476d139c
NP
1052/*
1053 * sched_balance_self: balance the current task (running on cpu) in domains
1054 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1055 * SD_BALANCE_EXEC.
1056 *
1057 * Balance, ie. select the least loaded group.
1058 *
1059 * Returns the target CPU number, or the same CPU if no balancing is needed.
1060 *
1061 * preempt must be disabled.
1062 */
1063static int sched_balance_self(int cpu, int flag)
1064{
1065 struct task_struct *t = current;
1066 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1067
476d139c
NP
1068 for_each_domain(cpu, tmp)
1069 if (tmp->flags & flag)
1070 sd = tmp;
1071
1072 while (sd) {
1073 cpumask_t span;
1074 struct sched_group *group;
1075 int new_cpu;
1076 int weight;
1077
1078 span = sd->span;
1079 group = find_idlest_group(sd, t, cpu);
1080 if (!group)
1081 goto nextlevel;
1082
da5a5522 1083 new_cpu = find_idlest_cpu(group, t, cpu);
476d139c
NP
1084 if (new_cpu == -1 || new_cpu == cpu)
1085 goto nextlevel;
1086
1087 /* Now try balancing at a lower domain level */
1088 cpu = new_cpu;
1089nextlevel:
1090 sd = NULL;
1091 weight = cpus_weight(span);
1092 for_each_domain(cpu, tmp) {
1093 if (weight <= cpus_weight(tmp->span))
1094 break;
1095 if (tmp->flags & flag)
1096 sd = tmp;
1097 }
1098 /* while loop will break here if sd == NULL */
1099 }
1100
1101 return cpu;
1102}
1103
1104#endif /* CONFIG_SMP */
1da177e4
LT
1105
1106/*
1107 * wake_idle() will wake a task on an idle cpu if task->cpu is
1108 * not idle and an idle cpu is available. The span of cpus to
1109 * search starts with cpus closest then further out as needed,
1110 * so we always favor a closer, idle cpu.
1111 *
1112 * Returns the CPU we should wake onto.
1113 */
1114#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1115static int wake_idle(int cpu, task_t *p)
1116{
1117 cpumask_t tmp;
1118 struct sched_domain *sd;
1119 int i;
1120
1121 if (idle_cpu(cpu))
1122 return cpu;
1123
1124 for_each_domain(cpu, sd) {
1125 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1126 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1127 for_each_cpu_mask(i, tmp) {
1128 if (idle_cpu(i))
1129 return i;
1130 }
1131 }
e0f364f4
NP
1132 else
1133 break;
1da177e4
LT
1134 }
1135 return cpu;
1136}
1137#else
1138static inline int wake_idle(int cpu, task_t *p)
1139{
1140 return cpu;
1141}
1142#endif
1143
1144/***
1145 * try_to_wake_up - wake up a thread
1146 * @p: the to-be-woken-up thread
1147 * @state: the mask of task states that can be woken
1148 * @sync: do a synchronous wakeup?
1149 *
1150 * Put it on the run-queue if it's not already there. The "current"
1151 * thread is always on the run-queue (except when the actual
1152 * re-schedule is in progress), and as such you're allowed to do
1153 * the simpler "current->state = TASK_RUNNING" to mark yourself
1154 * runnable without the overhead of this.
1155 *
1156 * returns failure only if the task is already active.
1157 */
95cdf3b7 1158static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1da177e4
LT
1159{
1160 int cpu, this_cpu, success = 0;
1161 unsigned long flags;
1162 long old_state;
1163 runqueue_t *rq;
1164#ifdef CONFIG_SMP
1165 unsigned long load, this_load;
7897986b 1166 struct sched_domain *sd, *this_sd = NULL;
1da177e4
LT
1167 int new_cpu;
1168#endif
1169
1170 rq = task_rq_lock(p, &flags);
1171 old_state = p->state;
1172 if (!(old_state & state))
1173 goto out;
1174
1175 if (p->array)
1176 goto out_running;
1177
1178 cpu = task_cpu(p);
1179 this_cpu = smp_processor_id();
1180
1181#ifdef CONFIG_SMP
1182 if (unlikely(task_running(rq, p)))
1183 goto out_activate;
1184
7897986b
NP
1185 new_cpu = cpu;
1186
1da177e4
LT
1187 schedstat_inc(rq, ttwu_cnt);
1188 if (cpu == this_cpu) {
1189 schedstat_inc(rq, ttwu_local);
7897986b
NP
1190 goto out_set_cpu;
1191 }
1192
1193 for_each_domain(this_cpu, sd) {
1194 if (cpu_isset(cpu, sd->span)) {
1195 schedstat_inc(sd, ttwu_wake_remote);
1196 this_sd = sd;
1197 break;
1da177e4
LT
1198 }
1199 }
1da177e4 1200
7897986b 1201 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1202 goto out_set_cpu;
1203
1da177e4 1204 /*
7897986b 1205 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1206 */
7897986b
NP
1207 if (this_sd) {
1208 int idx = this_sd->wake_idx;
1209 unsigned int imbalance;
1da177e4 1210
a3f21bce
NP
1211 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1212
7897986b
NP
1213 load = source_load(cpu, idx);
1214 this_load = target_load(this_cpu, idx);
1da177e4 1215
7897986b
NP
1216 new_cpu = this_cpu; /* Wake to this CPU if we can */
1217
a3f21bce
NP
1218 if (this_sd->flags & SD_WAKE_AFFINE) {
1219 unsigned long tl = this_load;
1da177e4 1220 /*
a3f21bce
NP
1221 * If sync wakeup then subtract the (maximum possible)
1222 * effect of the currently running task from the load
1223 * of the current CPU:
1da177e4 1224 */
a3f21bce
NP
1225 if (sync)
1226 tl -= SCHED_LOAD_SCALE;
1227
1228 if ((tl <= load &&
1229 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1230 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1231 /*
1232 * This domain has SD_WAKE_AFFINE and
1233 * p is cache cold in this domain, and
1234 * there is no bad imbalance.
1235 */
1236 schedstat_inc(this_sd, ttwu_move_affine);
1237 goto out_set_cpu;
1238 }
1239 }
1240
1241 /*
1242 * Start passive balancing when half the imbalance_pct
1243 * limit is reached.
1244 */
1245 if (this_sd->flags & SD_WAKE_BALANCE) {
1246 if (imbalance*this_load <= 100*load) {
1247 schedstat_inc(this_sd, ttwu_move_balance);
1248 goto out_set_cpu;
1249 }
1da177e4
LT
1250 }
1251 }
1252
1253 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1254out_set_cpu:
1255 new_cpu = wake_idle(new_cpu, p);
1256 if (new_cpu != cpu) {
1257 set_task_cpu(p, new_cpu);
1258 task_rq_unlock(rq, &flags);
1259 /* might preempt at this point */
1260 rq = task_rq_lock(p, &flags);
1261 old_state = p->state;
1262 if (!(old_state & state))
1263 goto out;
1264 if (p->array)
1265 goto out_running;
1266
1267 this_cpu = smp_processor_id();
1268 cpu = task_cpu(p);
1269 }
1270
1271out_activate:
1272#endif /* CONFIG_SMP */
1273 if (old_state == TASK_UNINTERRUPTIBLE) {
1274 rq->nr_uninterruptible--;
1275 /*
1276 * Tasks on involuntary sleep don't earn
1277 * sleep_avg beyond just interactive state.
1278 */
3dee386e 1279 p->sleep_type = SLEEP_NONINTERACTIVE;
e7c38cb4 1280 } else
1da177e4 1281
d79fc0fc
IM
1282 /*
1283 * Tasks that have marked their sleep as noninteractive get
e7c38cb4
CK
1284 * woken up with their sleep average not weighted in an
1285 * interactive way.
d79fc0fc 1286 */
e7c38cb4
CK
1287 if (old_state & TASK_NONINTERACTIVE)
1288 p->sleep_type = SLEEP_NONINTERACTIVE;
1289
1290
1291 activate_task(p, rq, cpu == this_cpu);
1da177e4
LT
1292 /*
1293 * Sync wakeups (i.e. those types of wakeups where the waker
1294 * has indicated that it will leave the CPU in short order)
1295 * don't trigger a preemption, if the woken up task will run on
1296 * this cpu. (in this case the 'I will reschedule' promise of
1297 * the waker guarantees that the freshly woken up task is going
1298 * to be considered on this CPU.)
1299 */
1da177e4
LT
1300 if (!sync || cpu != this_cpu) {
1301 if (TASK_PREEMPTS_CURR(p, rq))
1302 resched_task(rq->curr);
1303 }
1304 success = 1;
1305
1306out_running:
1307 p->state = TASK_RUNNING;
1308out:
1309 task_rq_unlock(rq, &flags);
1310
1311 return success;
1312}
1313
95cdf3b7 1314int fastcall wake_up_process(task_t *p)
1da177e4
LT
1315{
1316 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1317 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1318}
1319
1320EXPORT_SYMBOL(wake_up_process);
1321
1322int fastcall wake_up_state(task_t *p, unsigned int state)
1323{
1324 return try_to_wake_up(p, state, 0);
1325}
1326
1da177e4
LT
1327/*
1328 * Perform scheduler related setup for a newly forked process p.
1329 * p is forked by current.
1330 */
476d139c 1331void fastcall sched_fork(task_t *p, int clone_flags)
1da177e4 1332{
476d139c
NP
1333 int cpu = get_cpu();
1334
1335#ifdef CONFIG_SMP
1336 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1337#endif
1338 set_task_cpu(p, cpu);
1339
1da177e4
LT
1340 /*
1341 * We mark the process as running here, but have not actually
1342 * inserted it onto the runqueue yet. This guarantees that
1343 * nobody will actually run it, and a signal or other external
1344 * event cannot wake it up and insert it on the runqueue either.
1345 */
1346 p->state = TASK_RUNNING;
1347 INIT_LIST_HEAD(&p->run_list);
1348 p->array = NULL;
1da177e4
LT
1349#ifdef CONFIG_SCHEDSTATS
1350 memset(&p->sched_info, 0, sizeof(p->sched_info));
1351#endif
d6077cb8 1352#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1353 p->oncpu = 0;
1354#endif
1da177e4 1355#ifdef CONFIG_PREEMPT
4866cde0 1356 /* Want to start with kernel preemption disabled. */
a1261f54 1357 task_thread_info(p)->preempt_count = 1;
1da177e4
LT
1358#endif
1359 /*
1360 * Share the timeslice between parent and child, thus the
1361 * total amount of pending timeslices in the system doesn't change,
1362 * resulting in more scheduling fairness.
1363 */
1364 local_irq_disable();
1365 p->time_slice = (current->time_slice + 1) >> 1;
1366 /*
1367 * The remainder of the first timeslice might be recovered by
1368 * the parent if the child exits early enough.
1369 */
1370 p->first_time_slice = 1;
1371 current->time_slice >>= 1;
1372 p->timestamp = sched_clock();
1373 if (unlikely(!current->time_slice)) {
1374 /*
1375 * This case is rare, it happens when the parent has only
1376 * a single jiffy left from its timeslice. Taking the
1377 * runqueue lock is not a problem.
1378 */
1379 current->time_slice = 1;
1da177e4 1380 scheduler_tick();
476d139c
NP
1381 }
1382 local_irq_enable();
1383 put_cpu();
1da177e4
LT
1384}
1385
1386/*
1387 * wake_up_new_task - wake up a newly created task for the first time.
1388 *
1389 * This function will do some initial scheduler statistics housekeeping
1390 * that must be done for every newly created context, then puts the task
1391 * on the runqueue and wakes it.
1392 */
95cdf3b7 1393void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1da177e4
LT
1394{
1395 unsigned long flags;
1396 int this_cpu, cpu;
1397 runqueue_t *rq, *this_rq;
1398
1399 rq = task_rq_lock(p, &flags);
147cbb4b 1400 BUG_ON(p->state != TASK_RUNNING);
1da177e4 1401 this_cpu = smp_processor_id();
147cbb4b 1402 cpu = task_cpu(p);
1da177e4 1403
1da177e4
LT
1404 /*
1405 * We decrease the sleep average of forking parents
1406 * and children as well, to keep max-interactive tasks
1407 * from forking tasks that are max-interactive. The parent
1408 * (current) is done further down, under its lock.
1409 */
1410 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1411 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1412
1413 p->prio = effective_prio(p);
1414
1415 if (likely(cpu == this_cpu)) {
1416 if (!(clone_flags & CLONE_VM)) {
1417 /*
1418 * The VM isn't cloned, so we're in a good position to
1419 * do child-runs-first in anticipation of an exec. This
1420 * usually avoids a lot of COW overhead.
1421 */
1422 if (unlikely(!current->array))
1423 __activate_task(p, rq);
1424 else {
1425 p->prio = current->prio;
1426 list_add_tail(&p->run_list, &current->run_list);
1427 p->array = current->array;
1428 p->array->nr_active++;
a2000572 1429 rq->nr_running++;
1da177e4
LT
1430 }
1431 set_need_resched();
1432 } else
1433 /* Run child last */
1434 __activate_task(p, rq);
1435 /*
1436 * We skip the following code due to cpu == this_cpu
1437 *
1438 * task_rq_unlock(rq, &flags);
1439 * this_rq = task_rq_lock(current, &flags);
1440 */
1441 this_rq = rq;
1442 } else {
1443 this_rq = cpu_rq(this_cpu);
1444
1445 /*
1446 * Not the local CPU - must adjust timestamp. This should
1447 * get optimised away in the !CONFIG_SMP case.
1448 */
1449 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1450 + rq->timestamp_last_tick;
1451 __activate_task(p, rq);
1452 if (TASK_PREEMPTS_CURR(p, rq))
1453 resched_task(rq->curr);
1454
1455 /*
1456 * Parent and child are on different CPUs, now get the
1457 * parent runqueue to update the parent's ->sleep_avg:
1458 */
1459 task_rq_unlock(rq, &flags);
1460 this_rq = task_rq_lock(current, &flags);
1461 }
1462 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1463 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1464 task_rq_unlock(this_rq, &flags);
1465}
1466
1467/*
1468 * Potentially available exiting-child timeslices are
1469 * retrieved here - this way the parent does not get
1470 * penalized for creating too many threads.
1471 *
1472 * (this cannot be used to 'generate' timeslices
1473 * artificially, because any timeslice recovered here
1474 * was given away by the parent in the first place.)
1475 */
95cdf3b7 1476void fastcall sched_exit(task_t *p)
1da177e4
LT
1477{
1478 unsigned long flags;
1479 runqueue_t *rq;
1480
1481 /*
1482 * If the child was a (relative-) CPU hog then decrease
1483 * the sleep_avg of the parent as well.
1484 */
1485 rq = task_rq_lock(p->parent, &flags);
889dfafe 1486 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1da177e4
LT
1487 p->parent->time_slice += p->time_slice;
1488 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1489 p->parent->time_slice = task_timeslice(p);
1490 }
1491 if (p->sleep_avg < p->parent->sleep_avg)
1492 p->parent->sleep_avg = p->parent->sleep_avg /
1493 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1494 (EXIT_WEIGHT + 1);
1495 task_rq_unlock(rq, &flags);
1496}
1497
4866cde0
NP
1498/**
1499 * prepare_task_switch - prepare to switch tasks
1500 * @rq: the runqueue preparing to switch
1501 * @next: the task we are going to switch to.
1502 *
1503 * This is called with the rq lock held and interrupts off. It must
1504 * be paired with a subsequent finish_task_switch after the context
1505 * switch.
1506 *
1507 * prepare_task_switch sets up locking and calls architecture specific
1508 * hooks.
1509 */
1510static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1511{
1512 prepare_lock_switch(rq, next);
1513 prepare_arch_switch(next);
1514}
1515
1da177e4
LT
1516/**
1517 * finish_task_switch - clean up after a task-switch
344babaa 1518 * @rq: runqueue associated with task-switch
1da177e4
LT
1519 * @prev: the thread we just switched away from.
1520 *
4866cde0
NP
1521 * finish_task_switch must be called after the context switch, paired
1522 * with a prepare_task_switch call before the context switch.
1523 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1524 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1525 *
1526 * Note that we may have delayed dropping an mm in context_switch(). If
1527 * so, we finish that here outside of the runqueue lock. (Doing it
1528 * with the lock held can cause deadlocks; see schedule() for
1529 * details.)
1530 */
4866cde0 1531static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1da177e4
LT
1532 __releases(rq->lock)
1533{
1da177e4
LT
1534 struct mm_struct *mm = rq->prev_mm;
1535 unsigned long prev_task_flags;
1536
1537 rq->prev_mm = NULL;
1538
1539 /*
1540 * A task struct has one reference for the use as "current".
1541 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1542 * calls schedule one last time. The schedule call will never return,
1543 * and the scheduled task must drop that reference.
1544 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1545 * still held, otherwise prev could be scheduled on another cpu, die
1546 * there before we look at prev->state, and then the reference would
1547 * be dropped twice.
1548 * Manfred Spraul <manfred@colorfullife.com>
1549 */
1550 prev_task_flags = prev->flags;
4866cde0
NP
1551 finish_arch_switch(prev);
1552 finish_lock_switch(rq, prev);
1da177e4
LT
1553 if (mm)
1554 mmdrop(mm);
c6fd91f0 1555 if (unlikely(prev_task_flags & PF_DEAD)) {
1556 /*
1557 * Remove function-return probe instances associated with this
1558 * task and put them back on the free list.
1559 */
1560 kprobe_flush_task(prev);
1da177e4 1561 put_task_struct(prev);
c6fd91f0 1562 }
1da177e4
LT
1563}
1564
1565/**
1566 * schedule_tail - first thing a freshly forked thread must call.
1567 * @prev: the thread we just switched away from.
1568 */
1569asmlinkage void schedule_tail(task_t *prev)
1570 __releases(rq->lock)
1571{
4866cde0
NP
1572 runqueue_t *rq = this_rq();
1573 finish_task_switch(rq, prev);
1574#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1575 /* In this case, finish_task_switch does not reenable preemption */
1576 preempt_enable();
1577#endif
1da177e4
LT
1578 if (current->set_child_tid)
1579 put_user(current->pid, current->set_child_tid);
1580}
1581
1582/*
1583 * context_switch - switch to the new MM and the new
1584 * thread's register state.
1585 */
1586static inline
1587task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1588{
1589 struct mm_struct *mm = next->mm;
1590 struct mm_struct *oldmm = prev->active_mm;
1591
1592 if (unlikely(!mm)) {
1593 next->active_mm = oldmm;
1594 atomic_inc(&oldmm->mm_count);
1595 enter_lazy_tlb(oldmm, next);
1596 } else
1597 switch_mm(oldmm, mm, next);
1598
1599 if (unlikely(!prev->mm)) {
1600 prev->active_mm = NULL;
1601 WARN_ON(rq->prev_mm);
1602 rq->prev_mm = oldmm;
1603 }
1604
1605 /* Here we just switch the register state and the stack. */
1606 switch_to(prev, next, prev);
1607
1608 return prev;
1609}
1610
1611/*
1612 * nr_running, nr_uninterruptible and nr_context_switches:
1613 *
1614 * externally visible scheduler statistics: current number of runnable
1615 * threads, current number of uninterruptible-sleeping threads, total
1616 * number of context switches performed since bootup.
1617 */
1618unsigned long nr_running(void)
1619{
1620 unsigned long i, sum = 0;
1621
1622 for_each_online_cpu(i)
1623 sum += cpu_rq(i)->nr_running;
1624
1625 return sum;
1626}
1627
1628unsigned long nr_uninterruptible(void)
1629{
1630 unsigned long i, sum = 0;
1631
0a945022 1632 for_each_possible_cpu(i)
1da177e4
LT
1633 sum += cpu_rq(i)->nr_uninterruptible;
1634
1635 /*
1636 * Since we read the counters lockless, it might be slightly
1637 * inaccurate. Do not allow it to go below zero though:
1638 */
1639 if (unlikely((long)sum < 0))
1640 sum = 0;
1641
1642 return sum;
1643}
1644
1645unsigned long long nr_context_switches(void)
1646{
1647 unsigned long long i, sum = 0;
1648
0a945022 1649 for_each_possible_cpu(i)
1da177e4
LT
1650 sum += cpu_rq(i)->nr_switches;
1651
1652 return sum;
1653}
1654
1655unsigned long nr_iowait(void)
1656{
1657 unsigned long i, sum = 0;
1658
0a945022 1659 for_each_possible_cpu(i)
1da177e4
LT
1660 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1661
1662 return sum;
1663}
1664
db1b1fef
JS
1665unsigned long nr_active(void)
1666{
1667 unsigned long i, running = 0, uninterruptible = 0;
1668
1669 for_each_online_cpu(i) {
1670 running += cpu_rq(i)->nr_running;
1671 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1672 }
1673
1674 if (unlikely((long)uninterruptible < 0))
1675 uninterruptible = 0;
1676
1677 return running + uninterruptible;
1678}
1679
1da177e4
LT
1680#ifdef CONFIG_SMP
1681
1682/*
1683 * double_rq_lock - safely lock two runqueues
1684 *
e9028b0f
AB
1685 * We must take them in cpu order to match code in
1686 * dependent_sleeper and wake_dependent_sleeper.
1687 *
1da177e4
LT
1688 * Note this does not disable interrupts like task_rq_lock,
1689 * you need to do so manually before calling.
1690 */
1691static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1692 __acquires(rq1->lock)
1693 __acquires(rq2->lock)
1694{
1695 if (rq1 == rq2) {
1696 spin_lock(&rq1->lock);
1697 __acquire(rq2->lock); /* Fake it out ;) */
1698 } else {
e9028b0f 1699 if (rq1->cpu < rq2->cpu) {
1da177e4
LT
1700 spin_lock(&rq1->lock);
1701 spin_lock(&rq2->lock);
1702 } else {
1703 spin_lock(&rq2->lock);
1704 spin_lock(&rq1->lock);
1705 }
1706 }
1707}
1708
1709/*
1710 * double_rq_unlock - safely unlock two runqueues
1711 *
1712 * Note this does not restore interrupts like task_rq_unlock,
1713 * you need to do so manually after calling.
1714 */
1715static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1716 __releases(rq1->lock)
1717 __releases(rq2->lock)
1718{
1719 spin_unlock(&rq1->lock);
1720 if (rq1 != rq2)
1721 spin_unlock(&rq2->lock);
1722 else
1723 __release(rq2->lock);
1724}
1725
1726/*
1727 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1728 */
1729static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1730 __releases(this_rq->lock)
1731 __acquires(busiest->lock)
1732 __acquires(this_rq->lock)
1733{
1734 if (unlikely(!spin_trylock(&busiest->lock))) {
e9028b0f 1735 if (busiest->cpu < this_rq->cpu) {
1da177e4
LT
1736 spin_unlock(&this_rq->lock);
1737 spin_lock(&busiest->lock);
1738 spin_lock(&this_rq->lock);
1739 } else
1740 spin_lock(&busiest->lock);
1741 }
1742}
1743
1da177e4
LT
1744/*
1745 * If dest_cpu is allowed for this process, migrate the task to it.
1746 * This is accomplished by forcing the cpu_allowed mask to only
1747 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1748 * the cpu_allowed mask is restored.
1749 */
1750static void sched_migrate_task(task_t *p, int dest_cpu)
1751{
1752 migration_req_t req;
1753 runqueue_t *rq;
1754 unsigned long flags;
1755
1756 rq = task_rq_lock(p, &flags);
1757 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1758 || unlikely(cpu_is_offline(dest_cpu)))
1759 goto out;
1760
1761 /* force the process onto the specified CPU */
1762 if (migrate_task(p, dest_cpu, &req)) {
1763 /* Need to wait for migration thread (might exit: take ref). */
1764 struct task_struct *mt = rq->migration_thread;
1765 get_task_struct(mt);
1766 task_rq_unlock(rq, &flags);
1767 wake_up_process(mt);
1768 put_task_struct(mt);
1769 wait_for_completion(&req.done);
1770 return;
1771 }
1772out:
1773 task_rq_unlock(rq, &flags);
1774}
1775
1776/*
476d139c
NP
1777 * sched_exec - execve() is a valuable balancing opportunity, because at
1778 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
1779 */
1780void sched_exec(void)
1781{
1da177e4 1782 int new_cpu, this_cpu = get_cpu();
476d139c 1783 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 1784 put_cpu();
476d139c
NP
1785 if (new_cpu != this_cpu)
1786 sched_migrate_task(current, new_cpu);
1da177e4
LT
1787}
1788
1789/*
1790 * pull_task - move a task from a remote runqueue to the local runqueue.
1791 * Both runqueues must be locked.
1792 */
858119e1 1793static
1da177e4
LT
1794void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1795 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1796{
1797 dequeue_task(p, src_array);
a2000572 1798 src_rq->nr_running--;
1da177e4 1799 set_task_cpu(p, this_cpu);
a2000572 1800 this_rq->nr_running++;
1da177e4
LT
1801 enqueue_task(p, this_array);
1802 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1803 + this_rq->timestamp_last_tick;
1804 /*
1805 * Note that idle threads have a prio of MAX_PRIO, for this test
1806 * to be always true for them.
1807 */
1808 if (TASK_PREEMPTS_CURR(p, this_rq))
1809 resched_task(this_rq->curr);
1810}
1811
1812/*
1813 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1814 */
858119e1 1815static
1da177e4 1816int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
95cdf3b7
IM
1817 struct sched_domain *sd, enum idle_type idle,
1818 int *all_pinned)
1da177e4
LT
1819{
1820 /*
1821 * We do not migrate tasks that are:
1822 * 1) running (obviously), or
1823 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1824 * 3) are cache-hot on their current CPU.
1825 */
1da177e4
LT
1826 if (!cpu_isset(this_cpu, p->cpus_allowed))
1827 return 0;
81026794
NP
1828 *all_pinned = 0;
1829
1830 if (task_running(rq, p))
1831 return 0;
1da177e4
LT
1832
1833 /*
1834 * Aggressive migration if:
cafb20c1 1835 * 1) task is cache cold, or
1da177e4
LT
1836 * 2) too many balance attempts have failed.
1837 */
1838
cafb20c1 1839 if (sd->nr_balance_failed > sd->cache_nice_tries)
1da177e4
LT
1840 return 1;
1841
1842 if (task_hot(p, rq->timestamp_last_tick, sd))
81026794 1843 return 0;
1da177e4
LT
1844 return 1;
1845}
1846
1847/*
1848 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1849 * as part of a balancing operation within "domain". Returns the number of
1850 * tasks moved.
1851 *
1852 * Called with both runqueues locked.
1853 */
1854static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1855 unsigned long max_nr_move, struct sched_domain *sd,
81026794 1856 enum idle_type idle, int *all_pinned)
1da177e4
LT
1857{
1858 prio_array_t *array, *dst_array;
1859 struct list_head *head, *curr;
81026794 1860 int idx, pulled = 0, pinned = 0;
1da177e4
LT
1861 task_t *tmp;
1862
81026794 1863 if (max_nr_move == 0)
1da177e4
LT
1864 goto out;
1865
81026794
NP
1866 pinned = 1;
1867
1da177e4
LT
1868 /*
1869 * We first consider expired tasks. Those will likely not be
1870 * executed in the near future, and they are most likely to
1871 * be cache-cold, thus switching CPUs has the least effect
1872 * on them.
1873 */
1874 if (busiest->expired->nr_active) {
1875 array = busiest->expired;
1876 dst_array = this_rq->expired;
1877 } else {
1878 array = busiest->active;
1879 dst_array = this_rq->active;
1880 }
1881
1882new_array:
1883 /* Start searching at priority 0: */
1884 idx = 0;
1885skip_bitmap:
1886 if (!idx)
1887 idx = sched_find_first_bit(array->bitmap);
1888 else
1889 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1890 if (idx >= MAX_PRIO) {
1891 if (array == busiest->expired && busiest->active->nr_active) {
1892 array = busiest->active;
1893 dst_array = this_rq->active;
1894 goto new_array;
1895 }
1896 goto out;
1897 }
1898
1899 head = array->queue + idx;
1900 curr = head->prev;
1901skip_queue:
1902 tmp = list_entry(curr, task_t, run_list);
1903
1904 curr = curr->prev;
1905
81026794 1906 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1da177e4
LT
1907 if (curr != head)
1908 goto skip_queue;
1909 idx++;
1910 goto skip_bitmap;
1911 }
1912
1913#ifdef CONFIG_SCHEDSTATS
1914 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1915 schedstat_inc(sd, lb_hot_gained[idle]);
1916#endif
1917
1918 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1919 pulled++;
1920
1921 /* We only want to steal up to the prescribed number of tasks. */
1922 if (pulled < max_nr_move) {
1923 if (curr != head)
1924 goto skip_queue;
1925 idx++;
1926 goto skip_bitmap;
1927 }
1928out:
1929 /*
1930 * Right now, this is the only place pull_task() is called,
1931 * so we can safely collect pull_task() stats here rather than
1932 * inside pull_task().
1933 */
1934 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
1935
1936 if (all_pinned)
1937 *all_pinned = pinned;
1da177e4
LT
1938 return pulled;
1939}
1940
1941/*
1942 * find_busiest_group finds and returns the busiest CPU group within the
1943 * domain. It calculates and returns the number of tasks which should be
1944 * moved to restore balance via the imbalance parameter.
1945 */
1946static struct sched_group *
1947find_busiest_group(struct sched_domain *sd, int this_cpu,
5969fe06 1948 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1da177e4
LT
1949{
1950 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1951 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 1952 unsigned long max_pull;
7897986b 1953 int load_idx;
1da177e4
LT
1954
1955 max_load = this_load = total_load = total_pwr = 0;
7897986b
NP
1956 if (idle == NOT_IDLE)
1957 load_idx = sd->busy_idx;
1958 else if (idle == NEWLY_IDLE)
1959 load_idx = sd->newidle_idx;
1960 else
1961 load_idx = sd->idle_idx;
1da177e4
LT
1962
1963 do {
1964 unsigned long load;
1965 int local_group;
1966 int i;
1967
1968 local_group = cpu_isset(this_cpu, group->cpumask);
1969
1970 /* Tally up the load of all CPUs in the group */
1971 avg_load = 0;
1972
1973 for_each_cpu_mask(i, group->cpumask) {
5969fe06
NP
1974 if (*sd_idle && !idle_cpu(i))
1975 *sd_idle = 0;
1976
1da177e4
LT
1977 /* Bias balancing toward cpus of our domain */
1978 if (local_group)
a2000572 1979 load = target_load(i, load_idx);
1da177e4 1980 else
a2000572 1981 load = source_load(i, load_idx);
1da177e4
LT
1982
1983 avg_load += load;
1984 }
1985
1986 total_load += avg_load;
1987 total_pwr += group->cpu_power;
1988
1989 /* Adjust by relative CPU power of the group */
1990 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1991
1992 if (local_group) {
1993 this_load = avg_load;
1994 this = group;
1da177e4
LT
1995 } else if (avg_load > max_load) {
1996 max_load = avg_load;
1997 busiest = group;
1998 }
1da177e4
LT
1999 group = group->next;
2000 } while (group != sd->groups);
2001
0c117f1b 2002 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
1da177e4
LT
2003 goto out_balanced;
2004
2005 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2006
2007 if (this_load >= avg_load ||
2008 100*max_load <= sd->imbalance_pct*this_load)
2009 goto out_balanced;
2010
2011 /*
2012 * We're trying to get all the cpus to the average_load, so we don't
2013 * want to push ourselves above the average load, nor do we wish to
2014 * reduce the max loaded cpu below the average load, as either of these
2015 * actions would just result in more rebalancing later, and ping-pong
2016 * tasks around. Thus we look for the minimum possible imbalance.
2017 * Negative imbalances (*we* are more loaded than anyone else) will
2018 * be counted as no imbalance for these purposes -- we can't fix that
2019 * by pulling tasks to us. Be careful of negative numbers as they'll
2020 * appear as very large values with unsigned longs.
2021 */
0c117f1b
SS
2022
2023 /* Don't want to pull so many tasks that a group would go idle */
2024 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2025
1da177e4 2026 /* How much load to actually move to equalise the imbalance */
0c117f1b 2027 *imbalance = min(max_pull * busiest->cpu_power,
1da177e4
LT
2028 (avg_load - this_load) * this->cpu_power)
2029 / SCHED_LOAD_SCALE;
2030
2031 if (*imbalance < SCHED_LOAD_SCALE) {
2032 unsigned long pwr_now = 0, pwr_move = 0;
2033 unsigned long tmp;
2034
2035 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2036 *imbalance = 1;
2037 return busiest;
2038 }
2039
2040 /*
2041 * OK, we don't have enough imbalance to justify moving tasks,
2042 * however we may be able to increase total CPU power used by
2043 * moving them.
2044 */
2045
2046 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2047 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2048 pwr_now /= SCHED_LOAD_SCALE;
2049
2050 /* Amount of load we'd subtract */
2051 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2052 if (max_load > tmp)
2053 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2054 max_load - tmp);
2055
2056 /* Amount of load we'd add */
2057 if (max_load*busiest->cpu_power <
2058 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2059 tmp = max_load*busiest->cpu_power/this->cpu_power;
2060 else
2061 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2062 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2063 pwr_move /= SCHED_LOAD_SCALE;
2064
2065 /* Move if we gain throughput */
2066 if (pwr_move <= pwr_now)
2067 goto out_balanced;
2068
2069 *imbalance = 1;
2070 return busiest;
2071 }
2072
2073 /* Get rid of the scaling factor, rounding down as we divide */
2074 *imbalance = *imbalance / SCHED_LOAD_SCALE;
1da177e4
LT
2075 return busiest;
2076
2077out_balanced:
1da177e4
LT
2078
2079 *imbalance = 0;
2080 return NULL;
2081}
2082
2083/*
2084 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2085 */
b910472d
CK
2086static runqueue_t *find_busiest_queue(struct sched_group *group,
2087 enum idle_type idle)
1da177e4
LT
2088{
2089 unsigned long load, max_load = 0;
2090 runqueue_t *busiest = NULL;
2091 int i;
2092
2093 for_each_cpu_mask(i, group->cpumask) {
a2000572 2094 load = source_load(i, 0);
1da177e4
LT
2095
2096 if (load > max_load) {
2097 max_load = load;
2098 busiest = cpu_rq(i);
2099 }
2100 }
2101
2102 return busiest;
2103}
2104
77391d71
NP
2105/*
2106 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2107 * so long as it is large enough.
2108 */
2109#define MAX_PINNED_INTERVAL 512
2110
1da177e4
LT
2111/*
2112 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2113 * tasks if there is an imbalance.
2114 *
2115 * Called with this_rq unlocked.
2116 */
2117static int load_balance(int this_cpu, runqueue_t *this_rq,
2118 struct sched_domain *sd, enum idle_type idle)
2119{
2120 struct sched_group *group;
2121 runqueue_t *busiest;
2122 unsigned long imbalance;
77391d71 2123 int nr_moved, all_pinned = 0;
81026794 2124 int active_balance = 0;
5969fe06
NP
2125 int sd_idle = 0;
2126
2127 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2128 sd_idle = 1;
1da177e4 2129
1da177e4
LT
2130 schedstat_inc(sd, lb_cnt[idle]);
2131
5969fe06 2132 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
1da177e4
LT
2133 if (!group) {
2134 schedstat_inc(sd, lb_nobusyg[idle]);
2135 goto out_balanced;
2136 }
2137
b910472d 2138 busiest = find_busiest_queue(group, idle);
1da177e4
LT
2139 if (!busiest) {
2140 schedstat_inc(sd, lb_nobusyq[idle]);
2141 goto out_balanced;
2142 }
2143
db935dbd 2144 BUG_ON(busiest == this_rq);
1da177e4
LT
2145
2146 schedstat_add(sd, lb_imbalance[idle], imbalance);
2147
2148 nr_moved = 0;
2149 if (busiest->nr_running > 1) {
2150 /*
2151 * Attempt to move tasks. If find_busiest_group has found
2152 * an imbalance but busiest->nr_running <= 1, the group is
2153 * still unbalanced. nr_moved simply stays zero, so it is
2154 * correctly treated as an imbalance.
2155 */
e17224bf 2156 double_rq_lock(this_rq, busiest);
1da177e4 2157 nr_moved = move_tasks(this_rq, this_cpu, busiest,
d6d5cfaf 2158 imbalance, sd, idle, &all_pinned);
e17224bf 2159 double_rq_unlock(this_rq, busiest);
81026794
NP
2160
2161 /* All tasks on this runqueue were pinned by CPU affinity */
2162 if (unlikely(all_pinned))
2163 goto out_balanced;
1da177e4 2164 }
81026794 2165
1da177e4
LT
2166 if (!nr_moved) {
2167 schedstat_inc(sd, lb_failed[idle]);
2168 sd->nr_balance_failed++;
2169
2170 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4
LT
2171
2172 spin_lock(&busiest->lock);
fa3b6ddc
SS
2173
2174 /* don't kick the migration_thread, if the curr
2175 * task on busiest cpu can't be moved to this_cpu
2176 */
2177 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2178 spin_unlock(&busiest->lock);
2179 all_pinned = 1;
2180 goto out_one_pinned;
2181 }
2182
1da177e4
LT
2183 if (!busiest->active_balance) {
2184 busiest->active_balance = 1;
2185 busiest->push_cpu = this_cpu;
81026794 2186 active_balance = 1;
1da177e4
LT
2187 }
2188 spin_unlock(&busiest->lock);
81026794 2189 if (active_balance)
1da177e4
LT
2190 wake_up_process(busiest->migration_thread);
2191
2192 /*
2193 * We've kicked active balancing, reset the failure
2194 * counter.
2195 */
39507451 2196 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2197 }
81026794 2198 } else
1da177e4
LT
2199 sd->nr_balance_failed = 0;
2200
81026794 2201 if (likely(!active_balance)) {
1da177e4
LT
2202 /* We were unbalanced, so reset the balancing interval */
2203 sd->balance_interval = sd->min_interval;
81026794
NP
2204 } else {
2205 /*
2206 * If we've begun active balancing, start to back off. This
2207 * case may not be covered by the all_pinned logic if there
2208 * is only 1 task on the busy runqueue (because we don't call
2209 * move_tasks).
2210 */
2211 if (sd->balance_interval < sd->max_interval)
2212 sd->balance_interval *= 2;
1da177e4
LT
2213 }
2214
5969fe06
NP
2215 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2216 return -1;
1da177e4
LT
2217 return nr_moved;
2218
2219out_balanced:
1da177e4
LT
2220 schedstat_inc(sd, lb_balanced[idle]);
2221
16cfb1c0 2222 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2223
2224out_one_pinned:
1da177e4 2225 /* tune up the balancing interval */
77391d71
NP
2226 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2227 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2228 sd->balance_interval *= 2;
2229
5969fe06
NP
2230 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2231 return -1;
1da177e4
LT
2232 return 0;
2233}
2234
2235/*
2236 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2237 * tasks if there is an imbalance.
2238 *
2239 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2240 * this_rq is locked.
2241 */
2242static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2243 struct sched_domain *sd)
2244{
2245 struct sched_group *group;
2246 runqueue_t *busiest = NULL;
2247 unsigned long imbalance;
2248 int nr_moved = 0;
5969fe06
NP
2249 int sd_idle = 0;
2250
2251 if (sd->flags & SD_SHARE_CPUPOWER)
2252 sd_idle = 1;
1da177e4
LT
2253
2254 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
5969fe06 2255 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
1da177e4 2256 if (!group) {
1da177e4 2257 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
16cfb1c0 2258 goto out_balanced;
1da177e4
LT
2259 }
2260
b910472d 2261 busiest = find_busiest_queue(group, NEWLY_IDLE);
db935dbd 2262 if (!busiest) {
1da177e4 2263 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
16cfb1c0 2264 goto out_balanced;
1da177e4
LT
2265 }
2266
db935dbd
NP
2267 BUG_ON(busiest == this_rq);
2268
1da177e4 2269 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
d6d5cfaf
NP
2270
2271 nr_moved = 0;
2272 if (busiest->nr_running > 1) {
2273 /* Attempt to move tasks */
2274 double_lock_balance(this_rq, busiest);
2275 nr_moved = move_tasks(this_rq, this_cpu, busiest,
81026794 2276 imbalance, sd, NEWLY_IDLE, NULL);
d6d5cfaf
NP
2277 spin_unlock(&busiest->lock);
2278 }
2279
5969fe06 2280 if (!nr_moved) {
1da177e4 2281 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
5969fe06
NP
2282 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2283 return -1;
2284 } else
16cfb1c0 2285 sd->nr_balance_failed = 0;
1da177e4 2286
1da177e4 2287 return nr_moved;
16cfb1c0
NP
2288
2289out_balanced:
2290 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
5969fe06
NP
2291 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2292 return -1;
16cfb1c0
NP
2293 sd->nr_balance_failed = 0;
2294 return 0;
1da177e4
LT
2295}
2296
2297/*
2298 * idle_balance is called by schedule() if this_cpu is about to become
2299 * idle. Attempts to pull tasks from other CPUs.
2300 */
858119e1 2301static void idle_balance(int this_cpu, runqueue_t *this_rq)
1da177e4
LT
2302{
2303 struct sched_domain *sd;
2304
2305 for_each_domain(this_cpu, sd) {
2306 if (sd->flags & SD_BALANCE_NEWIDLE) {
2307 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2308 /* We've pulled tasks over so stop searching */
2309 break;
2310 }
2311 }
2312 }
2313}
2314
2315/*
2316 * active_load_balance is run by migration threads. It pushes running tasks
2317 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2318 * running on each physical CPU where possible, and avoids physical /
2319 * logical imbalances.
2320 *
2321 * Called with busiest_rq locked.
2322 */
2323static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2324{
2325 struct sched_domain *sd;
1da177e4 2326 runqueue_t *target_rq;
39507451
NP
2327 int target_cpu = busiest_rq->push_cpu;
2328
2329 if (busiest_rq->nr_running <= 1)
2330 /* no task to move */
2331 return;
2332
2333 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2334
2335 /*
39507451
NP
2336 * This condition is "impossible", if it occurs
2337 * we need to fix it. Originally reported by
2338 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2339 */
39507451 2340 BUG_ON(busiest_rq == target_rq);
1da177e4 2341
39507451
NP
2342 /* move a task from busiest_rq to target_rq */
2343 double_lock_balance(busiest_rq, target_rq);
2344
2345 /* Search for an sd spanning us and the target CPU. */
2346 for_each_domain(target_cpu, sd)
2347 if ((sd->flags & SD_LOAD_BALANCE) &&
2348 cpu_isset(busiest_cpu, sd->span))
2349 break;
2350
2351 if (unlikely(sd == NULL))
2352 goto out;
2353
2354 schedstat_inc(sd, alb_cnt);
2355
2356 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2357 schedstat_inc(sd, alb_pushed);
2358 else
2359 schedstat_inc(sd, alb_failed);
2360out:
2361 spin_unlock(&target_rq->lock);
1da177e4
LT
2362}
2363
2364/*
2365 * rebalance_tick will get called every timer tick, on every CPU.
2366 *
2367 * It checks each scheduling domain to see if it is due to be balanced,
2368 * and initiates a balancing operation if so.
2369 *
2370 * Balancing parameters are set up in arch_init_sched_domains.
2371 */
2372
2373/* Don't have all balancing operations going off at once */
2374#define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2375
2376static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2377 enum idle_type idle)
2378{
2379 unsigned long old_load, this_load;
2380 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2381 struct sched_domain *sd;
7897986b 2382 int i;
1da177e4 2383
1da177e4 2384 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
7897986b
NP
2385 /* Update our load */
2386 for (i = 0; i < 3; i++) {
2387 unsigned long new_load = this_load;
2388 int scale = 1 << i;
2389 old_load = this_rq->cpu_load[i];
2390 /*
2391 * Round up the averaging division if load is increasing. This
2392 * prevents us from getting stuck on 9 if the load is 10, for
2393 * example.
2394 */
2395 if (new_load > old_load)
2396 new_load += scale-1;
2397 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2398 }
1da177e4
LT
2399
2400 for_each_domain(this_cpu, sd) {
2401 unsigned long interval;
2402
2403 if (!(sd->flags & SD_LOAD_BALANCE))
2404 continue;
2405
2406 interval = sd->balance_interval;
2407 if (idle != SCHED_IDLE)
2408 interval *= sd->busy_factor;
2409
2410 /* scale ms to jiffies */
2411 interval = msecs_to_jiffies(interval);
2412 if (unlikely(!interval))
2413 interval = 1;
2414
2415 if (j - sd->last_balance >= interval) {
2416 if (load_balance(this_cpu, this_rq, sd, idle)) {
fa3b6ddc
SS
2417 /*
2418 * We've pulled tasks over so either we're no
5969fe06
NP
2419 * longer idle, or one of our SMT siblings is
2420 * not idle.
2421 */
1da177e4
LT
2422 idle = NOT_IDLE;
2423 }
2424 sd->last_balance += interval;
2425 }
2426 }
2427}
2428#else
2429/*
2430 * on UP we do not need to balance between CPUs:
2431 */
2432static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2433{
2434}
2435static inline void idle_balance(int cpu, runqueue_t *rq)
2436{
2437}
2438#endif
2439
2440static inline int wake_priority_sleeper(runqueue_t *rq)
2441{
2442 int ret = 0;
2443#ifdef CONFIG_SCHED_SMT
2444 spin_lock(&rq->lock);
2445 /*
2446 * If an SMT sibling task has been put to sleep for priority
2447 * reasons reschedule the idle task to see if it can now run.
2448 */
2449 if (rq->nr_running) {
2450 resched_task(rq->idle);
2451 ret = 1;
2452 }
2453 spin_unlock(&rq->lock);
2454#endif
2455 return ret;
2456}
2457
2458DEFINE_PER_CPU(struct kernel_stat, kstat);
2459
2460EXPORT_PER_CPU_SYMBOL(kstat);
2461
2462/*
2463 * This is called on clock ticks and on context switches.
2464 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2465 */
2466static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2467 unsigned long long now)
2468{
2469 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2470 p->sched_time += now - last;
2471}
2472
2473/*
2474 * Return current->sched_time plus any more ns on the sched_clock
2475 * that have not yet been banked.
2476 */
2477unsigned long long current_sched_time(const task_t *tsk)
2478{
2479 unsigned long long ns;
2480 unsigned long flags;
2481 local_irq_save(flags);
2482 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2483 ns = tsk->sched_time + (sched_clock() - ns);
2484 local_irq_restore(flags);
2485 return ns;
2486}
2487
2488/*
2489 * We place interactive tasks back into the active array, if possible.
2490 *
2491 * To guarantee that this does not starve expired tasks we ignore the
2492 * interactivity of a task if the first expired task had to wait more
2493 * than a 'reasonable' amount of time. This deadline timeout is
2494 * load-dependent, as the frequency of array switched decreases with
2495 * increasing number of running tasks. We also ignore the interactivity
2496 * if a better static_prio task has expired:
2497 */
2498#define EXPIRED_STARVING(rq) \
2499 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2500 (jiffies - (rq)->expired_timestamp >= \
2501 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2502 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2503
2504/*
2505 * Account user cpu time to a process.
2506 * @p: the process that the cpu time gets accounted to
2507 * @hardirq_offset: the offset to subtract from hardirq_count()
2508 * @cputime: the cpu time spent in user space since the last update
2509 */
2510void account_user_time(struct task_struct *p, cputime_t cputime)
2511{
2512 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2513 cputime64_t tmp;
2514
2515 p->utime = cputime_add(p->utime, cputime);
2516
2517 /* Add user time to cpustat. */
2518 tmp = cputime_to_cputime64(cputime);
2519 if (TASK_NICE(p) > 0)
2520 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2521 else
2522 cpustat->user = cputime64_add(cpustat->user, tmp);
2523}
2524
2525/*
2526 * Account system cpu time to a process.
2527 * @p: the process that the cpu time gets accounted to
2528 * @hardirq_offset: the offset to subtract from hardirq_count()
2529 * @cputime: the cpu time spent in kernel space since the last update
2530 */
2531void account_system_time(struct task_struct *p, int hardirq_offset,
2532 cputime_t cputime)
2533{
2534 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2535 runqueue_t *rq = this_rq();
2536 cputime64_t tmp;
2537
2538 p->stime = cputime_add(p->stime, cputime);
2539
2540 /* Add system time to cpustat. */
2541 tmp = cputime_to_cputime64(cputime);
2542 if (hardirq_count() - hardirq_offset)
2543 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2544 else if (softirq_count())
2545 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2546 else if (p != rq->idle)
2547 cpustat->system = cputime64_add(cpustat->system, tmp);
2548 else if (atomic_read(&rq->nr_iowait) > 0)
2549 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2550 else
2551 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2552 /* Account for system time used */
2553 acct_update_integrals(p);
1da177e4
LT
2554}
2555
2556/*
2557 * Account for involuntary wait time.
2558 * @p: the process from which the cpu time has been stolen
2559 * @steal: the cpu time spent in involuntary wait
2560 */
2561void account_steal_time(struct task_struct *p, cputime_t steal)
2562{
2563 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2564 cputime64_t tmp = cputime_to_cputime64(steal);
2565 runqueue_t *rq = this_rq();
2566
2567 if (p == rq->idle) {
2568 p->stime = cputime_add(p->stime, steal);
2569 if (atomic_read(&rq->nr_iowait) > 0)
2570 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2571 else
2572 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2573 } else
2574 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2575}
2576
2577/*
2578 * This function gets called by the timer code, with HZ frequency.
2579 * We call it with interrupts disabled.
2580 *
2581 * It also gets called by the fork code, when changing the parent's
2582 * timeslices.
2583 */
2584void scheduler_tick(void)
2585{
2586 int cpu = smp_processor_id();
2587 runqueue_t *rq = this_rq();
2588 task_t *p = current;
2589 unsigned long long now = sched_clock();
2590
2591 update_cpu_clock(p, rq, now);
2592
2593 rq->timestamp_last_tick = now;
2594
2595 if (p == rq->idle) {
2596 if (wake_priority_sleeper(rq))
2597 goto out;
2598 rebalance_tick(cpu, rq, SCHED_IDLE);
2599 return;
2600 }
2601
2602 /* Task might have expired already, but not scheduled off yet */
2603 if (p->array != rq->active) {
2604 set_tsk_need_resched(p);
2605 goto out;
2606 }
2607 spin_lock(&rq->lock);
2608 /*
2609 * The task was running during this tick - update the
2610 * time slice counter. Note: we do not update a thread's
2611 * priority until it either goes to sleep or uses up its
2612 * timeslice. This makes it possible for interactive tasks
2613 * to use up their timeslices at their highest priority levels.
2614 */
2615 if (rt_task(p)) {
2616 /*
2617 * RR tasks need a special form of timeslice management.
2618 * FIFO tasks have no timeslices.
2619 */
2620 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2621 p->time_slice = task_timeslice(p);
2622 p->first_time_slice = 0;
2623 set_tsk_need_resched(p);
2624
2625 /* put it at the end of the queue: */
2626 requeue_task(p, rq->active);
2627 }
2628 goto out_unlock;
2629 }
2630 if (!--p->time_slice) {
2631 dequeue_task(p, rq->active);
2632 set_tsk_need_resched(p);
2633 p->prio = effective_prio(p);
2634 p->time_slice = task_timeslice(p);
2635 p->first_time_slice = 0;
2636
2637 if (!rq->expired_timestamp)
2638 rq->expired_timestamp = jiffies;
2639 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2640 enqueue_task(p, rq->expired);
2641 if (p->static_prio < rq->best_expired_prio)
2642 rq->best_expired_prio = p->static_prio;
2643 } else
2644 enqueue_task(p, rq->active);
2645 } else {
2646 /*
2647 * Prevent a too long timeslice allowing a task to monopolize
2648 * the CPU. We do this by splitting up the timeslice into
2649 * smaller pieces.
2650 *
2651 * Note: this does not mean the task's timeslices expire or
2652 * get lost in any way, they just might be preempted by
2653 * another task of equal priority. (one with higher
2654 * priority would have preempted this task already.) We
2655 * requeue this task to the end of the list on this priority
2656 * level, which is in essence a round-robin of tasks with
2657 * equal priority.
2658 *
2659 * This only applies to tasks in the interactive
2660 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2661 */
2662 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2663 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2664 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2665 (p->array == rq->active)) {
2666
2667 requeue_task(p, rq->active);
2668 set_tsk_need_resched(p);
2669 }
2670 }
2671out_unlock:
2672 spin_unlock(&rq->lock);
2673out:
2674 rebalance_tick(cpu, rq, NOT_IDLE);
2675}
2676
2677#ifdef CONFIG_SCHED_SMT
fc38ed75
CK
2678static inline void wakeup_busy_runqueue(runqueue_t *rq)
2679{
2680 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2681 if (rq->curr == rq->idle && rq->nr_running)
2682 resched_task(rq->idle);
2683}
2684
858119e1 2685static void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
1da177e4 2686{
41c7ce9a 2687 struct sched_domain *tmp, *sd = NULL;
1da177e4
LT
2688 cpumask_t sibling_map;
2689 int i;
2690
41c7ce9a
NP
2691 for_each_domain(this_cpu, tmp)
2692 if (tmp->flags & SD_SHARE_CPUPOWER)
2693 sd = tmp;
2694
2695 if (!sd)
1da177e4
LT
2696 return;
2697
2698 /*
2699 * Unlock the current runqueue because we have to lock in
2700 * CPU order to avoid deadlocks. Caller knows that we might
2701 * unlock. We keep IRQs disabled.
2702 */
2703 spin_unlock(&this_rq->lock);
2704
2705 sibling_map = sd->span;
2706
2707 for_each_cpu_mask(i, sibling_map)
2708 spin_lock(&cpu_rq(i)->lock);
2709 /*
2710 * We clear this CPU from the mask. This both simplifies the
2711 * inner loop and keps this_rq locked when we exit:
2712 */
2713 cpu_clear(this_cpu, sibling_map);
2714
2715 for_each_cpu_mask(i, sibling_map) {
2716 runqueue_t *smt_rq = cpu_rq(i);
2717
fc38ed75 2718 wakeup_busy_runqueue(smt_rq);
1da177e4
LT
2719 }
2720
2721 for_each_cpu_mask(i, sibling_map)
2722 spin_unlock(&cpu_rq(i)->lock);
2723 /*
2724 * We exit with this_cpu's rq still held and IRQs
2725 * still disabled:
2726 */
2727}
2728
67f9a619
IM
2729/*
2730 * number of 'lost' timeslices this task wont be able to fully
2731 * utilize, if another task runs on a sibling. This models the
2732 * slowdown effect of other tasks running on siblings:
2733 */
2734static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2735{
2736 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2737}
2738
858119e1 2739static int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
1da177e4 2740{
41c7ce9a 2741 struct sched_domain *tmp, *sd = NULL;
1da177e4
LT
2742 cpumask_t sibling_map;
2743 prio_array_t *array;
2744 int ret = 0, i;
2745 task_t *p;
2746
41c7ce9a
NP
2747 for_each_domain(this_cpu, tmp)
2748 if (tmp->flags & SD_SHARE_CPUPOWER)
2749 sd = tmp;
2750
2751 if (!sd)
1da177e4
LT
2752 return 0;
2753
2754 /*
2755 * The same locking rules and details apply as for
2756 * wake_sleeping_dependent():
2757 */
2758 spin_unlock(&this_rq->lock);
2759 sibling_map = sd->span;
2760 for_each_cpu_mask(i, sibling_map)
2761 spin_lock(&cpu_rq(i)->lock);
2762 cpu_clear(this_cpu, sibling_map);
2763
2764 /*
2765 * Establish next task to be run - it might have gone away because
2766 * we released the runqueue lock above:
2767 */
2768 if (!this_rq->nr_running)
2769 goto out_unlock;
2770 array = this_rq->active;
2771 if (!array->nr_active)
2772 array = this_rq->expired;
2773 BUG_ON(!array->nr_active);
2774
2775 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2776 task_t, run_list);
2777
2778 for_each_cpu_mask(i, sibling_map) {
2779 runqueue_t *smt_rq = cpu_rq(i);
2780 task_t *smt_curr = smt_rq->curr;
2781
fc38ed75
CK
2782 /* Kernel threads do not participate in dependent sleeping */
2783 if (!p->mm || !smt_curr->mm || rt_task(p))
2784 goto check_smt_task;
2785
1da177e4
LT
2786 /*
2787 * If a user task with lower static priority than the
2788 * running task on the SMT sibling is trying to schedule,
2789 * delay it till there is proportionately less timeslice
2790 * left of the sibling task to prevent a lower priority
2791 * task from using an unfair proportion of the
2792 * physical cpu's resources. -ck
2793 */
fc38ed75
CK
2794 if (rt_task(smt_curr)) {
2795 /*
2796 * With real time tasks we run non-rt tasks only
2797 * per_cpu_gain% of the time.
2798 */
2799 if ((jiffies % DEF_TIMESLICE) >
2800 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2801 ret = 1;
2802 } else
67f9a619
IM
2803 if (smt_curr->static_prio < p->static_prio &&
2804 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2805 smt_slice(smt_curr, sd) > task_timeslice(p))
fc38ed75
CK
2806 ret = 1;
2807
2808check_smt_task:
2809 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2810 rt_task(smt_curr))
2811 continue;
2812 if (!p->mm) {
2813 wakeup_busy_runqueue(smt_rq);
2814 continue;
2815 }
1da177e4
LT
2816
2817 /*
fc38ed75
CK
2818 * Reschedule a lower priority task on the SMT sibling for
2819 * it to be put to sleep, or wake it up if it has been put to
2820 * sleep for priority reasons to see if it should run now.
1da177e4 2821 */
fc38ed75
CK
2822 if (rt_task(p)) {
2823 if ((jiffies % DEF_TIMESLICE) >
2824 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2825 resched_task(smt_curr);
2826 } else {
67f9a619
IM
2827 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2828 smt_slice(p, sd) > task_timeslice(smt_curr))
fc38ed75
CK
2829 resched_task(smt_curr);
2830 else
2831 wakeup_busy_runqueue(smt_rq);
2832 }
1da177e4
LT
2833 }
2834out_unlock:
2835 for_each_cpu_mask(i, sibling_map)
2836 spin_unlock(&cpu_rq(i)->lock);
2837 return ret;
2838}
2839#else
2840static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2841{
2842}
2843
2844static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2845{
2846 return 0;
2847}
2848#endif
2849
2850#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2851
2852void fastcall add_preempt_count(int val)
2853{
2854 /*
2855 * Underflow?
2856 */
be5b4fbd 2857 BUG_ON((preempt_count() < 0));
1da177e4
LT
2858 preempt_count() += val;
2859 /*
2860 * Spinlock count overflowing soon?
2861 */
2862 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2863}
2864EXPORT_SYMBOL(add_preempt_count);
2865
2866void fastcall sub_preempt_count(int val)
2867{
2868 /*
2869 * Underflow?
2870 */
2871 BUG_ON(val > preempt_count());
2872 /*
2873 * Is the spinlock portion underflowing?
2874 */
2875 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2876 preempt_count() -= val;
2877}
2878EXPORT_SYMBOL(sub_preempt_count);
2879
2880#endif
2881
3dee386e
CK
2882static inline int interactive_sleep(enum sleep_type sleep_type)
2883{
2884 return (sleep_type == SLEEP_INTERACTIVE ||
2885 sleep_type == SLEEP_INTERRUPTED);
2886}
2887
1da177e4
LT
2888/*
2889 * schedule() is the main scheduler function.
2890 */
2891asmlinkage void __sched schedule(void)
2892{
2893 long *switch_count;
2894 task_t *prev, *next;
2895 runqueue_t *rq;
2896 prio_array_t *array;
2897 struct list_head *queue;
2898 unsigned long long now;
2899 unsigned long run_time;
a3464a10 2900 int cpu, idx, new_prio;
1da177e4
LT
2901
2902 /*
2903 * Test if we are atomic. Since do_exit() needs to call into
2904 * schedule() atomically, we ignore that path for now.
2905 * Otherwise, whine if we are scheduling when we should not be.
2906 */
77e4bfbc
AM
2907 if (unlikely(in_atomic() && !current->exit_state)) {
2908 printk(KERN_ERR "BUG: scheduling while atomic: "
2909 "%s/0x%08x/%d\n",
2910 current->comm, preempt_count(), current->pid);
2911 dump_stack();
1da177e4
LT
2912 }
2913 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2914
2915need_resched:
2916 preempt_disable();
2917 prev = current;
2918 release_kernel_lock(prev);
2919need_resched_nonpreemptible:
2920 rq = this_rq();
2921
2922 /*
2923 * The idle thread is not allowed to schedule!
2924 * Remove this check after it has been exercised a bit.
2925 */
2926 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2927 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2928 dump_stack();
2929 }
2930
2931 schedstat_inc(rq, sched_cnt);
2932 now = sched_clock();
238628ed 2933 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
1da177e4 2934 run_time = now - prev->timestamp;
238628ed 2935 if (unlikely((long long)(now - prev->timestamp) < 0))
1da177e4
LT
2936 run_time = 0;
2937 } else
2938 run_time = NS_MAX_SLEEP_AVG;
2939
2940 /*
2941 * Tasks charged proportionately less run_time at high sleep_avg to
2942 * delay them losing their interactive status
2943 */
2944 run_time /= (CURRENT_BONUS(prev) ? : 1);
2945
2946 spin_lock_irq(&rq->lock);
2947
2948 if (unlikely(prev->flags & PF_DEAD))
2949 prev->state = EXIT_DEAD;
2950
2951 switch_count = &prev->nivcsw;
2952 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2953 switch_count = &prev->nvcsw;
2954 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2955 unlikely(signal_pending(prev))))
2956 prev->state = TASK_RUNNING;
2957 else {
2958 if (prev->state == TASK_UNINTERRUPTIBLE)
2959 rq->nr_uninterruptible++;
2960 deactivate_task(prev, rq);
2961 }
2962 }
2963
2964 cpu = smp_processor_id();
2965 if (unlikely(!rq->nr_running)) {
2966go_idle:
2967 idle_balance(cpu, rq);
2968 if (!rq->nr_running) {
2969 next = rq->idle;
2970 rq->expired_timestamp = 0;
2971 wake_sleeping_dependent(cpu, rq);
2972 /*
2973 * wake_sleeping_dependent() might have released
2974 * the runqueue, so break out if we got new
2975 * tasks meanwhile:
2976 */
2977 if (!rq->nr_running)
2978 goto switch_tasks;
2979 }
2980 } else {
2981 if (dependent_sleeper(cpu, rq)) {
2982 next = rq->idle;
2983 goto switch_tasks;
2984 }
2985 /*
2986 * dependent_sleeper() releases and reacquires the runqueue
2987 * lock, hence go into the idle loop if the rq went
2988 * empty meanwhile:
2989 */
2990 if (unlikely(!rq->nr_running))
2991 goto go_idle;
2992 }
2993
2994 array = rq->active;
2995 if (unlikely(!array->nr_active)) {
2996 /*
2997 * Switch the active and expired arrays.
2998 */
2999 schedstat_inc(rq, sched_switch);
3000 rq->active = rq->expired;
3001 rq->expired = array;
3002 array = rq->active;
3003 rq->expired_timestamp = 0;
3004 rq->best_expired_prio = MAX_PRIO;
3005 }
3006
3007 idx = sched_find_first_bit(array->bitmap);
3008 queue = array->queue + idx;
3009 next = list_entry(queue->next, task_t, run_list);
3010
3dee386e 3011 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
1da177e4 3012 unsigned long long delta = now - next->timestamp;
238628ed 3013 if (unlikely((long long)(now - next->timestamp) < 0))
1da177e4
LT
3014 delta = 0;
3015
3dee386e 3016 if (next->sleep_type == SLEEP_INTERACTIVE)
1da177e4
LT
3017 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3018
3019 array = next->array;
a3464a10
CS
3020 new_prio = recalc_task_prio(next, next->timestamp + delta);
3021
3022 if (unlikely(next->prio != new_prio)) {
3023 dequeue_task(next, array);
3024 next->prio = new_prio;
3025 enqueue_task(next, array);
3026 } else
3027 requeue_task(next, array);
1da177e4 3028 }
3dee386e 3029 next->sleep_type = SLEEP_NORMAL;
1da177e4
LT
3030switch_tasks:
3031 if (next == rq->idle)
3032 schedstat_inc(rq, sched_goidle);
3033 prefetch(next);
383f2835 3034 prefetch_stack(next);
1da177e4
LT
3035 clear_tsk_need_resched(prev);
3036 rcu_qsctr_inc(task_cpu(prev));
3037
3038 update_cpu_clock(prev, rq, now);
3039
3040 prev->sleep_avg -= run_time;
3041 if ((long)prev->sleep_avg <= 0)
3042 prev->sleep_avg = 0;
3043 prev->timestamp = prev->last_ran = now;
3044
3045 sched_info_switch(prev, next);
3046 if (likely(prev != next)) {
3047 next->timestamp = now;
3048 rq->nr_switches++;
3049 rq->curr = next;
3050 ++*switch_count;
3051
4866cde0 3052 prepare_task_switch(rq, next);
1da177e4
LT
3053 prev = context_switch(rq, prev, next);
3054 barrier();
4866cde0
NP
3055 /*
3056 * this_rq must be evaluated again because prev may have moved
3057 * CPUs since it called schedule(), thus the 'rq' on its stack
3058 * frame will be invalid.
3059 */
3060 finish_task_switch(this_rq(), prev);
1da177e4
LT
3061 } else
3062 spin_unlock_irq(&rq->lock);
3063
3064 prev = current;
3065 if (unlikely(reacquire_kernel_lock(prev) < 0))
3066 goto need_resched_nonpreemptible;
3067 preempt_enable_no_resched();
3068 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3069 goto need_resched;
3070}
3071
3072EXPORT_SYMBOL(schedule);
3073
3074#ifdef CONFIG_PREEMPT
3075/*
3076 * this is is the entry point to schedule() from in-kernel preemption
3077 * off of preempt_enable. Kernel preemptions off return from interrupt
3078 * occur there and call schedule directly.
3079 */
3080asmlinkage void __sched preempt_schedule(void)
3081{
3082 struct thread_info *ti = current_thread_info();
3083#ifdef CONFIG_PREEMPT_BKL
3084 struct task_struct *task = current;
3085 int saved_lock_depth;
3086#endif
3087 /*
3088 * If there is a non-zero preempt_count or interrupts are disabled,
3089 * we do not want to preempt the current task. Just return..
3090 */
3091 if (unlikely(ti->preempt_count || irqs_disabled()))
3092 return;
3093
3094need_resched:
3095 add_preempt_count(PREEMPT_ACTIVE);
3096 /*
3097 * We keep the big kernel semaphore locked, but we
3098 * clear ->lock_depth so that schedule() doesnt
3099 * auto-release the semaphore:
3100 */
3101#ifdef CONFIG_PREEMPT_BKL
3102 saved_lock_depth = task->lock_depth;
3103 task->lock_depth = -1;
3104#endif
3105 schedule();
3106#ifdef CONFIG_PREEMPT_BKL
3107 task->lock_depth = saved_lock_depth;
3108#endif
3109 sub_preempt_count(PREEMPT_ACTIVE);
3110
3111 /* we could miss a preemption opportunity between schedule and now */
3112 barrier();
3113 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3114 goto need_resched;
3115}
3116
3117EXPORT_SYMBOL(preempt_schedule);
3118
3119/*
3120 * this is is the entry point to schedule() from kernel preemption
3121 * off of irq context.
3122 * Note, that this is called and return with irqs disabled. This will
3123 * protect us against recursive calling from irq.
3124 */
3125asmlinkage void __sched preempt_schedule_irq(void)
3126{
3127 struct thread_info *ti = current_thread_info();
3128#ifdef CONFIG_PREEMPT_BKL
3129 struct task_struct *task = current;
3130 int saved_lock_depth;
3131#endif
3132 /* Catch callers which need to be fixed*/
3133 BUG_ON(ti->preempt_count || !irqs_disabled());
3134
3135need_resched:
3136 add_preempt_count(PREEMPT_ACTIVE);
3137 /*
3138 * We keep the big kernel semaphore locked, but we
3139 * clear ->lock_depth so that schedule() doesnt
3140 * auto-release the semaphore:
3141 */
3142#ifdef CONFIG_PREEMPT_BKL
3143 saved_lock_depth = task->lock_depth;
3144 task->lock_depth = -1;
3145#endif
3146 local_irq_enable();
3147 schedule();
3148 local_irq_disable();
3149#ifdef CONFIG_PREEMPT_BKL
3150 task->lock_depth = saved_lock_depth;
3151#endif
3152 sub_preempt_count(PREEMPT_ACTIVE);
3153
3154 /* we could miss a preemption opportunity between schedule and now */
3155 barrier();
3156 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3157 goto need_resched;
3158}
3159
3160#endif /* CONFIG_PREEMPT */
3161
95cdf3b7
IM
3162int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3163 void *key)
1da177e4 3164{
c43dc2fd 3165 task_t *p = curr->private;
1da177e4
LT
3166 return try_to_wake_up(p, mode, sync);
3167}
3168
3169EXPORT_SYMBOL(default_wake_function);
3170
3171/*
3172 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3173 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3174 * number) then we wake all the non-exclusive tasks and one exclusive task.
3175 *
3176 * There are circumstances in which we can try to wake a task which has already
3177 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3178 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3179 */
3180static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3181 int nr_exclusive, int sync, void *key)
3182{
3183 struct list_head *tmp, *next;
3184
3185 list_for_each_safe(tmp, next, &q->task_list) {
3186 wait_queue_t *curr;
3187 unsigned flags;
3188 curr = list_entry(tmp, wait_queue_t, task_list);
3189 flags = curr->flags;
3190 if (curr->func(curr, mode, sync, key) &&
3191 (flags & WQ_FLAG_EXCLUSIVE) &&
3192 !--nr_exclusive)
3193 break;
3194 }
3195}
3196
3197/**
3198 * __wake_up - wake up threads blocked on a waitqueue.
3199 * @q: the waitqueue
3200 * @mode: which threads
3201 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3202 * @key: is directly passed to the wakeup function
1da177e4
LT
3203 */
3204void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3205 int nr_exclusive, void *key)
1da177e4
LT
3206{
3207 unsigned long flags;
3208
3209 spin_lock_irqsave(&q->lock, flags);
3210 __wake_up_common(q, mode, nr_exclusive, 0, key);
3211 spin_unlock_irqrestore(&q->lock, flags);
3212}
3213
3214EXPORT_SYMBOL(__wake_up);
3215
3216/*
3217 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3218 */
3219void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3220{
3221 __wake_up_common(q, mode, 1, 0, NULL);
3222}
3223
3224/**
67be2dd1 3225 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3226 * @q: the waitqueue
3227 * @mode: which threads
3228 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3229 *
3230 * The sync wakeup differs that the waker knows that it will schedule
3231 * away soon, so while the target thread will be woken up, it will not
3232 * be migrated to another CPU - ie. the two threads are 'synchronized'
3233 * with each other. This can prevent needless bouncing between CPUs.
3234 *
3235 * On UP it can prevent extra preemption.
3236 */
95cdf3b7
IM
3237void fastcall
3238__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3239{
3240 unsigned long flags;
3241 int sync = 1;
3242
3243 if (unlikely(!q))
3244 return;
3245
3246 if (unlikely(!nr_exclusive))
3247 sync = 0;
3248
3249 spin_lock_irqsave(&q->lock, flags);
3250 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3251 spin_unlock_irqrestore(&q->lock, flags);
3252}
3253EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3254
3255void fastcall complete(struct completion *x)
3256{
3257 unsigned long flags;
3258
3259 spin_lock_irqsave(&x->wait.lock, flags);
3260 x->done++;
3261 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3262 1, 0, NULL);
3263 spin_unlock_irqrestore(&x->wait.lock, flags);
3264}
3265EXPORT_SYMBOL(complete);
3266
3267void fastcall complete_all(struct completion *x)
3268{
3269 unsigned long flags;
3270
3271 spin_lock_irqsave(&x->wait.lock, flags);
3272 x->done += UINT_MAX/2;
3273 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3274 0, 0, NULL);
3275 spin_unlock_irqrestore(&x->wait.lock, flags);
3276}
3277EXPORT_SYMBOL(complete_all);
3278
3279void fastcall __sched wait_for_completion(struct completion *x)
3280{
3281 might_sleep();
3282 spin_lock_irq(&x->wait.lock);
3283 if (!x->done) {
3284 DECLARE_WAITQUEUE(wait, current);
3285
3286 wait.flags |= WQ_FLAG_EXCLUSIVE;
3287 __add_wait_queue_tail(&x->wait, &wait);
3288 do {
3289 __set_current_state(TASK_UNINTERRUPTIBLE);
3290 spin_unlock_irq(&x->wait.lock);
3291 schedule();
3292 spin_lock_irq(&x->wait.lock);
3293 } while (!x->done);
3294 __remove_wait_queue(&x->wait, &wait);
3295 }
3296 x->done--;
3297 spin_unlock_irq(&x->wait.lock);
3298}
3299EXPORT_SYMBOL(wait_for_completion);
3300
3301unsigned long fastcall __sched
3302wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3303{
3304 might_sleep();
3305
3306 spin_lock_irq(&x->wait.lock);
3307 if (!x->done) {
3308 DECLARE_WAITQUEUE(wait, current);
3309
3310 wait.flags |= WQ_FLAG_EXCLUSIVE;
3311 __add_wait_queue_tail(&x->wait, &wait);
3312 do {
3313 __set_current_state(TASK_UNINTERRUPTIBLE);
3314 spin_unlock_irq(&x->wait.lock);
3315 timeout = schedule_timeout(timeout);
3316 spin_lock_irq(&x->wait.lock);
3317 if (!timeout) {
3318 __remove_wait_queue(&x->wait, &wait);
3319 goto out;
3320 }
3321 } while (!x->done);
3322 __remove_wait_queue(&x->wait, &wait);
3323 }
3324 x->done--;
3325out:
3326 spin_unlock_irq(&x->wait.lock);
3327 return timeout;
3328}
3329EXPORT_SYMBOL(wait_for_completion_timeout);
3330
3331int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3332{
3333 int ret = 0;
3334
3335 might_sleep();
3336
3337 spin_lock_irq(&x->wait.lock);
3338 if (!x->done) {
3339 DECLARE_WAITQUEUE(wait, current);
3340
3341 wait.flags |= WQ_FLAG_EXCLUSIVE;
3342 __add_wait_queue_tail(&x->wait, &wait);
3343 do {
3344 if (signal_pending(current)) {
3345 ret = -ERESTARTSYS;
3346 __remove_wait_queue(&x->wait, &wait);
3347 goto out;
3348 }
3349 __set_current_state(TASK_INTERRUPTIBLE);
3350 spin_unlock_irq(&x->wait.lock);
3351 schedule();
3352 spin_lock_irq(&x->wait.lock);
3353 } while (!x->done);
3354 __remove_wait_queue(&x->wait, &wait);
3355 }
3356 x->done--;
3357out:
3358 spin_unlock_irq(&x->wait.lock);
3359
3360 return ret;
3361}
3362EXPORT_SYMBOL(wait_for_completion_interruptible);
3363
3364unsigned long fastcall __sched
3365wait_for_completion_interruptible_timeout(struct completion *x,
3366 unsigned long timeout)
3367{
3368 might_sleep();
3369
3370 spin_lock_irq(&x->wait.lock);
3371 if (!x->done) {
3372 DECLARE_WAITQUEUE(wait, current);
3373
3374 wait.flags |= WQ_FLAG_EXCLUSIVE;
3375 __add_wait_queue_tail(&x->wait, &wait);
3376 do {
3377 if (signal_pending(current)) {
3378 timeout = -ERESTARTSYS;
3379 __remove_wait_queue(&x->wait, &wait);
3380 goto out;
3381 }
3382 __set_current_state(TASK_INTERRUPTIBLE);
3383 spin_unlock_irq(&x->wait.lock);
3384 timeout = schedule_timeout(timeout);
3385 spin_lock_irq(&x->wait.lock);
3386 if (!timeout) {
3387 __remove_wait_queue(&x->wait, &wait);
3388 goto out;
3389 }
3390 } while (!x->done);
3391 __remove_wait_queue(&x->wait, &wait);
3392 }
3393 x->done--;
3394out:
3395 spin_unlock_irq(&x->wait.lock);
3396 return timeout;
3397}
3398EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3399
3400
3401#define SLEEP_ON_VAR \
3402 unsigned long flags; \
3403 wait_queue_t wait; \
3404 init_waitqueue_entry(&wait, current);
3405
3406#define SLEEP_ON_HEAD \
3407 spin_lock_irqsave(&q->lock,flags); \
3408 __add_wait_queue(q, &wait); \
3409 spin_unlock(&q->lock);
3410
3411#define SLEEP_ON_TAIL \
3412 spin_lock_irq(&q->lock); \
3413 __remove_wait_queue(q, &wait); \
3414 spin_unlock_irqrestore(&q->lock, flags);
3415
3416void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3417{
3418 SLEEP_ON_VAR
3419
3420 current->state = TASK_INTERRUPTIBLE;
3421
3422 SLEEP_ON_HEAD
3423 schedule();
3424 SLEEP_ON_TAIL
3425}
3426
3427EXPORT_SYMBOL(interruptible_sleep_on);
3428
95cdf3b7
IM
3429long fastcall __sched
3430interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4
LT
3431{
3432 SLEEP_ON_VAR
3433
3434 current->state = TASK_INTERRUPTIBLE;
3435
3436 SLEEP_ON_HEAD
3437 timeout = schedule_timeout(timeout);
3438 SLEEP_ON_TAIL
3439
3440 return timeout;
3441}
3442
3443EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3444
3445void fastcall __sched sleep_on(wait_queue_head_t *q)
3446{
3447 SLEEP_ON_VAR
3448
3449 current->state = TASK_UNINTERRUPTIBLE;
3450
3451 SLEEP_ON_HEAD
3452 schedule();
3453 SLEEP_ON_TAIL
3454}
3455
3456EXPORT_SYMBOL(sleep_on);
3457
3458long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3459{
3460 SLEEP_ON_VAR
3461
3462 current->state = TASK_UNINTERRUPTIBLE;
3463
3464 SLEEP_ON_HEAD
3465 timeout = schedule_timeout(timeout);
3466 SLEEP_ON_TAIL
3467
3468 return timeout;
3469}
3470
3471EXPORT_SYMBOL(sleep_on_timeout);
3472
3473void set_user_nice(task_t *p, long nice)
3474{
3475 unsigned long flags;
3476 prio_array_t *array;
3477 runqueue_t *rq;
3478 int old_prio, new_prio, delta;
3479
3480 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3481 return;
3482 /*
3483 * We have to be careful, if called from sys_setpriority(),
3484 * the task might be in the middle of scheduling on another CPU.
3485 */
3486 rq = task_rq_lock(p, &flags);
3487 /*
3488 * The RT priorities are set via sched_setscheduler(), but we still
3489 * allow the 'normal' nice value to be set - but as expected
3490 * it wont have any effect on scheduling until the task is
b0a9499c 3491 * not SCHED_NORMAL/SCHED_BATCH:
1da177e4
LT
3492 */
3493 if (rt_task(p)) {
3494 p->static_prio = NICE_TO_PRIO(nice);
3495 goto out_unlock;
3496 }
3497 array = p->array;
a2000572 3498 if (array)
1da177e4
LT
3499 dequeue_task(p, array);
3500
3501 old_prio = p->prio;
3502 new_prio = NICE_TO_PRIO(nice);
3503 delta = new_prio - old_prio;
3504 p->static_prio = NICE_TO_PRIO(nice);
3505 p->prio += delta;
3506
3507 if (array) {
3508 enqueue_task(p, array);
3509 /*
3510 * If the task increased its priority or is running and
3511 * lowered its priority, then reschedule its CPU:
3512 */
3513 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3514 resched_task(rq->curr);
3515 }
3516out_unlock:
3517 task_rq_unlock(rq, &flags);
3518}
3519
3520EXPORT_SYMBOL(set_user_nice);
3521
e43379f1
MM
3522/*
3523 * can_nice - check if a task can reduce its nice value
3524 * @p: task
3525 * @nice: nice value
3526 */
3527int can_nice(const task_t *p, const int nice)
3528{
024f4747
MM
3529 /* convert nice value [19,-20] to rlimit style value [1,40] */
3530 int nice_rlim = 20 - nice;
e43379f1
MM
3531 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3532 capable(CAP_SYS_NICE));
3533}
3534
1da177e4
LT
3535#ifdef __ARCH_WANT_SYS_NICE
3536
3537/*
3538 * sys_nice - change the priority of the current process.
3539 * @increment: priority increment
3540 *
3541 * sys_setpriority is a more generic, but much slower function that
3542 * does similar things.
3543 */
3544asmlinkage long sys_nice(int increment)
3545{
3546 int retval;
3547 long nice;
3548
3549 /*
3550 * Setpriority might change our priority at the same moment.
3551 * We don't have to worry. Conceptually one call occurs first
3552 * and we have a single winner.
3553 */
e43379f1
MM
3554 if (increment < -40)
3555 increment = -40;
1da177e4
LT
3556 if (increment > 40)
3557 increment = 40;
3558
3559 nice = PRIO_TO_NICE(current->static_prio) + increment;
3560 if (nice < -20)
3561 nice = -20;
3562 if (nice > 19)
3563 nice = 19;
3564
e43379f1
MM
3565 if (increment < 0 && !can_nice(current, nice))
3566 return -EPERM;
3567
1da177e4
LT
3568 retval = security_task_setnice(current, nice);
3569 if (retval)
3570 return retval;
3571
3572 set_user_nice(current, nice);
3573 return 0;
3574}
3575
3576#endif
3577
3578/**
3579 * task_prio - return the priority value of a given task.
3580 * @p: the task in question.
3581 *
3582 * This is the priority value as seen by users in /proc.
3583 * RT tasks are offset by -200. Normal tasks are centered
3584 * around 0, value goes from -16 to +15.
3585 */
3586int task_prio(const task_t *p)
3587{
3588 return p->prio - MAX_RT_PRIO;
3589}
3590
3591/**
3592 * task_nice - return the nice value of a given task.
3593 * @p: the task in question.
3594 */
3595int task_nice(const task_t *p)
3596{
3597 return TASK_NICE(p);
3598}
1da177e4 3599EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
3600
3601/**
3602 * idle_cpu - is a given cpu idle currently?
3603 * @cpu: the processor in question.
3604 */
3605int idle_cpu(int cpu)
3606{
3607 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3608}
3609
1da177e4
LT
3610/**
3611 * idle_task - return the idle task for a given cpu.
3612 * @cpu: the processor in question.
3613 */
3614task_t *idle_task(int cpu)
3615{
3616 return cpu_rq(cpu)->idle;
3617}
3618
3619/**
3620 * find_process_by_pid - find a process with a matching PID value.
3621 * @pid: the pid in question.
3622 */
3623static inline task_t *find_process_by_pid(pid_t pid)
3624{
3625 return pid ? find_task_by_pid(pid) : current;
3626}
3627
3628/* Actually do priority change: must hold rq lock. */
3629static void __setscheduler(struct task_struct *p, int policy, int prio)
3630{
3631 BUG_ON(p->array);
3632 p->policy = policy;
3633 p->rt_priority = prio;
b0a9499c 3634 if (policy != SCHED_NORMAL && policy != SCHED_BATCH) {
d46523ea 3635 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
b0a9499c 3636 } else {
1da177e4 3637 p->prio = p->static_prio;
b0a9499c
IM
3638 /*
3639 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3640 */
3641 if (policy == SCHED_BATCH)
3642 p->sleep_avg = 0;
3643 }
1da177e4
LT
3644}
3645
3646/**
3647 * sched_setscheduler - change the scheduling policy and/or RT priority of
3648 * a thread.
3649 * @p: the task in question.
3650 * @policy: new policy.
3651 * @param: structure containing the new RT priority.
3652 */
95cdf3b7
IM
3653int sched_setscheduler(struct task_struct *p, int policy,
3654 struct sched_param *param)
1da177e4
LT
3655{
3656 int retval;
3657 int oldprio, oldpolicy = -1;
3658 prio_array_t *array;
3659 unsigned long flags;
3660 runqueue_t *rq;
3661
3662recheck:
3663 /* double check policy once rq lock held */
3664 if (policy < 0)
3665 policy = oldpolicy = p->policy;
3666 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
b0a9499c
IM
3667 policy != SCHED_NORMAL && policy != SCHED_BATCH)
3668 return -EINVAL;
1da177e4
LT
3669 /*
3670 * Valid priorities for SCHED_FIFO and SCHED_RR are
b0a9499c
IM
3671 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
3672 * SCHED_BATCH is 0.
1da177e4
LT
3673 */
3674 if (param->sched_priority < 0 ||
95cdf3b7 3675 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3676 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3677 return -EINVAL;
b0a9499c
IM
3678 if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
3679 != (param->sched_priority == 0))
1da177e4
LT
3680 return -EINVAL;
3681
37e4ab3f
OC
3682 /*
3683 * Allow unprivileged RT tasks to decrease priority:
3684 */
3685 if (!capable(CAP_SYS_NICE)) {
b0a9499c
IM
3686 /*
3687 * can't change policy, except between SCHED_NORMAL
3688 * and SCHED_BATCH:
3689 */
3690 if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
3691 (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
3692 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
37e4ab3f
OC
3693 return -EPERM;
3694 /* can't increase priority */
b0a9499c 3695 if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
37e4ab3f
OC
3696 param->sched_priority > p->rt_priority &&
3697 param->sched_priority >
3698 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3699 return -EPERM;
3700 /* can't change other user's priorities */
3701 if ((current->euid != p->euid) &&
3702 (current->euid != p->uid))
3703 return -EPERM;
3704 }
1da177e4
LT
3705
3706 retval = security_task_setscheduler(p, policy, param);
3707 if (retval)
3708 return retval;
3709 /*
3710 * To be able to change p->policy safely, the apropriate
3711 * runqueue lock must be held.
3712 */
3713 rq = task_rq_lock(p, &flags);
3714 /* recheck policy now with rq lock held */
3715 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3716 policy = oldpolicy = -1;
3717 task_rq_unlock(rq, &flags);
3718 goto recheck;
3719 }
3720 array = p->array;
3721 if (array)
3722 deactivate_task(p, rq);
3723 oldprio = p->prio;
3724 __setscheduler(p, policy, param->sched_priority);
3725 if (array) {
3726 __activate_task(p, rq);
3727 /*
3728 * Reschedule if we are currently running on this runqueue and
3729 * our priority decreased, or if we are not currently running on
3730 * this runqueue and our priority is higher than the current's
3731 */
3732 if (task_running(rq, p)) {
3733 if (p->prio > oldprio)
3734 resched_task(rq->curr);
3735 } else if (TASK_PREEMPTS_CURR(p, rq))
3736 resched_task(rq->curr);
3737 }
3738 task_rq_unlock(rq, &flags);
3739 return 0;
3740}
3741EXPORT_SYMBOL_GPL(sched_setscheduler);
3742
95cdf3b7
IM
3743static int
3744do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4
LT
3745{
3746 int retval;
3747 struct sched_param lparam;
3748 struct task_struct *p;
3749
3750 if (!param || pid < 0)
3751 return -EINVAL;
3752 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3753 return -EFAULT;
3754 read_lock_irq(&tasklist_lock);
3755 p = find_process_by_pid(pid);
3756 if (!p) {
3757 read_unlock_irq(&tasklist_lock);
3758 return -ESRCH;
3759 }
3760 retval = sched_setscheduler(p, policy, &lparam);
3761 read_unlock_irq(&tasklist_lock);
3762 return retval;
3763}
3764
3765/**
3766 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3767 * @pid: the pid in question.
3768 * @policy: new policy.
3769 * @param: structure containing the new RT priority.
3770 */
3771asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3772 struct sched_param __user *param)
3773{
c21761f1
JB
3774 /* negative values for policy are not valid */
3775 if (policy < 0)
3776 return -EINVAL;
3777
1da177e4
LT
3778 return do_sched_setscheduler(pid, policy, param);
3779}
3780
3781/**
3782 * sys_sched_setparam - set/change the RT priority of a thread
3783 * @pid: the pid in question.
3784 * @param: structure containing the new RT priority.
3785 */
3786asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3787{
3788 return do_sched_setscheduler(pid, -1, param);
3789}
3790
3791/**
3792 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3793 * @pid: the pid in question.
3794 */
3795asmlinkage long sys_sched_getscheduler(pid_t pid)
3796{
3797 int retval = -EINVAL;
3798 task_t *p;
3799
3800 if (pid < 0)
3801 goto out_nounlock;
3802
3803 retval = -ESRCH;
3804 read_lock(&tasklist_lock);
3805 p = find_process_by_pid(pid);
3806 if (p) {
3807 retval = security_task_getscheduler(p);
3808 if (!retval)
3809 retval = p->policy;
3810 }
3811 read_unlock(&tasklist_lock);
3812
3813out_nounlock:
3814 return retval;
3815}
3816
3817/**
3818 * sys_sched_getscheduler - get the RT priority of a thread
3819 * @pid: the pid in question.
3820 * @param: structure containing the RT priority.
3821 */
3822asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3823{
3824 struct sched_param lp;
3825 int retval = -EINVAL;
3826 task_t *p;
3827
3828 if (!param || pid < 0)
3829 goto out_nounlock;
3830
3831 read_lock(&tasklist_lock);
3832 p = find_process_by_pid(pid);
3833 retval = -ESRCH;
3834 if (!p)
3835 goto out_unlock;
3836
3837 retval = security_task_getscheduler(p);
3838 if (retval)
3839 goto out_unlock;
3840
3841 lp.sched_priority = p->rt_priority;
3842 read_unlock(&tasklist_lock);
3843
3844 /*
3845 * This one might sleep, we cannot do it with a spinlock held ...
3846 */
3847 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3848
3849out_nounlock:
3850 return retval;
3851
3852out_unlock:
3853 read_unlock(&tasklist_lock);
3854 return retval;
3855}
3856
3857long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3858{
3859 task_t *p;
3860 int retval;
3861 cpumask_t cpus_allowed;
3862
3863 lock_cpu_hotplug();
3864 read_lock(&tasklist_lock);
3865
3866 p = find_process_by_pid(pid);
3867 if (!p) {
3868 read_unlock(&tasklist_lock);
3869 unlock_cpu_hotplug();
3870 return -ESRCH;
3871 }
3872
3873 /*
3874 * It is not safe to call set_cpus_allowed with the
3875 * tasklist_lock held. We will bump the task_struct's
3876 * usage count and then drop tasklist_lock.
3877 */
3878 get_task_struct(p);
3879 read_unlock(&tasklist_lock);
3880
3881 retval = -EPERM;
3882 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3883 !capable(CAP_SYS_NICE))
3884 goto out_unlock;
3885
3886 cpus_allowed = cpuset_cpus_allowed(p);
3887 cpus_and(new_mask, new_mask, cpus_allowed);
3888 retval = set_cpus_allowed(p, new_mask);
3889
3890out_unlock:
3891 put_task_struct(p);
3892 unlock_cpu_hotplug();
3893 return retval;
3894}
3895
3896static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3897 cpumask_t *new_mask)
3898{
3899 if (len < sizeof(cpumask_t)) {
3900 memset(new_mask, 0, sizeof(cpumask_t));
3901 } else if (len > sizeof(cpumask_t)) {
3902 len = sizeof(cpumask_t);
3903 }
3904 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3905}
3906
3907/**
3908 * sys_sched_setaffinity - set the cpu affinity of a process
3909 * @pid: pid of the process
3910 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3911 * @user_mask_ptr: user-space pointer to the new cpu mask
3912 */
3913asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3914 unsigned long __user *user_mask_ptr)
3915{
3916 cpumask_t new_mask;
3917 int retval;
3918
3919 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3920 if (retval)
3921 return retval;
3922
3923 return sched_setaffinity(pid, new_mask);
3924}
3925
3926/*
3927 * Represents all cpu's present in the system
3928 * In systems capable of hotplug, this map could dynamically grow
3929 * as new cpu's are detected in the system via any platform specific
3930 * method, such as ACPI for e.g.
3931 */
3932
4cef0c61 3933cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
3934EXPORT_SYMBOL(cpu_present_map);
3935
3936#ifndef CONFIG_SMP
4cef0c61
AK
3937cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
3938cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
1da177e4
LT
3939#endif
3940
3941long sched_getaffinity(pid_t pid, cpumask_t *mask)
3942{
3943 int retval;
3944 task_t *p;
3945
3946 lock_cpu_hotplug();
3947 read_lock(&tasklist_lock);
3948
3949 retval = -ESRCH;
3950 p = find_process_by_pid(pid);
3951 if (!p)
3952 goto out_unlock;
3953
3954 retval = 0;
2f7016d9 3955 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
3956
3957out_unlock:
3958 read_unlock(&tasklist_lock);
3959 unlock_cpu_hotplug();
3960 if (retval)
3961 return retval;
3962
3963 return 0;
3964}
3965
3966/**
3967 * sys_sched_getaffinity - get the cpu affinity of a process
3968 * @pid: pid of the process
3969 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3970 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3971 */
3972asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3973 unsigned long __user *user_mask_ptr)
3974{
3975 int ret;
3976 cpumask_t mask;
3977
3978 if (len < sizeof(cpumask_t))
3979 return -EINVAL;
3980
3981 ret = sched_getaffinity(pid, &mask);
3982 if (ret < 0)
3983 return ret;
3984
3985 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3986 return -EFAULT;
3987
3988 return sizeof(cpumask_t);
3989}
3990
3991/**
3992 * sys_sched_yield - yield the current processor to other threads.
3993 *
3994 * this function yields the current CPU by moving the calling thread
3995 * to the expired array. If there are no other threads running on this
3996 * CPU then this function will return.
3997 */
3998asmlinkage long sys_sched_yield(void)
3999{
4000 runqueue_t *rq = this_rq_lock();
4001 prio_array_t *array = current->array;
4002 prio_array_t *target = rq->expired;
4003
4004 schedstat_inc(rq, yld_cnt);
4005 /*
4006 * We implement yielding by moving the task into the expired
4007 * queue.
4008 *
4009 * (special rule: RT tasks will just roundrobin in the active
4010 * array.)
4011 */
4012 if (rt_task(current))
4013 target = rq->active;
4014
5927ad78 4015 if (array->nr_active == 1) {
1da177e4
LT
4016 schedstat_inc(rq, yld_act_empty);
4017 if (!rq->expired->nr_active)
4018 schedstat_inc(rq, yld_both_empty);
4019 } else if (!rq->expired->nr_active)
4020 schedstat_inc(rq, yld_exp_empty);
4021
4022 if (array != target) {
4023 dequeue_task(current, array);
4024 enqueue_task(current, target);
4025 } else
4026 /*
4027 * requeue_task is cheaper so perform that if possible.
4028 */
4029 requeue_task(current, array);
4030
4031 /*
4032 * Since we are going to call schedule() anyway, there's
4033 * no need to preempt or enable interrupts:
4034 */
4035 __release(rq->lock);
4036 _raw_spin_unlock(&rq->lock);
4037 preempt_enable_no_resched();
4038
4039 schedule();
4040
4041 return 0;
4042}
4043
4044static inline void __cond_resched(void)
4045{
5bbcfd90
IM
4046 /*
4047 * The BKS might be reacquired before we have dropped
4048 * PREEMPT_ACTIVE, which could trigger a second
4049 * cond_resched() call.
4050 */
4051 if (unlikely(preempt_count()))
4052 return;
8ba7b0a1
LT
4053 if (unlikely(system_state != SYSTEM_RUNNING))
4054 return;
1da177e4
LT
4055 do {
4056 add_preempt_count(PREEMPT_ACTIVE);
4057 schedule();
4058 sub_preempt_count(PREEMPT_ACTIVE);
4059 } while (need_resched());
4060}
4061
4062int __sched cond_resched(void)
4063{
4064 if (need_resched()) {
4065 __cond_resched();
4066 return 1;
4067 }
4068 return 0;
4069}
4070
4071EXPORT_SYMBOL(cond_resched);
4072
4073/*
4074 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4075 * call schedule, and on return reacquire the lock.
4076 *
4077 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4078 * operations here to prevent schedule() from being called twice (once via
4079 * spin_unlock(), once by hand).
4080 */
95cdf3b7 4081int cond_resched_lock(spinlock_t *lock)
1da177e4 4082{
6df3cecb
JK
4083 int ret = 0;
4084
1da177e4
LT
4085 if (need_lockbreak(lock)) {
4086 spin_unlock(lock);
4087 cpu_relax();
6df3cecb 4088 ret = 1;
1da177e4
LT
4089 spin_lock(lock);
4090 }
4091 if (need_resched()) {
4092 _raw_spin_unlock(lock);
4093 preempt_enable_no_resched();
4094 __cond_resched();
6df3cecb 4095 ret = 1;
1da177e4 4096 spin_lock(lock);
1da177e4 4097 }
6df3cecb 4098 return ret;
1da177e4
LT
4099}
4100
4101EXPORT_SYMBOL(cond_resched_lock);
4102
4103int __sched cond_resched_softirq(void)
4104{
4105 BUG_ON(!in_softirq());
4106
4107 if (need_resched()) {
4108 __local_bh_enable();
4109 __cond_resched();
4110 local_bh_disable();
4111 return 1;
4112 }
4113 return 0;
4114}
4115
4116EXPORT_SYMBOL(cond_resched_softirq);
4117
4118
4119/**
4120 * yield - yield the current processor to other threads.
4121 *
4122 * this is a shortcut for kernel-space yielding - it marks the
4123 * thread runnable and calls sys_sched_yield().
4124 */
4125void __sched yield(void)
4126{
4127 set_current_state(TASK_RUNNING);
4128 sys_sched_yield();
4129}
4130
4131EXPORT_SYMBOL(yield);
4132
4133/*
4134 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4135 * that process accounting knows that this is a task in IO wait state.
4136 *
4137 * But don't do that if it is a deliberate, throttling IO wait (this task
4138 * has set its backing_dev_info: the queue against which it should throttle)
4139 */
4140void __sched io_schedule(void)
4141{
39c715b7 4142 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
1da177e4
LT
4143
4144 atomic_inc(&rq->nr_iowait);
4145 schedule();
4146 atomic_dec(&rq->nr_iowait);
4147}
4148
4149EXPORT_SYMBOL(io_schedule);
4150
4151long __sched io_schedule_timeout(long timeout)
4152{
39c715b7 4153 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
1da177e4
LT
4154 long ret;
4155
4156 atomic_inc(&rq->nr_iowait);
4157 ret = schedule_timeout(timeout);
4158 atomic_dec(&rq->nr_iowait);
4159 return ret;
4160}
4161
4162/**
4163 * sys_sched_get_priority_max - return maximum RT priority.
4164 * @policy: scheduling class.
4165 *
4166 * this syscall returns the maximum rt_priority that can be used
4167 * by a given scheduling class.
4168 */
4169asmlinkage long sys_sched_get_priority_max(int policy)
4170{
4171 int ret = -EINVAL;
4172
4173 switch (policy) {
4174 case SCHED_FIFO:
4175 case SCHED_RR:
4176 ret = MAX_USER_RT_PRIO-1;
4177 break;
4178 case SCHED_NORMAL:
b0a9499c 4179 case SCHED_BATCH:
1da177e4
LT
4180 ret = 0;
4181 break;
4182 }
4183 return ret;
4184}
4185
4186/**
4187 * sys_sched_get_priority_min - return minimum RT priority.
4188 * @policy: scheduling class.
4189 *
4190 * this syscall returns the minimum rt_priority that can be used
4191 * by a given scheduling class.
4192 */
4193asmlinkage long sys_sched_get_priority_min(int policy)
4194{
4195 int ret = -EINVAL;
4196
4197 switch (policy) {
4198 case SCHED_FIFO:
4199 case SCHED_RR:
4200 ret = 1;
4201 break;
4202 case SCHED_NORMAL:
b0a9499c 4203 case SCHED_BATCH:
1da177e4
LT
4204 ret = 0;
4205 }
4206 return ret;
4207}
4208
4209/**
4210 * sys_sched_rr_get_interval - return the default timeslice of a process.
4211 * @pid: pid of the process.
4212 * @interval: userspace pointer to the timeslice value.
4213 *
4214 * this syscall writes the default timeslice value of a given process
4215 * into the user-space timespec buffer. A value of '0' means infinity.
4216 */
4217asmlinkage
4218long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4219{
4220 int retval = -EINVAL;
4221 struct timespec t;
4222 task_t *p;
4223
4224 if (pid < 0)
4225 goto out_nounlock;
4226
4227 retval = -ESRCH;
4228 read_lock(&tasklist_lock);
4229 p = find_process_by_pid(pid);
4230 if (!p)
4231 goto out_unlock;
4232
4233 retval = security_task_getscheduler(p);
4234 if (retval)
4235 goto out_unlock;
4236
4237 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4238 0 : task_timeslice(p), &t);
4239 read_unlock(&tasklist_lock);
4240 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4241out_nounlock:
4242 return retval;
4243out_unlock:
4244 read_unlock(&tasklist_lock);
4245 return retval;
4246}
4247
4248static inline struct task_struct *eldest_child(struct task_struct *p)
4249{
4250 if (list_empty(&p->children)) return NULL;
4251 return list_entry(p->children.next,struct task_struct,sibling);
4252}
4253
4254static inline struct task_struct *older_sibling(struct task_struct *p)
4255{
4256 if (p->sibling.prev==&p->parent->children) return NULL;
4257 return list_entry(p->sibling.prev,struct task_struct,sibling);
4258}
4259
4260static inline struct task_struct *younger_sibling(struct task_struct *p)
4261{
4262 if (p->sibling.next==&p->parent->children) return NULL;
4263 return list_entry(p->sibling.next,struct task_struct,sibling);
4264}
4265
95cdf3b7 4266static void show_task(task_t *p)
1da177e4
LT
4267{
4268 task_t *relative;
4269 unsigned state;
4270 unsigned long free = 0;
4271 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4272
4273 printk("%-13.13s ", p->comm);
4274 state = p->state ? __ffs(p->state) + 1 : 0;
4275 if (state < ARRAY_SIZE(stat_nam))
4276 printk(stat_nam[state]);
4277 else
4278 printk("?");
4279#if (BITS_PER_LONG == 32)
4280 if (state == TASK_RUNNING)
4281 printk(" running ");
4282 else
4283 printk(" %08lX ", thread_saved_pc(p));
4284#else
4285 if (state == TASK_RUNNING)
4286 printk(" running task ");
4287 else
4288 printk(" %016lx ", thread_saved_pc(p));
4289#endif
4290#ifdef CONFIG_DEBUG_STACK_USAGE
4291 {
10ebffde 4292 unsigned long *n = end_of_stack(p);
1da177e4
LT
4293 while (!*n)
4294 n++;
10ebffde 4295 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4296 }
4297#endif
4298 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4299 if ((relative = eldest_child(p)))
4300 printk("%5d ", relative->pid);
4301 else
4302 printk(" ");
4303 if ((relative = younger_sibling(p)))
4304 printk("%7d", relative->pid);
4305 else
4306 printk(" ");
4307 if ((relative = older_sibling(p)))
4308 printk(" %5d", relative->pid);
4309 else
4310 printk(" ");
4311 if (!p->mm)
4312 printk(" (L-TLB)\n");
4313 else
4314 printk(" (NOTLB)\n");
4315
4316 if (state != TASK_RUNNING)
4317 show_stack(p, NULL);
4318}
4319
4320void show_state(void)
4321{
4322 task_t *g, *p;
4323
4324#if (BITS_PER_LONG == 32)
4325 printk("\n"
4326 " sibling\n");
4327 printk(" task PC pid father child younger older\n");
4328#else
4329 printk("\n"
4330 " sibling\n");
4331 printk(" task PC pid father child younger older\n");
4332#endif
4333 read_lock(&tasklist_lock);
4334 do_each_thread(g, p) {
4335 /*
4336 * reset the NMI-timeout, listing all files on a slow
4337 * console might take alot of time:
4338 */
4339 touch_nmi_watchdog();
4340 show_task(p);
4341 } while_each_thread(g, p);
4342
4343 read_unlock(&tasklist_lock);
de5097c2 4344 mutex_debug_show_all_locks();
1da177e4
LT
4345}
4346
f340c0d1
IM
4347/**
4348 * init_idle - set up an idle thread for a given CPU
4349 * @idle: task in question
4350 * @cpu: cpu the idle task belongs to
4351 *
4352 * NOTE: this function does not set the idle thread's NEED_RESCHED
4353 * flag, to make booting more robust.
4354 */
1da177e4
LT
4355void __devinit init_idle(task_t *idle, int cpu)
4356{
4357 runqueue_t *rq = cpu_rq(cpu);
4358 unsigned long flags;
4359
81c29a85 4360 idle->timestamp = sched_clock();
1da177e4
LT
4361 idle->sleep_avg = 0;
4362 idle->array = NULL;
4363 idle->prio = MAX_PRIO;
4364 idle->state = TASK_RUNNING;
4365 idle->cpus_allowed = cpumask_of_cpu(cpu);
4366 set_task_cpu(idle, cpu);
4367
4368 spin_lock_irqsave(&rq->lock, flags);
4369 rq->curr = rq->idle = idle;
4866cde0
NP
4370#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4371 idle->oncpu = 1;
4372#endif
1da177e4
LT
4373 spin_unlock_irqrestore(&rq->lock, flags);
4374
4375 /* Set the preempt count _outside_ the spinlocks! */
4376#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4377 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4378#else
a1261f54 4379 task_thread_info(idle)->preempt_count = 0;
1da177e4
LT
4380#endif
4381}
4382
4383/*
4384 * In a system that switches off the HZ timer nohz_cpu_mask
4385 * indicates which cpus entered this state. This is used
4386 * in the rcu update to wait only for active cpus. For system
4387 * which do not switch off the HZ timer nohz_cpu_mask should
4388 * always be CPU_MASK_NONE.
4389 */
4390cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4391
4392#ifdef CONFIG_SMP
4393/*
4394 * This is how migration works:
4395 *
4396 * 1) we queue a migration_req_t structure in the source CPU's
4397 * runqueue and wake up that CPU's migration thread.
4398 * 2) we down() the locked semaphore => thread blocks.
4399 * 3) migration thread wakes up (implicitly it forces the migrated
4400 * thread off the CPU)
4401 * 4) it gets the migration request and checks whether the migrated
4402 * task is still in the wrong runqueue.
4403 * 5) if it's in the wrong runqueue then the migration thread removes
4404 * it and puts it into the right queue.
4405 * 6) migration thread up()s the semaphore.
4406 * 7) we wake up and the migration is done.
4407 */
4408
4409/*
4410 * Change a given task's CPU affinity. Migrate the thread to a
4411 * proper CPU and schedule it away if the CPU it's executing on
4412 * is removed from the allowed bitmask.
4413 *
4414 * NOTE: the caller must have a valid reference to the task, the
4415 * task must not exit() & deallocate itself prematurely. The
4416 * call is not atomic; no spinlocks may be held.
4417 */
4418int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4419{
4420 unsigned long flags;
4421 int ret = 0;
4422 migration_req_t req;
4423 runqueue_t *rq;
4424
4425 rq = task_rq_lock(p, &flags);
4426 if (!cpus_intersects(new_mask, cpu_online_map)) {
4427 ret = -EINVAL;
4428 goto out;
4429 }
4430
4431 p->cpus_allowed = new_mask;
4432 /* Can the task run on the task's current CPU? If so, we're done */
4433 if (cpu_isset(task_cpu(p), new_mask))
4434 goto out;
4435
4436 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4437 /* Need help from migration thread: drop lock and wait. */
4438 task_rq_unlock(rq, &flags);
4439 wake_up_process(rq->migration_thread);
4440 wait_for_completion(&req.done);
4441 tlb_migrate_finish(p->mm);
4442 return 0;
4443 }
4444out:
4445 task_rq_unlock(rq, &flags);
4446 return ret;
4447}
4448
4449EXPORT_SYMBOL_GPL(set_cpus_allowed);
4450
4451/*
4452 * Move (not current) task off this cpu, onto dest cpu. We're doing
4453 * this because either it can't run here any more (set_cpus_allowed()
4454 * away from this CPU, or CPU going down), or because we're
4455 * attempting to rebalance this task on exec (sched_exec).
4456 *
4457 * So we race with normal scheduler movements, but that's OK, as long
4458 * as the task is no longer on this CPU.
4459 */
4460static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4461{
4462 runqueue_t *rq_dest, *rq_src;
4463
4464 if (unlikely(cpu_is_offline(dest_cpu)))
4465 return;
4466
4467 rq_src = cpu_rq(src_cpu);
4468 rq_dest = cpu_rq(dest_cpu);
4469
4470 double_rq_lock(rq_src, rq_dest);
4471 /* Already moved. */
4472 if (task_cpu(p) != src_cpu)
4473 goto out;
4474 /* Affinity changed (again). */
4475 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4476 goto out;
4477
4478 set_task_cpu(p, dest_cpu);
4479 if (p->array) {
4480 /*
4481 * Sync timestamp with rq_dest's before activating.
4482 * The same thing could be achieved by doing this step
4483 * afterwards, and pretending it was a local activate.
4484 * This way is cleaner and logically correct.
4485 */
4486 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4487 + rq_dest->timestamp_last_tick;
4488 deactivate_task(p, rq_src);
4489 activate_task(p, rq_dest, 0);
4490 if (TASK_PREEMPTS_CURR(p, rq_dest))
4491 resched_task(rq_dest->curr);
4492 }
4493
4494out:
4495 double_rq_unlock(rq_src, rq_dest);
4496}
4497
4498/*
4499 * migration_thread - this is a highprio system thread that performs
4500 * thread migration by bumping thread off CPU then 'pushing' onto
4501 * another runqueue.
4502 */
95cdf3b7 4503static int migration_thread(void *data)
1da177e4
LT
4504{
4505 runqueue_t *rq;
4506 int cpu = (long)data;
4507
4508 rq = cpu_rq(cpu);
4509 BUG_ON(rq->migration_thread != current);
4510
4511 set_current_state(TASK_INTERRUPTIBLE);
4512 while (!kthread_should_stop()) {
4513 struct list_head *head;
4514 migration_req_t *req;
4515
3e1d1d28 4516 try_to_freeze();
1da177e4
LT
4517
4518 spin_lock_irq(&rq->lock);
4519
4520 if (cpu_is_offline(cpu)) {
4521 spin_unlock_irq(&rq->lock);
4522 goto wait_to_die;
4523 }
4524
4525 if (rq->active_balance) {
4526 active_load_balance(rq, cpu);
4527 rq->active_balance = 0;
4528 }
4529
4530 head = &rq->migration_queue;
4531
4532 if (list_empty(head)) {
4533 spin_unlock_irq(&rq->lock);
4534 schedule();
4535 set_current_state(TASK_INTERRUPTIBLE);
4536 continue;
4537 }
4538 req = list_entry(head->next, migration_req_t, list);
4539 list_del_init(head->next);
4540
674311d5
NP
4541 spin_unlock(&rq->lock);
4542 __migrate_task(req->task, cpu, req->dest_cpu);
4543 local_irq_enable();
1da177e4
LT
4544
4545 complete(&req->done);
4546 }
4547 __set_current_state(TASK_RUNNING);
4548 return 0;
4549
4550wait_to_die:
4551 /* Wait for kthread_stop */
4552 set_current_state(TASK_INTERRUPTIBLE);
4553 while (!kthread_should_stop()) {
4554 schedule();
4555 set_current_state(TASK_INTERRUPTIBLE);
4556 }
4557 __set_current_state(TASK_RUNNING);
4558 return 0;
4559}
4560
4561#ifdef CONFIG_HOTPLUG_CPU
4562/* Figure out where task on dead CPU should go, use force if neccessary. */
4563static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4564{
4565 int dest_cpu;
4566 cpumask_t mask;
4567
4568 /* On same node? */
4569 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4570 cpus_and(mask, mask, tsk->cpus_allowed);
4571 dest_cpu = any_online_cpu(mask);
4572
4573 /* On any allowed CPU? */
4574 if (dest_cpu == NR_CPUS)
4575 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4576
4577 /* No more Mr. Nice Guy. */
4578 if (dest_cpu == NR_CPUS) {
b39c4fab 4579 cpus_setall(tsk->cpus_allowed);
1da177e4
LT
4580 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4581
4582 /*
4583 * Don't tell them about moving exiting tasks or
4584 * kernel threads (both mm NULL), since they never
4585 * leave kernel.
4586 */
4587 if (tsk->mm && printk_ratelimit())
4588 printk(KERN_INFO "process %d (%s) no "
4589 "longer affine to cpu%d\n",
4590 tsk->pid, tsk->comm, dead_cpu);
4591 }
4592 __migrate_task(tsk, dead_cpu, dest_cpu);
4593}
4594
4595/*
4596 * While a dead CPU has no uninterruptible tasks queued at this point,
4597 * it might still have a nonzero ->nr_uninterruptible counter, because
4598 * for performance reasons the counter is not stricly tracking tasks to
4599 * their home CPUs. So we just add the counter to another CPU's counter,
4600 * to keep the global sum constant after CPU-down:
4601 */
4602static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4603{
4604 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4605 unsigned long flags;
4606
4607 local_irq_save(flags);
4608 double_rq_lock(rq_src, rq_dest);
4609 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4610 rq_src->nr_uninterruptible = 0;
4611 double_rq_unlock(rq_src, rq_dest);
4612 local_irq_restore(flags);
4613}
4614
4615/* Run through task list and migrate tasks from the dead cpu. */
4616static void migrate_live_tasks(int src_cpu)
4617{
4618 struct task_struct *tsk, *t;
4619
4620 write_lock_irq(&tasklist_lock);
4621
4622 do_each_thread(t, tsk) {
4623 if (tsk == current)
4624 continue;
4625
4626 if (task_cpu(tsk) == src_cpu)
4627 move_task_off_dead_cpu(src_cpu, tsk);
4628 } while_each_thread(t, tsk);
4629
4630 write_unlock_irq(&tasklist_lock);
4631}
4632
4633/* Schedules idle task to be the next runnable task on current CPU.
4634 * It does so by boosting its priority to highest possible and adding it to
4635 * the _front_ of runqueue. Used by CPU offline code.
4636 */
4637void sched_idle_next(void)
4638{
4639 int cpu = smp_processor_id();
4640 runqueue_t *rq = this_rq();
4641 struct task_struct *p = rq->idle;
4642 unsigned long flags;
4643
4644 /* cpu has to be offline */
4645 BUG_ON(cpu_online(cpu));
4646
4647 /* Strictly not necessary since rest of the CPUs are stopped by now
4648 * and interrupts disabled on current cpu.
4649 */
4650 spin_lock_irqsave(&rq->lock, flags);
4651
4652 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4653 /* Add idle task to _front_ of it's priority queue */
4654 __activate_idle_task(p, rq);
4655
4656 spin_unlock_irqrestore(&rq->lock, flags);
4657}
4658
4659/* Ensures that the idle task is using init_mm right before its cpu goes
4660 * offline.
4661 */
4662void idle_task_exit(void)
4663{
4664 struct mm_struct *mm = current->active_mm;
4665
4666 BUG_ON(cpu_online(smp_processor_id()));
4667
4668 if (mm != &init_mm)
4669 switch_mm(mm, &init_mm, current);
4670 mmdrop(mm);
4671}
4672
4673static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4674{
4675 struct runqueue *rq = cpu_rq(dead_cpu);
4676
4677 /* Must be exiting, otherwise would be on tasklist. */
4678 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4679
4680 /* Cannot have done final schedule yet: would have vanished. */
4681 BUG_ON(tsk->flags & PF_DEAD);
4682
4683 get_task_struct(tsk);
4684
4685 /*
4686 * Drop lock around migration; if someone else moves it,
4687 * that's OK. No task can be added to this CPU, so iteration is
4688 * fine.
4689 */
4690 spin_unlock_irq(&rq->lock);
4691 move_task_off_dead_cpu(dead_cpu, tsk);
4692 spin_lock_irq(&rq->lock);
4693
4694 put_task_struct(tsk);
4695}
4696
4697/* release_task() removes task from tasklist, so we won't find dead tasks. */
4698static void migrate_dead_tasks(unsigned int dead_cpu)
4699{
4700 unsigned arr, i;
4701 struct runqueue *rq = cpu_rq(dead_cpu);
4702
4703 for (arr = 0; arr < 2; arr++) {
4704 for (i = 0; i < MAX_PRIO; i++) {
4705 struct list_head *list = &rq->arrays[arr].queue[i];
4706 while (!list_empty(list))
4707 migrate_dead(dead_cpu,
4708 list_entry(list->next, task_t,
4709 run_list));
4710 }
4711 }
4712}
4713#endif /* CONFIG_HOTPLUG_CPU */
4714
4715/*
4716 * migration_call - callback that gets triggered when a CPU is added.
4717 * Here we can start up the necessary migration thread for the new CPU.
4718 */
4719static int migration_call(struct notifier_block *nfb, unsigned long action,
4720 void *hcpu)
4721{
4722 int cpu = (long)hcpu;
4723 struct task_struct *p;
4724 struct runqueue *rq;
4725 unsigned long flags;
4726
4727 switch (action) {
4728 case CPU_UP_PREPARE:
4729 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4730 if (IS_ERR(p))
4731 return NOTIFY_BAD;
4732 p->flags |= PF_NOFREEZE;
4733 kthread_bind(p, cpu);
4734 /* Must be high prio: stop_machine expects to yield to it. */
4735 rq = task_rq_lock(p, &flags);
4736 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4737 task_rq_unlock(rq, &flags);
4738 cpu_rq(cpu)->migration_thread = p;
4739 break;
4740 case CPU_ONLINE:
4741 /* Strictly unneccessary, as first user will wake it. */
4742 wake_up_process(cpu_rq(cpu)->migration_thread);
4743 break;
4744#ifdef CONFIG_HOTPLUG_CPU
4745 case CPU_UP_CANCELED:
4746 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
4747 kthread_bind(cpu_rq(cpu)->migration_thread,
4748 any_online_cpu(cpu_online_map));
1da177e4
LT
4749 kthread_stop(cpu_rq(cpu)->migration_thread);
4750 cpu_rq(cpu)->migration_thread = NULL;
4751 break;
4752 case CPU_DEAD:
4753 migrate_live_tasks(cpu);
4754 rq = cpu_rq(cpu);
4755 kthread_stop(rq->migration_thread);
4756 rq->migration_thread = NULL;
4757 /* Idle task back to normal (off runqueue, low prio) */
4758 rq = task_rq_lock(rq->idle, &flags);
4759 deactivate_task(rq->idle, rq);
4760 rq->idle->static_prio = MAX_PRIO;
4761 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4762 migrate_dead_tasks(cpu);
4763 task_rq_unlock(rq, &flags);
4764 migrate_nr_uninterruptible(rq);
4765 BUG_ON(rq->nr_running != 0);
4766
4767 /* No need to migrate the tasks: it was best-effort if
4768 * they didn't do lock_cpu_hotplug(). Just wake up
4769 * the requestors. */
4770 spin_lock_irq(&rq->lock);
4771 while (!list_empty(&rq->migration_queue)) {
4772 migration_req_t *req;
4773 req = list_entry(rq->migration_queue.next,
4774 migration_req_t, list);
1da177e4
LT
4775 list_del_init(&req->list);
4776 complete(&req->done);
4777 }
4778 spin_unlock_irq(&rq->lock);
4779 break;
4780#endif
4781 }
4782 return NOTIFY_OK;
4783}
4784
4785/* Register at highest priority so that task migration (migrate_all_tasks)
4786 * happens before everything else.
4787 */
4788static struct notifier_block __devinitdata migration_notifier = {
4789 .notifier_call = migration_call,
4790 .priority = 10
4791};
4792
4793int __init migration_init(void)
4794{
4795 void *cpu = (void *)(long)smp_processor_id();
4796 /* Start one for boot CPU. */
4797 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4798 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4799 register_cpu_notifier(&migration_notifier);
4800 return 0;
4801}
4802#endif
4803
4804#ifdef CONFIG_SMP
1a20ff27 4805#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
4806#ifdef SCHED_DOMAIN_DEBUG
4807static void sched_domain_debug(struct sched_domain *sd, int cpu)
4808{
4809 int level = 0;
4810
41c7ce9a
NP
4811 if (!sd) {
4812 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4813 return;
4814 }
4815
1da177e4
LT
4816 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4817
4818 do {
4819 int i;
4820 char str[NR_CPUS];
4821 struct sched_group *group = sd->groups;
4822 cpumask_t groupmask;
4823
4824 cpumask_scnprintf(str, NR_CPUS, sd->span);
4825 cpus_clear(groupmask);
4826
4827 printk(KERN_DEBUG);
4828 for (i = 0; i < level + 1; i++)
4829 printk(" ");
4830 printk("domain %d: ", level);
4831
4832 if (!(sd->flags & SD_LOAD_BALANCE)) {
4833 printk("does not load-balance\n");
4834 if (sd->parent)
4835 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4836 break;
4837 }
4838
4839 printk("span %s\n", str);
4840
4841 if (!cpu_isset(cpu, sd->span))
4842 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4843 if (!cpu_isset(cpu, group->cpumask))
4844 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4845
4846 printk(KERN_DEBUG);
4847 for (i = 0; i < level + 2; i++)
4848 printk(" ");
4849 printk("groups:");
4850 do {
4851 if (!group) {
4852 printk("\n");
4853 printk(KERN_ERR "ERROR: group is NULL\n");
4854 break;
4855 }
4856
4857 if (!group->cpu_power) {
4858 printk("\n");
4859 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4860 }
4861
4862 if (!cpus_weight(group->cpumask)) {
4863 printk("\n");
4864 printk(KERN_ERR "ERROR: empty group\n");
4865 }
4866
4867 if (cpus_intersects(groupmask, group->cpumask)) {
4868 printk("\n");
4869 printk(KERN_ERR "ERROR: repeated CPUs\n");
4870 }
4871
4872 cpus_or(groupmask, groupmask, group->cpumask);
4873
4874 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4875 printk(" %s", str);
4876
4877 group = group->next;
4878 } while (group != sd->groups);
4879 printk("\n");
4880
4881 if (!cpus_equal(sd->span, groupmask))
4882 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4883
4884 level++;
4885 sd = sd->parent;
4886
4887 if (sd) {
4888 if (!cpus_subset(groupmask, sd->span))
4889 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4890 }
4891
4892 } while (sd);
4893}
4894#else
4895#define sched_domain_debug(sd, cpu) {}
4896#endif
4897
1a20ff27 4898static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
4899{
4900 if (cpus_weight(sd->span) == 1)
4901 return 1;
4902
4903 /* Following flags need at least 2 groups */
4904 if (sd->flags & (SD_LOAD_BALANCE |
4905 SD_BALANCE_NEWIDLE |
4906 SD_BALANCE_FORK |
4907 SD_BALANCE_EXEC)) {
4908 if (sd->groups != sd->groups->next)
4909 return 0;
4910 }
4911
4912 /* Following flags don't use groups */
4913 if (sd->flags & (SD_WAKE_IDLE |
4914 SD_WAKE_AFFINE |
4915 SD_WAKE_BALANCE))
4916 return 0;
4917
4918 return 1;
4919}
4920
1a20ff27 4921static int sd_parent_degenerate(struct sched_domain *sd,
245af2c7
SS
4922 struct sched_domain *parent)
4923{
4924 unsigned long cflags = sd->flags, pflags = parent->flags;
4925
4926 if (sd_degenerate(parent))
4927 return 1;
4928
4929 if (!cpus_equal(sd->span, parent->span))
4930 return 0;
4931
4932 /* Does parent contain flags not in child? */
4933 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4934 if (cflags & SD_WAKE_AFFINE)
4935 pflags &= ~SD_WAKE_BALANCE;
4936 /* Flags needing groups don't count if only 1 group in parent */
4937 if (parent->groups == parent->groups->next) {
4938 pflags &= ~(SD_LOAD_BALANCE |
4939 SD_BALANCE_NEWIDLE |
4940 SD_BALANCE_FORK |
4941 SD_BALANCE_EXEC);
4942 }
4943 if (~cflags & pflags)
4944 return 0;
4945
4946 return 1;
4947}
4948
1da177e4
LT
4949/*
4950 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4951 * hold the hotplug lock.
4952 */
9c1cfda2 4953static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 4954{
1da177e4 4955 runqueue_t *rq = cpu_rq(cpu);
245af2c7
SS
4956 struct sched_domain *tmp;
4957
4958 /* Remove the sched domains which do not contribute to scheduling. */
4959 for (tmp = sd; tmp; tmp = tmp->parent) {
4960 struct sched_domain *parent = tmp->parent;
4961 if (!parent)
4962 break;
4963 if (sd_parent_degenerate(tmp, parent))
4964 tmp->parent = parent->parent;
4965 }
4966
4967 if (sd && sd_degenerate(sd))
4968 sd = sd->parent;
1da177e4
LT
4969
4970 sched_domain_debug(sd, cpu);
4971
674311d5 4972 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
4973}
4974
4975/* cpus with isolated domains */
9c1cfda2 4976static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
4977
4978/* Setup the mask of cpus configured for isolated domains */
4979static int __init isolated_cpu_setup(char *str)
4980{
4981 int ints[NR_CPUS], i;
4982
4983 str = get_options(str, ARRAY_SIZE(ints), ints);
4984 cpus_clear(cpu_isolated_map);
4985 for (i = 1; i <= ints[0]; i++)
4986 if (ints[i] < NR_CPUS)
4987 cpu_set(ints[i], cpu_isolated_map);
4988 return 1;
4989}
4990
4991__setup ("isolcpus=", isolated_cpu_setup);
4992
4993/*
4994 * init_sched_build_groups takes an array of groups, the cpumask we wish
4995 * to span, and a pointer to a function which identifies what group a CPU
4996 * belongs to. The return value of group_fn must be a valid index into the
4997 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4998 * keep track of groups covered with a cpumask_t).
4999 *
5000 * init_sched_build_groups will build a circular linked list of the groups
5001 * covered by the given span, and will set each group's ->cpumask correctly,
5002 * and ->cpu_power to 0.
5003 */
9c1cfda2
JH
5004static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5005 int (*group_fn)(int cpu))
1da177e4
LT
5006{
5007 struct sched_group *first = NULL, *last = NULL;
5008 cpumask_t covered = CPU_MASK_NONE;
5009 int i;
5010
5011 for_each_cpu_mask(i, span) {
5012 int group = group_fn(i);
5013 struct sched_group *sg = &groups[group];
5014 int j;
5015
5016 if (cpu_isset(i, covered))
5017 continue;
5018
5019 sg->cpumask = CPU_MASK_NONE;
5020 sg->cpu_power = 0;
5021
5022 for_each_cpu_mask(j, span) {
5023 if (group_fn(j) != group)
5024 continue;
5025
5026 cpu_set(j, covered);
5027 cpu_set(j, sg->cpumask);
5028 }
5029 if (!first)
5030 first = sg;
5031 if (last)
5032 last->next = sg;
5033 last = sg;
5034 }
5035 last->next = first;
5036}
5037
9c1cfda2 5038#define SD_NODES_PER_DOMAIN 16
1da177e4 5039
198e2f18
AM
5040/*
5041 * Self-tuning task migration cost measurement between source and target CPUs.
5042 *
5043 * This is done by measuring the cost of manipulating buffers of varying
5044 * sizes. For a given buffer-size here are the steps that are taken:
5045 *
5046 * 1) the source CPU reads+dirties a shared buffer
5047 * 2) the target CPU reads+dirties the same shared buffer
5048 *
5049 * We measure how long they take, in the following 4 scenarios:
5050 *
5051 * - source: CPU1, target: CPU2 | cost1
5052 * - source: CPU2, target: CPU1 | cost2
5053 * - source: CPU1, target: CPU1 | cost3
5054 * - source: CPU2, target: CPU2 | cost4
5055 *
5056 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5057 * the cost of migration.
5058 *
5059 * We then start off from a small buffer-size and iterate up to larger
5060 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5061 * doing a maximum search for the cost. (The maximum cost for a migration
5062 * normally occurs when the working set size is around the effective cache
5063 * size.)
5064 */
5065#define SEARCH_SCOPE 2
5066#define MIN_CACHE_SIZE (64*1024U)
5067#define DEFAULT_CACHE_SIZE (5*1024*1024U)
70b4d63e 5068#define ITERATIONS 1
198e2f18
AM
5069#define SIZE_THRESH 130
5070#define COST_THRESH 130
5071
5072/*
5073 * The migration cost is a function of 'domain distance'. Domain
5074 * distance is the number of steps a CPU has to iterate down its
5075 * domain tree to share a domain with the other CPU. The farther
5076 * two CPUs are from each other, the larger the distance gets.
5077 *
5078 * Note that we use the distance only to cache measurement results,
5079 * the distance value is not used numerically otherwise. When two
5080 * CPUs have the same distance it is assumed that the migration
5081 * cost is the same. (this is a simplification but quite practical)
5082 */
5083#define MAX_DOMAIN_DISTANCE 32
5084
5085static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
4bbf39c2
IM
5086 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5087/*
5088 * Architectures may override the migration cost and thus avoid
5089 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5090 * virtualized hardware:
5091 */
5092#ifdef CONFIG_DEFAULT_MIGRATION_COST
5093 CONFIG_DEFAULT_MIGRATION_COST
5094#else
5095 -1LL
5096#endif
5097};
198e2f18
AM
5098
5099/*
5100 * Allow override of migration cost - in units of microseconds.
5101 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5102 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5103 */
5104static int __init migration_cost_setup(char *str)
5105{
5106 int ints[MAX_DOMAIN_DISTANCE+1], i;
5107
5108 str = get_options(str, ARRAY_SIZE(ints), ints);
5109
5110 printk("#ints: %d\n", ints[0]);
5111 for (i = 1; i <= ints[0]; i++) {
5112 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5113 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5114 }
5115 return 1;
5116}
5117
5118__setup ("migration_cost=", migration_cost_setup);
5119
5120/*
5121 * Global multiplier (divisor) for migration-cutoff values,
5122 * in percentiles. E.g. use a value of 150 to get 1.5 times
5123 * longer cache-hot cutoff times.
5124 *
5125 * (We scale it from 100 to 128 to long long handling easier.)
5126 */
5127
5128#define MIGRATION_FACTOR_SCALE 128
5129
5130static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5131
5132static int __init setup_migration_factor(char *str)
5133{
5134 get_option(&str, &migration_factor);
5135 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5136 return 1;
5137}
5138
5139__setup("migration_factor=", setup_migration_factor);
5140
5141/*
5142 * Estimated distance of two CPUs, measured via the number of domains
5143 * we have to pass for the two CPUs to be in the same span:
5144 */
5145static unsigned long domain_distance(int cpu1, int cpu2)
5146{
5147 unsigned long distance = 0;
5148 struct sched_domain *sd;
5149
5150 for_each_domain(cpu1, sd) {
5151 WARN_ON(!cpu_isset(cpu1, sd->span));
5152 if (cpu_isset(cpu2, sd->span))
5153 return distance;
5154 distance++;
5155 }
5156 if (distance >= MAX_DOMAIN_DISTANCE) {
5157 WARN_ON(1);
5158 distance = MAX_DOMAIN_DISTANCE-1;
5159 }
5160
5161 return distance;
5162}
5163
5164static unsigned int migration_debug;
5165
5166static int __init setup_migration_debug(char *str)
5167{
5168 get_option(&str, &migration_debug);
5169 return 1;
5170}
5171
5172__setup("migration_debug=", setup_migration_debug);
5173
5174/*
5175 * Maximum cache-size that the scheduler should try to measure.
5176 * Architectures with larger caches should tune this up during
5177 * bootup. Gets used in the domain-setup code (i.e. during SMP
5178 * bootup).
5179 */
5180unsigned int max_cache_size;
5181
5182static int __init setup_max_cache_size(char *str)
5183{
5184 get_option(&str, &max_cache_size);
5185 return 1;
5186}
5187
5188__setup("max_cache_size=", setup_max_cache_size);
5189
5190/*
5191 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5192 * is the operation that is timed, so we try to generate unpredictable
5193 * cachemisses that still end up filling the L2 cache:
5194 */
5195static void touch_cache(void *__cache, unsigned long __size)
5196{
5197 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5198 chunk2 = 2*size/3;
5199 unsigned long *cache = __cache;
5200 int i;
5201
5202 for (i = 0; i < size/6; i += 8) {
5203 switch (i % 6) {
5204 case 0: cache[i]++;
5205 case 1: cache[size-1-i]++;
5206 case 2: cache[chunk1-i]++;
5207 case 3: cache[chunk1+i]++;
5208 case 4: cache[chunk2-i]++;
5209 case 5: cache[chunk2+i]++;
5210 }
5211 }
5212}
5213
5214/*
5215 * Measure the cache-cost of one task migration. Returns in units of nsec.
5216 */
5217static unsigned long long measure_one(void *cache, unsigned long size,
5218 int source, int target)
5219{
5220 cpumask_t mask, saved_mask;
5221 unsigned long long t0, t1, t2, t3, cost;
5222
5223 saved_mask = current->cpus_allowed;
5224
5225 /*
5226 * Flush source caches to RAM and invalidate them:
5227 */
5228 sched_cacheflush();
5229
5230 /*
5231 * Migrate to the source CPU:
5232 */
5233 mask = cpumask_of_cpu(source);
5234 set_cpus_allowed(current, mask);
5235 WARN_ON(smp_processor_id() != source);
5236
5237 /*
5238 * Dirty the working set:
5239 */
5240 t0 = sched_clock();
5241 touch_cache(cache, size);
5242 t1 = sched_clock();
5243
5244 /*
5245 * Migrate to the target CPU, dirty the L2 cache and access
5246 * the shared buffer. (which represents the working set
5247 * of a migrated task.)
5248 */
5249 mask = cpumask_of_cpu(target);
5250 set_cpus_allowed(current, mask);
5251 WARN_ON(smp_processor_id() != target);
5252
5253 t2 = sched_clock();
5254 touch_cache(cache, size);
5255 t3 = sched_clock();
5256
5257 cost = t1-t0 + t3-t2;
5258
5259 if (migration_debug >= 2)
5260 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5261 source, target, t1-t0, t1-t0, t3-t2, cost);
5262 /*
5263 * Flush target caches to RAM and invalidate them:
5264 */
5265 sched_cacheflush();
5266
5267 set_cpus_allowed(current, saved_mask);
5268
5269 return cost;
5270}
5271
5272/*
5273 * Measure a series of task migrations and return the average
5274 * result. Since this code runs early during bootup the system
5275 * is 'undisturbed' and the average latency makes sense.
5276 *
5277 * The algorithm in essence auto-detects the relevant cache-size,
5278 * so it will properly detect different cachesizes for different
5279 * cache-hierarchies, depending on how the CPUs are connected.
5280 *
5281 * Architectures can prime the upper limit of the search range via
5282 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5283 */
5284static unsigned long long
5285measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5286{
5287 unsigned long long cost1, cost2;
5288 int i;
5289
5290 /*
5291 * Measure the migration cost of 'size' bytes, over an
5292 * average of 10 runs:
5293 *
5294 * (We perturb the cache size by a small (0..4k)
5295 * value to compensate size/alignment related artifacts.
5296 * We also subtract the cost of the operation done on
5297 * the same CPU.)
5298 */
5299 cost1 = 0;
5300
5301 /*
5302 * dry run, to make sure we start off cache-cold on cpu1,
5303 * and to get any vmalloc pagefaults in advance:
5304 */
5305 measure_one(cache, size, cpu1, cpu2);
5306 for (i = 0; i < ITERATIONS; i++)
5307 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5308
5309 measure_one(cache, size, cpu2, cpu1);
5310 for (i = 0; i < ITERATIONS; i++)
5311 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5312
5313 /*
5314 * (We measure the non-migrating [cached] cost on both
5315 * cpu1 and cpu2, to handle CPUs with different speeds)
5316 */
5317 cost2 = 0;
5318
5319 measure_one(cache, size, cpu1, cpu1);
5320 for (i = 0; i < ITERATIONS; i++)
5321 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5322
5323 measure_one(cache, size, cpu2, cpu2);
5324 for (i = 0; i < ITERATIONS; i++)
5325 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5326
5327 /*
5328 * Get the per-iteration migration cost:
5329 */
5330 do_div(cost1, 2*ITERATIONS);
5331 do_div(cost2, 2*ITERATIONS);
5332
5333 return cost1 - cost2;
5334}
5335
5336static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5337{
5338 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5339 unsigned int max_size, size, size_found = 0;
5340 long long cost = 0, prev_cost;
5341 void *cache;
5342
5343 /*
5344 * Search from max_cache_size*5 down to 64K - the real relevant
5345 * cachesize has to lie somewhere inbetween.
5346 */
5347 if (max_cache_size) {
5348 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5349 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5350 } else {
5351 /*
5352 * Since we have no estimation about the relevant
5353 * search range
5354 */
5355 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5356 size = MIN_CACHE_SIZE;
5357 }
5358
5359 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5360 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5361 return 0;
5362 }
5363
5364 /*
5365 * Allocate the working set:
5366 */
5367 cache = vmalloc(max_size);
5368 if (!cache) {
5369 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5370 return 1000000; // return 1 msec on very small boxen
5371 }
5372
5373 while (size <= max_size) {
5374 prev_cost = cost;
5375 cost = measure_cost(cpu1, cpu2, cache, size);
5376
5377 /*
5378 * Update the max:
5379 */
5380 if (cost > 0) {
5381 if (max_cost < cost) {
5382 max_cost = cost;
5383 size_found = size;
5384 }
5385 }
5386 /*
5387 * Calculate average fluctuation, we use this to prevent
5388 * noise from triggering an early break out of the loop:
5389 */
5390 fluct = abs(cost - prev_cost);
5391 avg_fluct = (avg_fluct + fluct)/2;
5392
5393 if (migration_debug)
5394 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5395 cpu1, cpu2, size,
5396 (long)cost / 1000000,
5397 ((long)cost / 100000) % 10,
5398 (long)max_cost / 1000000,
5399 ((long)max_cost / 100000) % 10,
5400 domain_distance(cpu1, cpu2),
5401 cost, avg_fluct);
5402
5403 /*
5404 * If we iterated at least 20% past the previous maximum,
5405 * and the cost has dropped by more than 20% already,
5406 * (taking fluctuations into account) then we assume to
5407 * have found the maximum and break out of the loop early:
5408 */
5409 if (size_found && (size*100 > size_found*SIZE_THRESH))
5410 if (cost+avg_fluct <= 0 ||
5411 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5412
5413 if (migration_debug)
5414 printk("-> found max.\n");
5415 break;
5416 }
5417 /*
70b4d63e 5418 * Increase the cachesize in 10% steps:
198e2f18 5419 */
70b4d63e 5420 size = size * 10 / 9;
198e2f18
AM
5421 }
5422
5423 if (migration_debug)
5424 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5425 cpu1, cpu2, size_found, max_cost);
5426
5427 vfree(cache);
5428
5429 /*
5430 * A task is considered 'cache cold' if at least 2 times
5431 * the worst-case cost of migration has passed.
5432 *
5433 * (this limit is only listened to if the load-balancing
5434 * situation is 'nice' - if there is a large imbalance we
5435 * ignore it for the sake of CPU utilization and
5436 * processing fairness.)
5437 */
5438 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5439}
5440
5441static void calibrate_migration_costs(const cpumask_t *cpu_map)
5442{
5443 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5444 unsigned long j0, j1, distance, max_distance = 0;
5445 struct sched_domain *sd;
5446
5447 j0 = jiffies;
5448
5449 /*
5450 * First pass - calculate the cacheflush times:
5451 */
5452 for_each_cpu_mask(cpu1, *cpu_map) {
5453 for_each_cpu_mask(cpu2, *cpu_map) {
5454 if (cpu1 == cpu2)
5455 continue;
5456 distance = domain_distance(cpu1, cpu2);
5457 max_distance = max(max_distance, distance);
5458 /*
5459 * No result cached yet?
5460 */
5461 if (migration_cost[distance] == -1LL)
5462 migration_cost[distance] =
5463 measure_migration_cost(cpu1, cpu2);
5464 }
5465 }
5466 /*
5467 * Second pass - update the sched domain hierarchy with
5468 * the new cache-hot-time estimations:
5469 */
5470 for_each_cpu_mask(cpu, *cpu_map) {
5471 distance = 0;
5472 for_each_domain(cpu, sd) {
5473 sd->cache_hot_time = migration_cost[distance];
5474 distance++;
5475 }
5476 }
5477 /*
5478 * Print the matrix:
5479 */
5480 if (migration_debug)
5481 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5482 max_cache_size,
5483#ifdef CONFIG_X86
5484 cpu_khz/1000
5485#else
5486 -1
5487#endif
5488 );
bd576c95
CE
5489 if (system_state == SYSTEM_BOOTING) {
5490 printk("migration_cost=");
5491 for (distance = 0; distance <= max_distance; distance++) {
5492 if (distance)
5493 printk(",");
5494 printk("%ld", (long)migration_cost[distance] / 1000);
5495 }
5496 printk("\n");
198e2f18 5497 }
198e2f18
AM
5498 j1 = jiffies;
5499 if (migration_debug)
5500 printk("migration: %ld seconds\n", (j1-j0)/HZ);
5501
5502 /*
5503 * Move back to the original CPU. NUMA-Q gets confused
5504 * if we migrate to another quad during bootup.
5505 */
5506 if (raw_smp_processor_id() != orig_cpu) {
5507 cpumask_t mask = cpumask_of_cpu(orig_cpu),
5508 saved_mask = current->cpus_allowed;
5509
5510 set_cpus_allowed(current, mask);
5511 set_cpus_allowed(current, saved_mask);
5512 }
5513}
5514
9c1cfda2 5515#ifdef CONFIG_NUMA
198e2f18 5516
9c1cfda2
JH
5517/**
5518 * find_next_best_node - find the next node to include in a sched_domain
5519 * @node: node whose sched_domain we're building
5520 * @used_nodes: nodes already in the sched_domain
5521 *
5522 * Find the next node to include in a given scheduling domain. Simply
5523 * finds the closest node not already in the @used_nodes map.
5524 *
5525 * Should use nodemask_t.
5526 */
5527static int find_next_best_node(int node, unsigned long *used_nodes)
5528{
5529 int i, n, val, min_val, best_node = 0;
5530
5531 min_val = INT_MAX;
5532
5533 for (i = 0; i < MAX_NUMNODES; i++) {
5534 /* Start at @node */
5535 n = (node + i) % MAX_NUMNODES;
5536
5537 if (!nr_cpus_node(n))
5538 continue;
5539
5540 /* Skip already used nodes */
5541 if (test_bit(n, used_nodes))
5542 continue;
5543
5544 /* Simple min distance search */
5545 val = node_distance(node, n);
5546
5547 if (val < min_val) {
5548 min_val = val;
5549 best_node = n;
5550 }
5551 }
5552
5553 set_bit(best_node, used_nodes);
5554 return best_node;
5555}
5556
5557/**
5558 * sched_domain_node_span - get a cpumask for a node's sched_domain
5559 * @node: node whose cpumask we're constructing
5560 * @size: number of nodes to include in this span
5561 *
5562 * Given a node, construct a good cpumask for its sched_domain to span. It
5563 * should be one that prevents unnecessary balancing, but also spreads tasks
5564 * out optimally.
5565 */
5566static cpumask_t sched_domain_node_span(int node)
5567{
5568 int i;
5569 cpumask_t span, nodemask;
5570 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5571
5572 cpus_clear(span);
5573 bitmap_zero(used_nodes, MAX_NUMNODES);
5574
5575 nodemask = node_to_cpumask(node);
5576 cpus_or(span, span, nodemask);
5577 set_bit(node, used_nodes);
5578
5579 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5580 int next_node = find_next_best_node(node, used_nodes);
5581 nodemask = node_to_cpumask(next_node);
5582 cpus_or(span, span, nodemask);
5583 }
5584
5585 return span;
5586}
5587#endif
5588
5589/*
5590 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5591 * can switch it on easily if needed.
5592 */
1da177e4
LT
5593#ifdef CONFIG_SCHED_SMT
5594static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5595static struct sched_group sched_group_cpus[NR_CPUS];
1a20ff27 5596static int cpu_to_cpu_group(int cpu)
1da177e4
LT
5597{
5598 return cpu;
5599}
5600#endif
5601
1e9f28fa
SS
5602#ifdef CONFIG_SCHED_MC
5603static DEFINE_PER_CPU(struct sched_domain, core_domains);
5604static struct sched_group sched_group_core[NR_CPUS];
5605#endif
5606
5607#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5608static int cpu_to_core_group(int cpu)
5609{
5610 return first_cpu(cpu_sibling_map[cpu]);
5611}
5612#elif defined(CONFIG_SCHED_MC)
5613static int cpu_to_core_group(int cpu)
5614{
5615 return cpu;
5616}
5617#endif
5618
1da177e4
LT
5619static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5620static struct sched_group sched_group_phys[NR_CPUS];
1a20ff27 5621static int cpu_to_phys_group(int cpu)
1da177e4 5622{
1e9f28fa
SS
5623#if defined(CONFIG_SCHED_MC)
5624 cpumask_t mask = cpu_coregroup_map(cpu);
5625 return first_cpu(mask);
5626#elif defined(CONFIG_SCHED_SMT)
1da177e4
LT
5627 return first_cpu(cpu_sibling_map[cpu]);
5628#else
5629 return cpu;
5630#endif
5631}
5632
5633#ifdef CONFIG_NUMA
1da177e4 5634/*
9c1cfda2
JH
5635 * The init_sched_build_groups can't handle what we want to do with node
5636 * groups, so roll our own. Now each node has its own list of groups which
5637 * gets dynamically allocated.
1da177e4 5638 */
9c1cfda2 5639static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5640static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5641
9c1cfda2 5642static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
d1b55138 5643static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
9c1cfda2
JH
5644
5645static int cpu_to_allnodes_group(int cpu)
5646{
5647 return cpu_to_node(cpu);
1da177e4 5648}
08069033
SS
5649static void init_numa_sched_groups_power(struct sched_group *group_head)
5650{
5651 struct sched_group *sg = group_head;
5652 int j;
5653
5654 if (!sg)
5655 return;
5656next_sg:
5657 for_each_cpu_mask(j, sg->cpumask) {
5658 struct sched_domain *sd;
5659
5660 sd = &per_cpu(phys_domains, j);
5661 if (j != first_cpu(sd->groups->cpumask)) {
5662 /*
5663 * Only add "power" once for each
5664 * physical package.
5665 */
5666 continue;
5667 }
5668
5669 sg->cpu_power += sd->groups->cpu_power;
5670 }
5671 sg = sg->next;
5672 if (sg != group_head)
5673 goto next_sg;
5674}
1da177e4
LT
5675#endif
5676
5677/*
1a20ff27
DG
5678 * Build sched domains for a given set of cpus and attach the sched domains
5679 * to the individual cpus
1da177e4 5680 */
9c1cfda2 5681void build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
5682{
5683 int i;
d1b55138
JH
5684#ifdef CONFIG_NUMA
5685 struct sched_group **sched_group_nodes = NULL;
5686 struct sched_group *sched_group_allnodes = NULL;
5687
5688 /*
5689 * Allocate the per-node list of sched groups
5690 */
5691 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5692 GFP_ATOMIC);
5693 if (!sched_group_nodes) {
5694 printk(KERN_WARNING "Can not alloc sched group node list\n");
5695 return;
5696 }
5697 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5698#endif
1da177e4
LT
5699
5700 /*
1a20ff27 5701 * Set up domains for cpus specified by the cpu_map.
1da177e4 5702 */
1a20ff27 5703 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5704 int group;
5705 struct sched_domain *sd = NULL, *p;
5706 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5707
1a20ff27 5708 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
5709
5710#ifdef CONFIG_NUMA
d1b55138 5711 if (cpus_weight(*cpu_map)
9c1cfda2 5712 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
d1b55138
JH
5713 if (!sched_group_allnodes) {
5714 sched_group_allnodes
5715 = kmalloc(sizeof(struct sched_group)
5716 * MAX_NUMNODES,
5717 GFP_KERNEL);
5718 if (!sched_group_allnodes) {
5719 printk(KERN_WARNING
5720 "Can not alloc allnodes sched group\n");
5721 break;
5722 }
5723 sched_group_allnodes_bycpu[i]
5724 = sched_group_allnodes;
5725 }
9c1cfda2
JH
5726 sd = &per_cpu(allnodes_domains, i);
5727 *sd = SD_ALLNODES_INIT;
5728 sd->span = *cpu_map;
5729 group = cpu_to_allnodes_group(i);
5730 sd->groups = &sched_group_allnodes[group];
5731 p = sd;
5732 } else
5733 p = NULL;
5734
1da177e4 5735 sd = &per_cpu(node_domains, i);
1da177e4 5736 *sd = SD_NODE_INIT;
9c1cfda2
JH
5737 sd->span = sched_domain_node_span(cpu_to_node(i));
5738 sd->parent = p;
5739 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
5740#endif
5741
5742 p = sd;
5743 sd = &per_cpu(phys_domains, i);
5744 group = cpu_to_phys_group(i);
5745 *sd = SD_CPU_INIT;
5746 sd->span = nodemask;
5747 sd->parent = p;
5748 sd->groups = &sched_group_phys[group];
5749
1e9f28fa
SS
5750#ifdef CONFIG_SCHED_MC
5751 p = sd;
5752 sd = &per_cpu(core_domains, i);
5753 group = cpu_to_core_group(i);
5754 *sd = SD_MC_INIT;
5755 sd->span = cpu_coregroup_map(i);
5756 cpus_and(sd->span, sd->span, *cpu_map);
5757 sd->parent = p;
5758 sd->groups = &sched_group_core[group];
5759#endif
5760
1da177e4
LT
5761#ifdef CONFIG_SCHED_SMT
5762 p = sd;
5763 sd = &per_cpu(cpu_domains, i);
5764 group = cpu_to_cpu_group(i);
5765 *sd = SD_SIBLING_INIT;
5766 sd->span = cpu_sibling_map[i];
1a20ff27 5767 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
5768 sd->parent = p;
5769 sd->groups = &sched_group_cpus[group];
5770#endif
5771 }
5772
5773#ifdef CONFIG_SCHED_SMT
5774 /* Set up CPU (sibling) groups */
9c1cfda2 5775 for_each_cpu_mask(i, *cpu_map) {
1da177e4 5776 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 5777 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
5778 if (i != first_cpu(this_sibling_map))
5779 continue;
5780
5781 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5782 &cpu_to_cpu_group);
5783 }
5784#endif
5785
1e9f28fa
SS
5786#ifdef CONFIG_SCHED_MC
5787 /* Set up multi-core groups */
5788 for_each_cpu_mask(i, *cpu_map) {
5789 cpumask_t this_core_map = cpu_coregroup_map(i);
5790 cpus_and(this_core_map, this_core_map, *cpu_map);
5791 if (i != first_cpu(this_core_map))
5792 continue;
5793 init_sched_build_groups(sched_group_core, this_core_map,
5794 &cpu_to_core_group);
5795 }
5796#endif
5797
5798
1da177e4
LT
5799 /* Set up physical groups */
5800 for (i = 0; i < MAX_NUMNODES; i++) {
5801 cpumask_t nodemask = node_to_cpumask(i);
5802
1a20ff27 5803 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
5804 if (cpus_empty(nodemask))
5805 continue;
5806
5807 init_sched_build_groups(sched_group_phys, nodemask,
5808 &cpu_to_phys_group);
5809 }
5810
5811#ifdef CONFIG_NUMA
5812 /* Set up node groups */
d1b55138
JH
5813 if (sched_group_allnodes)
5814 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5815 &cpu_to_allnodes_group);
9c1cfda2
JH
5816
5817 for (i = 0; i < MAX_NUMNODES; i++) {
5818 /* Set up node groups */
5819 struct sched_group *sg, *prev;
5820 cpumask_t nodemask = node_to_cpumask(i);
5821 cpumask_t domainspan;
5822 cpumask_t covered = CPU_MASK_NONE;
5823 int j;
5824
5825 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
5826 if (cpus_empty(nodemask)) {
5827 sched_group_nodes[i] = NULL;
9c1cfda2 5828 continue;
d1b55138 5829 }
9c1cfda2
JH
5830
5831 domainspan = sched_domain_node_span(i);
5832 cpus_and(domainspan, domainspan, *cpu_map);
5833
5834 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5835 sched_group_nodes[i] = sg;
5836 for_each_cpu_mask(j, nodemask) {
5837 struct sched_domain *sd;
5838 sd = &per_cpu(node_domains, j);
5839 sd->groups = sg;
5840 if (sd->groups == NULL) {
5841 /* Turn off balancing if we have no groups */
5842 sd->flags = 0;
5843 }
5844 }
5845 if (!sg) {
5846 printk(KERN_WARNING
5847 "Can not alloc domain group for node %d\n", i);
5848 continue;
5849 }
5850 sg->cpu_power = 0;
5851 sg->cpumask = nodemask;
5852 cpus_or(covered, covered, nodemask);
5853 prev = sg;
5854
5855 for (j = 0; j < MAX_NUMNODES; j++) {
5856 cpumask_t tmp, notcovered;
5857 int n = (i + j) % MAX_NUMNODES;
5858
5859 cpus_complement(notcovered, covered);
5860 cpus_and(tmp, notcovered, *cpu_map);
5861 cpus_and(tmp, tmp, domainspan);
5862 if (cpus_empty(tmp))
5863 break;
5864
5865 nodemask = node_to_cpumask(n);
5866 cpus_and(tmp, tmp, nodemask);
5867 if (cpus_empty(tmp))
5868 continue;
5869
5870 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5871 if (!sg) {
5872 printk(KERN_WARNING
5873 "Can not alloc domain group for node %d\n", j);
5874 break;
5875 }
5876 sg->cpu_power = 0;
5877 sg->cpumask = tmp;
5878 cpus_or(covered, covered, tmp);
5879 prev->next = sg;
5880 prev = sg;
5881 }
5882 prev->next = sched_group_nodes[i];
5883 }
1da177e4
LT
5884#endif
5885
5886 /* Calculate CPU power for physical packages and nodes */
1a20ff27 5887 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5888 int power;
5889 struct sched_domain *sd;
5890#ifdef CONFIG_SCHED_SMT
5891 sd = &per_cpu(cpu_domains, i);
5892 power = SCHED_LOAD_SCALE;
5893 sd->groups->cpu_power = power;
5894#endif
1e9f28fa
SS
5895#ifdef CONFIG_SCHED_MC
5896 sd = &per_cpu(core_domains, i);
5897 power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
5898 * SCHED_LOAD_SCALE / 10;
5899 sd->groups->cpu_power = power;
5900
5901 sd = &per_cpu(phys_domains, i);
1da177e4 5902
1e9f28fa
SS
5903 /*
5904 * This has to be < 2 * SCHED_LOAD_SCALE
5905 * Lets keep it SCHED_LOAD_SCALE, so that
5906 * while calculating NUMA group's cpu_power
5907 * we can simply do
5908 * numa_group->cpu_power += phys_group->cpu_power;
5909 *
5910 * See "only add power once for each physical pkg"
5911 * comment below
5912 */
5913 sd->groups->cpu_power = SCHED_LOAD_SCALE;
5914#else
1da177e4
LT
5915 sd = &per_cpu(phys_domains, i);
5916 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5917 (cpus_weight(sd->groups->cpumask)-1) / 10;
5918 sd->groups->cpu_power = power;
1e9f28fa 5919#endif
1da177e4
LT
5920 }
5921
9c1cfda2 5922#ifdef CONFIG_NUMA
08069033
SS
5923 for (i = 0; i < MAX_NUMNODES; i++)
5924 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 5925
08069033 5926 init_numa_sched_groups_power(sched_group_allnodes);
9c1cfda2
JH
5927#endif
5928
1da177e4 5929 /* Attach the domains */
1a20ff27 5930 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5931 struct sched_domain *sd;
5932#ifdef CONFIG_SCHED_SMT
5933 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
5934#elif defined(CONFIG_SCHED_MC)
5935 sd = &per_cpu(core_domains, i);
1da177e4
LT
5936#else
5937 sd = &per_cpu(phys_domains, i);
5938#endif
5939 cpu_attach_domain(sd, i);
5940 }
198e2f18
AM
5941 /*
5942 * Tune cache-hot values:
5943 */
5944 calibrate_migration_costs(cpu_map);
1da177e4 5945}
1a20ff27
DG
5946/*
5947 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5948 */
9c1cfda2 5949static void arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
5950{
5951 cpumask_t cpu_default_map;
1da177e4 5952
1a20ff27
DG
5953 /*
5954 * Setup mask for cpus without special case scheduling requirements.
5955 * For now this just excludes isolated cpus, but could be used to
5956 * exclude other special cases in the future.
5957 */
5958 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5959
5960 build_sched_domains(&cpu_default_map);
5961}
5962
5963static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 5964{
9c1cfda2
JH
5965#ifdef CONFIG_NUMA
5966 int i;
d1b55138 5967 int cpu;
1da177e4 5968
d1b55138
JH
5969 for_each_cpu_mask(cpu, *cpu_map) {
5970 struct sched_group *sched_group_allnodes
5971 = sched_group_allnodes_bycpu[cpu];
5972 struct sched_group **sched_group_nodes
5973 = sched_group_nodes_bycpu[cpu];
9c1cfda2 5974
d1b55138
JH
5975 if (sched_group_allnodes) {
5976 kfree(sched_group_allnodes);
5977 sched_group_allnodes_bycpu[cpu] = NULL;
5978 }
5979
5980 if (!sched_group_nodes)
9c1cfda2 5981 continue;
d1b55138
JH
5982
5983 for (i = 0; i < MAX_NUMNODES; i++) {
5984 cpumask_t nodemask = node_to_cpumask(i);
5985 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5986
5987 cpus_and(nodemask, nodemask, *cpu_map);
5988 if (cpus_empty(nodemask))
5989 continue;
5990
5991 if (sg == NULL)
5992 continue;
5993 sg = sg->next;
9c1cfda2 5994next_sg:
d1b55138
JH
5995 oldsg = sg;
5996 sg = sg->next;
5997 kfree(oldsg);
5998 if (oldsg != sched_group_nodes[i])
5999 goto next_sg;
6000 }
6001 kfree(sched_group_nodes);
6002 sched_group_nodes_bycpu[cpu] = NULL;
9c1cfda2
JH
6003 }
6004#endif
6005}
1da177e4 6006
1a20ff27
DG
6007/*
6008 * Detach sched domains from a group of cpus specified in cpu_map
6009 * These cpus will now be attached to the NULL domain
6010 */
858119e1 6011static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6012{
6013 int i;
6014
6015 for_each_cpu_mask(i, *cpu_map)
6016 cpu_attach_domain(NULL, i);
6017 synchronize_sched();
6018 arch_destroy_sched_domains(cpu_map);
6019}
6020
6021/*
6022 * Partition sched domains as specified by the cpumasks below.
6023 * This attaches all cpus from the cpumasks to the NULL domain,
6024 * waits for a RCU quiescent period, recalculates sched
6025 * domain information and then attaches them back to the
6026 * correct sched domains
6027 * Call with hotplug lock held
6028 */
6029void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6030{
6031 cpumask_t change_map;
6032
6033 cpus_and(*partition1, *partition1, cpu_online_map);
6034 cpus_and(*partition2, *partition2, cpu_online_map);
6035 cpus_or(change_map, *partition1, *partition2);
6036
6037 /* Detach sched domains from all of the affected cpus */
6038 detach_destroy_domains(&change_map);
6039 if (!cpus_empty(*partition1))
6040 build_sched_domains(partition1);
6041 if (!cpus_empty(*partition2))
6042 build_sched_domains(partition2);
6043}
6044
1da177e4
LT
6045#ifdef CONFIG_HOTPLUG_CPU
6046/*
6047 * Force a reinitialization of the sched domains hierarchy. The domains
6048 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6049 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6050 * which will prevent rebalancing while the sched domains are recalculated.
6051 */
6052static int update_sched_domains(struct notifier_block *nfb,
6053 unsigned long action, void *hcpu)
6054{
1da177e4
LT
6055 switch (action) {
6056 case CPU_UP_PREPARE:
6057 case CPU_DOWN_PREPARE:
1a20ff27 6058 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6059 return NOTIFY_OK;
6060
6061 case CPU_UP_CANCELED:
6062 case CPU_DOWN_FAILED:
6063 case CPU_ONLINE:
6064 case CPU_DEAD:
6065 /*
6066 * Fall through and re-initialise the domains.
6067 */
6068 break;
6069 default:
6070 return NOTIFY_DONE;
6071 }
6072
6073 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6074 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6075
6076 return NOTIFY_OK;
6077}
6078#endif
6079
6080void __init sched_init_smp(void)
6081{
6082 lock_cpu_hotplug();
1a20ff27 6083 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6084 unlock_cpu_hotplug();
6085 /* XXX: Theoretical race here - CPU may be hotplugged now */
6086 hotcpu_notifier(update_sched_domains, 0);
6087}
6088#else
6089void __init sched_init_smp(void)
6090{
6091}
6092#endif /* CONFIG_SMP */
6093
6094int in_sched_functions(unsigned long addr)
6095{
6096 /* Linker adds these: start and end of __sched functions */
6097 extern char __sched_text_start[], __sched_text_end[];
6098 return in_lock_functions(addr) ||
6099 (addr >= (unsigned long)__sched_text_start
6100 && addr < (unsigned long)__sched_text_end);
6101}
6102
6103void __init sched_init(void)
6104{
6105 runqueue_t *rq;
6106 int i, j, k;
6107
0a945022 6108 for_each_possible_cpu(i) {
1da177e4
LT
6109 prio_array_t *array;
6110
6111 rq = cpu_rq(i);
6112 spin_lock_init(&rq->lock);
7897986b 6113 rq->nr_running = 0;
1da177e4
LT
6114 rq->active = rq->arrays;
6115 rq->expired = rq->arrays + 1;
6116 rq->best_expired_prio = MAX_PRIO;
6117
6118#ifdef CONFIG_SMP
41c7ce9a 6119 rq->sd = NULL;
7897986b
NP
6120 for (j = 1; j < 3; j++)
6121 rq->cpu_load[j] = 0;
1da177e4
LT
6122 rq->active_balance = 0;
6123 rq->push_cpu = 0;
6124 rq->migration_thread = NULL;
6125 INIT_LIST_HEAD(&rq->migration_queue);
e9028b0f 6126 rq->cpu = i;
1da177e4
LT
6127#endif
6128 atomic_set(&rq->nr_iowait, 0);
6129
6130 for (j = 0; j < 2; j++) {
6131 array = rq->arrays + j;
6132 for (k = 0; k < MAX_PRIO; k++) {
6133 INIT_LIST_HEAD(array->queue + k);
6134 __clear_bit(k, array->bitmap);
6135 }
6136 // delimiter for bitsearch
6137 __set_bit(MAX_PRIO, array->bitmap);
6138 }
6139 }
6140
6141 /*
6142 * The boot idle thread does lazy MMU switching as well:
6143 */
6144 atomic_inc(&init_mm.mm_count);
6145 enter_lazy_tlb(&init_mm, current);
6146
6147 /*
6148 * Make us the idle thread. Technically, schedule() should not be
6149 * called from this thread, however somewhere below it might be,
6150 * but because we are the idle thread, we just pick up running again
6151 * when this runqueue becomes "idle".
6152 */
6153 init_idle(current, smp_processor_id());
6154}
6155
6156#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6157void __might_sleep(char *file, int line)
6158{
6159#if defined(in_atomic)
6160 static unsigned long prev_jiffy; /* ratelimiting */
6161
6162 if ((in_atomic() || irqs_disabled()) &&
6163 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6164 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6165 return;
6166 prev_jiffy = jiffies;
91368d73 6167 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6168 " context at %s:%d\n", file, line);
6169 printk("in_atomic():%d, irqs_disabled():%d\n",
6170 in_atomic(), irqs_disabled());
6171 dump_stack();
6172 }
6173#endif
6174}
6175EXPORT_SYMBOL(__might_sleep);
6176#endif
6177
6178#ifdef CONFIG_MAGIC_SYSRQ
6179void normalize_rt_tasks(void)
6180{
6181 struct task_struct *p;
6182 prio_array_t *array;
6183 unsigned long flags;
6184 runqueue_t *rq;
6185
6186 read_lock_irq(&tasklist_lock);
6187 for_each_process (p) {
6188 if (!rt_task(p))
6189 continue;
6190
6191 rq = task_rq_lock(p, &flags);
6192
6193 array = p->array;
6194 if (array)
6195 deactivate_task(p, task_rq(p));
6196 __setscheduler(p, SCHED_NORMAL, 0);
6197 if (array) {
6198 __activate_task(p, task_rq(p));
6199 resched_task(rq->curr);
6200 }
6201
6202 task_rq_unlock(rq, &flags);
6203 }
6204 read_unlock_irq(&tasklist_lock);
6205}
6206
6207#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6208
6209#ifdef CONFIG_IA64
6210/*
6211 * These functions are only useful for the IA64 MCA handling.
6212 *
6213 * They can only be called when the whole system has been
6214 * stopped - every CPU needs to be quiescent, and no scheduling
6215 * activity can take place. Using them for anything else would
6216 * be a serious bug, and as a result, they aren't even visible
6217 * under any other configuration.
6218 */
6219
6220/**
6221 * curr_task - return the current task for a given cpu.
6222 * @cpu: the processor in question.
6223 *
6224 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6225 */
6226task_t *curr_task(int cpu)
6227{
6228 return cpu_curr(cpu);
6229}
6230
6231/**
6232 * set_curr_task - set the current task for a given cpu.
6233 * @cpu: the processor in question.
6234 * @p: the task pointer to set.
6235 *
6236 * Description: This function must only be used when non-maskable interrupts
6237 * are serviced on a separate stack. It allows the architecture to switch the
6238 * notion of the current task on a cpu in a non-blocking manner. This function
6239 * must be called with all CPU's synchronized, and interrupts disabled, the
6240 * and caller must save the original value of the current task (see
6241 * curr_task() above) and restore that value before reenabling interrupts and
6242 * re-starting the system.
6243 *
6244 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6245 */
6246void set_curr_task(int cpu, task_t *p)
6247{
6248 cpu_curr(cpu) = p;
6249}
6250
6251#endif