]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: remove the 'u64 now' parameter from inc_load()
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
47#include <linux/smp.h>
48#include <linux/threads.h>
49#include <linux/timer.h>
50#include <linux/rcupdate.h>
51#include <linux/cpu.h>
52#include <linux/cpuset.h>
53#include <linux/percpu.h>
54#include <linux/kthread.h>
55#include <linux/seq_file.h>
e692ab53 56#include <linux/sysctl.h>
1da177e4
LT
57#include <linux/syscalls.h>
58#include <linux/times.h>
8f0ab514 59#include <linux/tsacct_kern.h>
c6fd91f0 60#include <linux/kprobes.h>
0ff92245 61#include <linux/delayacct.h>
5517d86b 62#include <linux/reciprocal_div.h>
dff06c15 63#include <linux/unistd.h>
1da177e4 64
5517d86b 65#include <asm/tlb.h>
1da177e4 66
b035b6de
AD
67/*
68 * Scheduler clock - returns current time in nanosec units.
69 * This is default implementation.
70 * Architectures and sub-architectures can override this.
71 */
72unsigned long long __attribute__((weak)) sched_clock(void)
73{
74 return (unsigned long long)jiffies * (1000000000 / HZ);
75}
76
1da177e4
LT
77/*
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
81 */
82#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
85
86/*
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
90 */
91#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
94
95/*
96 * Some helpers for converting nanosecond timing to jiffy resolution
97 */
98#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
99#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
100
6aa645ea
IM
101#define NICE_0_LOAD SCHED_LOAD_SCALE
102#define NICE_0_SHIFT SCHED_LOAD_SHIFT
103
1da177e4
LT
104/*
105 * These are the 'tuning knobs' of the scheduler:
106 *
107 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
108 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
109 * Timeslices get refilled after they expire.
110 */
111#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
112#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 113
5517d86b
ED
114#ifdef CONFIG_SMP
115/*
116 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
117 * Since cpu_power is a 'constant', we can use a reciprocal divide.
118 */
119static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
120{
121 return reciprocal_divide(load, sg->reciprocal_cpu_power);
122}
123
124/*
125 * Each time a sched group cpu_power is changed,
126 * we must compute its reciprocal value
127 */
128static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
129{
130 sg->__cpu_power += val;
131 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
132}
133#endif
134
634fa8c9
IM
135#define SCALE_PRIO(x, prio) \
136 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
137
91fcdd4e 138/*
634fa8c9 139 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
91fcdd4e 140 * to time slice values: [800ms ... 100ms ... 5ms]
91fcdd4e 141 */
634fa8c9 142static unsigned int static_prio_timeslice(int static_prio)
2dd73a4f 143{
634fa8c9
IM
144 if (static_prio == NICE_TO_PRIO(19))
145 return 1;
146
147 if (static_prio < NICE_TO_PRIO(0))
148 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
149 else
150 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
2dd73a4f
PW
151}
152
e05606d3
IM
153static inline int rt_policy(int policy)
154{
155 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
156 return 1;
157 return 0;
158}
159
160static inline int task_has_rt_policy(struct task_struct *p)
161{
162 return rt_policy(p->policy);
163}
164
1da177e4 165/*
6aa645ea 166 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 167 */
6aa645ea
IM
168struct rt_prio_array {
169 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
170 struct list_head queue[MAX_RT_PRIO];
171};
172
173struct load_stat {
174 struct load_weight load;
175 u64 load_update_start, load_update_last;
176 unsigned long delta_fair, delta_exec, delta_stat;
177};
178
179/* CFS-related fields in a runqueue */
180struct cfs_rq {
181 struct load_weight load;
182 unsigned long nr_running;
183
184 s64 fair_clock;
185 u64 exec_clock;
186 s64 wait_runtime;
187 u64 sleeper_bonus;
188 unsigned long wait_runtime_overruns, wait_runtime_underruns;
189
190 struct rb_root tasks_timeline;
191 struct rb_node *rb_leftmost;
192 struct rb_node *rb_load_balance_curr;
193#ifdef CONFIG_FAIR_GROUP_SCHED
194 /* 'curr' points to currently running entity on this cfs_rq.
195 * It is set to NULL otherwise (i.e when none are currently running).
196 */
197 struct sched_entity *curr;
198 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
199
200 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
201 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
202 * (like users, containers etc.)
203 *
204 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
205 * list is used during load balance.
206 */
207 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
208#endif
209};
1da177e4 210
6aa645ea
IM
211/* Real-Time classes' related field in a runqueue: */
212struct rt_rq {
213 struct rt_prio_array active;
214 int rt_load_balance_idx;
215 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
216};
217
1da177e4
LT
218/*
219 * This is the main, per-CPU runqueue data structure.
220 *
221 * Locking rule: those places that want to lock multiple runqueues
222 * (such as the load balancing or the thread migration code), lock
223 * acquire operations must be ordered by ascending &runqueue.
224 */
70b97a7f 225struct rq {
6aa645ea 226 spinlock_t lock; /* runqueue lock */
1da177e4
LT
227
228 /*
229 * nr_running and cpu_load should be in the same cacheline because
230 * remote CPUs use both these fields when doing load calculation.
231 */
232 unsigned long nr_running;
6aa645ea
IM
233 #define CPU_LOAD_IDX_MAX 5
234 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 235 unsigned char idle_at_tick;
46cb4b7c
SS
236#ifdef CONFIG_NO_HZ
237 unsigned char in_nohz_recently;
238#endif
6aa645ea
IM
239 struct load_stat ls; /* capture load from *all* tasks on this cpu */
240 unsigned long nr_load_updates;
241 u64 nr_switches;
242
243 struct cfs_rq cfs;
244#ifdef CONFIG_FAIR_GROUP_SCHED
245 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
1da177e4 246#endif
6aa645ea 247 struct rt_rq rt;
1da177e4
LT
248
249 /*
250 * This is part of a global counter where only the total sum
251 * over all CPUs matters. A task can increase this counter on
252 * one CPU and if it got migrated afterwards it may decrease
253 * it on another CPU. Always updated under the runqueue lock:
254 */
255 unsigned long nr_uninterruptible;
256
36c8b586 257 struct task_struct *curr, *idle;
c9819f45 258 unsigned long next_balance;
1da177e4 259 struct mm_struct *prev_mm;
6aa645ea 260
6aa645ea
IM
261 u64 clock, prev_clock_raw;
262 s64 clock_max_delta;
263
264 unsigned int clock_warps, clock_overflows;
265 unsigned int clock_unstable_events;
266
1da177e4
LT
267 atomic_t nr_iowait;
268
269#ifdef CONFIG_SMP
270 struct sched_domain *sd;
271
272 /* For active balancing */
273 int active_balance;
274 int push_cpu;
0a2966b4 275 int cpu; /* cpu of this runqueue */
1da177e4 276
36c8b586 277 struct task_struct *migration_thread;
1da177e4
LT
278 struct list_head migration_queue;
279#endif
280
281#ifdef CONFIG_SCHEDSTATS
282 /* latency stats */
283 struct sched_info rq_sched_info;
284
285 /* sys_sched_yield() stats */
286 unsigned long yld_exp_empty;
287 unsigned long yld_act_empty;
288 unsigned long yld_both_empty;
289 unsigned long yld_cnt;
290
291 /* schedule() stats */
292 unsigned long sched_switch;
293 unsigned long sched_cnt;
294 unsigned long sched_goidle;
295
296 /* try_to_wake_up() stats */
297 unsigned long ttwu_cnt;
298 unsigned long ttwu_local;
299#endif
fcb99371 300 struct lock_class_key rq_lock_key;
1da177e4
LT
301};
302
f34e3b61 303static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 304static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 305
dd41f596
IM
306static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
307{
308 rq->curr->sched_class->check_preempt_curr(rq, p);
309}
310
0a2966b4
CL
311static inline int cpu_of(struct rq *rq)
312{
313#ifdef CONFIG_SMP
314 return rq->cpu;
315#else
316 return 0;
317#endif
318}
319
20d315d4 320/*
b04a0f4c
IM
321 * Update the per-runqueue clock, as finegrained as the platform can give
322 * us, but without assuming monotonicity, etc.:
20d315d4 323 */
b04a0f4c 324static void __update_rq_clock(struct rq *rq)
20d315d4
IM
325{
326 u64 prev_raw = rq->prev_clock_raw;
327 u64 now = sched_clock();
328 s64 delta = now - prev_raw;
329 u64 clock = rq->clock;
330
b04a0f4c
IM
331#ifdef CONFIG_SCHED_DEBUG
332 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
333#endif
20d315d4
IM
334 /*
335 * Protect against sched_clock() occasionally going backwards:
336 */
337 if (unlikely(delta < 0)) {
338 clock++;
339 rq->clock_warps++;
340 } else {
341 /*
342 * Catch too large forward jumps too:
343 */
344 if (unlikely(delta > 2*TICK_NSEC)) {
345 clock++;
346 rq->clock_overflows++;
347 } else {
348 if (unlikely(delta > rq->clock_max_delta))
349 rq->clock_max_delta = delta;
350 clock += delta;
351 }
352 }
353
354 rq->prev_clock_raw = now;
355 rq->clock = clock;
b04a0f4c 356}
20d315d4 357
b04a0f4c
IM
358static void update_rq_clock(struct rq *rq)
359{
360 if (likely(smp_processor_id() == cpu_of(rq)))
361 __update_rq_clock(rq);
20d315d4
IM
362}
363
674311d5
NP
364/*
365 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 366 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
367 *
368 * The domain tree of any CPU may only be accessed from within
369 * preempt-disabled sections.
370 */
48f24c4d
IM
371#define for_each_domain(cpu, __sd) \
372 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
373
374#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
375#define this_rq() (&__get_cpu_var(runqueues))
376#define task_rq(p) cpu_rq(task_cpu(p))
377#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
378
e436d800
IM
379/*
380 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
381 * clock constructed from sched_clock():
382 */
383unsigned long long cpu_clock(int cpu)
384{
e436d800
IM
385 unsigned long long now;
386 unsigned long flags;
b04a0f4c 387 struct rq *rq;
e436d800 388
2cd4d0ea 389 local_irq_save(flags);
b04a0f4c
IM
390 rq = cpu_rq(cpu);
391 update_rq_clock(rq);
392 now = rq->clock;
2cd4d0ea 393 local_irq_restore(flags);
e436d800
IM
394
395 return now;
396}
397
138a8aeb
IM
398#ifdef CONFIG_FAIR_GROUP_SCHED
399/* Change a task's ->cfs_rq if it moves across CPUs */
400static inline void set_task_cfs_rq(struct task_struct *p)
401{
402 p->se.cfs_rq = &task_rq(p)->cfs;
403}
404#else
405static inline void set_task_cfs_rq(struct task_struct *p)
406{
407}
408#endif
409
1da177e4 410#ifndef prepare_arch_switch
4866cde0
NP
411# define prepare_arch_switch(next) do { } while (0)
412#endif
413#ifndef finish_arch_switch
414# define finish_arch_switch(prev) do { } while (0)
415#endif
416
417#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 418static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
419{
420 return rq->curr == p;
421}
422
70b97a7f 423static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
424{
425}
426
70b97a7f 427static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 428{
da04c035
IM
429#ifdef CONFIG_DEBUG_SPINLOCK
430 /* this is a valid case when another task releases the spinlock */
431 rq->lock.owner = current;
432#endif
8a25d5de
IM
433 /*
434 * If we are tracking spinlock dependencies then we have to
435 * fix up the runqueue lock - which gets 'carried over' from
436 * prev into current:
437 */
438 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
439
4866cde0
NP
440 spin_unlock_irq(&rq->lock);
441}
442
443#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 444static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
445{
446#ifdef CONFIG_SMP
447 return p->oncpu;
448#else
449 return rq->curr == p;
450#endif
451}
452
70b97a7f 453static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
454{
455#ifdef CONFIG_SMP
456 /*
457 * We can optimise this out completely for !SMP, because the
458 * SMP rebalancing from interrupt is the only thing that cares
459 * here.
460 */
461 next->oncpu = 1;
462#endif
463#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
464 spin_unlock_irq(&rq->lock);
465#else
466 spin_unlock(&rq->lock);
467#endif
468}
469
70b97a7f 470static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
471{
472#ifdef CONFIG_SMP
473 /*
474 * After ->oncpu is cleared, the task can be moved to a different CPU.
475 * We must ensure this doesn't happen until the switch is completely
476 * finished.
477 */
478 smp_wmb();
479 prev->oncpu = 0;
480#endif
481#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
482 local_irq_enable();
1da177e4 483#endif
4866cde0
NP
484}
485#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 486
b29739f9
IM
487/*
488 * __task_rq_lock - lock the runqueue a given task resides on.
489 * Must be called interrupts disabled.
490 */
70b97a7f 491static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
492 __acquires(rq->lock)
493{
70b97a7f 494 struct rq *rq;
b29739f9
IM
495
496repeat_lock_task:
497 rq = task_rq(p);
498 spin_lock(&rq->lock);
499 if (unlikely(rq != task_rq(p))) {
500 spin_unlock(&rq->lock);
501 goto repeat_lock_task;
502 }
503 return rq;
504}
505
1da177e4
LT
506/*
507 * task_rq_lock - lock the runqueue a given task resides on and disable
508 * interrupts. Note the ordering: we can safely lookup the task_rq without
509 * explicitly disabling preemption.
510 */
70b97a7f 511static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
512 __acquires(rq->lock)
513{
70b97a7f 514 struct rq *rq;
1da177e4
LT
515
516repeat_lock_task:
517 local_irq_save(*flags);
518 rq = task_rq(p);
519 spin_lock(&rq->lock);
520 if (unlikely(rq != task_rq(p))) {
521 spin_unlock_irqrestore(&rq->lock, *flags);
522 goto repeat_lock_task;
523 }
524 return rq;
525}
526
70b97a7f 527static inline void __task_rq_unlock(struct rq *rq)
b29739f9
IM
528 __releases(rq->lock)
529{
530 spin_unlock(&rq->lock);
531}
532
70b97a7f 533static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
534 __releases(rq->lock)
535{
536 spin_unlock_irqrestore(&rq->lock, *flags);
537}
538
1da177e4 539/*
cc2a73b5 540 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 541 */
70b97a7f 542static inline struct rq *this_rq_lock(void)
1da177e4
LT
543 __acquires(rq->lock)
544{
70b97a7f 545 struct rq *rq;
1da177e4
LT
546
547 local_irq_disable();
548 rq = this_rq();
549 spin_lock(&rq->lock);
550
551 return rq;
552}
553
1b9f19c2
IM
554/*
555 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
556 */
557void sched_clock_unstable_event(void)
558{
559 unsigned long flags;
560 struct rq *rq;
561
562 rq = task_rq_lock(current, &flags);
563 rq->prev_clock_raw = sched_clock();
564 rq->clock_unstable_events++;
565 task_rq_unlock(rq, &flags);
566}
567
c24d20db
IM
568/*
569 * resched_task - mark a task 'to be rescheduled now'.
570 *
571 * On UP this means the setting of the need_resched flag, on SMP it
572 * might also involve a cross-CPU call to trigger the scheduler on
573 * the target CPU.
574 */
575#ifdef CONFIG_SMP
576
577#ifndef tsk_is_polling
578#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
579#endif
580
581static void resched_task(struct task_struct *p)
582{
583 int cpu;
584
585 assert_spin_locked(&task_rq(p)->lock);
586
587 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
588 return;
589
590 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
591
592 cpu = task_cpu(p);
593 if (cpu == smp_processor_id())
594 return;
595
596 /* NEED_RESCHED must be visible before we test polling */
597 smp_mb();
598 if (!tsk_is_polling(p))
599 smp_send_reschedule(cpu);
600}
601
602static void resched_cpu(int cpu)
603{
604 struct rq *rq = cpu_rq(cpu);
605 unsigned long flags;
606
607 if (!spin_trylock_irqsave(&rq->lock, flags))
608 return;
609 resched_task(cpu_curr(cpu));
610 spin_unlock_irqrestore(&rq->lock, flags);
611}
612#else
613static inline void resched_task(struct task_struct *p)
614{
615 assert_spin_locked(&task_rq(p)->lock);
616 set_tsk_need_resched(p);
617}
618#endif
619
45bf76df
IM
620static u64 div64_likely32(u64 divident, unsigned long divisor)
621{
622#if BITS_PER_LONG == 32
623 if (likely(divident <= 0xffffffffULL))
624 return (u32)divident / divisor;
625 do_div(divident, divisor);
626
627 return divident;
628#else
629 return divident / divisor;
630#endif
631}
632
633#if BITS_PER_LONG == 32
634# define WMULT_CONST (~0UL)
635#else
636# define WMULT_CONST (1UL << 32)
637#endif
638
639#define WMULT_SHIFT 32
640
cb1c4fc9 641static unsigned long
45bf76df
IM
642calc_delta_mine(unsigned long delta_exec, unsigned long weight,
643 struct load_weight *lw)
644{
645 u64 tmp;
646
647 if (unlikely(!lw->inv_weight))
648 lw->inv_weight = WMULT_CONST / lw->weight;
649
650 tmp = (u64)delta_exec * weight;
651 /*
652 * Check whether we'd overflow the 64-bit multiplication:
653 */
654 if (unlikely(tmp > WMULT_CONST)) {
655 tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
656 >> (WMULT_SHIFT/2);
657 } else {
658 tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
659 }
660
ecf691da 661 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
662}
663
664static inline unsigned long
665calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
666{
667 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
668}
669
670static void update_load_add(struct load_weight *lw, unsigned long inc)
671{
672 lw->weight += inc;
673 lw->inv_weight = 0;
674}
675
676static void update_load_sub(struct load_weight *lw, unsigned long dec)
677{
678 lw->weight -= dec;
679 lw->inv_weight = 0;
680}
681
2dd73a4f
PW
682/*
683 * To aid in avoiding the subversion of "niceness" due to uneven distribution
684 * of tasks with abnormal "nice" values across CPUs the contribution that
685 * each task makes to its run queue's load is weighted according to its
686 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
687 * scaled version of the new time slice allocation that they receive on time
688 * slice expiry etc.
689 */
690
dd41f596
IM
691#define WEIGHT_IDLEPRIO 2
692#define WMULT_IDLEPRIO (1 << 31)
693
694/*
695 * Nice levels are multiplicative, with a gentle 10% change for every
696 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
697 * nice 1, it will get ~10% less CPU time than another CPU-bound task
698 * that remained on nice 0.
699 *
700 * The "10% effect" is relative and cumulative: from _any_ nice level,
701 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
702 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
703 * If a task goes up by ~10% and another task goes down by ~10% then
704 * the relative distance between them is ~25%.)
dd41f596
IM
705 */
706static const int prio_to_weight[40] = {
707/* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
708/* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
709/* 0 */ NICE_0_LOAD /* 1024 */,
710/* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
711/* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
712};
713
5714d2de
IM
714/*
715 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
716 *
717 * In cases where the weight does not change often, we can use the
718 * precalculated inverse to speed up arithmetics by turning divisions
719 * into multiplications:
720 */
dd41f596 721static const u32 prio_to_wmult[40] = {
e4af30be
IM
722/* -20 */ 48356, 60446, 75558, 94446, 118058,
723/* -15 */ 147573, 184467, 230589, 288233, 360285,
724/* -10 */ 450347, 562979, 703746, 879575, 1099582,
725/* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
726/* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
727/* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
728/* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
729/* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 730};
2dd73a4f 731
dd41f596
IM
732static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
733
734/*
735 * runqueue iterator, to support SMP load-balancing between different
736 * scheduling classes, without having to expose their internal data
737 * structures to the load-balancing proper:
738 */
739struct rq_iterator {
740 void *arg;
741 struct task_struct *(*start)(void *);
742 struct task_struct *(*next)(void *);
743};
744
745static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
746 unsigned long max_nr_move, unsigned long max_load_move,
747 struct sched_domain *sd, enum cpu_idle_type idle,
748 int *all_pinned, unsigned long *load_moved,
a4ac01c3 749 int *this_best_prio, struct rq_iterator *iterator);
dd41f596
IM
750
751#include "sched_stats.h"
752#include "sched_rt.c"
753#include "sched_fair.c"
754#include "sched_idletask.c"
755#ifdef CONFIG_SCHED_DEBUG
756# include "sched_debug.c"
757#endif
758
759#define sched_class_highest (&rt_sched_class)
760
9c217245
IM
761static void __update_curr_load(struct rq *rq, struct load_stat *ls)
762{
763 if (rq->curr != rq->idle && ls->load.weight) {
764 ls->delta_exec += ls->delta_stat;
765 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
766 ls->delta_stat = 0;
767 }
768}
769
770/*
771 * Update delta_exec, delta_fair fields for rq.
772 *
773 * delta_fair clock advances at a rate inversely proportional to
774 * total load (rq->ls.load.weight) on the runqueue, while
775 * delta_exec advances at the same rate as wall-clock (provided
776 * cpu is not idle).
777 *
778 * delta_exec / delta_fair is a measure of the (smoothened) load on this
779 * runqueue over any given interval. This (smoothened) load is used
780 * during load balance.
781 *
782 * This function is called /before/ updating rq->ls.load
783 * and when switching tasks.
784 */
84a1d7a2 785static void update_curr_load(struct rq *rq)
9c217245
IM
786{
787 struct load_stat *ls = &rq->ls;
788 u64 start;
789
790 start = ls->load_update_start;
d281918d
IM
791 ls->load_update_start = rq->clock;
792 ls->delta_stat += rq->clock - start;
9c217245
IM
793 /*
794 * Stagger updates to ls->delta_fair. Very frequent updates
795 * can be expensive.
796 */
797 if (ls->delta_stat >= sysctl_sched_stat_granularity)
798 __update_curr_load(rq, ls);
799}
800
29b4b623 801static inline void inc_load(struct rq *rq, const struct task_struct *p)
9c217245 802{
84a1d7a2 803 update_curr_load(rq);
9c217245
IM
804 update_load_add(&rq->ls.load, p->se.load.weight);
805}
806
807static inline void
808dec_load(struct rq *rq, const struct task_struct *p, u64 now)
809{
84a1d7a2 810 update_curr_load(rq);
9c217245
IM
811 update_load_sub(&rq->ls.load, p->se.load.weight);
812}
813
814static void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
815{
816 rq->nr_running++;
29b4b623 817 inc_load(rq, p);
9c217245
IM
818}
819
820static void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
821{
822 rq->nr_running--;
823 dec_load(rq, p, now);
824}
825
45bf76df
IM
826static void set_load_weight(struct task_struct *p)
827{
dd41f596
IM
828 task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
829 p->se.wait_runtime = 0;
830
45bf76df 831 if (task_has_rt_policy(p)) {
dd41f596
IM
832 p->se.load.weight = prio_to_weight[0] * 2;
833 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
834 return;
835 }
45bf76df 836
dd41f596
IM
837 /*
838 * SCHED_IDLE tasks get minimal weight:
839 */
840 if (p->policy == SCHED_IDLE) {
841 p->se.load.weight = WEIGHT_IDLEPRIO;
842 p->se.load.inv_weight = WMULT_IDLEPRIO;
843 return;
844 }
71f8bd46 845
dd41f596
IM
846 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
847 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
848}
849
dd41f596
IM
850static void
851enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
71f8bd46 852{
dd41f596 853 sched_info_queued(p);
fd390f6a 854 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 855 p->se.on_rq = 1;
71f8bd46
IM
856}
857
dd41f596
IM
858static void
859dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
71f8bd46 860{
f02231e5 861 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 862 p->se.on_rq = 0;
71f8bd46
IM
863}
864
14531189 865/*
dd41f596 866 * __normal_prio - return the priority that is based on the static prio
14531189 867 */
14531189
IM
868static inline int __normal_prio(struct task_struct *p)
869{
dd41f596 870 return p->static_prio;
14531189
IM
871}
872
b29739f9
IM
873/*
874 * Calculate the expected normal priority: i.e. priority
875 * without taking RT-inheritance into account. Might be
876 * boosted by interactivity modifiers. Changes upon fork,
877 * setprio syscalls, and whenever the interactivity
878 * estimator recalculates.
879 */
36c8b586 880static inline int normal_prio(struct task_struct *p)
b29739f9
IM
881{
882 int prio;
883
e05606d3 884 if (task_has_rt_policy(p))
b29739f9
IM
885 prio = MAX_RT_PRIO-1 - p->rt_priority;
886 else
887 prio = __normal_prio(p);
888 return prio;
889}
890
891/*
892 * Calculate the current priority, i.e. the priority
893 * taken into account by the scheduler. This value might
894 * be boosted by RT tasks, or might be boosted by
895 * interactivity modifiers. Will be RT if the task got
896 * RT-boosted. If not then it returns p->normal_prio.
897 */
36c8b586 898static int effective_prio(struct task_struct *p)
b29739f9
IM
899{
900 p->normal_prio = normal_prio(p);
901 /*
902 * If we are RT tasks or we were boosted to RT priority,
903 * keep the priority unchanged. Otherwise, update priority
904 * to the normal priority:
905 */
906 if (!rt_prio(p->prio))
907 return p->normal_prio;
908 return p->prio;
909}
910
1da177e4 911/*
dd41f596 912 * activate_task - move a task to the runqueue.
1da177e4 913 */
dd41f596 914static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 915{
a8e504d2
IM
916 u64 now;
917
918 update_rq_clock(rq);
919 now = rq->clock;
d425b274 920
dd41f596
IM
921 if (p->state == TASK_UNINTERRUPTIBLE)
922 rq->nr_uninterruptible--;
1da177e4 923
dd41f596
IM
924 enqueue_task(rq, p, wakeup, now);
925 inc_nr_running(p, rq, now);
1da177e4
LT
926}
927
928/*
dd41f596 929 * activate_idle_task - move idle task to the _front_ of runqueue.
1da177e4 930 */
dd41f596 931static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
1da177e4 932{
a8e504d2
IM
933 u64 now;
934
935 update_rq_clock(rq);
936 now = rq->clock;
1da177e4 937
dd41f596
IM
938 if (p->state == TASK_UNINTERRUPTIBLE)
939 rq->nr_uninterruptible--;
ece8a684 940
dd41f596
IM
941 enqueue_task(rq, p, 0, now);
942 inc_nr_running(p, rq, now);
1da177e4
LT
943}
944
945/*
946 * deactivate_task - remove a task from the runqueue.
947 */
8e717b19
IM
948static void
949deactivate_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
1da177e4 950{
dd41f596
IM
951 if (p->state == TASK_UNINTERRUPTIBLE)
952 rq->nr_uninterruptible++;
953
954 dequeue_task(rq, p, sleep, now);
955 dec_nr_running(p, rq, now);
1da177e4
LT
956}
957
1da177e4
LT
958/**
959 * task_curr - is this task currently executing on a CPU?
960 * @p: the task in question.
961 */
36c8b586 962inline int task_curr(const struct task_struct *p)
1da177e4
LT
963{
964 return cpu_curr(task_cpu(p)) == p;
965}
966
2dd73a4f
PW
967/* Used instead of source_load when we know the type == 0 */
968unsigned long weighted_cpuload(const int cpu)
969{
dd41f596
IM
970 return cpu_rq(cpu)->ls.load.weight;
971}
972
973static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
974{
975#ifdef CONFIG_SMP
976 task_thread_info(p)->cpu = cpu;
977 set_task_cfs_rq(p);
978#endif
2dd73a4f
PW
979}
980
1da177e4 981#ifdef CONFIG_SMP
c65cc870 982
dd41f596 983void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 984{
dd41f596
IM
985 int old_cpu = task_cpu(p);
986 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
987 u64 clock_offset, fair_clock_offset;
988
989 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
990 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
991
dd41f596
IM
992 if (p->se.wait_start_fair)
993 p->se.wait_start_fair -= fair_clock_offset;
6cfb0d5d
IM
994 if (p->se.sleep_start_fair)
995 p->se.sleep_start_fair -= fair_clock_offset;
996
997#ifdef CONFIG_SCHEDSTATS
998 if (p->se.wait_start)
999 p->se.wait_start -= clock_offset;
dd41f596
IM
1000 if (p->se.sleep_start)
1001 p->se.sleep_start -= clock_offset;
1002 if (p->se.block_start)
1003 p->se.block_start -= clock_offset;
6cfb0d5d 1004#endif
dd41f596
IM
1005
1006 __set_task_cpu(p, new_cpu);
c65cc870
IM
1007}
1008
70b97a7f 1009struct migration_req {
1da177e4 1010 struct list_head list;
1da177e4 1011
36c8b586 1012 struct task_struct *task;
1da177e4
LT
1013 int dest_cpu;
1014
1da177e4 1015 struct completion done;
70b97a7f 1016};
1da177e4
LT
1017
1018/*
1019 * The task's runqueue lock must be held.
1020 * Returns true if you have to wait for migration thread.
1021 */
36c8b586 1022static int
70b97a7f 1023migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1024{
70b97a7f 1025 struct rq *rq = task_rq(p);
1da177e4
LT
1026
1027 /*
1028 * If the task is not on a runqueue (and not running), then
1029 * it is sufficient to simply update the task's cpu field.
1030 */
dd41f596 1031 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1032 set_task_cpu(p, dest_cpu);
1033 return 0;
1034 }
1035
1036 init_completion(&req->done);
1da177e4
LT
1037 req->task = p;
1038 req->dest_cpu = dest_cpu;
1039 list_add(&req->list, &rq->migration_queue);
48f24c4d 1040
1da177e4
LT
1041 return 1;
1042}
1043
1044/*
1045 * wait_task_inactive - wait for a thread to unschedule.
1046 *
1047 * The caller must ensure that the task *will* unschedule sometime soon,
1048 * else this function might spin for a *long* time. This function can't
1049 * be called with interrupts off, or it may introduce deadlock with
1050 * smp_call_function() if an IPI is sent by the same process we are
1051 * waiting to become inactive.
1052 */
36c8b586 1053void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1054{
1055 unsigned long flags;
dd41f596 1056 int running, on_rq;
70b97a7f 1057 struct rq *rq;
1da177e4
LT
1058
1059repeat:
fa490cfd
LT
1060 /*
1061 * We do the initial early heuristics without holding
1062 * any task-queue locks at all. We'll only try to get
1063 * the runqueue lock when things look like they will
1064 * work out!
1065 */
1066 rq = task_rq(p);
1067
1068 /*
1069 * If the task is actively running on another CPU
1070 * still, just relax and busy-wait without holding
1071 * any locks.
1072 *
1073 * NOTE! Since we don't hold any locks, it's not
1074 * even sure that "rq" stays as the right runqueue!
1075 * But we don't care, since "task_running()" will
1076 * return false if the runqueue has changed and p
1077 * is actually now running somewhere else!
1078 */
1079 while (task_running(rq, p))
1080 cpu_relax();
1081
1082 /*
1083 * Ok, time to look more closely! We need the rq
1084 * lock now, to be *sure*. If we're wrong, we'll
1085 * just go back and repeat.
1086 */
1da177e4 1087 rq = task_rq_lock(p, &flags);
fa490cfd 1088 running = task_running(rq, p);
dd41f596 1089 on_rq = p->se.on_rq;
fa490cfd
LT
1090 task_rq_unlock(rq, &flags);
1091
1092 /*
1093 * Was it really running after all now that we
1094 * checked with the proper locks actually held?
1095 *
1096 * Oops. Go back and try again..
1097 */
1098 if (unlikely(running)) {
1da177e4 1099 cpu_relax();
1da177e4
LT
1100 goto repeat;
1101 }
fa490cfd
LT
1102
1103 /*
1104 * It's not enough that it's not actively running,
1105 * it must be off the runqueue _entirely_, and not
1106 * preempted!
1107 *
1108 * So if it wa still runnable (but just not actively
1109 * running right now), it's preempted, and we should
1110 * yield - it could be a while.
1111 */
dd41f596 1112 if (unlikely(on_rq)) {
fa490cfd
LT
1113 yield();
1114 goto repeat;
1115 }
1116
1117 /*
1118 * Ahh, all good. It wasn't running, and it wasn't
1119 * runnable, which means that it will never become
1120 * running in the future either. We're all done!
1121 */
1da177e4
LT
1122}
1123
1124/***
1125 * kick_process - kick a running thread to enter/exit the kernel
1126 * @p: the to-be-kicked thread
1127 *
1128 * Cause a process which is running on another CPU to enter
1129 * kernel-mode, without any delay. (to get signals handled.)
1130 *
1131 * NOTE: this function doesnt have to take the runqueue lock,
1132 * because all it wants to ensure is that the remote task enters
1133 * the kernel. If the IPI races and the task has been migrated
1134 * to another CPU then no harm is done and the purpose has been
1135 * achieved as well.
1136 */
36c8b586 1137void kick_process(struct task_struct *p)
1da177e4
LT
1138{
1139 int cpu;
1140
1141 preempt_disable();
1142 cpu = task_cpu(p);
1143 if ((cpu != smp_processor_id()) && task_curr(p))
1144 smp_send_reschedule(cpu);
1145 preempt_enable();
1146}
1147
1148/*
2dd73a4f
PW
1149 * Return a low guess at the load of a migration-source cpu weighted
1150 * according to the scheduling class and "nice" value.
1da177e4
LT
1151 *
1152 * We want to under-estimate the load of migration sources, to
1153 * balance conservatively.
1154 */
a2000572 1155static inline unsigned long source_load(int cpu, int type)
1da177e4 1156{
70b97a7f 1157 struct rq *rq = cpu_rq(cpu);
dd41f596 1158 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1159
3b0bd9bc 1160 if (type == 0)
dd41f596 1161 return total;
b910472d 1162
dd41f596 1163 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1164}
1165
1166/*
2dd73a4f
PW
1167 * Return a high guess at the load of a migration-target cpu weighted
1168 * according to the scheduling class and "nice" value.
1da177e4 1169 */
a2000572 1170static inline unsigned long target_load(int cpu, int type)
1da177e4 1171{
70b97a7f 1172 struct rq *rq = cpu_rq(cpu);
dd41f596 1173 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1174
7897986b 1175 if (type == 0)
dd41f596 1176 return total;
3b0bd9bc 1177
dd41f596 1178 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1179}
1180
1181/*
1182 * Return the average load per task on the cpu's run queue
1183 */
1184static inline unsigned long cpu_avg_load_per_task(int cpu)
1185{
70b97a7f 1186 struct rq *rq = cpu_rq(cpu);
dd41f596 1187 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1188 unsigned long n = rq->nr_running;
1189
dd41f596 1190 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1191}
1192
147cbb4b
NP
1193/*
1194 * find_idlest_group finds and returns the least busy CPU group within the
1195 * domain.
1196 */
1197static struct sched_group *
1198find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1199{
1200 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1201 unsigned long min_load = ULONG_MAX, this_load = 0;
1202 int load_idx = sd->forkexec_idx;
1203 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1204
1205 do {
1206 unsigned long load, avg_load;
1207 int local_group;
1208 int i;
1209
da5a5522
BD
1210 /* Skip over this group if it has no CPUs allowed */
1211 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1212 goto nextgroup;
1213
147cbb4b 1214 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1215
1216 /* Tally up the load of all CPUs in the group */
1217 avg_load = 0;
1218
1219 for_each_cpu_mask(i, group->cpumask) {
1220 /* Bias balancing toward cpus of our domain */
1221 if (local_group)
1222 load = source_load(i, load_idx);
1223 else
1224 load = target_load(i, load_idx);
1225
1226 avg_load += load;
1227 }
1228
1229 /* Adjust by relative CPU power of the group */
5517d86b
ED
1230 avg_load = sg_div_cpu_power(group,
1231 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1232
1233 if (local_group) {
1234 this_load = avg_load;
1235 this = group;
1236 } else if (avg_load < min_load) {
1237 min_load = avg_load;
1238 idlest = group;
1239 }
da5a5522 1240nextgroup:
147cbb4b
NP
1241 group = group->next;
1242 } while (group != sd->groups);
1243
1244 if (!idlest || 100*this_load < imbalance*min_load)
1245 return NULL;
1246 return idlest;
1247}
1248
1249/*
0feaece9 1250 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1251 */
95cdf3b7
IM
1252static int
1253find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1254{
da5a5522 1255 cpumask_t tmp;
147cbb4b
NP
1256 unsigned long load, min_load = ULONG_MAX;
1257 int idlest = -1;
1258 int i;
1259
da5a5522
BD
1260 /* Traverse only the allowed CPUs */
1261 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1262
1263 for_each_cpu_mask(i, tmp) {
2dd73a4f 1264 load = weighted_cpuload(i);
147cbb4b
NP
1265
1266 if (load < min_load || (load == min_load && i == this_cpu)) {
1267 min_load = load;
1268 idlest = i;
1269 }
1270 }
1271
1272 return idlest;
1273}
1274
476d139c
NP
1275/*
1276 * sched_balance_self: balance the current task (running on cpu) in domains
1277 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1278 * SD_BALANCE_EXEC.
1279 *
1280 * Balance, ie. select the least loaded group.
1281 *
1282 * Returns the target CPU number, or the same CPU if no balancing is needed.
1283 *
1284 * preempt must be disabled.
1285 */
1286static int sched_balance_self(int cpu, int flag)
1287{
1288 struct task_struct *t = current;
1289 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1290
c96d145e 1291 for_each_domain(cpu, tmp) {
9761eea8
IM
1292 /*
1293 * If power savings logic is enabled for a domain, stop there.
1294 */
5c45bf27
SS
1295 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1296 break;
476d139c
NP
1297 if (tmp->flags & flag)
1298 sd = tmp;
c96d145e 1299 }
476d139c
NP
1300
1301 while (sd) {
1302 cpumask_t span;
1303 struct sched_group *group;
1a848870
SS
1304 int new_cpu, weight;
1305
1306 if (!(sd->flags & flag)) {
1307 sd = sd->child;
1308 continue;
1309 }
476d139c
NP
1310
1311 span = sd->span;
1312 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1313 if (!group) {
1314 sd = sd->child;
1315 continue;
1316 }
476d139c 1317
da5a5522 1318 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1319 if (new_cpu == -1 || new_cpu == cpu) {
1320 /* Now try balancing at a lower domain level of cpu */
1321 sd = sd->child;
1322 continue;
1323 }
476d139c 1324
1a848870 1325 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1326 cpu = new_cpu;
476d139c
NP
1327 sd = NULL;
1328 weight = cpus_weight(span);
1329 for_each_domain(cpu, tmp) {
1330 if (weight <= cpus_weight(tmp->span))
1331 break;
1332 if (tmp->flags & flag)
1333 sd = tmp;
1334 }
1335 /* while loop will break here if sd == NULL */
1336 }
1337
1338 return cpu;
1339}
1340
1341#endif /* CONFIG_SMP */
1da177e4
LT
1342
1343/*
1344 * wake_idle() will wake a task on an idle cpu if task->cpu is
1345 * not idle and an idle cpu is available. The span of cpus to
1346 * search starts with cpus closest then further out as needed,
1347 * so we always favor a closer, idle cpu.
1348 *
1349 * Returns the CPU we should wake onto.
1350 */
1351#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1352static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1353{
1354 cpumask_t tmp;
1355 struct sched_domain *sd;
1356 int i;
1357
4953198b
SS
1358 /*
1359 * If it is idle, then it is the best cpu to run this task.
1360 *
1361 * This cpu is also the best, if it has more than one task already.
1362 * Siblings must be also busy(in most cases) as they didn't already
1363 * pickup the extra load from this cpu and hence we need not check
1364 * sibling runqueue info. This will avoid the checks and cache miss
1365 * penalities associated with that.
1366 */
1367 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1368 return cpu;
1369
1370 for_each_domain(cpu, sd) {
1371 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1372 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1373 for_each_cpu_mask(i, tmp) {
1374 if (idle_cpu(i))
1375 return i;
1376 }
9761eea8 1377 } else {
e0f364f4 1378 break;
9761eea8 1379 }
1da177e4
LT
1380 }
1381 return cpu;
1382}
1383#else
36c8b586 1384static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1385{
1386 return cpu;
1387}
1388#endif
1389
1390/***
1391 * try_to_wake_up - wake up a thread
1392 * @p: the to-be-woken-up thread
1393 * @state: the mask of task states that can be woken
1394 * @sync: do a synchronous wakeup?
1395 *
1396 * Put it on the run-queue if it's not already there. The "current"
1397 * thread is always on the run-queue (except when the actual
1398 * re-schedule is in progress), and as such you're allowed to do
1399 * the simpler "current->state = TASK_RUNNING" to mark yourself
1400 * runnable without the overhead of this.
1401 *
1402 * returns failure only if the task is already active.
1403 */
36c8b586 1404static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1405{
1406 int cpu, this_cpu, success = 0;
1407 unsigned long flags;
1408 long old_state;
70b97a7f 1409 struct rq *rq;
1da177e4 1410#ifdef CONFIG_SMP
7897986b 1411 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1412 unsigned long load, this_load;
1da177e4
LT
1413 int new_cpu;
1414#endif
1415
1416 rq = task_rq_lock(p, &flags);
1417 old_state = p->state;
1418 if (!(old_state & state))
1419 goto out;
1420
dd41f596 1421 if (p->se.on_rq)
1da177e4
LT
1422 goto out_running;
1423
1424 cpu = task_cpu(p);
1425 this_cpu = smp_processor_id();
1426
1427#ifdef CONFIG_SMP
1428 if (unlikely(task_running(rq, p)))
1429 goto out_activate;
1430
7897986b
NP
1431 new_cpu = cpu;
1432
1da177e4
LT
1433 schedstat_inc(rq, ttwu_cnt);
1434 if (cpu == this_cpu) {
1435 schedstat_inc(rq, ttwu_local);
7897986b
NP
1436 goto out_set_cpu;
1437 }
1438
1439 for_each_domain(this_cpu, sd) {
1440 if (cpu_isset(cpu, sd->span)) {
1441 schedstat_inc(sd, ttwu_wake_remote);
1442 this_sd = sd;
1443 break;
1da177e4
LT
1444 }
1445 }
1da177e4 1446
7897986b 1447 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1448 goto out_set_cpu;
1449
1da177e4 1450 /*
7897986b 1451 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1452 */
7897986b
NP
1453 if (this_sd) {
1454 int idx = this_sd->wake_idx;
1455 unsigned int imbalance;
1da177e4 1456
a3f21bce
NP
1457 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1458
7897986b
NP
1459 load = source_load(cpu, idx);
1460 this_load = target_load(this_cpu, idx);
1da177e4 1461
7897986b
NP
1462 new_cpu = this_cpu; /* Wake to this CPU if we can */
1463
a3f21bce
NP
1464 if (this_sd->flags & SD_WAKE_AFFINE) {
1465 unsigned long tl = this_load;
33859f7f
MOS
1466 unsigned long tl_per_task;
1467
1468 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1469
1da177e4 1470 /*
a3f21bce
NP
1471 * If sync wakeup then subtract the (maximum possible)
1472 * effect of the currently running task from the load
1473 * of the current CPU:
1da177e4 1474 */
a3f21bce 1475 if (sync)
dd41f596 1476 tl -= current->se.load.weight;
a3f21bce
NP
1477
1478 if ((tl <= load &&
2dd73a4f 1479 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1480 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1481 /*
1482 * This domain has SD_WAKE_AFFINE and
1483 * p is cache cold in this domain, and
1484 * there is no bad imbalance.
1485 */
1486 schedstat_inc(this_sd, ttwu_move_affine);
1487 goto out_set_cpu;
1488 }
1489 }
1490
1491 /*
1492 * Start passive balancing when half the imbalance_pct
1493 * limit is reached.
1494 */
1495 if (this_sd->flags & SD_WAKE_BALANCE) {
1496 if (imbalance*this_load <= 100*load) {
1497 schedstat_inc(this_sd, ttwu_move_balance);
1498 goto out_set_cpu;
1499 }
1da177e4
LT
1500 }
1501 }
1502
1503 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1504out_set_cpu:
1505 new_cpu = wake_idle(new_cpu, p);
1506 if (new_cpu != cpu) {
1507 set_task_cpu(p, new_cpu);
1508 task_rq_unlock(rq, &flags);
1509 /* might preempt at this point */
1510 rq = task_rq_lock(p, &flags);
1511 old_state = p->state;
1512 if (!(old_state & state))
1513 goto out;
dd41f596 1514 if (p->se.on_rq)
1da177e4
LT
1515 goto out_running;
1516
1517 this_cpu = smp_processor_id();
1518 cpu = task_cpu(p);
1519 }
1520
1521out_activate:
1522#endif /* CONFIG_SMP */
dd41f596 1523 activate_task(rq, p, 1);
1da177e4
LT
1524 /*
1525 * Sync wakeups (i.e. those types of wakeups where the waker
1526 * has indicated that it will leave the CPU in short order)
1527 * don't trigger a preemption, if the woken up task will run on
1528 * this cpu. (in this case the 'I will reschedule' promise of
1529 * the waker guarantees that the freshly woken up task is going
1530 * to be considered on this CPU.)
1531 */
dd41f596
IM
1532 if (!sync || cpu != this_cpu)
1533 check_preempt_curr(rq, p);
1da177e4
LT
1534 success = 1;
1535
1536out_running:
1537 p->state = TASK_RUNNING;
1538out:
1539 task_rq_unlock(rq, &flags);
1540
1541 return success;
1542}
1543
36c8b586 1544int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1545{
1546 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1547 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1548}
1da177e4
LT
1549EXPORT_SYMBOL(wake_up_process);
1550
36c8b586 1551int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1552{
1553 return try_to_wake_up(p, state, 0);
1554}
1555
1da177e4
LT
1556/*
1557 * Perform scheduler related setup for a newly forked process p.
1558 * p is forked by current.
dd41f596
IM
1559 *
1560 * __sched_fork() is basic setup used by init_idle() too:
1561 */
1562static void __sched_fork(struct task_struct *p)
1563{
1564 p->se.wait_start_fair = 0;
dd41f596
IM
1565 p->se.exec_start = 0;
1566 p->se.sum_exec_runtime = 0;
1567 p->se.delta_exec = 0;
1568 p->se.delta_fair_run = 0;
1569 p->se.delta_fair_sleep = 0;
1570 p->se.wait_runtime = 0;
6cfb0d5d
IM
1571 p->se.sleep_start_fair = 0;
1572
1573#ifdef CONFIG_SCHEDSTATS
1574 p->se.wait_start = 0;
dd41f596
IM
1575 p->se.sum_wait_runtime = 0;
1576 p->se.sum_sleep_runtime = 0;
1577 p->se.sleep_start = 0;
dd41f596
IM
1578 p->se.block_start = 0;
1579 p->se.sleep_max = 0;
1580 p->se.block_max = 0;
1581 p->se.exec_max = 0;
1582 p->se.wait_max = 0;
1583 p->se.wait_runtime_overruns = 0;
1584 p->se.wait_runtime_underruns = 0;
6cfb0d5d 1585#endif
476d139c 1586
dd41f596
IM
1587 INIT_LIST_HEAD(&p->run_list);
1588 p->se.on_rq = 0;
476d139c 1589
e107be36
AK
1590#ifdef CONFIG_PREEMPT_NOTIFIERS
1591 INIT_HLIST_HEAD(&p->preempt_notifiers);
1592#endif
1593
1da177e4
LT
1594 /*
1595 * We mark the process as running here, but have not actually
1596 * inserted it onto the runqueue yet. This guarantees that
1597 * nobody will actually run it, and a signal or other external
1598 * event cannot wake it up and insert it on the runqueue either.
1599 */
1600 p->state = TASK_RUNNING;
dd41f596
IM
1601}
1602
1603/*
1604 * fork()/clone()-time setup:
1605 */
1606void sched_fork(struct task_struct *p, int clone_flags)
1607{
1608 int cpu = get_cpu();
1609
1610 __sched_fork(p);
1611
1612#ifdef CONFIG_SMP
1613 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1614#endif
1615 __set_task_cpu(p, cpu);
b29739f9
IM
1616
1617 /*
1618 * Make sure we do not leak PI boosting priority to the child:
1619 */
1620 p->prio = current->normal_prio;
1621
52f17b6c 1622#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1623 if (likely(sched_info_on()))
52f17b6c 1624 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1625#endif
d6077cb8 1626#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1627 p->oncpu = 0;
1628#endif
1da177e4 1629#ifdef CONFIG_PREEMPT
4866cde0 1630 /* Want to start with kernel preemption disabled. */
a1261f54 1631 task_thread_info(p)->preempt_count = 1;
1da177e4 1632#endif
476d139c 1633 put_cpu();
1da177e4
LT
1634}
1635
dd41f596
IM
1636/*
1637 * After fork, child runs first. (default) If set to 0 then
1638 * parent will (try to) run first.
1639 */
1640unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1641
1da177e4
LT
1642/*
1643 * wake_up_new_task - wake up a newly created task for the first time.
1644 *
1645 * This function will do some initial scheduler statistics housekeeping
1646 * that must be done for every newly created context, then puts the task
1647 * on the runqueue and wakes it.
1648 */
36c8b586 1649void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1650{
1651 unsigned long flags;
dd41f596
IM
1652 struct rq *rq;
1653 int this_cpu;
cad60d93 1654 u64 now;
1da177e4
LT
1655
1656 rq = task_rq_lock(p, &flags);
147cbb4b 1657 BUG_ON(p->state != TASK_RUNNING);
dd41f596 1658 this_cpu = smp_processor_id(); /* parent's CPU */
a8e504d2
IM
1659 update_rq_clock(rq);
1660 now = rq->clock;
1da177e4
LT
1661
1662 p->prio = effective_prio(p);
1663
cad60d93
IM
1664 if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
1665 (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
1666 !current->se.on_rq) {
1667
dd41f596 1668 activate_task(rq, p, 0);
1da177e4 1669 } else {
1da177e4 1670 /*
dd41f596
IM
1671 * Let the scheduling class do new task startup
1672 * management (if any):
1da177e4 1673 */
ee0827d8 1674 p->sched_class->task_new(rq, p);
cad60d93 1675 inc_nr_running(p, rq, now);
1da177e4 1676 }
dd41f596
IM
1677 check_preempt_curr(rq, p);
1678 task_rq_unlock(rq, &flags);
1da177e4
LT
1679}
1680
e107be36
AK
1681#ifdef CONFIG_PREEMPT_NOTIFIERS
1682
1683/**
421cee29
RD
1684 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1685 * @notifier: notifier struct to register
e107be36
AK
1686 */
1687void preempt_notifier_register(struct preempt_notifier *notifier)
1688{
1689 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1690}
1691EXPORT_SYMBOL_GPL(preempt_notifier_register);
1692
1693/**
1694 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1695 * @notifier: notifier struct to unregister
e107be36
AK
1696 *
1697 * This is safe to call from within a preemption notifier.
1698 */
1699void preempt_notifier_unregister(struct preempt_notifier *notifier)
1700{
1701 hlist_del(&notifier->link);
1702}
1703EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1704
1705static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1706{
1707 struct preempt_notifier *notifier;
1708 struct hlist_node *node;
1709
1710 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1711 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1712}
1713
1714static void
1715fire_sched_out_preempt_notifiers(struct task_struct *curr,
1716 struct task_struct *next)
1717{
1718 struct preempt_notifier *notifier;
1719 struct hlist_node *node;
1720
1721 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1722 notifier->ops->sched_out(notifier, next);
1723}
1724
1725#else
1726
1727static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1728{
1729}
1730
1731static void
1732fire_sched_out_preempt_notifiers(struct task_struct *curr,
1733 struct task_struct *next)
1734{
1735}
1736
1737#endif
1738
4866cde0
NP
1739/**
1740 * prepare_task_switch - prepare to switch tasks
1741 * @rq: the runqueue preparing to switch
421cee29 1742 * @prev: the current task that is being switched out
4866cde0
NP
1743 * @next: the task we are going to switch to.
1744 *
1745 * This is called with the rq lock held and interrupts off. It must
1746 * be paired with a subsequent finish_task_switch after the context
1747 * switch.
1748 *
1749 * prepare_task_switch sets up locking and calls architecture specific
1750 * hooks.
1751 */
e107be36
AK
1752static inline void
1753prepare_task_switch(struct rq *rq, struct task_struct *prev,
1754 struct task_struct *next)
4866cde0 1755{
e107be36 1756 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1757 prepare_lock_switch(rq, next);
1758 prepare_arch_switch(next);
1759}
1760
1da177e4
LT
1761/**
1762 * finish_task_switch - clean up after a task-switch
344babaa 1763 * @rq: runqueue associated with task-switch
1da177e4
LT
1764 * @prev: the thread we just switched away from.
1765 *
4866cde0
NP
1766 * finish_task_switch must be called after the context switch, paired
1767 * with a prepare_task_switch call before the context switch.
1768 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1769 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1770 *
1771 * Note that we may have delayed dropping an mm in context_switch(). If
1772 * so, we finish that here outside of the runqueue lock. (Doing it
1773 * with the lock held can cause deadlocks; see schedule() for
1774 * details.)
1775 */
70b97a7f 1776static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1777 __releases(rq->lock)
1778{
1da177e4 1779 struct mm_struct *mm = rq->prev_mm;
55a101f8 1780 long prev_state;
1da177e4
LT
1781
1782 rq->prev_mm = NULL;
1783
1784 /*
1785 * A task struct has one reference for the use as "current".
c394cc9f 1786 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1787 * schedule one last time. The schedule call will never return, and
1788 * the scheduled task must drop that reference.
c394cc9f 1789 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1790 * still held, otherwise prev could be scheduled on another cpu, die
1791 * there before we look at prev->state, and then the reference would
1792 * be dropped twice.
1793 * Manfred Spraul <manfred@colorfullife.com>
1794 */
55a101f8 1795 prev_state = prev->state;
4866cde0
NP
1796 finish_arch_switch(prev);
1797 finish_lock_switch(rq, prev);
e107be36 1798 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1799 if (mm)
1800 mmdrop(mm);
c394cc9f 1801 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1802 /*
1803 * Remove function-return probe instances associated with this
1804 * task and put them back on the free list.
9761eea8 1805 */
c6fd91f0 1806 kprobe_flush_task(prev);
1da177e4 1807 put_task_struct(prev);
c6fd91f0 1808 }
1da177e4
LT
1809}
1810
1811/**
1812 * schedule_tail - first thing a freshly forked thread must call.
1813 * @prev: the thread we just switched away from.
1814 */
36c8b586 1815asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1816 __releases(rq->lock)
1817{
70b97a7f
IM
1818 struct rq *rq = this_rq();
1819
4866cde0
NP
1820 finish_task_switch(rq, prev);
1821#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1822 /* In this case, finish_task_switch does not reenable preemption */
1823 preempt_enable();
1824#endif
1da177e4
LT
1825 if (current->set_child_tid)
1826 put_user(current->pid, current->set_child_tid);
1827}
1828
1829/*
1830 * context_switch - switch to the new MM and the new
1831 * thread's register state.
1832 */
dd41f596 1833static inline void
70b97a7f 1834context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1835 struct task_struct *next)
1da177e4 1836{
dd41f596 1837 struct mm_struct *mm, *oldmm;
1da177e4 1838
e107be36 1839 prepare_task_switch(rq, prev, next);
dd41f596
IM
1840 mm = next->mm;
1841 oldmm = prev->active_mm;
9226d125
ZA
1842 /*
1843 * For paravirt, this is coupled with an exit in switch_to to
1844 * combine the page table reload and the switch backend into
1845 * one hypercall.
1846 */
1847 arch_enter_lazy_cpu_mode();
1848
dd41f596 1849 if (unlikely(!mm)) {
1da177e4
LT
1850 next->active_mm = oldmm;
1851 atomic_inc(&oldmm->mm_count);
1852 enter_lazy_tlb(oldmm, next);
1853 } else
1854 switch_mm(oldmm, mm, next);
1855
dd41f596 1856 if (unlikely(!prev->mm)) {
1da177e4 1857 prev->active_mm = NULL;
1da177e4
LT
1858 rq->prev_mm = oldmm;
1859 }
3a5f5e48
IM
1860 /*
1861 * Since the runqueue lock will be released by the next
1862 * task (which is an invalid locking op but in the case
1863 * of the scheduler it's an obvious special-case), so we
1864 * do an early lockdep release here:
1865 */
1866#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1867 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1868#endif
1da177e4
LT
1869
1870 /* Here we just switch the register state and the stack. */
1871 switch_to(prev, next, prev);
1872
dd41f596
IM
1873 barrier();
1874 /*
1875 * this_rq must be evaluated again because prev may have moved
1876 * CPUs since it called schedule(), thus the 'rq' on its stack
1877 * frame will be invalid.
1878 */
1879 finish_task_switch(this_rq(), prev);
1da177e4
LT
1880}
1881
1882/*
1883 * nr_running, nr_uninterruptible and nr_context_switches:
1884 *
1885 * externally visible scheduler statistics: current number of runnable
1886 * threads, current number of uninterruptible-sleeping threads, total
1887 * number of context switches performed since bootup.
1888 */
1889unsigned long nr_running(void)
1890{
1891 unsigned long i, sum = 0;
1892
1893 for_each_online_cpu(i)
1894 sum += cpu_rq(i)->nr_running;
1895
1896 return sum;
1897}
1898
1899unsigned long nr_uninterruptible(void)
1900{
1901 unsigned long i, sum = 0;
1902
0a945022 1903 for_each_possible_cpu(i)
1da177e4
LT
1904 sum += cpu_rq(i)->nr_uninterruptible;
1905
1906 /*
1907 * Since we read the counters lockless, it might be slightly
1908 * inaccurate. Do not allow it to go below zero though:
1909 */
1910 if (unlikely((long)sum < 0))
1911 sum = 0;
1912
1913 return sum;
1914}
1915
1916unsigned long long nr_context_switches(void)
1917{
cc94abfc
SR
1918 int i;
1919 unsigned long long sum = 0;
1da177e4 1920
0a945022 1921 for_each_possible_cpu(i)
1da177e4
LT
1922 sum += cpu_rq(i)->nr_switches;
1923
1924 return sum;
1925}
1926
1927unsigned long nr_iowait(void)
1928{
1929 unsigned long i, sum = 0;
1930
0a945022 1931 for_each_possible_cpu(i)
1da177e4
LT
1932 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1933
1934 return sum;
1935}
1936
db1b1fef
JS
1937unsigned long nr_active(void)
1938{
1939 unsigned long i, running = 0, uninterruptible = 0;
1940
1941 for_each_online_cpu(i) {
1942 running += cpu_rq(i)->nr_running;
1943 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1944 }
1945
1946 if (unlikely((long)uninterruptible < 0))
1947 uninterruptible = 0;
1948
1949 return running + uninterruptible;
1950}
1951
48f24c4d 1952/*
dd41f596
IM
1953 * Update rq->cpu_load[] statistics. This function is usually called every
1954 * scheduler tick (TICK_NSEC).
48f24c4d 1955 */
dd41f596 1956static void update_cpu_load(struct rq *this_rq)
48f24c4d 1957{
dd41f596
IM
1958 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1959 unsigned long total_load = this_rq->ls.load.weight;
1960 unsigned long this_load = total_load;
1961 struct load_stat *ls = &this_rq->ls;
c1b3da3e 1962 u64 now;
dd41f596
IM
1963 int i, scale;
1964
c1b3da3e
IM
1965 __update_rq_clock(this_rq);
1966 now = this_rq->clock;
1967
dd41f596
IM
1968 this_rq->nr_load_updates++;
1969 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1970 goto do_avg;
1971
1972 /* Update delta_fair/delta_exec fields first */
84a1d7a2 1973 update_curr_load(this_rq);
dd41f596
IM
1974
1975 fair_delta64 = ls->delta_fair + 1;
1976 ls->delta_fair = 0;
1977
1978 exec_delta64 = ls->delta_exec + 1;
1979 ls->delta_exec = 0;
1980
d281918d
IM
1981 sample_interval64 = this_rq->clock - ls->load_update_last;
1982 ls->load_update_last = this_rq->clock;
dd41f596
IM
1983
1984 if ((s64)sample_interval64 < (s64)TICK_NSEC)
1985 sample_interval64 = TICK_NSEC;
1986
1987 if (exec_delta64 > sample_interval64)
1988 exec_delta64 = sample_interval64;
1989
1990 idle_delta64 = sample_interval64 - exec_delta64;
1991
1992 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
1993 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
1994
1995 this_load = (unsigned long)tmp64;
1996
1997do_avg:
1998
1999 /* Update our load: */
2000 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2001 unsigned long old_load, new_load;
2002
2003 /* scale is effectively 1 << i now, and >> i divides by scale */
2004
2005 old_load = this_rq->cpu_load[i];
2006 new_load = this_load;
2007
2008 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2009 }
48f24c4d
IM
2010}
2011
dd41f596
IM
2012#ifdef CONFIG_SMP
2013
1da177e4
LT
2014/*
2015 * double_rq_lock - safely lock two runqueues
2016 *
2017 * Note this does not disable interrupts like task_rq_lock,
2018 * you need to do so manually before calling.
2019 */
70b97a7f 2020static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2021 __acquires(rq1->lock)
2022 __acquires(rq2->lock)
2023{
054b9108 2024 BUG_ON(!irqs_disabled());
1da177e4
LT
2025 if (rq1 == rq2) {
2026 spin_lock(&rq1->lock);
2027 __acquire(rq2->lock); /* Fake it out ;) */
2028 } else {
c96d145e 2029 if (rq1 < rq2) {
1da177e4
LT
2030 spin_lock(&rq1->lock);
2031 spin_lock(&rq2->lock);
2032 } else {
2033 spin_lock(&rq2->lock);
2034 spin_lock(&rq1->lock);
2035 }
2036 }
2037}
2038
2039/*
2040 * double_rq_unlock - safely unlock two runqueues
2041 *
2042 * Note this does not restore interrupts like task_rq_unlock,
2043 * you need to do so manually after calling.
2044 */
70b97a7f 2045static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2046 __releases(rq1->lock)
2047 __releases(rq2->lock)
2048{
2049 spin_unlock(&rq1->lock);
2050 if (rq1 != rq2)
2051 spin_unlock(&rq2->lock);
2052 else
2053 __release(rq2->lock);
2054}
2055
2056/*
2057 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2058 */
70b97a7f 2059static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2060 __releases(this_rq->lock)
2061 __acquires(busiest->lock)
2062 __acquires(this_rq->lock)
2063{
054b9108
KK
2064 if (unlikely(!irqs_disabled())) {
2065 /* printk() doesn't work good under rq->lock */
2066 spin_unlock(&this_rq->lock);
2067 BUG_ON(1);
2068 }
1da177e4 2069 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2070 if (busiest < this_rq) {
1da177e4
LT
2071 spin_unlock(&this_rq->lock);
2072 spin_lock(&busiest->lock);
2073 spin_lock(&this_rq->lock);
2074 } else
2075 spin_lock(&busiest->lock);
2076 }
2077}
2078
1da177e4
LT
2079/*
2080 * If dest_cpu is allowed for this process, migrate the task to it.
2081 * This is accomplished by forcing the cpu_allowed mask to only
2082 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2083 * the cpu_allowed mask is restored.
2084 */
36c8b586 2085static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2086{
70b97a7f 2087 struct migration_req req;
1da177e4 2088 unsigned long flags;
70b97a7f 2089 struct rq *rq;
1da177e4
LT
2090
2091 rq = task_rq_lock(p, &flags);
2092 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2093 || unlikely(cpu_is_offline(dest_cpu)))
2094 goto out;
2095
2096 /* force the process onto the specified CPU */
2097 if (migrate_task(p, dest_cpu, &req)) {
2098 /* Need to wait for migration thread (might exit: take ref). */
2099 struct task_struct *mt = rq->migration_thread;
36c8b586 2100
1da177e4
LT
2101 get_task_struct(mt);
2102 task_rq_unlock(rq, &flags);
2103 wake_up_process(mt);
2104 put_task_struct(mt);
2105 wait_for_completion(&req.done);
36c8b586 2106
1da177e4
LT
2107 return;
2108 }
2109out:
2110 task_rq_unlock(rq, &flags);
2111}
2112
2113/*
476d139c
NP
2114 * sched_exec - execve() is a valuable balancing opportunity, because at
2115 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2116 */
2117void sched_exec(void)
2118{
1da177e4 2119 int new_cpu, this_cpu = get_cpu();
476d139c 2120 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2121 put_cpu();
476d139c
NP
2122 if (new_cpu != this_cpu)
2123 sched_migrate_task(current, new_cpu);
1da177e4
LT
2124}
2125
2126/*
2127 * pull_task - move a task from a remote runqueue to the local runqueue.
2128 * Both runqueues must be locked.
2129 */
dd41f596
IM
2130static void pull_task(struct rq *src_rq, struct task_struct *p,
2131 struct rq *this_rq, int this_cpu)
1da177e4 2132{
a8e504d2
IM
2133 update_rq_clock(src_rq);
2134 deactivate_task(src_rq, p, 0, src_rq->clock);
1da177e4 2135 set_task_cpu(p, this_cpu);
dd41f596 2136 activate_task(this_rq, p, 0);
1da177e4
LT
2137 /*
2138 * Note that idle threads have a prio of MAX_PRIO, for this test
2139 * to be always true for them.
2140 */
dd41f596 2141 check_preempt_curr(this_rq, p);
1da177e4
LT
2142}
2143
2144/*
2145 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2146 */
858119e1 2147static
70b97a7f 2148int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2149 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2150 int *all_pinned)
1da177e4
LT
2151{
2152 /*
2153 * We do not migrate tasks that are:
2154 * 1) running (obviously), or
2155 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2156 * 3) are cache-hot on their current CPU.
2157 */
1da177e4
LT
2158 if (!cpu_isset(this_cpu, p->cpus_allowed))
2159 return 0;
81026794
NP
2160 *all_pinned = 0;
2161
2162 if (task_running(rq, p))
2163 return 0;
1da177e4
LT
2164
2165 /*
dd41f596 2166 * Aggressive migration if too many balance attempts have failed:
1da177e4 2167 */
dd41f596 2168 if (sd->nr_balance_failed > sd->cache_nice_tries)
1da177e4
LT
2169 return 1;
2170
1da177e4
LT
2171 return 1;
2172}
2173
dd41f596 2174static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f 2175 unsigned long max_nr_move, unsigned long max_load_move,
d15bcfdb 2176 struct sched_domain *sd, enum cpu_idle_type idle,
dd41f596 2177 int *all_pinned, unsigned long *load_moved,
a4ac01c3 2178 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2179{
dd41f596
IM
2180 int pulled = 0, pinned = 0, skip_for_load;
2181 struct task_struct *p;
2182 long rem_load_move = max_load_move;
1da177e4 2183
2dd73a4f 2184 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2185 goto out;
2186
81026794
NP
2187 pinned = 1;
2188
1da177e4 2189 /*
dd41f596 2190 * Start the load-balancing iterator:
1da177e4 2191 */
dd41f596
IM
2192 p = iterator->start(iterator->arg);
2193next:
2194 if (!p)
1da177e4 2195 goto out;
50ddd969
PW
2196 /*
2197 * To help distribute high priority tasks accross CPUs we don't
2198 * skip a task if it will be the highest priority task (i.e. smallest
2199 * prio value) on its new queue regardless of its load weight
2200 */
dd41f596
IM
2201 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2202 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2203 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2204 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2205 p = iterator->next(iterator->arg);
2206 goto next;
1da177e4
LT
2207 }
2208
dd41f596 2209 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2210 pulled++;
dd41f596 2211 rem_load_move -= p->se.load.weight;
1da177e4 2212
2dd73a4f
PW
2213 /*
2214 * We only want to steal up to the prescribed number of tasks
2215 * and the prescribed amount of weighted load.
2216 */
2217 if (pulled < max_nr_move && rem_load_move > 0) {
a4ac01c3
PW
2218 if (p->prio < *this_best_prio)
2219 *this_best_prio = p->prio;
dd41f596
IM
2220 p = iterator->next(iterator->arg);
2221 goto next;
1da177e4
LT
2222 }
2223out:
2224 /*
2225 * Right now, this is the only place pull_task() is called,
2226 * so we can safely collect pull_task() stats here rather than
2227 * inside pull_task().
2228 */
2229 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2230
2231 if (all_pinned)
2232 *all_pinned = pinned;
dd41f596 2233 *load_moved = max_load_move - rem_load_move;
1da177e4
LT
2234 return pulled;
2235}
2236
dd41f596 2237/*
43010659
PW
2238 * move_tasks tries to move up to max_load_move weighted load from busiest to
2239 * this_rq, as part of a balancing operation within domain "sd".
2240 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2241 *
2242 * Called with both runqueues locked.
2243 */
2244static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2245 unsigned long max_load_move,
dd41f596
IM
2246 struct sched_domain *sd, enum cpu_idle_type idle,
2247 int *all_pinned)
2248{
2249 struct sched_class *class = sched_class_highest;
43010659 2250 unsigned long total_load_moved = 0;
a4ac01c3 2251 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2252
2253 do {
43010659
PW
2254 total_load_moved +=
2255 class->load_balance(this_rq, this_cpu, busiest,
2256 ULONG_MAX, max_load_move - total_load_moved,
a4ac01c3 2257 sd, idle, all_pinned, &this_best_prio);
dd41f596 2258 class = class->next;
43010659 2259 } while (class && max_load_move > total_load_moved);
dd41f596 2260
43010659
PW
2261 return total_load_moved > 0;
2262}
2263
2264/*
2265 * move_one_task tries to move exactly one task from busiest to this_rq, as
2266 * part of active balancing operations within "domain".
2267 * Returns 1 if successful and 0 otherwise.
2268 *
2269 * Called with both runqueues locked.
2270 */
2271static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2272 struct sched_domain *sd, enum cpu_idle_type idle)
2273{
2274 struct sched_class *class;
a4ac01c3 2275 int this_best_prio = MAX_PRIO;
43010659
PW
2276
2277 for (class = sched_class_highest; class; class = class->next)
2278 if (class->load_balance(this_rq, this_cpu, busiest,
a4ac01c3
PW
2279 1, ULONG_MAX, sd, idle, NULL,
2280 &this_best_prio))
43010659
PW
2281 return 1;
2282
2283 return 0;
dd41f596
IM
2284}
2285
1da177e4
LT
2286/*
2287 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2288 * domain. It calculates and returns the amount of weighted load which
2289 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2290 */
2291static struct sched_group *
2292find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2293 unsigned long *imbalance, enum cpu_idle_type idle,
2294 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2295{
2296 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2297 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2298 unsigned long max_pull;
2dd73a4f
PW
2299 unsigned long busiest_load_per_task, busiest_nr_running;
2300 unsigned long this_load_per_task, this_nr_running;
7897986b 2301 int load_idx;
5c45bf27
SS
2302#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2303 int power_savings_balance = 1;
2304 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2305 unsigned long min_nr_running = ULONG_MAX;
2306 struct sched_group *group_min = NULL, *group_leader = NULL;
2307#endif
1da177e4
LT
2308
2309 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2310 busiest_load_per_task = busiest_nr_running = 0;
2311 this_load_per_task = this_nr_running = 0;
d15bcfdb 2312 if (idle == CPU_NOT_IDLE)
7897986b 2313 load_idx = sd->busy_idx;
d15bcfdb 2314 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2315 load_idx = sd->newidle_idx;
2316 else
2317 load_idx = sd->idle_idx;
1da177e4
LT
2318
2319 do {
5c45bf27 2320 unsigned long load, group_capacity;
1da177e4
LT
2321 int local_group;
2322 int i;
783609c6 2323 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2324 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2325
2326 local_group = cpu_isset(this_cpu, group->cpumask);
2327
783609c6
SS
2328 if (local_group)
2329 balance_cpu = first_cpu(group->cpumask);
2330
1da177e4 2331 /* Tally up the load of all CPUs in the group */
2dd73a4f 2332 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2333
2334 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2335 struct rq *rq;
2336
2337 if (!cpu_isset(i, *cpus))
2338 continue;
2339
2340 rq = cpu_rq(i);
2dd73a4f 2341
9439aab8 2342 if (*sd_idle && rq->nr_running)
5969fe06
NP
2343 *sd_idle = 0;
2344
1da177e4 2345 /* Bias balancing toward cpus of our domain */
783609c6
SS
2346 if (local_group) {
2347 if (idle_cpu(i) && !first_idle_cpu) {
2348 first_idle_cpu = 1;
2349 balance_cpu = i;
2350 }
2351
a2000572 2352 load = target_load(i, load_idx);
783609c6 2353 } else
a2000572 2354 load = source_load(i, load_idx);
1da177e4
LT
2355
2356 avg_load += load;
2dd73a4f 2357 sum_nr_running += rq->nr_running;
dd41f596 2358 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2359 }
2360
783609c6
SS
2361 /*
2362 * First idle cpu or the first cpu(busiest) in this sched group
2363 * is eligible for doing load balancing at this and above
9439aab8
SS
2364 * domains. In the newly idle case, we will allow all the cpu's
2365 * to do the newly idle load balance.
783609c6 2366 */
9439aab8
SS
2367 if (idle != CPU_NEWLY_IDLE && local_group &&
2368 balance_cpu != this_cpu && balance) {
783609c6
SS
2369 *balance = 0;
2370 goto ret;
2371 }
2372
1da177e4 2373 total_load += avg_load;
5517d86b 2374 total_pwr += group->__cpu_power;
1da177e4
LT
2375
2376 /* Adjust by relative CPU power of the group */
5517d86b
ED
2377 avg_load = sg_div_cpu_power(group,
2378 avg_load * SCHED_LOAD_SCALE);
1da177e4 2379
5517d86b 2380 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2381
1da177e4
LT
2382 if (local_group) {
2383 this_load = avg_load;
2384 this = group;
2dd73a4f
PW
2385 this_nr_running = sum_nr_running;
2386 this_load_per_task = sum_weighted_load;
2387 } else if (avg_load > max_load &&
5c45bf27 2388 sum_nr_running > group_capacity) {
1da177e4
LT
2389 max_load = avg_load;
2390 busiest = group;
2dd73a4f
PW
2391 busiest_nr_running = sum_nr_running;
2392 busiest_load_per_task = sum_weighted_load;
1da177e4 2393 }
5c45bf27
SS
2394
2395#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2396 /*
2397 * Busy processors will not participate in power savings
2398 * balance.
2399 */
dd41f596
IM
2400 if (idle == CPU_NOT_IDLE ||
2401 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2402 goto group_next;
5c45bf27
SS
2403
2404 /*
2405 * If the local group is idle or completely loaded
2406 * no need to do power savings balance at this domain
2407 */
2408 if (local_group && (this_nr_running >= group_capacity ||
2409 !this_nr_running))
2410 power_savings_balance = 0;
2411
dd41f596 2412 /*
5c45bf27
SS
2413 * If a group is already running at full capacity or idle,
2414 * don't include that group in power savings calculations
dd41f596
IM
2415 */
2416 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2417 || !sum_nr_running)
dd41f596 2418 goto group_next;
5c45bf27 2419
dd41f596 2420 /*
5c45bf27 2421 * Calculate the group which has the least non-idle load.
dd41f596
IM
2422 * This is the group from where we need to pick up the load
2423 * for saving power
2424 */
2425 if ((sum_nr_running < min_nr_running) ||
2426 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2427 first_cpu(group->cpumask) <
2428 first_cpu(group_min->cpumask))) {
dd41f596
IM
2429 group_min = group;
2430 min_nr_running = sum_nr_running;
5c45bf27
SS
2431 min_load_per_task = sum_weighted_load /
2432 sum_nr_running;
dd41f596 2433 }
5c45bf27 2434
dd41f596 2435 /*
5c45bf27 2436 * Calculate the group which is almost near its
dd41f596
IM
2437 * capacity but still has some space to pick up some load
2438 * from other group and save more power
2439 */
2440 if (sum_nr_running <= group_capacity - 1) {
2441 if (sum_nr_running > leader_nr_running ||
2442 (sum_nr_running == leader_nr_running &&
2443 first_cpu(group->cpumask) >
2444 first_cpu(group_leader->cpumask))) {
2445 group_leader = group;
2446 leader_nr_running = sum_nr_running;
2447 }
48f24c4d 2448 }
5c45bf27
SS
2449group_next:
2450#endif
1da177e4
LT
2451 group = group->next;
2452 } while (group != sd->groups);
2453
2dd73a4f 2454 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2455 goto out_balanced;
2456
2457 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2458
2459 if (this_load >= avg_load ||
2460 100*max_load <= sd->imbalance_pct*this_load)
2461 goto out_balanced;
2462
2dd73a4f 2463 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2464 /*
2465 * We're trying to get all the cpus to the average_load, so we don't
2466 * want to push ourselves above the average load, nor do we wish to
2467 * reduce the max loaded cpu below the average load, as either of these
2468 * actions would just result in more rebalancing later, and ping-pong
2469 * tasks around. Thus we look for the minimum possible imbalance.
2470 * Negative imbalances (*we* are more loaded than anyone else) will
2471 * be counted as no imbalance for these purposes -- we can't fix that
2472 * by pulling tasks to us. Be careful of negative numbers as they'll
2473 * appear as very large values with unsigned longs.
2474 */
2dd73a4f
PW
2475 if (max_load <= busiest_load_per_task)
2476 goto out_balanced;
2477
2478 /*
2479 * In the presence of smp nice balancing, certain scenarios can have
2480 * max load less than avg load(as we skip the groups at or below
2481 * its cpu_power, while calculating max_load..)
2482 */
2483 if (max_load < avg_load) {
2484 *imbalance = 0;
2485 goto small_imbalance;
2486 }
0c117f1b
SS
2487
2488 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2489 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2490
1da177e4 2491 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2492 *imbalance = min(max_pull * busiest->__cpu_power,
2493 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2494 / SCHED_LOAD_SCALE;
2495
2dd73a4f
PW
2496 /*
2497 * if *imbalance is less than the average load per runnable task
2498 * there is no gaurantee that any tasks will be moved so we'll have
2499 * a think about bumping its value to force at least one task to be
2500 * moved
2501 */
dd41f596 2502 if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
48f24c4d 2503 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2504 unsigned int imbn;
2505
2506small_imbalance:
2507 pwr_move = pwr_now = 0;
2508 imbn = 2;
2509 if (this_nr_running) {
2510 this_load_per_task /= this_nr_running;
2511 if (busiest_load_per_task > this_load_per_task)
2512 imbn = 1;
2513 } else
2514 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2515
dd41f596
IM
2516 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2517 busiest_load_per_task * imbn) {
2dd73a4f 2518 *imbalance = busiest_load_per_task;
1da177e4
LT
2519 return busiest;
2520 }
2521
2522 /*
2523 * OK, we don't have enough imbalance to justify moving tasks,
2524 * however we may be able to increase total CPU power used by
2525 * moving them.
2526 */
2527
5517d86b
ED
2528 pwr_now += busiest->__cpu_power *
2529 min(busiest_load_per_task, max_load);
2530 pwr_now += this->__cpu_power *
2531 min(this_load_per_task, this_load);
1da177e4
LT
2532 pwr_now /= SCHED_LOAD_SCALE;
2533
2534 /* Amount of load we'd subtract */
5517d86b
ED
2535 tmp = sg_div_cpu_power(busiest,
2536 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2537 if (max_load > tmp)
5517d86b 2538 pwr_move += busiest->__cpu_power *
2dd73a4f 2539 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2540
2541 /* Amount of load we'd add */
5517d86b 2542 if (max_load * busiest->__cpu_power <
33859f7f 2543 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2544 tmp = sg_div_cpu_power(this,
2545 max_load * busiest->__cpu_power);
1da177e4 2546 else
5517d86b
ED
2547 tmp = sg_div_cpu_power(this,
2548 busiest_load_per_task * SCHED_LOAD_SCALE);
2549 pwr_move += this->__cpu_power *
2550 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2551 pwr_move /= SCHED_LOAD_SCALE;
2552
2553 /* Move if we gain throughput */
2554 if (pwr_move <= pwr_now)
2555 goto out_balanced;
2556
2dd73a4f 2557 *imbalance = busiest_load_per_task;
1da177e4
LT
2558 }
2559
1da177e4
LT
2560 return busiest;
2561
2562out_balanced:
5c45bf27 2563#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2564 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2565 goto ret;
1da177e4 2566
5c45bf27
SS
2567 if (this == group_leader && group_leader != group_min) {
2568 *imbalance = min_load_per_task;
2569 return group_min;
2570 }
5c45bf27 2571#endif
783609c6 2572ret:
1da177e4
LT
2573 *imbalance = 0;
2574 return NULL;
2575}
2576
2577/*
2578 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2579 */
70b97a7f 2580static struct rq *
d15bcfdb 2581find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2582 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2583{
70b97a7f 2584 struct rq *busiest = NULL, *rq;
2dd73a4f 2585 unsigned long max_load = 0;
1da177e4
LT
2586 int i;
2587
2588 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2589 unsigned long wl;
0a2966b4
CL
2590
2591 if (!cpu_isset(i, *cpus))
2592 continue;
2593
48f24c4d 2594 rq = cpu_rq(i);
dd41f596 2595 wl = weighted_cpuload(i);
2dd73a4f 2596
dd41f596 2597 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2598 continue;
1da177e4 2599
dd41f596
IM
2600 if (wl > max_load) {
2601 max_load = wl;
48f24c4d 2602 busiest = rq;
1da177e4
LT
2603 }
2604 }
2605
2606 return busiest;
2607}
2608
77391d71
NP
2609/*
2610 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2611 * so long as it is large enough.
2612 */
2613#define MAX_PINNED_INTERVAL 512
2614
1da177e4
LT
2615/*
2616 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2617 * tasks if there is an imbalance.
1da177e4 2618 */
70b97a7f 2619static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2620 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2621 int *balance)
1da177e4 2622{
43010659 2623 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2624 struct sched_group *group;
1da177e4 2625 unsigned long imbalance;
70b97a7f 2626 struct rq *busiest;
0a2966b4 2627 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2628 unsigned long flags;
5969fe06 2629
89c4710e
SS
2630 /*
2631 * When power savings policy is enabled for the parent domain, idle
2632 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2633 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2634 * portraying it as CPU_NOT_IDLE.
89c4710e 2635 */
d15bcfdb 2636 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2637 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2638 sd_idle = 1;
1da177e4 2639
1da177e4
LT
2640 schedstat_inc(sd, lb_cnt[idle]);
2641
0a2966b4
CL
2642redo:
2643 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2644 &cpus, balance);
2645
06066714 2646 if (*balance == 0)
783609c6 2647 goto out_balanced;
783609c6 2648
1da177e4
LT
2649 if (!group) {
2650 schedstat_inc(sd, lb_nobusyg[idle]);
2651 goto out_balanced;
2652 }
2653
0a2966b4 2654 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2655 if (!busiest) {
2656 schedstat_inc(sd, lb_nobusyq[idle]);
2657 goto out_balanced;
2658 }
2659
db935dbd 2660 BUG_ON(busiest == this_rq);
1da177e4
LT
2661
2662 schedstat_add(sd, lb_imbalance[idle], imbalance);
2663
43010659 2664 ld_moved = 0;
1da177e4
LT
2665 if (busiest->nr_running > 1) {
2666 /*
2667 * Attempt to move tasks. If find_busiest_group has found
2668 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2669 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2670 * correctly treated as an imbalance.
2671 */
fe2eea3f 2672 local_irq_save(flags);
e17224bf 2673 double_rq_lock(this_rq, busiest);
43010659 2674 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2675 imbalance, sd, idle, &all_pinned);
e17224bf 2676 double_rq_unlock(this_rq, busiest);
fe2eea3f 2677 local_irq_restore(flags);
81026794 2678
46cb4b7c
SS
2679 /*
2680 * some other cpu did the load balance for us.
2681 */
43010659 2682 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2683 resched_cpu(this_cpu);
2684
81026794 2685 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2686 if (unlikely(all_pinned)) {
2687 cpu_clear(cpu_of(busiest), cpus);
2688 if (!cpus_empty(cpus))
2689 goto redo;
81026794 2690 goto out_balanced;
0a2966b4 2691 }
1da177e4 2692 }
81026794 2693
43010659 2694 if (!ld_moved) {
1da177e4
LT
2695 schedstat_inc(sd, lb_failed[idle]);
2696 sd->nr_balance_failed++;
2697
2698 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2699
fe2eea3f 2700 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2701
2702 /* don't kick the migration_thread, if the curr
2703 * task on busiest cpu can't be moved to this_cpu
2704 */
2705 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2706 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2707 all_pinned = 1;
2708 goto out_one_pinned;
2709 }
2710
1da177e4
LT
2711 if (!busiest->active_balance) {
2712 busiest->active_balance = 1;
2713 busiest->push_cpu = this_cpu;
81026794 2714 active_balance = 1;
1da177e4 2715 }
fe2eea3f 2716 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2717 if (active_balance)
1da177e4
LT
2718 wake_up_process(busiest->migration_thread);
2719
2720 /*
2721 * We've kicked active balancing, reset the failure
2722 * counter.
2723 */
39507451 2724 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2725 }
81026794 2726 } else
1da177e4
LT
2727 sd->nr_balance_failed = 0;
2728
81026794 2729 if (likely(!active_balance)) {
1da177e4
LT
2730 /* We were unbalanced, so reset the balancing interval */
2731 sd->balance_interval = sd->min_interval;
81026794
NP
2732 } else {
2733 /*
2734 * If we've begun active balancing, start to back off. This
2735 * case may not be covered by the all_pinned logic if there
2736 * is only 1 task on the busy runqueue (because we don't call
2737 * move_tasks).
2738 */
2739 if (sd->balance_interval < sd->max_interval)
2740 sd->balance_interval *= 2;
1da177e4
LT
2741 }
2742
43010659 2743 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2744 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2745 return -1;
43010659 2746 return ld_moved;
1da177e4
LT
2747
2748out_balanced:
1da177e4
LT
2749 schedstat_inc(sd, lb_balanced[idle]);
2750
16cfb1c0 2751 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2752
2753out_one_pinned:
1da177e4 2754 /* tune up the balancing interval */
77391d71
NP
2755 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2756 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2757 sd->balance_interval *= 2;
2758
48f24c4d 2759 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2760 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2761 return -1;
1da177e4
LT
2762 return 0;
2763}
2764
2765/*
2766 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2767 * tasks if there is an imbalance.
2768 *
d15bcfdb 2769 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2770 * this_rq is locked.
2771 */
48f24c4d 2772static int
70b97a7f 2773load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2774{
2775 struct sched_group *group;
70b97a7f 2776 struct rq *busiest = NULL;
1da177e4 2777 unsigned long imbalance;
43010659 2778 int ld_moved = 0;
5969fe06 2779 int sd_idle = 0;
969bb4e4 2780 int all_pinned = 0;
0a2966b4 2781 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2782
89c4710e
SS
2783 /*
2784 * When power savings policy is enabled for the parent domain, idle
2785 * sibling can pick up load irrespective of busy siblings. In this case,
2786 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2787 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2788 */
2789 if (sd->flags & SD_SHARE_CPUPOWER &&
2790 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2791 sd_idle = 1;
1da177e4 2792
d15bcfdb 2793 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
0a2966b4 2794redo:
d15bcfdb 2795 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2796 &sd_idle, &cpus, NULL);
1da177e4 2797 if (!group) {
d15bcfdb 2798 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2799 goto out_balanced;
1da177e4
LT
2800 }
2801
d15bcfdb 2802 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2803 &cpus);
db935dbd 2804 if (!busiest) {
d15bcfdb 2805 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2806 goto out_balanced;
1da177e4
LT
2807 }
2808
db935dbd
NP
2809 BUG_ON(busiest == this_rq);
2810
d15bcfdb 2811 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2812
43010659 2813 ld_moved = 0;
d6d5cfaf
NP
2814 if (busiest->nr_running > 1) {
2815 /* Attempt to move tasks */
2816 double_lock_balance(this_rq, busiest);
43010659 2817 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2818 imbalance, sd, CPU_NEWLY_IDLE,
2819 &all_pinned);
d6d5cfaf 2820 spin_unlock(&busiest->lock);
0a2966b4 2821
969bb4e4 2822 if (unlikely(all_pinned)) {
0a2966b4
CL
2823 cpu_clear(cpu_of(busiest), cpus);
2824 if (!cpus_empty(cpus))
2825 goto redo;
2826 }
d6d5cfaf
NP
2827 }
2828
43010659 2829 if (!ld_moved) {
d15bcfdb 2830 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2831 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2832 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2833 return -1;
2834 } else
16cfb1c0 2835 sd->nr_balance_failed = 0;
1da177e4 2836
43010659 2837 return ld_moved;
16cfb1c0
NP
2838
2839out_balanced:
d15bcfdb 2840 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2841 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2842 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2843 return -1;
16cfb1c0 2844 sd->nr_balance_failed = 0;
48f24c4d 2845
16cfb1c0 2846 return 0;
1da177e4
LT
2847}
2848
2849/*
2850 * idle_balance is called by schedule() if this_cpu is about to become
2851 * idle. Attempts to pull tasks from other CPUs.
2852 */
70b97a7f 2853static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2854{
2855 struct sched_domain *sd;
dd41f596
IM
2856 int pulled_task = -1;
2857 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2858
2859 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2860 unsigned long interval;
2861
2862 if (!(sd->flags & SD_LOAD_BALANCE))
2863 continue;
2864
2865 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2866 /* If we've pulled tasks over stop searching: */
1bd77f2d 2867 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2868 this_rq, sd);
2869
2870 interval = msecs_to_jiffies(sd->balance_interval);
2871 if (time_after(next_balance, sd->last_balance + interval))
2872 next_balance = sd->last_balance + interval;
2873 if (pulled_task)
2874 break;
1da177e4 2875 }
dd41f596 2876 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2877 /*
2878 * We are going idle. next_balance may be set based on
2879 * a busy processor. So reset next_balance.
2880 */
2881 this_rq->next_balance = next_balance;
dd41f596 2882 }
1da177e4
LT
2883}
2884
2885/*
2886 * active_load_balance is run by migration threads. It pushes running tasks
2887 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2888 * running on each physical CPU where possible, and avoids physical /
2889 * logical imbalances.
2890 *
2891 * Called with busiest_rq locked.
2892 */
70b97a7f 2893static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2894{
39507451 2895 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2896 struct sched_domain *sd;
2897 struct rq *target_rq;
39507451 2898
48f24c4d 2899 /* Is there any task to move? */
39507451 2900 if (busiest_rq->nr_running <= 1)
39507451
NP
2901 return;
2902
2903 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2904
2905 /*
39507451
NP
2906 * This condition is "impossible", if it occurs
2907 * we need to fix it. Originally reported by
2908 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2909 */
39507451 2910 BUG_ON(busiest_rq == target_rq);
1da177e4 2911
39507451
NP
2912 /* move a task from busiest_rq to target_rq */
2913 double_lock_balance(busiest_rq, target_rq);
2914
2915 /* Search for an sd spanning us and the target CPU. */
c96d145e 2916 for_each_domain(target_cpu, sd) {
39507451 2917 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2918 cpu_isset(busiest_cpu, sd->span))
39507451 2919 break;
c96d145e 2920 }
39507451 2921
48f24c4d
IM
2922 if (likely(sd)) {
2923 schedstat_inc(sd, alb_cnt);
39507451 2924
43010659
PW
2925 if (move_one_task(target_rq, target_cpu, busiest_rq,
2926 sd, CPU_IDLE))
48f24c4d
IM
2927 schedstat_inc(sd, alb_pushed);
2928 else
2929 schedstat_inc(sd, alb_failed);
2930 }
39507451 2931 spin_unlock(&target_rq->lock);
1da177e4
LT
2932}
2933
46cb4b7c
SS
2934#ifdef CONFIG_NO_HZ
2935static struct {
2936 atomic_t load_balancer;
2937 cpumask_t cpu_mask;
2938} nohz ____cacheline_aligned = {
2939 .load_balancer = ATOMIC_INIT(-1),
2940 .cpu_mask = CPU_MASK_NONE,
2941};
2942
7835b98b 2943/*
46cb4b7c
SS
2944 * This routine will try to nominate the ilb (idle load balancing)
2945 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2946 * load balancing on behalf of all those cpus. If all the cpus in the system
2947 * go into this tickless mode, then there will be no ilb owner (as there is
2948 * no need for one) and all the cpus will sleep till the next wakeup event
2949 * arrives...
2950 *
2951 * For the ilb owner, tick is not stopped. And this tick will be used
2952 * for idle load balancing. ilb owner will still be part of
2953 * nohz.cpu_mask..
7835b98b 2954 *
46cb4b7c
SS
2955 * While stopping the tick, this cpu will become the ilb owner if there
2956 * is no other owner. And will be the owner till that cpu becomes busy
2957 * or if all cpus in the system stop their ticks at which point
2958 * there is no need for ilb owner.
2959 *
2960 * When the ilb owner becomes busy, it nominates another owner, during the
2961 * next busy scheduler_tick()
2962 */
2963int select_nohz_load_balancer(int stop_tick)
2964{
2965 int cpu = smp_processor_id();
2966
2967 if (stop_tick) {
2968 cpu_set(cpu, nohz.cpu_mask);
2969 cpu_rq(cpu)->in_nohz_recently = 1;
2970
2971 /*
2972 * If we are going offline and still the leader, give up!
2973 */
2974 if (cpu_is_offline(cpu) &&
2975 atomic_read(&nohz.load_balancer) == cpu) {
2976 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2977 BUG();
2978 return 0;
2979 }
2980
2981 /* time for ilb owner also to sleep */
2982 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2983 if (atomic_read(&nohz.load_balancer) == cpu)
2984 atomic_set(&nohz.load_balancer, -1);
2985 return 0;
2986 }
2987
2988 if (atomic_read(&nohz.load_balancer) == -1) {
2989 /* make me the ilb owner */
2990 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2991 return 1;
2992 } else if (atomic_read(&nohz.load_balancer) == cpu)
2993 return 1;
2994 } else {
2995 if (!cpu_isset(cpu, nohz.cpu_mask))
2996 return 0;
2997
2998 cpu_clear(cpu, nohz.cpu_mask);
2999
3000 if (atomic_read(&nohz.load_balancer) == cpu)
3001 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3002 BUG();
3003 }
3004 return 0;
3005}
3006#endif
3007
3008static DEFINE_SPINLOCK(balancing);
3009
3010/*
7835b98b
CL
3011 * It checks each scheduling domain to see if it is due to be balanced,
3012 * and initiates a balancing operation if so.
3013 *
3014 * Balancing parameters are set up in arch_init_sched_domains.
3015 */
d15bcfdb 3016static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3017{
46cb4b7c
SS
3018 int balance = 1;
3019 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3020 unsigned long interval;
3021 struct sched_domain *sd;
46cb4b7c 3022 /* Earliest time when we have to do rebalance again */
c9819f45 3023 unsigned long next_balance = jiffies + 60*HZ;
1da177e4 3024
46cb4b7c 3025 for_each_domain(cpu, sd) {
1da177e4
LT
3026 if (!(sd->flags & SD_LOAD_BALANCE))
3027 continue;
3028
3029 interval = sd->balance_interval;
d15bcfdb 3030 if (idle != CPU_IDLE)
1da177e4
LT
3031 interval *= sd->busy_factor;
3032
3033 /* scale ms to jiffies */
3034 interval = msecs_to_jiffies(interval);
3035 if (unlikely(!interval))
3036 interval = 1;
dd41f596
IM
3037 if (interval > HZ*NR_CPUS/10)
3038 interval = HZ*NR_CPUS/10;
3039
1da177e4 3040
08c183f3
CL
3041 if (sd->flags & SD_SERIALIZE) {
3042 if (!spin_trylock(&balancing))
3043 goto out;
3044 }
3045
c9819f45 3046 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3047 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3048 /*
3049 * We've pulled tasks over so either we're no
5969fe06
NP
3050 * longer idle, or one of our SMT siblings is
3051 * not idle.
3052 */
d15bcfdb 3053 idle = CPU_NOT_IDLE;
1da177e4 3054 }
1bd77f2d 3055 sd->last_balance = jiffies;
1da177e4 3056 }
08c183f3
CL
3057 if (sd->flags & SD_SERIALIZE)
3058 spin_unlock(&balancing);
3059out:
c9819f45
CL
3060 if (time_after(next_balance, sd->last_balance + interval))
3061 next_balance = sd->last_balance + interval;
783609c6
SS
3062
3063 /*
3064 * Stop the load balance at this level. There is another
3065 * CPU in our sched group which is doing load balancing more
3066 * actively.
3067 */
3068 if (!balance)
3069 break;
1da177e4 3070 }
46cb4b7c
SS
3071 rq->next_balance = next_balance;
3072}
3073
3074/*
3075 * run_rebalance_domains is triggered when needed from the scheduler tick.
3076 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3077 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3078 */
3079static void run_rebalance_domains(struct softirq_action *h)
3080{
dd41f596
IM
3081 int this_cpu = smp_processor_id();
3082 struct rq *this_rq = cpu_rq(this_cpu);
3083 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3084 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3085
dd41f596 3086 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3087
3088#ifdef CONFIG_NO_HZ
3089 /*
3090 * If this cpu is the owner for idle load balancing, then do the
3091 * balancing on behalf of the other idle cpus whose ticks are
3092 * stopped.
3093 */
dd41f596
IM
3094 if (this_rq->idle_at_tick &&
3095 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3096 cpumask_t cpus = nohz.cpu_mask;
3097 struct rq *rq;
3098 int balance_cpu;
3099
dd41f596 3100 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3101 for_each_cpu_mask(balance_cpu, cpus) {
3102 /*
3103 * If this cpu gets work to do, stop the load balancing
3104 * work being done for other cpus. Next load
3105 * balancing owner will pick it up.
3106 */
3107 if (need_resched())
3108 break;
3109
dd41f596 3110 rebalance_domains(balance_cpu, SCHED_IDLE);
46cb4b7c
SS
3111
3112 rq = cpu_rq(balance_cpu);
dd41f596
IM
3113 if (time_after(this_rq->next_balance, rq->next_balance))
3114 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3115 }
3116 }
3117#endif
3118}
3119
3120/*
3121 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3122 *
3123 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3124 * idle load balancing owner or decide to stop the periodic load balancing,
3125 * if the whole system is idle.
3126 */
dd41f596 3127static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3128{
46cb4b7c
SS
3129#ifdef CONFIG_NO_HZ
3130 /*
3131 * If we were in the nohz mode recently and busy at the current
3132 * scheduler tick, then check if we need to nominate new idle
3133 * load balancer.
3134 */
3135 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3136 rq->in_nohz_recently = 0;
3137
3138 if (atomic_read(&nohz.load_balancer) == cpu) {
3139 cpu_clear(cpu, nohz.cpu_mask);
3140 atomic_set(&nohz.load_balancer, -1);
3141 }
3142
3143 if (atomic_read(&nohz.load_balancer) == -1) {
3144 /*
3145 * simple selection for now: Nominate the
3146 * first cpu in the nohz list to be the next
3147 * ilb owner.
3148 *
3149 * TBD: Traverse the sched domains and nominate
3150 * the nearest cpu in the nohz.cpu_mask.
3151 */
3152 int ilb = first_cpu(nohz.cpu_mask);
3153
3154 if (ilb != NR_CPUS)
3155 resched_cpu(ilb);
3156 }
3157 }
3158
3159 /*
3160 * If this cpu is idle and doing idle load balancing for all the
3161 * cpus with ticks stopped, is it time for that to stop?
3162 */
3163 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3164 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3165 resched_cpu(cpu);
3166 return;
3167 }
3168
3169 /*
3170 * If this cpu is idle and the idle load balancing is done by
3171 * someone else, then no need raise the SCHED_SOFTIRQ
3172 */
3173 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3174 cpu_isset(cpu, nohz.cpu_mask))
3175 return;
3176#endif
3177 if (time_after_eq(jiffies, rq->next_balance))
3178 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3179}
dd41f596
IM
3180
3181#else /* CONFIG_SMP */
3182
1da177e4
LT
3183/*
3184 * on UP we do not need to balance between CPUs:
3185 */
70b97a7f 3186static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3187{
3188}
dd41f596
IM
3189
3190/* Avoid "used but not defined" warning on UP */
3191static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3192 unsigned long max_nr_move, unsigned long max_load_move,
3193 struct sched_domain *sd, enum cpu_idle_type idle,
3194 int *all_pinned, unsigned long *load_moved,
a4ac01c3 3195 int *this_best_prio, struct rq_iterator *iterator)
dd41f596
IM
3196{
3197 *load_moved = 0;
3198
3199 return 0;
3200}
3201
1da177e4
LT
3202#endif
3203
1da177e4
LT
3204DEFINE_PER_CPU(struct kernel_stat, kstat);
3205
3206EXPORT_PER_CPU_SYMBOL(kstat);
3207
3208/*
41b86e9c
IM
3209 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3210 * that have not yet been banked in case the task is currently running.
1da177e4 3211 */
41b86e9c 3212unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3213{
1da177e4 3214 unsigned long flags;
41b86e9c
IM
3215 u64 ns, delta_exec;
3216 struct rq *rq;
48f24c4d 3217
41b86e9c
IM
3218 rq = task_rq_lock(p, &flags);
3219 ns = p->se.sum_exec_runtime;
3220 if (rq->curr == p) {
a8e504d2
IM
3221 update_rq_clock(rq);
3222 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3223 if ((s64)delta_exec > 0)
3224 ns += delta_exec;
3225 }
3226 task_rq_unlock(rq, &flags);
48f24c4d 3227
1da177e4
LT
3228 return ns;
3229}
3230
1da177e4
LT
3231/*
3232 * Account user cpu time to a process.
3233 * @p: the process that the cpu time gets accounted to
3234 * @hardirq_offset: the offset to subtract from hardirq_count()
3235 * @cputime: the cpu time spent in user space since the last update
3236 */
3237void account_user_time(struct task_struct *p, cputime_t cputime)
3238{
3239 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3240 cputime64_t tmp;
3241
3242 p->utime = cputime_add(p->utime, cputime);
3243
3244 /* Add user time to cpustat. */
3245 tmp = cputime_to_cputime64(cputime);
3246 if (TASK_NICE(p) > 0)
3247 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3248 else
3249 cpustat->user = cputime64_add(cpustat->user, tmp);
3250}
3251
3252/*
3253 * Account system cpu time to a process.
3254 * @p: the process that the cpu time gets accounted to
3255 * @hardirq_offset: the offset to subtract from hardirq_count()
3256 * @cputime: the cpu time spent in kernel space since the last update
3257 */
3258void account_system_time(struct task_struct *p, int hardirq_offset,
3259 cputime_t cputime)
3260{
3261 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3262 struct rq *rq = this_rq();
1da177e4
LT
3263 cputime64_t tmp;
3264
3265 p->stime = cputime_add(p->stime, cputime);
3266
3267 /* Add system time to cpustat. */
3268 tmp = cputime_to_cputime64(cputime);
3269 if (hardirq_count() - hardirq_offset)
3270 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3271 else if (softirq_count())
3272 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3273 else if (p != rq->idle)
3274 cpustat->system = cputime64_add(cpustat->system, tmp);
3275 else if (atomic_read(&rq->nr_iowait) > 0)
3276 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3277 else
3278 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3279 /* Account for system time used */
3280 acct_update_integrals(p);
1da177e4
LT
3281}
3282
3283/*
3284 * Account for involuntary wait time.
3285 * @p: the process from which the cpu time has been stolen
3286 * @steal: the cpu time spent in involuntary wait
3287 */
3288void account_steal_time(struct task_struct *p, cputime_t steal)
3289{
3290 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3291 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3292 struct rq *rq = this_rq();
1da177e4
LT
3293
3294 if (p == rq->idle) {
3295 p->stime = cputime_add(p->stime, steal);
3296 if (atomic_read(&rq->nr_iowait) > 0)
3297 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3298 else
3299 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3300 } else
3301 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3302}
3303
7835b98b
CL
3304/*
3305 * This function gets called by the timer code, with HZ frequency.
3306 * We call it with interrupts disabled.
3307 *
3308 * It also gets called by the fork code, when changing the parent's
3309 * timeslices.
3310 */
3311void scheduler_tick(void)
3312{
7835b98b
CL
3313 int cpu = smp_processor_id();
3314 struct rq *rq = cpu_rq(cpu);
dd41f596
IM
3315 struct task_struct *curr = rq->curr;
3316
3317 spin_lock(&rq->lock);
f1a438d8 3318 update_cpu_load(rq);
dd41f596
IM
3319 if (curr != rq->idle) /* FIXME: needed? */
3320 curr->sched_class->task_tick(rq, curr);
dd41f596 3321 spin_unlock(&rq->lock);
7835b98b 3322
e418e1c2 3323#ifdef CONFIG_SMP
dd41f596
IM
3324 rq->idle_at_tick = idle_cpu(cpu);
3325 trigger_load_balance(rq, cpu);
e418e1c2 3326#endif
1da177e4
LT
3327}
3328
1da177e4
LT
3329#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3330
3331void fastcall add_preempt_count(int val)
3332{
3333 /*
3334 * Underflow?
3335 */
9a11b49a
IM
3336 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3337 return;
1da177e4
LT
3338 preempt_count() += val;
3339 /*
3340 * Spinlock count overflowing soon?
3341 */
33859f7f
MOS
3342 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3343 PREEMPT_MASK - 10);
1da177e4
LT
3344}
3345EXPORT_SYMBOL(add_preempt_count);
3346
3347void fastcall sub_preempt_count(int val)
3348{
3349 /*
3350 * Underflow?
3351 */
9a11b49a
IM
3352 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3353 return;
1da177e4
LT
3354 /*
3355 * Is the spinlock portion underflowing?
3356 */
9a11b49a
IM
3357 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3358 !(preempt_count() & PREEMPT_MASK)))
3359 return;
3360
1da177e4
LT
3361 preempt_count() -= val;
3362}
3363EXPORT_SYMBOL(sub_preempt_count);
3364
3365#endif
3366
3367/*
dd41f596 3368 * Print scheduling while atomic bug:
1da177e4 3369 */
dd41f596 3370static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3371{
dd41f596
IM
3372 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3373 prev->comm, preempt_count(), prev->pid);
3374 debug_show_held_locks(prev);
3375 if (irqs_disabled())
3376 print_irqtrace_events(prev);
3377 dump_stack();
3378}
1da177e4 3379
dd41f596
IM
3380/*
3381 * Various schedule()-time debugging checks and statistics:
3382 */
3383static inline void schedule_debug(struct task_struct *prev)
3384{
1da177e4
LT
3385 /*
3386 * Test if we are atomic. Since do_exit() needs to call into
3387 * schedule() atomically, we ignore that path for now.
3388 * Otherwise, whine if we are scheduling when we should not be.
3389 */
dd41f596
IM
3390 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3391 __schedule_bug(prev);
3392
1da177e4
LT
3393 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3394
dd41f596
IM
3395 schedstat_inc(this_rq(), sched_cnt);
3396}
3397
3398/*
3399 * Pick up the highest-prio task:
3400 */
3401static inline struct task_struct *
ff95f3df 3402pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596
IM
3403{
3404 struct sched_class *class;
3405 struct task_struct *p;
1da177e4
LT
3406
3407 /*
dd41f596
IM
3408 * Optimization: we know that if all tasks are in
3409 * the fair class we can call that function directly:
1da177e4 3410 */
dd41f596 3411 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3412 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3413 if (likely(p))
3414 return p;
1da177e4
LT
3415 }
3416
dd41f596
IM
3417 class = sched_class_highest;
3418 for ( ; ; ) {
fb8d4724 3419 p = class->pick_next_task(rq);
dd41f596
IM
3420 if (p)
3421 return p;
3422 /*
3423 * Will never be NULL as the idle class always
3424 * returns a non-NULL p:
3425 */
3426 class = class->next;
3427 }
3428}
1da177e4 3429
dd41f596
IM
3430/*
3431 * schedule() is the main scheduler function.
3432 */
3433asmlinkage void __sched schedule(void)
3434{
3435 struct task_struct *prev, *next;
3436 long *switch_count;
3437 struct rq *rq;
3438 u64 now;
3439 int cpu;
3440
3441need_resched:
3442 preempt_disable();
3443 cpu = smp_processor_id();
3444 rq = cpu_rq(cpu);
3445 rcu_qsctr_inc(cpu);
3446 prev = rq->curr;
3447 switch_count = &prev->nivcsw;
3448
3449 release_kernel_lock(prev);
3450need_resched_nonpreemptible:
3451
3452 schedule_debug(prev);
1da177e4
LT
3453
3454 spin_lock_irq(&rq->lock);
dd41f596 3455 clear_tsk_need_resched(prev);
c1b3da3e
IM
3456 __update_rq_clock(rq);
3457 now = rq->clock;
1da177e4 3458
1da177e4 3459 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3460 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3461 unlikely(signal_pending(prev)))) {
1da177e4 3462 prev->state = TASK_RUNNING;
dd41f596 3463 } else {
8e717b19 3464 deactivate_task(rq, prev, 1, now);
1da177e4 3465 }
dd41f596 3466 switch_count = &prev->nvcsw;
1da177e4
LT
3467 }
3468
dd41f596 3469 if (unlikely(!rq->nr_running))
1da177e4 3470 idle_balance(cpu, rq);
1da177e4 3471
31ee529c 3472 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3473 next = pick_next_task(rq, prev);
1da177e4
LT
3474
3475 sched_info_switch(prev, next);
dd41f596 3476
1da177e4 3477 if (likely(prev != next)) {
1da177e4
LT
3478 rq->nr_switches++;
3479 rq->curr = next;
3480 ++*switch_count;
3481
dd41f596 3482 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3483 } else
3484 spin_unlock_irq(&rq->lock);
3485
dd41f596
IM
3486 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3487 cpu = smp_processor_id();
3488 rq = cpu_rq(cpu);
1da177e4 3489 goto need_resched_nonpreemptible;
dd41f596 3490 }
1da177e4
LT
3491 preempt_enable_no_resched();
3492 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3493 goto need_resched;
3494}
1da177e4
LT
3495EXPORT_SYMBOL(schedule);
3496
3497#ifdef CONFIG_PREEMPT
3498/*
2ed6e34f 3499 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3500 * off of preempt_enable. Kernel preemptions off return from interrupt
3501 * occur there and call schedule directly.
3502 */
3503asmlinkage void __sched preempt_schedule(void)
3504{
3505 struct thread_info *ti = current_thread_info();
3506#ifdef CONFIG_PREEMPT_BKL
3507 struct task_struct *task = current;
3508 int saved_lock_depth;
3509#endif
3510 /*
3511 * If there is a non-zero preempt_count or interrupts are disabled,
3512 * we do not want to preempt the current task. Just return..
3513 */
beed33a8 3514 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3515 return;
3516
3517need_resched:
3518 add_preempt_count(PREEMPT_ACTIVE);
3519 /*
3520 * We keep the big kernel semaphore locked, but we
3521 * clear ->lock_depth so that schedule() doesnt
3522 * auto-release the semaphore:
3523 */
3524#ifdef CONFIG_PREEMPT_BKL
3525 saved_lock_depth = task->lock_depth;
3526 task->lock_depth = -1;
3527#endif
3528 schedule();
3529#ifdef CONFIG_PREEMPT_BKL
3530 task->lock_depth = saved_lock_depth;
3531#endif
3532 sub_preempt_count(PREEMPT_ACTIVE);
3533
3534 /* we could miss a preemption opportunity between schedule and now */
3535 barrier();
3536 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3537 goto need_resched;
3538}
1da177e4
LT
3539EXPORT_SYMBOL(preempt_schedule);
3540
3541/*
2ed6e34f 3542 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3543 * off of irq context.
3544 * Note, that this is called and return with irqs disabled. This will
3545 * protect us against recursive calling from irq.
3546 */
3547asmlinkage void __sched preempt_schedule_irq(void)
3548{
3549 struct thread_info *ti = current_thread_info();
3550#ifdef CONFIG_PREEMPT_BKL
3551 struct task_struct *task = current;
3552 int saved_lock_depth;
3553#endif
2ed6e34f 3554 /* Catch callers which need to be fixed */
1da177e4
LT
3555 BUG_ON(ti->preempt_count || !irqs_disabled());
3556
3557need_resched:
3558 add_preempt_count(PREEMPT_ACTIVE);
3559 /*
3560 * We keep the big kernel semaphore locked, but we
3561 * clear ->lock_depth so that schedule() doesnt
3562 * auto-release the semaphore:
3563 */
3564#ifdef CONFIG_PREEMPT_BKL
3565 saved_lock_depth = task->lock_depth;
3566 task->lock_depth = -1;
3567#endif
3568 local_irq_enable();
3569 schedule();
3570 local_irq_disable();
3571#ifdef CONFIG_PREEMPT_BKL
3572 task->lock_depth = saved_lock_depth;
3573#endif
3574 sub_preempt_count(PREEMPT_ACTIVE);
3575
3576 /* we could miss a preemption opportunity between schedule and now */
3577 barrier();
3578 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3579 goto need_resched;
3580}
3581
3582#endif /* CONFIG_PREEMPT */
3583
95cdf3b7
IM
3584int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3585 void *key)
1da177e4 3586{
48f24c4d 3587 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3588}
1da177e4
LT
3589EXPORT_SYMBOL(default_wake_function);
3590
3591/*
3592 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3593 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3594 * number) then we wake all the non-exclusive tasks and one exclusive task.
3595 *
3596 * There are circumstances in which we can try to wake a task which has already
3597 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3598 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3599 */
3600static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3601 int nr_exclusive, int sync, void *key)
3602{
3603 struct list_head *tmp, *next;
3604
3605 list_for_each_safe(tmp, next, &q->task_list) {
48f24c4d
IM
3606 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3607 unsigned flags = curr->flags;
3608
1da177e4 3609 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3610 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3611 break;
3612 }
3613}
3614
3615/**
3616 * __wake_up - wake up threads blocked on a waitqueue.
3617 * @q: the waitqueue
3618 * @mode: which threads
3619 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3620 * @key: is directly passed to the wakeup function
1da177e4
LT
3621 */
3622void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3623 int nr_exclusive, void *key)
1da177e4
LT
3624{
3625 unsigned long flags;
3626
3627 spin_lock_irqsave(&q->lock, flags);
3628 __wake_up_common(q, mode, nr_exclusive, 0, key);
3629 spin_unlock_irqrestore(&q->lock, flags);
3630}
1da177e4
LT
3631EXPORT_SYMBOL(__wake_up);
3632
3633/*
3634 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3635 */
3636void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3637{
3638 __wake_up_common(q, mode, 1, 0, NULL);
3639}
3640
3641/**
67be2dd1 3642 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3643 * @q: the waitqueue
3644 * @mode: which threads
3645 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3646 *
3647 * The sync wakeup differs that the waker knows that it will schedule
3648 * away soon, so while the target thread will be woken up, it will not
3649 * be migrated to another CPU - ie. the two threads are 'synchronized'
3650 * with each other. This can prevent needless bouncing between CPUs.
3651 *
3652 * On UP it can prevent extra preemption.
3653 */
95cdf3b7
IM
3654void fastcall
3655__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3656{
3657 unsigned long flags;
3658 int sync = 1;
3659
3660 if (unlikely(!q))
3661 return;
3662
3663 if (unlikely(!nr_exclusive))
3664 sync = 0;
3665
3666 spin_lock_irqsave(&q->lock, flags);
3667 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3668 spin_unlock_irqrestore(&q->lock, flags);
3669}
3670EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3671
3672void fastcall complete(struct completion *x)
3673{
3674 unsigned long flags;
3675
3676 spin_lock_irqsave(&x->wait.lock, flags);
3677 x->done++;
3678 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3679 1, 0, NULL);
3680 spin_unlock_irqrestore(&x->wait.lock, flags);
3681}
3682EXPORT_SYMBOL(complete);
3683
3684void fastcall complete_all(struct completion *x)
3685{
3686 unsigned long flags;
3687
3688 spin_lock_irqsave(&x->wait.lock, flags);
3689 x->done += UINT_MAX/2;
3690 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3691 0, 0, NULL);
3692 spin_unlock_irqrestore(&x->wait.lock, flags);
3693}
3694EXPORT_SYMBOL(complete_all);
3695
3696void fastcall __sched wait_for_completion(struct completion *x)
3697{
3698 might_sleep();
48f24c4d 3699
1da177e4
LT
3700 spin_lock_irq(&x->wait.lock);
3701 if (!x->done) {
3702 DECLARE_WAITQUEUE(wait, current);
3703
3704 wait.flags |= WQ_FLAG_EXCLUSIVE;
3705 __add_wait_queue_tail(&x->wait, &wait);
3706 do {
3707 __set_current_state(TASK_UNINTERRUPTIBLE);
3708 spin_unlock_irq(&x->wait.lock);
3709 schedule();
3710 spin_lock_irq(&x->wait.lock);
3711 } while (!x->done);
3712 __remove_wait_queue(&x->wait, &wait);
3713 }
3714 x->done--;
3715 spin_unlock_irq(&x->wait.lock);
3716}
3717EXPORT_SYMBOL(wait_for_completion);
3718
3719unsigned long fastcall __sched
3720wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3721{
3722 might_sleep();
3723
3724 spin_lock_irq(&x->wait.lock);
3725 if (!x->done) {
3726 DECLARE_WAITQUEUE(wait, current);
3727
3728 wait.flags |= WQ_FLAG_EXCLUSIVE;
3729 __add_wait_queue_tail(&x->wait, &wait);
3730 do {
3731 __set_current_state(TASK_UNINTERRUPTIBLE);
3732 spin_unlock_irq(&x->wait.lock);
3733 timeout = schedule_timeout(timeout);
3734 spin_lock_irq(&x->wait.lock);
3735 if (!timeout) {
3736 __remove_wait_queue(&x->wait, &wait);
3737 goto out;
3738 }
3739 } while (!x->done);
3740 __remove_wait_queue(&x->wait, &wait);
3741 }
3742 x->done--;
3743out:
3744 spin_unlock_irq(&x->wait.lock);
3745 return timeout;
3746}
3747EXPORT_SYMBOL(wait_for_completion_timeout);
3748
3749int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3750{
3751 int ret = 0;
3752
3753 might_sleep();
3754
3755 spin_lock_irq(&x->wait.lock);
3756 if (!x->done) {
3757 DECLARE_WAITQUEUE(wait, current);
3758
3759 wait.flags |= WQ_FLAG_EXCLUSIVE;
3760 __add_wait_queue_tail(&x->wait, &wait);
3761 do {
3762 if (signal_pending(current)) {
3763 ret = -ERESTARTSYS;
3764 __remove_wait_queue(&x->wait, &wait);
3765 goto out;
3766 }
3767 __set_current_state(TASK_INTERRUPTIBLE);
3768 spin_unlock_irq(&x->wait.lock);
3769 schedule();
3770 spin_lock_irq(&x->wait.lock);
3771 } while (!x->done);
3772 __remove_wait_queue(&x->wait, &wait);
3773 }
3774 x->done--;
3775out:
3776 spin_unlock_irq(&x->wait.lock);
3777
3778 return ret;
3779}
3780EXPORT_SYMBOL(wait_for_completion_interruptible);
3781
3782unsigned long fastcall __sched
3783wait_for_completion_interruptible_timeout(struct completion *x,
3784 unsigned long timeout)
3785{
3786 might_sleep();
3787
3788 spin_lock_irq(&x->wait.lock);
3789 if (!x->done) {
3790 DECLARE_WAITQUEUE(wait, current);
3791
3792 wait.flags |= WQ_FLAG_EXCLUSIVE;
3793 __add_wait_queue_tail(&x->wait, &wait);
3794 do {
3795 if (signal_pending(current)) {
3796 timeout = -ERESTARTSYS;
3797 __remove_wait_queue(&x->wait, &wait);
3798 goto out;
3799 }
3800 __set_current_state(TASK_INTERRUPTIBLE);
3801 spin_unlock_irq(&x->wait.lock);
3802 timeout = schedule_timeout(timeout);
3803 spin_lock_irq(&x->wait.lock);
3804 if (!timeout) {
3805 __remove_wait_queue(&x->wait, &wait);
3806 goto out;
3807 }
3808 } while (!x->done);
3809 __remove_wait_queue(&x->wait, &wait);
3810 }
3811 x->done--;
3812out:
3813 spin_unlock_irq(&x->wait.lock);
3814 return timeout;
3815}
3816EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3817
0fec171c
IM
3818static inline void
3819sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3820{
3821 spin_lock_irqsave(&q->lock, *flags);
3822 __add_wait_queue(q, wait);
1da177e4 3823 spin_unlock(&q->lock);
0fec171c 3824}
1da177e4 3825
0fec171c
IM
3826static inline void
3827sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3828{
3829 spin_lock_irq(&q->lock);
3830 __remove_wait_queue(q, wait);
3831 spin_unlock_irqrestore(&q->lock, *flags);
3832}
1da177e4 3833
0fec171c 3834void __sched interruptible_sleep_on(wait_queue_head_t *q)
1da177e4 3835{
0fec171c
IM
3836 unsigned long flags;
3837 wait_queue_t wait;
3838
3839 init_waitqueue_entry(&wait, current);
1da177e4
LT
3840
3841 current->state = TASK_INTERRUPTIBLE;
3842
0fec171c 3843 sleep_on_head(q, &wait, &flags);
1da177e4 3844 schedule();
0fec171c 3845 sleep_on_tail(q, &wait, &flags);
1da177e4 3846}
1da177e4
LT
3847EXPORT_SYMBOL(interruptible_sleep_on);
3848
0fec171c 3849long __sched
95cdf3b7 3850interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3851{
0fec171c
IM
3852 unsigned long flags;
3853 wait_queue_t wait;
3854
3855 init_waitqueue_entry(&wait, current);
1da177e4
LT
3856
3857 current->state = TASK_INTERRUPTIBLE;
3858
0fec171c 3859 sleep_on_head(q, &wait, &flags);
1da177e4 3860 timeout = schedule_timeout(timeout);
0fec171c 3861 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3862
3863 return timeout;
3864}
1da177e4
LT
3865EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3866
0fec171c 3867void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3868{
0fec171c
IM
3869 unsigned long flags;
3870 wait_queue_t wait;
3871
3872 init_waitqueue_entry(&wait, current);
1da177e4
LT
3873
3874 current->state = TASK_UNINTERRUPTIBLE;
3875
0fec171c 3876 sleep_on_head(q, &wait, &flags);
1da177e4 3877 schedule();
0fec171c 3878 sleep_on_tail(q, &wait, &flags);
1da177e4 3879}
1da177e4
LT
3880EXPORT_SYMBOL(sleep_on);
3881
0fec171c 3882long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3883{
0fec171c
IM
3884 unsigned long flags;
3885 wait_queue_t wait;
3886
3887 init_waitqueue_entry(&wait, current);
1da177e4
LT
3888
3889 current->state = TASK_UNINTERRUPTIBLE;
3890
0fec171c 3891 sleep_on_head(q, &wait, &flags);
1da177e4 3892 timeout = schedule_timeout(timeout);
0fec171c 3893 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3894
3895 return timeout;
3896}
1da177e4
LT
3897EXPORT_SYMBOL(sleep_on_timeout);
3898
b29739f9
IM
3899#ifdef CONFIG_RT_MUTEXES
3900
3901/*
3902 * rt_mutex_setprio - set the current priority of a task
3903 * @p: task
3904 * @prio: prio value (kernel-internal form)
3905 *
3906 * This function changes the 'effective' priority of a task. It does
3907 * not touch ->normal_prio like __setscheduler().
3908 *
3909 * Used by the rt_mutex code to implement priority inheritance logic.
3910 */
36c8b586 3911void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
3912{
3913 unsigned long flags;
dd41f596 3914 int oldprio, on_rq;
70b97a7f 3915 struct rq *rq;
dd41f596 3916 u64 now;
b29739f9
IM
3917
3918 BUG_ON(prio < 0 || prio > MAX_PRIO);
3919
3920 rq = task_rq_lock(p, &flags);
a8e504d2
IM
3921 update_rq_clock(rq);
3922 now = rq->clock;
b29739f9 3923
d5f9f942 3924 oldprio = p->prio;
dd41f596
IM
3925 on_rq = p->se.on_rq;
3926 if (on_rq)
3927 dequeue_task(rq, p, 0, now);
3928
3929 if (rt_prio(prio))
3930 p->sched_class = &rt_sched_class;
3931 else
3932 p->sched_class = &fair_sched_class;
3933
b29739f9
IM
3934 p->prio = prio;
3935
dd41f596
IM
3936 if (on_rq) {
3937 enqueue_task(rq, p, 0, now);
b29739f9
IM
3938 /*
3939 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
3940 * our priority decreased, or if we are not currently running on
3941 * this runqueue and our priority is higher than the current's
b29739f9 3942 */
d5f9f942
AM
3943 if (task_running(rq, p)) {
3944 if (p->prio > oldprio)
3945 resched_task(rq->curr);
dd41f596
IM
3946 } else {
3947 check_preempt_curr(rq, p);
3948 }
b29739f9
IM
3949 }
3950 task_rq_unlock(rq, &flags);
3951}
3952
3953#endif
3954
36c8b586 3955void set_user_nice(struct task_struct *p, long nice)
1da177e4 3956{
dd41f596 3957 int old_prio, delta, on_rq;
1da177e4 3958 unsigned long flags;
70b97a7f 3959 struct rq *rq;
dd41f596 3960 u64 now;
1da177e4
LT
3961
3962 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3963 return;
3964 /*
3965 * We have to be careful, if called from sys_setpriority(),
3966 * the task might be in the middle of scheduling on another CPU.
3967 */
3968 rq = task_rq_lock(p, &flags);
a8e504d2
IM
3969 update_rq_clock(rq);
3970 now = rq->clock;
1da177e4
LT
3971 /*
3972 * The RT priorities are set via sched_setscheduler(), but we still
3973 * allow the 'normal' nice value to be set - but as expected
3974 * it wont have any effect on scheduling until the task is
dd41f596 3975 * SCHED_FIFO/SCHED_RR:
1da177e4 3976 */
e05606d3 3977 if (task_has_rt_policy(p)) {
1da177e4
LT
3978 p->static_prio = NICE_TO_PRIO(nice);
3979 goto out_unlock;
3980 }
dd41f596
IM
3981 on_rq = p->se.on_rq;
3982 if (on_rq) {
3983 dequeue_task(rq, p, 0, now);
3984 dec_load(rq, p, now);
2dd73a4f 3985 }
1da177e4 3986
1da177e4 3987 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3988 set_load_weight(p);
b29739f9
IM
3989 old_prio = p->prio;
3990 p->prio = effective_prio(p);
3991 delta = p->prio - old_prio;
1da177e4 3992
dd41f596
IM
3993 if (on_rq) {
3994 enqueue_task(rq, p, 0, now);
29b4b623 3995 inc_load(rq, p);
1da177e4 3996 /*
d5f9f942
AM
3997 * If the task increased its priority or is running and
3998 * lowered its priority, then reschedule its CPU:
1da177e4 3999 */
d5f9f942 4000 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4001 resched_task(rq->curr);
4002 }
4003out_unlock:
4004 task_rq_unlock(rq, &flags);
4005}
1da177e4
LT
4006EXPORT_SYMBOL(set_user_nice);
4007
e43379f1
MM
4008/*
4009 * can_nice - check if a task can reduce its nice value
4010 * @p: task
4011 * @nice: nice value
4012 */
36c8b586 4013int can_nice(const struct task_struct *p, const int nice)
e43379f1 4014{
024f4747
MM
4015 /* convert nice value [19,-20] to rlimit style value [1,40] */
4016 int nice_rlim = 20 - nice;
48f24c4d 4017
e43379f1
MM
4018 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4019 capable(CAP_SYS_NICE));
4020}
4021
1da177e4
LT
4022#ifdef __ARCH_WANT_SYS_NICE
4023
4024/*
4025 * sys_nice - change the priority of the current process.
4026 * @increment: priority increment
4027 *
4028 * sys_setpriority is a more generic, but much slower function that
4029 * does similar things.
4030 */
4031asmlinkage long sys_nice(int increment)
4032{
48f24c4d 4033 long nice, retval;
1da177e4
LT
4034
4035 /*
4036 * Setpriority might change our priority at the same moment.
4037 * We don't have to worry. Conceptually one call occurs first
4038 * and we have a single winner.
4039 */
e43379f1
MM
4040 if (increment < -40)
4041 increment = -40;
1da177e4
LT
4042 if (increment > 40)
4043 increment = 40;
4044
4045 nice = PRIO_TO_NICE(current->static_prio) + increment;
4046 if (nice < -20)
4047 nice = -20;
4048 if (nice > 19)
4049 nice = 19;
4050
e43379f1
MM
4051 if (increment < 0 && !can_nice(current, nice))
4052 return -EPERM;
4053
1da177e4
LT
4054 retval = security_task_setnice(current, nice);
4055 if (retval)
4056 return retval;
4057
4058 set_user_nice(current, nice);
4059 return 0;
4060}
4061
4062#endif
4063
4064/**
4065 * task_prio - return the priority value of a given task.
4066 * @p: the task in question.
4067 *
4068 * This is the priority value as seen by users in /proc.
4069 * RT tasks are offset by -200. Normal tasks are centered
4070 * around 0, value goes from -16 to +15.
4071 */
36c8b586 4072int task_prio(const struct task_struct *p)
1da177e4
LT
4073{
4074 return p->prio - MAX_RT_PRIO;
4075}
4076
4077/**
4078 * task_nice - return the nice value of a given task.
4079 * @p: the task in question.
4080 */
36c8b586 4081int task_nice(const struct task_struct *p)
1da177e4
LT
4082{
4083 return TASK_NICE(p);
4084}
1da177e4 4085EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4086
4087/**
4088 * idle_cpu - is a given cpu idle currently?
4089 * @cpu: the processor in question.
4090 */
4091int idle_cpu(int cpu)
4092{
4093 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4094}
4095
1da177e4
LT
4096/**
4097 * idle_task - return the idle task for a given cpu.
4098 * @cpu: the processor in question.
4099 */
36c8b586 4100struct task_struct *idle_task(int cpu)
1da177e4
LT
4101{
4102 return cpu_rq(cpu)->idle;
4103}
4104
4105/**
4106 * find_process_by_pid - find a process with a matching PID value.
4107 * @pid: the pid in question.
4108 */
36c8b586 4109static inline struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4110{
4111 return pid ? find_task_by_pid(pid) : current;
4112}
4113
4114/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4115static void
4116__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4117{
dd41f596 4118 BUG_ON(p->se.on_rq);
48f24c4d 4119
1da177e4 4120 p->policy = policy;
dd41f596
IM
4121 switch (p->policy) {
4122 case SCHED_NORMAL:
4123 case SCHED_BATCH:
4124 case SCHED_IDLE:
4125 p->sched_class = &fair_sched_class;
4126 break;
4127 case SCHED_FIFO:
4128 case SCHED_RR:
4129 p->sched_class = &rt_sched_class;
4130 break;
4131 }
4132
1da177e4 4133 p->rt_priority = prio;
b29739f9
IM
4134 p->normal_prio = normal_prio(p);
4135 /* we are holding p->pi_lock already */
4136 p->prio = rt_mutex_getprio(p);
2dd73a4f 4137 set_load_weight(p);
1da177e4
LT
4138}
4139
4140/**
72fd4a35 4141 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4142 * @p: the task in question.
4143 * @policy: new policy.
4144 * @param: structure containing the new RT priority.
5fe1d75f 4145 *
72fd4a35 4146 * NOTE that the task may be already dead.
1da177e4 4147 */
95cdf3b7
IM
4148int sched_setscheduler(struct task_struct *p, int policy,
4149 struct sched_param *param)
1da177e4 4150{
dd41f596 4151 int retval, oldprio, oldpolicy = -1, on_rq;
1da177e4 4152 unsigned long flags;
70b97a7f 4153 struct rq *rq;
1da177e4 4154
66e5393a
SR
4155 /* may grab non-irq protected spin_locks */
4156 BUG_ON(in_interrupt());
1da177e4
LT
4157recheck:
4158 /* double check policy once rq lock held */
4159 if (policy < 0)
4160 policy = oldpolicy = p->policy;
4161 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4162 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4163 policy != SCHED_IDLE)
b0a9499c 4164 return -EINVAL;
1da177e4
LT
4165 /*
4166 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4167 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4168 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4169 */
4170 if (param->sched_priority < 0 ||
95cdf3b7 4171 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4172 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4173 return -EINVAL;
e05606d3 4174 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4175 return -EINVAL;
4176
37e4ab3f
OC
4177 /*
4178 * Allow unprivileged RT tasks to decrease priority:
4179 */
4180 if (!capable(CAP_SYS_NICE)) {
e05606d3 4181 if (rt_policy(policy)) {
8dc3e909 4182 unsigned long rlim_rtprio;
8dc3e909
ON
4183
4184 if (!lock_task_sighand(p, &flags))
4185 return -ESRCH;
4186 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4187 unlock_task_sighand(p, &flags);
4188
4189 /* can't set/change the rt policy */
4190 if (policy != p->policy && !rlim_rtprio)
4191 return -EPERM;
4192
4193 /* can't increase priority */
4194 if (param->sched_priority > p->rt_priority &&
4195 param->sched_priority > rlim_rtprio)
4196 return -EPERM;
4197 }
dd41f596
IM
4198 /*
4199 * Like positive nice levels, dont allow tasks to
4200 * move out of SCHED_IDLE either:
4201 */
4202 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4203 return -EPERM;
5fe1d75f 4204
37e4ab3f
OC
4205 /* can't change other user's priorities */
4206 if ((current->euid != p->euid) &&
4207 (current->euid != p->uid))
4208 return -EPERM;
4209 }
1da177e4
LT
4210
4211 retval = security_task_setscheduler(p, policy, param);
4212 if (retval)
4213 return retval;
b29739f9
IM
4214 /*
4215 * make sure no PI-waiters arrive (or leave) while we are
4216 * changing the priority of the task:
4217 */
4218 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4219 /*
4220 * To be able to change p->policy safely, the apropriate
4221 * runqueue lock must be held.
4222 */
b29739f9 4223 rq = __task_rq_lock(p);
1da177e4
LT
4224 /* recheck policy now with rq lock held */
4225 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4226 policy = oldpolicy = -1;
b29739f9
IM
4227 __task_rq_unlock(rq);
4228 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4229 goto recheck;
4230 }
dd41f596 4231 on_rq = p->se.on_rq;
a8e504d2
IM
4232 if (on_rq) {
4233 update_rq_clock(rq);
4234 deactivate_task(rq, p, 0, rq->clock);
4235 }
1da177e4 4236 oldprio = p->prio;
dd41f596
IM
4237 __setscheduler(rq, p, policy, param->sched_priority);
4238 if (on_rq) {
4239 activate_task(rq, p, 0);
1da177e4
LT
4240 /*
4241 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4242 * our priority decreased, or if we are not currently running on
4243 * this runqueue and our priority is higher than the current's
1da177e4 4244 */
d5f9f942
AM
4245 if (task_running(rq, p)) {
4246 if (p->prio > oldprio)
4247 resched_task(rq->curr);
dd41f596
IM
4248 } else {
4249 check_preempt_curr(rq, p);
4250 }
1da177e4 4251 }
b29739f9
IM
4252 __task_rq_unlock(rq);
4253 spin_unlock_irqrestore(&p->pi_lock, flags);
4254
95e02ca9
TG
4255 rt_mutex_adjust_pi(p);
4256
1da177e4
LT
4257 return 0;
4258}
4259EXPORT_SYMBOL_GPL(sched_setscheduler);
4260
95cdf3b7
IM
4261static int
4262do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4263{
1da177e4
LT
4264 struct sched_param lparam;
4265 struct task_struct *p;
36c8b586 4266 int retval;
1da177e4
LT
4267
4268 if (!param || pid < 0)
4269 return -EINVAL;
4270 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4271 return -EFAULT;
5fe1d75f
ON
4272
4273 rcu_read_lock();
4274 retval = -ESRCH;
1da177e4 4275 p = find_process_by_pid(pid);
5fe1d75f
ON
4276 if (p != NULL)
4277 retval = sched_setscheduler(p, policy, &lparam);
4278 rcu_read_unlock();
36c8b586 4279
1da177e4
LT
4280 return retval;
4281}
4282
4283/**
4284 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4285 * @pid: the pid in question.
4286 * @policy: new policy.
4287 * @param: structure containing the new RT priority.
4288 */
4289asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4290 struct sched_param __user *param)
4291{
c21761f1
JB
4292 /* negative values for policy are not valid */
4293 if (policy < 0)
4294 return -EINVAL;
4295
1da177e4
LT
4296 return do_sched_setscheduler(pid, policy, param);
4297}
4298
4299/**
4300 * sys_sched_setparam - set/change the RT priority of a thread
4301 * @pid: the pid in question.
4302 * @param: structure containing the new RT priority.
4303 */
4304asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4305{
4306 return do_sched_setscheduler(pid, -1, param);
4307}
4308
4309/**
4310 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4311 * @pid: the pid in question.
4312 */
4313asmlinkage long sys_sched_getscheduler(pid_t pid)
4314{
36c8b586 4315 struct task_struct *p;
1da177e4 4316 int retval = -EINVAL;
1da177e4
LT
4317
4318 if (pid < 0)
4319 goto out_nounlock;
4320
4321 retval = -ESRCH;
4322 read_lock(&tasklist_lock);
4323 p = find_process_by_pid(pid);
4324 if (p) {
4325 retval = security_task_getscheduler(p);
4326 if (!retval)
4327 retval = p->policy;
4328 }
4329 read_unlock(&tasklist_lock);
4330
4331out_nounlock:
4332 return retval;
4333}
4334
4335/**
4336 * sys_sched_getscheduler - get the RT priority of a thread
4337 * @pid: the pid in question.
4338 * @param: structure containing the RT priority.
4339 */
4340asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4341{
4342 struct sched_param lp;
36c8b586 4343 struct task_struct *p;
1da177e4 4344 int retval = -EINVAL;
1da177e4
LT
4345
4346 if (!param || pid < 0)
4347 goto out_nounlock;
4348
4349 read_lock(&tasklist_lock);
4350 p = find_process_by_pid(pid);
4351 retval = -ESRCH;
4352 if (!p)
4353 goto out_unlock;
4354
4355 retval = security_task_getscheduler(p);
4356 if (retval)
4357 goto out_unlock;
4358
4359 lp.sched_priority = p->rt_priority;
4360 read_unlock(&tasklist_lock);
4361
4362 /*
4363 * This one might sleep, we cannot do it with a spinlock held ...
4364 */
4365 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4366
4367out_nounlock:
4368 return retval;
4369
4370out_unlock:
4371 read_unlock(&tasklist_lock);
4372 return retval;
4373}
4374
4375long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4376{
1da177e4 4377 cpumask_t cpus_allowed;
36c8b586
IM
4378 struct task_struct *p;
4379 int retval;
1da177e4 4380
5be9361c 4381 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4382 read_lock(&tasklist_lock);
4383
4384 p = find_process_by_pid(pid);
4385 if (!p) {
4386 read_unlock(&tasklist_lock);
5be9361c 4387 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4388 return -ESRCH;
4389 }
4390
4391 /*
4392 * It is not safe to call set_cpus_allowed with the
4393 * tasklist_lock held. We will bump the task_struct's
4394 * usage count and then drop tasklist_lock.
4395 */
4396 get_task_struct(p);
4397 read_unlock(&tasklist_lock);
4398
4399 retval = -EPERM;
4400 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4401 !capable(CAP_SYS_NICE))
4402 goto out_unlock;
4403
e7834f8f
DQ
4404 retval = security_task_setscheduler(p, 0, NULL);
4405 if (retval)
4406 goto out_unlock;
4407
1da177e4
LT
4408 cpus_allowed = cpuset_cpus_allowed(p);
4409 cpus_and(new_mask, new_mask, cpus_allowed);
4410 retval = set_cpus_allowed(p, new_mask);
4411
4412out_unlock:
4413 put_task_struct(p);
5be9361c 4414 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4415 return retval;
4416}
4417
4418static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4419 cpumask_t *new_mask)
4420{
4421 if (len < sizeof(cpumask_t)) {
4422 memset(new_mask, 0, sizeof(cpumask_t));
4423 } else if (len > sizeof(cpumask_t)) {
4424 len = sizeof(cpumask_t);
4425 }
4426 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4427}
4428
4429/**
4430 * sys_sched_setaffinity - set the cpu affinity of a process
4431 * @pid: pid of the process
4432 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4433 * @user_mask_ptr: user-space pointer to the new cpu mask
4434 */
4435asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4436 unsigned long __user *user_mask_ptr)
4437{
4438 cpumask_t new_mask;
4439 int retval;
4440
4441 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4442 if (retval)
4443 return retval;
4444
4445 return sched_setaffinity(pid, new_mask);
4446}
4447
4448/*
4449 * Represents all cpu's present in the system
4450 * In systems capable of hotplug, this map could dynamically grow
4451 * as new cpu's are detected in the system via any platform specific
4452 * method, such as ACPI for e.g.
4453 */
4454
4cef0c61 4455cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4456EXPORT_SYMBOL(cpu_present_map);
4457
4458#ifndef CONFIG_SMP
4cef0c61 4459cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4460EXPORT_SYMBOL(cpu_online_map);
4461
4cef0c61 4462cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4463EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4464#endif
4465
4466long sched_getaffinity(pid_t pid, cpumask_t *mask)
4467{
36c8b586 4468 struct task_struct *p;
1da177e4 4469 int retval;
1da177e4 4470
5be9361c 4471 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4472 read_lock(&tasklist_lock);
4473
4474 retval = -ESRCH;
4475 p = find_process_by_pid(pid);
4476 if (!p)
4477 goto out_unlock;
4478
e7834f8f
DQ
4479 retval = security_task_getscheduler(p);
4480 if (retval)
4481 goto out_unlock;
4482
2f7016d9 4483 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4484
4485out_unlock:
4486 read_unlock(&tasklist_lock);
5be9361c 4487 mutex_unlock(&sched_hotcpu_mutex);
1da177e4 4488
9531b62f 4489 return retval;
1da177e4
LT
4490}
4491
4492/**
4493 * sys_sched_getaffinity - get the cpu affinity of a process
4494 * @pid: pid of the process
4495 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4496 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4497 */
4498asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4499 unsigned long __user *user_mask_ptr)
4500{
4501 int ret;
4502 cpumask_t mask;
4503
4504 if (len < sizeof(cpumask_t))
4505 return -EINVAL;
4506
4507 ret = sched_getaffinity(pid, &mask);
4508 if (ret < 0)
4509 return ret;
4510
4511 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4512 return -EFAULT;
4513
4514 return sizeof(cpumask_t);
4515}
4516
4517/**
4518 * sys_sched_yield - yield the current processor to other threads.
4519 *
dd41f596
IM
4520 * This function yields the current CPU to other tasks. If there are no
4521 * other threads running on this CPU then this function will return.
1da177e4
LT
4522 */
4523asmlinkage long sys_sched_yield(void)
4524{
70b97a7f 4525 struct rq *rq = this_rq_lock();
1da177e4
LT
4526
4527 schedstat_inc(rq, yld_cnt);
dd41f596 4528 if (unlikely(rq->nr_running == 1))
1da177e4 4529 schedstat_inc(rq, yld_act_empty);
dd41f596
IM
4530 else
4531 current->sched_class->yield_task(rq, current);
1da177e4
LT
4532
4533 /*
4534 * Since we are going to call schedule() anyway, there's
4535 * no need to preempt or enable interrupts:
4536 */
4537 __release(rq->lock);
8a25d5de 4538 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4539 _raw_spin_unlock(&rq->lock);
4540 preempt_enable_no_resched();
4541
4542 schedule();
4543
4544 return 0;
4545}
4546
e7b38404 4547static void __cond_resched(void)
1da177e4 4548{
8e0a43d8
IM
4549#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4550 __might_sleep(__FILE__, __LINE__);
4551#endif
5bbcfd90
IM
4552 /*
4553 * The BKS might be reacquired before we have dropped
4554 * PREEMPT_ACTIVE, which could trigger a second
4555 * cond_resched() call.
4556 */
1da177e4
LT
4557 do {
4558 add_preempt_count(PREEMPT_ACTIVE);
4559 schedule();
4560 sub_preempt_count(PREEMPT_ACTIVE);
4561 } while (need_resched());
4562}
4563
4564int __sched cond_resched(void)
4565{
9414232f
IM
4566 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4567 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4568 __cond_resched();
4569 return 1;
4570 }
4571 return 0;
4572}
1da177e4
LT
4573EXPORT_SYMBOL(cond_resched);
4574
4575/*
4576 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4577 * call schedule, and on return reacquire the lock.
4578 *
4579 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4580 * operations here to prevent schedule() from being called twice (once via
4581 * spin_unlock(), once by hand).
4582 */
95cdf3b7 4583int cond_resched_lock(spinlock_t *lock)
1da177e4 4584{
6df3cecb
JK
4585 int ret = 0;
4586
1da177e4
LT
4587 if (need_lockbreak(lock)) {
4588 spin_unlock(lock);
4589 cpu_relax();
6df3cecb 4590 ret = 1;
1da177e4
LT
4591 spin_lock(lock);
4592 }
9414232f 4593 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4594 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4595 _raw_spin_unlock(lock);
4596 preempt_enable_no_resched();
4597 __cond_resched();
6df3cecb 4598 ret = 1;
1da177e4 4599 spin_lock(lock);
1da177e4 4600 }
6df3cecb 4601 return ret;
1da177e4 4602}
1da177e4
LT
4603EXPORT_SYMBOL(cond_resched_lock);
4604
4605int __sched cond_resched_softirq(void)
4606{
4607 BUG_ON(!in_softirq());
4608
9414232f 4609 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4610 local_bh_enable();
1da177e4
LT
4611 __cond_resched();
4612 local_bh_disable();
4613 return 1;
4614 }
4615 return 0;
4616}
1da177e4
LT
4617EXPORT_SYMBOL(cond_resched_softirq);
4618
1da177e4
LT
4619/**
4620 * yield - yield the current processor to other threads.
4621 *
72fd4a35 4622 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4623 * thread runnable and calls sys_sched_yield().
4624 */
4625void __sched yield(void)
4626{
4627 set_current_state(TASK_RUNNING);
4628 sys_sched_yield();
4629}
1da177e4
LT
4630EXPORT_SYMBOL(yield);
4631
4632/*
4633 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4634 * that process accounting knows that this is a task in IO wait state.
4635 *
4636 * But don't do that if it is a deliberate, throttling IO wait (this task
4637 * has set its backing_dev_info: the queue against which it should throttle)
4638 */
4639void __sched io_schedule(void)
4640{
70b97a7f 4641 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4642
0ff92245 4643 delayacct_blkio_start();
1da177e4
LT
4644 atomic_inc(&rq->nr_iowait);
4645 schedule();
4646 atomic_dec(&rq->nr_iowait);
0ff92245 4647 delayacct_blkio_end();
1da177e4 4648}
1da177e4
LT
4649EXPORT_SYMBOL(io_schedule);
4650
4651long __sched io_schedule_timeout(long timeout)
4652{
70b97a7f 4653 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4654 long ret;
4655
0ff92245 4656 delayacct_blkio_start();
1da177e4
LT
4657 atomic_inc(&rq->nr_iowait);
4658 ret = schedule_timeout(timeout);
4659 atomic_dec(&rq->nr_iowait);
0ff92245 4660 delayacct_blkio_end();
1da177e4
LT
4661 return ret;
4662}
4663
4664/**
4665 * sys_sched_get_priority_max - return maximum RT priority.
4666 * @policy: scheduling class.
4667 *
4668 * this syscall returns the maximum rt_priority that can be used
4669 * by a given scheduling class.
4670 */
4671asmlinkage long sys_sched_get_priority_max(int policy)
4672{
4673 int ret = -EINVAL;
4674
4675 switch (policy) {
4676 case SCHED_FIFO:
4677 case SCHED_RR:
4678 ret = MAX_USER_RT_PRIO-1;
4679 break;
4680 case SCHED_NORMAL:
b0a9499c 4681 case SCHED_BATCH:
dd41f596 4682 case SCHED_IDLE:
1da177e4
LT
4683 ret = 0;
4684 break;
4685 }
4686 return ret;
4687}
4688
4689/**
4690 * sys_sched_get_priority_min - return minimum RT priority.
4691 * @policy: scheduling class.
4692 *
4693 * this syscall returns the minimum rt_priority that can be used
4694 * by a given scheduling class.
4695 */
4696asmlinkage long sys_sched_get_priority_min(int policy)
4697{
4698 int ret = -EINVAL;
4699
4700 switch (policy) {
4701 case SCHED_FIFO:
4702 case SCHED_RR:
4703 ret = 1;
4704 break;
4705 case SCHED_NORMAL:
b0a9499c 4706 case SCHED_BATCH:
dd41f596 4707 case SCHED_IDLE:
1da177e4
LT
4708 ret = 0;
4709 }
4710 return ret;
4711}
4712
4713/**
4714 * sys_sched_rr_get_interval - return the default timeslice of a process.
4715 * @pid: pid of the process.
4716 * @interval: userspace pointer to the timeslice value.
4717 *
4718 * this syscall writes the default timeslice value of a given process
4719 * into the user-space timespec buffer. A value of '0' means infinity.
4720 */
4721asmlinkage
4722long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4723{
36c8b586 4724 struct task_struct *p;
1da177e4
LT
4725 int retval = -EINVAL;
4726 struct timespec t;
1da177e4
LT
4727
4728 if (pid < 0)
4729 goto out_nounlock;
4730
4731 retval = -ESRCH;
4732 read_lock(&tasklist_lock);
4733 p = find_process_by_pid(pid);
4734 if (!p)
4735 goto out_unlock;
4736
4737 retval = security_task_getscheduler(p);
4738 if (retval)
4739 goto out_unlock;
4740
b78709cf 4741 jiffies_to_timespec(p->policy == SCHED_FIFO ?
dd41f596 4742 0 : static_prio_timeslice(p->static_prio), &t);
1da177e4
LT
4743 read_unlock(&tasklist_lock);
4744 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4745out_nounlock:
4746 return retval;
4747out_unlock:
4748 read_unlock(&tasklist_lock);
4749 return retval;
4750}
4751
2ed6e34f 4752static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4753
4754static void show_task(struct task_struct *p)
1da177e4 4755{
1da177e4 4756 unsigned long free = 0;
36c8b586 4757 unsigned state;
1da177e4 4758
1da177e4 4759 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4760 printk("%-13.13s %c", p->comm,
4761 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4762#if BITS_PER_LONG == 32
1da177e4 4763 if (state == TASK_RUNNING)
4bd77321 4764 printk(" running ");
1da177e4 4765 else
4bd77321 4766 printk(" %08lx ", thread_saved_pc(p));
1da177e4
LT
4767#else
4768 if (state == TASK_RUNNING)
4bd77321 4769 printk(" running task ");
1da177e4
LT
4770 else
4771 printk(" %016lx ", thread_saved_pc(p));
4772#endif
4773#ifdef CONFIG_DEBUG_STACK_USAGE
4774 {
10ebffde 4775 unsigned long *n = end_of_stack(p);
1da177e4
LT
4776 while (!*n)
4777 n++;
10ebffde 4778 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4779 }
4780#endif
4bd77321 4781 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
1da177e4
LT
4782
4783 if (state != TASK_RUNNING)
4784 show_stack(p, NULL);
4785}
4786
e59e2ae2 4787void show_state_filter(unsigned long state_filter)
1da177e4 4788{
36c8b586 4789 struct task_struct *g, *p;
1da177e4 4790
4bd77321
IM
4791#if BITS_PER_LONG == 32
4792 printk(KERN_INFO
4793 " task PC stack pid father\n");
1da177e4 4794#else
4bd77321
IM
4795 printk(KERN_INFO
4796 " task PC stack pid father\n");
1da177e4
LT
4797#endif
4798 read_lock(&tasklist_lock);
4799 do_each_thread(g, p) {
4800 /*
4801 * reset the NMI-timeout, listing all files on a slow
4802 * console might take alot of time:
4803 */
4804 touch_nmi_watchdog();
39bc89fd 4805 if (!state_filter || (p->state & state_filter))
e59e2ae2 4806 show_task(p);
1da177e4
LT
4807 } while_each_thread(g, p);
4808
04c9167f
JF
4809 touch_all_softlockup_watchdogs();
4810
dd41f596
IM
4811#ifdef CONFIG_SCHED_DEBUG
4812 sysrq_sched_debug_show();
4813#endif
1da177e4 4814 read_unlock(&tasklist_lock);
e59e2ae2
IM
4815 /*
4816 * Only show locks if all tasks are dumped:
4817 */
4818 if (state_filter == -1)
4819 debug_show_all_locks();
1da177e4
LT
4820}
4821
1df21055
IM
4822void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4823{
dd41f596 4824 idle->sched_class = &idle_sched_class;
1df21055
IM
4825}
4826
f340c0d1
IM
4827/**
4828 * init_idle - set up an idle thread for a given CPU
4829 * @idle: task in question
4830 * @cpu: cpu the idle task belongs to
4831 *
4832 * NOTE: this function does not set the idle thread's NEED_RESCHED
4833 * flag, to make booting more robust.
4834 */
5c1e1767 4835void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4836{
70b97a7f 4837 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4838 unsigned long flags;
4839
dd41f596
IM
4840 __sched_fork(idle);
4841 idle->se.exec_start = sched_clock();
4842
b29739f9 4843 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4844 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4845 __set_task_cpu(idle, cpu);
1da177e4
LT
4846
4847 spin_lock_irqsave(&rq->lock, flags);
4848 rq->curr = rq->idle = idle;
4866cde0
NP
4849#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4850 idle->oncpu = 1;
4851#endif
1da177e4
LT
4852 spin_unlock_irqrestore(&rq->lock, flags);
4853
4854 /* Set the preempt count _outside_ the spinlocks! */
4855#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4856 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4857#else
a1261f54 4858 task_thread_info(idle)->preempt_count = 0;
1da177e4 4859#endif
dd41f596
IM
4860 /*
4861 * The idle tasks have their own, simple scheduling class:
4862 */
4863 idle->sched_class = &idle_sched_class;
1da177e4
LT
4864}
4865
4866/*
4867 * In a system that switches off the HZ timer nohz_cpu_mask
4868 * indicates which cpus entered this state. This is used
4869 * in the rcu update to wait only for active cpus. For system
4870 * which do not switch off the HZ timer nohz_cpu_mask should
4871 * always be CPU_MASK_NONE.
4872 */
4873cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4874
dd41f596
IM
4875/*
4876 * Increase the granularity value when there are more CPUs,
4877 * because with more CPUs the 'effective latency' as visible
4878 * to users decreases. But the relationship is not linear,
4879 * so pick a second-best guess by going with the log2 of the
4880 * number of CPUs.
4881 *
4882 * This idea comes from the SD scheduler of Con Kolivas:
4883 */
4884static inline void sched_init_granularity(void)
4885{
4886 unsigned int factor = 1 + ilog2(num_online_cpus());
a5968df8 4887 const unsigned long gran_limit = 100000000;
dd41f596
IM
4888
4889 sysctl_sched_granularity *= factor;
4890 if (sysctl_sched_granularity > gran_limit)
4891 sysctl_sched_granularity = gran_limit;
4892
4893 sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
4894 sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
4895}
4896
1da177e4
LT
4897#ifdef CONFIG_SMP
4898/*
4899 * This is how migration works:
4900 *
70b97a7f 4901 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4902 * runqueue and wake up that CPU's migration thread.
4903 * 2) we down() the locked semaphore => thread blocks.
4904 * 3) migration thread wakes up (implicitly it forces the migrated
4905 * thread off the CPU)
4906 * 4) it gets the migration request and checks whether the migrated
4907 * task is still in the wrong runqueue.
4908 * 5) if it's in the wrong runqueue then the migration thread removes
4909 * it and puts it into the right queue.
4910 * 6) migration thread up()s the semaphore.
4911 * 7) we wake up and the migration is done.
4912 */
4913
4914/*
4915 * Change a given task's CPU affinity. Migrate the thread to a
4916 * proper CPU and schedule it away if the CPU it's executing on
4917 * is removed from the allowed bitmask.
4918 *
4919 * NOTE: the caller must have a valid reference to the task, the
4920 * task must not exit() & deallocate itself prematurely. The
4921 * call is not atomic; no spinlocks may be held.
4922 */
36c8b586 4923int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4924{
70b97a7f 4925 struct migration_req req;
1da177e4 4926 unsigned long flags;
70b97a7f 4927 struct rq *rq;
48f24c4d 4928 int ret = 0;
1da177e4
LT
4929
4930 rq = task_rq_lock(p, &flags);
4931 if (!cpus_intersects(new_mask, cpu_online_map)) {
4932 ret = -EINVAL;
4933 goto out;
4934 }
4935
4936 p->cpus_allowed = new_mask;
4937 /* Can the task run on the task's current CPU? If so, we're done */
4938 if (cpu_isset(task_cpu(p), new_mask))
4939 goto out;
4940
4941 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4942 /* Need help from migration thread: drop lock and wait. */
4943 task_rq_unlock(rq, &flags);
4944 wake_up_process(rq->migration_thread);
4945 wait_for_completion(&req.done);
4946 tlb_migrate_finish(p->mm);
4947 return 0;
4948 }
4949out:
4950 task_rq_unlock(rq, &flags);
48f24c4d 4951
1da177e4
LT
4952 return ret;
4953}
1da177e4
LT
4954EXPORT_SYMBOL_GPL(set_cpus_allowed);
4955
4956/*
4957 * Move (not current) task off this cpu, onto dest cpu. We're doing
4958 * this because either it can't run here any more (set_cpus_allowed()
4959 * away from this CPU, or CPU going down), or because we're
4960 * attempting to rebalance this task on exec (sched_exec).
4961 *
4962 * So we race with normal scheduler movements, but that's OK, as long
4963 * as the task is no longer on this CPU.
efc30814
KK
4964 *
4965 * Returns non-zero if task was successfully migrated.
1da177e4 4966 */
efc30814 4967static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4968{
70b97a7f 4969 struct rq *rq_dest, *rq_src;
dd41f596 4970 int ret = 0, on_rq;
1da177e4
LT
4971
4972 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4973 return ret;
1da177e4
LT
4974
4975 rq_src = cpu_rq(src_cpu);
4976 rq_dest = cpu_rq(dest_cpu);
4977
4978 double_rq_lock(rq_src, rq_dest);
4979 /* Already moved. */
4980 if (task_cpu(p) != src_cpu)
4981 goto out;
4982 /* Affinity changed (again). */
4983 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4984 goto out;
4985
dd41f596 4986 on_rq = p->se.on_rq;
a8e504d2
IM
4987 if (on_rq) {
4988 update_rq_clock(rq_src);
4989 deactivate_task(rq_src, p, 0, rq_src->clock);
4990 }
1da177e4 4991 set_task_cpu(p, dest_cpu);
dd41f596
IM
4992 if (on_rq) {
4993 activate_task(rq_dest, p, 0);
4994 check_preempt_curr(rq_dest, p);
1da177e4 4995 }
efc30814 4996 ret = 1;
1da177e4
LT
4997out:
4998 double_rq_unlock(rq_src, rq_dest);
efc30814 4999 return ret;
1da177e4
LT
5000}
5001
5002/*
5003 * migration_thread - this is a highprio system thread that performs
5004 * thread migration by bumping thread off CPU then 'pushing' onto
5005 * another runqueue.
5006 */
95cdf3b7 5007static int migration_thread(void *data)
1da177e4 5008{
1da177e4 5009 int cpu = (long)data;
70b97a7f 5010 struct rq *rq;
1da177e4
LT
5011
5012 rq = cpu_rq(cpu);
5013 BUG_ON(rq->migration_thread != current);
5014
5015 set_current_state(TASK_INTERRUPTIBLE);
5016 while (!kthread_should_stop()) {
70b97a7f 5017 struct migration_req *req;
1da177e4 5018 struct list_head *head;
1da177e4 5019
1da177e4
LT
5020 spin_lock_irq(&rq->lock);
5021
5022 if (cpu_is_offline(cpu)) {
5023 spin_unlock_irq(&rq->lock);
5024 goto wait_to_die;
5025 }
5026
5027 if (rq->active_balance) {
5028 active_load_balance(rq, cpu);
5029 rq->active_balance = 0;
5030 }
5031
5032 head = &rq->migration_queue;
5033
5034 if (list_empty(head)) {
5035 spin_unlock_irq(&rq->lock);
5036 schedule();
5037 set_current_state(TASK_INTERRUPTIBLE);
5038 continue;
5039 }
70b97a7f 5040 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5041 list_del_init(head->next);
5042
674311d5
NP
5043 spin_unlock(&rq->lock);
5044 __migrate_task(req->task, cpu, req->dest_cpu);
5045 local_irq_enable();
1da177e4
LT
5046
5047 complete(&req->done);
5048 }
5049 __set_current_state(TASK_RUNNING);
5050 return 0;
5051
5052wait_to_die:
5053 /* Wait for kthread_stop */
5054 set_current_state(TASK_INTERRUPTIBLE);
5055 while (!kthread_should_stop()) {
5056 schedule();
5057 set_current_state(TASK_INTERRUPTIBLE);
5058 }
5059 __set_current_state(TASK_RUNNING);
5060 return 0;
5061}
5062
5063#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
5064/*
5065 * Figure out where task on dead CPU should go, use force if neccessary.
5066 * NOTE: interrupts should be disabled by the caller
5067 */
48f24c4d 5068static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5069{
efc30814 5070 unsigned long flags;
1da177e4 5071 cpumask_t mask;
70b97a7f
IM
5072 struct rq *rq;
5073 int dest_cpu;
1da177e4 5074
efc30814 5075restart:
1da177e4
LT
5076 /* On same node? */
5077 mask = node_to_cpumask(cpu_to_node(dead_cpu));
48f24c4d 5078 cpus_and(mask, mask, p->cpus_allowed);
1da177e4
LT
5079 dest_cpu = any_online_cpu(mask);
5080
5081 /* On any allowed CPU? */
5082 if (dest_cpu == NR_CPUS)
48f24c4d 5083 dest_cpu = any_online_cpu(p->cpus_allowed);
1da177e4
LT
5084
5085 /* No more Mr. Nice Guy. */
5086 if (dest_cpu == NR_CPUS) {
48f24c4d
IM
5087 rq = task_rq_lock(p, &flags);
5088 cpus_setall(p->cpus_allowed);
5089 dest_cpu = any_online_cpu(p->cpus_allowed);
efc30814 5090 task_rq_unlock(rq, &flags);
1da177e4
LT
5091
5092 /*
5093 * Don't tell them about moving exiting tasks or
5094 * kernel threads (both mm NULL), since they never
5095 * leave kernel.
5096 */
48f24c4d 5097 if (p->mm && printk_ratelimit())
1da177e4
LT
5098 printk(KERN_INFO "process %d (%s) no "
5099 "longer affine to cpu%d\n",
48f24c4d 5100 p->pid, p->comm, dead_cpu);
1da177e4 5101 }
48f24c4d 5102 if (!__migrate_task(p, dead_cpu, dest_cpu))
efc30814 5103 goto restart;
1da177e4
LT
5104}
5105
5106/*
5107 * While a dead CPU has no uninterruptible tasks queued at this point,
5108 * it might still have a nonzero ->nr_uninterruptible counter, because
5109 * for performance reasons the counter is not stricly tracking tasks to
5110 * their home CPUs. So we just add the counter to another CPU's counter,
5111 * to keep the global sum constant after CPU-down:
5112 */
70b97a7f 5113static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5114{
70b97a7f 5115 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5116 unsigned long flags;
5117
5118 local_irq_save(flags);
5119 double_rq_lock(rq_src, rq_dest);
5120 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5121 rq_src->nr_uninterruptible = 0;
5122 double_rq_unlock(rq_src, rq_dest);
5123 local_irq_restore(flags);
5124}
5125
5126/* Run through task list and migrate tasks from the dead cpu. */
5127static void migrate_live_tasks(int src_cpu)
5128{
48f24c4d 5129 struct task_struct *p, *t;
1da177e4
LT
5130
5131 write_lock_irq(&tasklist_lock);
5132
48f24c4d
IM
5133 do_each_thread(t, p) {
5134 if (p == current)
1da177e4
LT
5135 continue;
5136
48f24c4d
IM
5137 if (task_cpu(p) == src_cpu)
5138 move_task_off_dead_cpu(src_cpu, p);
5139 } while_each_thread(t, p);
1da177e4
LT
5140
5141 write_unlock_irq(&tasklist_lock);
5142}
5143
dd41f596
IM
5144/*
5145 * Schedules idle task to be the next runnable task on current CPU.
1da177e4 5146 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5147 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5148 */
5149void sched_idle_next(void)
5150{
48f24c4d 5151 int this_cpu = smp_processor_id();
70b97a7f 5152 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5153 struct task_struct *p = rq->idle;
5154 unsigned long flags;
5155
5156 /* cpu has to be offline */
48f24c4d 5157 BUG_ON(cpu_online(this_cpu));
1da177e4 5158
48f24c4d
IM
5159 /*
5160 * Strictly not necessary since rest of the CPUs are stopped by now
5161 * and interrupts disabled on the current cpu.
1da177e4
LT
5162 */
5163 spin_lock_irqsave(&rq->lock, flags);
5164
dd41f596 5165 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5166
5167 /* Add idle task to the _front_ of its priority queue: */
dd41f596 5168 activate_idle_task(p, rq);
1da177e4
LT
5169
5170 spin_unlock_irqrestore(&rq->lock, flags);
5171}
5172
48f24c4d
IM
5173/*
5174 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5175 * offline.
5176 */
5177void idle_task_exit(void)
5178{
5179 struct mm_struct *mm = current->active_mm;
5180
5181 BUG_ON(cpu_online(smp_processor_id()));
5182
5183 if (mm != &init_mm)
5184 switch_mm(mm, &init_mm, current);
5185 mmdrop(mm);
5186}
5187
054b9108 5188/* called under rq->lock with disabled interrupts */
36c8b586 5189static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5190{
70b97a7f 5191 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5192
5193 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5194 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5195
5196 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5197 BUG_ON(p->state == TASK_DEAD);
1da177e4 5198
48f24c4d 5199 get_task_struct(p);
1da177e4
LT
5200
5201 /*
5202 * Drop lock around migration; if someone else moves it,
5203 * that's OK. No task can be added to this CPU, so iteration is
5204 * fine.
054b9108 5205 * NOTE: interrupts should be left disabled --dev@
1da177e4 5206 */
054b9108 5207 spin_unlock(&rq->lock);
48f24c4d 5208 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5209 spin_lock(&rq->lock);
1da177e4 5210
48f24c4d 5211 put_task_struct(p);
1da177e4
LT
5212}
5213
5214/* release_task() removes task from tasklist, so we won't find dead tasks. */
5215static void migrate_dead_tasks(unsigned int dead_cpu)
5216{
70b97a7f 5217 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5218 struct task_struct *next;
48f24c4d 5219
dd41f596
IM
5220 for ( ; ; ) {
5221 if (!rq->nr_running)
5222 break;
a8e504d2 5223 update_rq_clock(rq);
ff95f3df 5224 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5225 if (!next)
5226 break;
5227 migrate_dead(dead_cpu, next);
e692ab53 5228
1da177e4
LT
5229 }
5230}
5231#endif /* CONFIG_HOTPLUG_CPU */
5232
e692ab53
NP
5233#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5234
5235static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5236 {
5237 .procname = "sched_domain",
5238 .mode = 0755,
5239 },
e692ab53
NP
5240 {0,},
5241};
5242
5243static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5244 {
5245 .procname = "kernel",
5246 .mode = 0755,
5247 .child = sd_ctl_dir,
5248 },
e692ab53
NP
5249 {0,},
5250};
5251
5252static struct ctl_table *sd_alloc_ctl_entry(int n)
5253{
5254 struct ctl_table *entry =
5255 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5256
5257 BUG_ON(!entry);
5258 memset(entry, 0, n * sizeof(struct ctl_table));
5259
5260 return entry;
5261}
5262
5263static void
e0361851 5264set_table_entry(struct ctl_table *entry,
e692ab53
NP
5265 const char *procname, void *data, int maxlen,
5266 mode_t mode, proc_handler *proc_handler)
5267{
e692ab53
NP
5268 entry->procname = procname;
5269 entry->data = data;
5270 entry->maxlen = maxlen;
5271 entry->mode = mode;
5272 entry->proc_handler = proc_handler;
5273}
5274
5275static struct ctl_table *
5276sd_alloc_ctl_domain_table(struct sched_domain *sd)
5277{
5278 struct ctl_table *table = sd_alloc_ctl_entry(14);
5279
e0361851 5280 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5281 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5282 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5283 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5284 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5285 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5286 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5287 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5288 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5289 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5290 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5291 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5292 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5293 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5294 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5295 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5296 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5297 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5298 set_table_entry(&table[10], "cache_nice_tries",
e692ab53
NP
5299 &sd->cache_nice_tries,
5300 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5301 set_table_entry(&table[12], "flags", &sd->flags,
e692ab53
NP
5302 sizeof(int), 0644, proc_dointvec_minmax);
5303
5304 return table;
5305}
5306
5307static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5308{
5309 struct ctl_table *entry, *table;
5310 struct sched_domain *sd;
5311 int domain_num = 0, i;
5312 char buf[32];
5313
5314 for_each_domain(cpu, sd)
5315 domain_num++;
5316 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5317
5318 i = 0;
5319 for_each_domain(cpu, sd) {
5320 snprintf(buf, 32, "domain%d", i);
e692ab53
NP
5321 entry->procname = kstrdup(buf, GFP_KERNEL);
5322 entry->mode = 0755;
5323 entry->child = sd_alloc_ctl_domain_table(sd);
5324 entry++;
5325 i++;
5326 }
5327 return table;
5328}
5329
5330static struct ctl_table_header *sd_sysctl_header;
5331static void init_sched_domain_sysctl(void)
5332{
5333 int i, cpu_num = num_online_cpus();
5334 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5335 char buf[32];
5336
5337 sd_ctl_dir[0].child = entry;
5338
5339 for (i = 0; i < cpu_num; i++, entry++) {
5340 snprintf(buf, 32, "cpu%d", i);
e692ab53
NP
5341 entry->procname = kstrdup(buf, GFP_KERNEL);
5342 entry->mode = 0755;
5343 entry->child = sd_alloc_ctl_cpu_table(i);
5344 }
5345 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5346}
5347#else
5348static void init_sched_domain_sysctl(void)
5349{
5350}
5351#endif
5352
1da177e4
LT
5353/*
5354 * migration_call - callback that gets triggered when a CPU is added.
5355 * Here we can start up the necessary migration thread for the new CPU.
5356 */
48f24c4d
IM
5357static int __cpuinit
5358migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5359{
1da177e4 5360 struct task_struct *p;
48f24c4d 5361 int cpu = (long)hcpu;
1da177e4 5362 unsigned long flags;
70b97a7f 5363 struct rq *rq;
1da177e4
LT
5364
5365 switch (action) {
5be9361c
GS
5366 case CPU_LOCK_ACQUIRE:
5367 mutex_lock(&sched_hotcpu_mutex);
5368 break;
5369
1da177e4 5370 case CPU_UP_PREPARE:
8bb78442 5371 case CPU_UP_PREPARE_FROZEN:
dd41f596 5372 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5373 if (IS_ERR(p))
5374 return NOTIFY_BAD;
1da177e4
LT
5375 kthread_bind(p, cpu);
5376 /* Must be high prio: stop_machine expects to yield to it. */
5377 rq = task_rq_lock(p, &flags);
dd41f596 5378 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5379 task_rq_unlock(rq, &flags);
5380 cpu_rq(cpu)->migration_thread = p;
5381 break;
48f24c4d 5382
1da177e4 5383 case CPU_ONLINE:
8bb78442 5384 case CPU_ONLINE_FROZEN:
1da177e4
LT
5385 /* Strictly unneccessary, as first user will wake it. */
5386 wake_up_process(cpu_rq(cpu)->migration_thread);
5387 break;
48f24c4d 5388
1da177e4
LT
5389#ifdef CONFIG_HOTPLUG_CPU
5390 case CPU_UP_CANCELED:
8bb78442 5391 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5392 if (!cpu_rq(cpu)->migration_thread)
5393 break;
1da177e4 5394 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5395 kthread_bind(cpu_rq(cpu)->migration_thread,
5396 any_online_cpu(cpu_online_map));
1da177e4
LT
5397 kthread_stop(cpu_rq(cpu)->migration_thread);
5398 cpu_rq(cpu)->migration_thread = NULL;
5399 break;
48f24c4d 5400
1da177e4 5401 case CPU_DEAD:
8bb78442 5402 case CPU_DEAD_FROZEN:
1da177e4
LT
5403 migrate_live_tasks(cpu);
5404 rq = cpu_rq(cpu);
5405 kthread_stop(rq->migration_thread);
5406 rq->migration_thread = NULL;
5407 /* Idle task back to normal (off runqueue, low prio) */
5408 rq = task_rq_lock(rq->idle, &flags);
a8e504d2
IM
5409 update_rq_clock(rq);
5410 deactivate_task(rq, rq->idle, 0, rq->clock);
1da177e4 5411 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5412 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5413 rq->idle->sched_class = &idle_sched_class;
1da177e4
LT
5414 migrate_dead_tasks(cpu);
5415 task_rq_unlock(rq, &flags);
5416 migrate_nr_uninterruptible(rq);
5417 BUG_ON(rq->nr_running != 0);
5418
5419 /* No need to migrate the tasks: it was best-effort if
5be9361c 5420 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5421 * the requestors. */
5422 spin_lock_irq(&rq->lock);
5423 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5424 struct migration_req *req;
5425
1da177e4 5426 req = list_entry(rq->migration_queue.next,
70b97a7f 5427 struct migration_req, list);
1da177e4
LT
5428 list_del_init(&req->list);
5429 complete(&req->done);
5430 }
5431 spin_unlock_irq(&rq->lock);
5432 break;
5433#endif
5be9361c
GS
5434 case CPU_LOCK_RELEASE:
5435 mutex_unlock(&sched_hotcpu_mutex);
5436 break;
1da177e4
LT
5437 }
5438 return NOTIFY_OK;
5439}
5440
5441/* Register at highest priority so that task migration (migrate_all_tasks)
5442 * happens before everything else.
5443 */
26c2143b 5444static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5445 .notifier_call = migration_call,
5446 .priority = 10
5447};
5448
5449int __init migration_init(void)
5450{
5451 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5452 int err;
48f24c4d
IM
5453
5454 /* Start one for the boot CPU: */
07dccf33
AM
5455 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5456 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5457 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5458 register_cpu_notifier(&migration_notifier);
48f24c4d 5459
1da177e4
LT
5460 return 0;
5461}
5462#endif
5463
5464#ifdef CONFIG_SMP
476f3534
CL
5465
5466/* Number of possible processor ids */
5467int nr_cpu_ids __read_mostly = NR_CPUS;
5468EXPORT_SYMBOL(nr_cpu_ids);
5469
1a20ff27 5470#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
5471#ifdef SCHED_DOMAIN_DEBUG
5472static void sched_domain_debug(struct sched_domain *sd, int cpu)
5473{
5474 int level = 0;
5475
41c7ce9a
NP
5476 if (!sd) {
5477 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5478 return;
5479 }
5480
1da177e4
LT
5481 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5482
5483 do {
5484 int i;
5485 char str[NR_CPUS];
5486 struct sched_group *group = sd->groups;
5487 cpumask_t groupmask;
5488
5489 cpumask_scnprintf(str, NR_CPUS, sd->span);
5490 cpus_clear(groupmask);
5491
5492 printk(KERN_DEBUG);
5493 for (i = 0; i < level + 1; i++)
5494 printk(" ");
5495 printk("domain %d: ", level);
5496
5497 if (!(sd->flags & SD_LOAD_BALANCE)) {
5498 printk("does not load-balance\n");
5499 if (sd->parent)
33859f7f
MOS
5500 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5501 " has parent");
1da177e4
LT
5502 break;
5503 }
5504
5505 printk("span %s\n", str);
5506
5507 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5508 printk(KERN_ERR "ERROR: domain->span does not contain "
5509 "CPU%d\n", cpu);
1da177e4 5510 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5511 printk(KERN_ERR "ERROR: domain->groups does not contain"
5512 " CPU%d\n", cpu);
1da177e4
LT
5513
5514 printk(KERN_DEBUG);
5515 for (i = 0; i < level + 2; i++)
5516 printk(" ");
5517 printk("groups:");
5518 do {
5519 if (!group) {
5520 printk("\n");
5521 printk(KERN_ERR "ERROR: group is NULL\n");
5522 break;
5523 }
5524
5517d86b 5525 if (!group->__cpu_power) {
1da177e4 5526 printk("\n");
33859f7f
MOS
5527 printk(KERN_ERR "ERROR: domain->cpu_power not "
5528 "set\n");
1da177e4
LT
5529 }
5530
5531 if (!cpus_weight(group->cpumask)) {
5532 printk("\n");
5533 printk(KERN_ERR "ERROR: empty group\n");
5534 }
5535
5536 if (cpus_intersects(groupmask, group->cpumask)) {
5537 printk("\n");
5538 printk(KERN_ERR "ERROR: repeated CPUs\n");
5539 }
5540
5541 cpus_or(groupmask, groupmask, group->cpumask);
5542
5543 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5544 printk(" %s", str);
5545
5546 group = group->next;
5547 } while (group != sd->groups);
5548 printk("\n");
5549
5550 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5551 printk(KERN_ERR "ERROR: groups don't span "
5552 "domain->span\n");
1da177e4
LT
5553
5554 level++;
5555 sd = sd->parent;
33859f7f
MOS
5556 if (!sd)
5557 continue;
1da177e4 5558
33859f7f
MOS
5559 if (!cpus_subset(groupmask, sd->span))
5560 printk(KERN_ERR "ERROR: parent span is not a superset "
5561 "of domain->span\n");
1da177e4
LT
5562
5563 } while (sd);
5564}
5565#else
48f24c4d 5566# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5567#endif
5568
1a20ff27 5569static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5570{
5571 if (cpus_weight(sd->span) == 1)
5572 return 1;
5573
5574 /* Following flags need at least 2 groups */
5575 if (sd->flags & (SD_LOAD_BALANCE |
5576 SD_BALANCE_NEWIDLE |
5577 SD_BALANCE_FORK |
89c4710e
SS
5578 SD_BALANCE_EXEC |
5579 SD_SHARE_CPUPOWER |
5580 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5581 if (sd->groups != sd->groups->next)
5582 return 0;
5583 }
5584
5585 /* Following flags don't use groups */
5586 if (sd->flags & (SD_WAKE_IDLE |
5587 SD_WAKE_AFFINE |
5588 SD_WAKE_BALANCE))
5589 return 0;
5590
5591 return 1;
5592}
5593
48f24c4d
IM
5594static int
5595sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5596{
5597 unsigned long cflags = sd->flags, pflags = parent->flags;
5598
5599 if (sd_degenerate(parent))
5600 return 1;
5601
5602 if (!cpus_equal(sd->span, parent->span))
5603 return 0;
5604
5605 /* Does parent contain flags not in child? */
5606 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5607 if (cflags & SD_WAKE_AFFINE)
5608 pflags &= ~SD_WAKE_BALANCE;
5609 /* Flags needing groups don't count if only 1 group in parent */
5610 if (parent->groups == parent->groups->next) {
5611 pflags &= ~(SD_LOAD_BALANCE |
5612 SD_BALANCE_NEWIDLE |
5613 SD_BALANCE_FORK |
89c4710e
SS
5614 SD_BALANCE_EXEC |
5615 SD_SHARE_CPUPOWER |
5616 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5617 }
5618 if (~cflags & pflags)
5619 return 0;
5620
5621 return 1;
5622}
5623
1da177e4
LT
5624/*
5625 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5626 * hold the hotplug lock.
5627 */
9c1cfda2 5628static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5629{
70b97a7f 5630 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5631 struct sched_domain *tmp;
5632
5633 /* Remove the sched domains which do not contribute to scheduling. */
5634 for (tmp = sd; tmp; tmp = tmp->parent) {
5635 struct sched_domain *parent = tmp->parent;
5636 if (!parent)
5637 break;
1a848870 5638 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5639 tmp->parent = parent->parent;
1a848870
SS
5640 if (parent->parent)
5641 parent->parent->child = tmp;
5642 }
245af2c7
SS
5643 }
5644
1a848870 5645 if (sd && sd_degenerate(sd)) {
245af2c7 5646 sd = sd->parent;
1a848870
SS
5647 if (sd)
5648 sd->child = NULL;
5649 }
1da177e4
LT
5650
5651 sched_domain_debug(sd, cpu);
5652
674311d5 5653 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5654}
5655
5656/* cpus with isolated domains */
67af63a6 5657static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5658
5659/* Setup the mask of cpus configured for isolated domains */
5660static int __init isolated_cpu_setup(char *str)
5661{
5662 int ints[NR_CPUS], i;
5663
5664 str = get_options(str, ARRAY_SIZE(ints), ints);
5665 cpus_clear(cpu_isolated_map);
5666 for (i = 1; i <= ints[0]; i++)
5667 if (ints[i] < NR_CPUS)
5668 cpu_set(ints[i], cpu_isolated_map);
5669 return 1;
5670}
5671
5672__setup ("isolcpus=", isolated_cpu_setup);
5673
5674/*
6711cab4
SS
5675 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5676 * to a function which identifies what group(along with sched group) a CPU
5677 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5678 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5679 *
5680 * init_sched_build_groups will build a circular linked list of the groups
5681 * covered by the given span, and will set each group's ->cpumask correctly,
5682 * and ->cpu_power to 0.
5683 */
a616058b 5684static void
6711cab4
SS
5685init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5686 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5687 struct sched_group **sg))
1da177e4
LT
5688{
5689 struct sched_group *first = NULL, *last = NULL;
5690 cpumask_t covered = CPU_MASK_NONE;
5691 int i;
5692
5693 for_each_cpu_mask(i, span) {
6711cab4
SS
5694 struct sched_group *sg;
5695 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5696 int j;
5697
5698 if (cpu_isset(i, covered))
5699 continue;
5700
5701 sg->cpumask = CPU_MASK_NONE;
5517d86b 5702 sg->__cpu_power = 0;
1da177e4
LT
5703
5704 for_each_cpu_mask(j, span) {
6711cab4 5705 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5706 continue;
5707
5708 cpu_set(j, covered);
5709 cpu_set(j, sg->cpumask);
5710 }
5711 if (!first)
5712 first = sg;
5713 if (last)
5714 last->next = sg;
5715 last = sg;
5716 }
5717 last->next = first;
5718}
5719
9c1cfda2 5720#define SD_NODES_PER_DOMAIN 16
1da177e4 5721
9c1cfda2 5722#ifdef CONFIG_NUMA
198e2f18 5723
9c1cfda2
JH
5724/**
5725 * find_next_best_node - find the next node to include in a sched_domain
5726 * @node: node whose sched_domain we're building
5727 * @used_nodes: nodes already in the sched_domain
5728 *
5729 * Find the next node to include in a given scheduling domain. Simply
5730 * finds the closest node not already in the @used_nodes map.
5731 *
5732 * Should use nodemask_t.
5733 */
5734static int find_next_best_node(int node, unsigned long *used_nodes)
5735{
5736 int i, n, val, min_val, best_node = 0;
5737
5738 min_val = INT_MAX;
5739
5740 for (i = 0; i < MAX_NUMNODES; i++) {
5741 /* Start at @node */
5742 n = (node + i) % MAX_NUMNODES;
5743
5744 if (!nr_cpus_node(n))
5745 continue;
5746
5747 /* Skip already used nodes */
5748 if (test_bit(n, used_nodes))
5749 continue;
5750
5751 /* Simple min distance search */
5752 val = node_distance(node, n);
5753
5754 if (val < min_val) {
5755 min_val = val;
5756 best_node = n;
5757 }
5758 }
5759
5760 set_bit(best_node, used_nodes);
5761 return best_node;
5762}
5763
5764/**
5765 * sched_domain_node_span - get a cpumask for a node's sched_domain
5766 * @node: node whose cpumask we're constructing
5767 * @size: number of nodes to include in this span
5768 *
5769 * Given a node, construct a good cpumask for its sched_domain to span. It
5770 * should be one that prevents unnecessary balancing, but also spreads tasks
5771 * out optimally.
5772 */
5773static cpumask_t sched_domain_node_span(int node)
5774{
9c1cfda2 5775 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5776 cpumask_t span, nodemask;
5777 int i;
9c1cfda2
JH
5778
5779 cpus_clear(span);
5780 bitmap_zero(used_nodes, MAX_NUMNODES);
5781
5782 nodemask = node_to_cpumask(node);
5783 cpus_or(span, span, nodemask);
5784 set_bit(node, used_nodes);
5785
5786 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5787 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5788
9c1cfda2
JH
5789 nodemask = node_to_cpumask(next_node);
5790 cpus_or(span, span, nodemask);
5791 }
5792
5793 return span;
5794}
5795#endif
5796
5c45bf27 5797int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5798
9c1cfda2 5799/*
48f24c4d 5800 * SMT sched-domains:
9c1cfda2 5801 */
1da177e4
LT
5802#ifdef CONFIG_SCHED_SMT
5803static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5804static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5805
6711cab4
SS
5806static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5807 struct sched_group **sg)
1da177e4 5808{
6711cab4
SS
5809 if (sg)
5810 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5811 return cpu;
5812}
5813#endif
5814
48f24c4d
IM
5815/*
5816 * multi-core sched-domains:
5817 */
1e9f28fa
SS
5818#ifdef CONFIG_SCHED_MC
5819static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5820static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5821#endif
5822
5823#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
5824static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5825 struct sched_group **sg)
1e9f28fa 5826{
6711cab4 5827 int group;
a616058b
SS
5828 cpumask_t mask = cpu_sibling_map[cpu];
5829 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
5830 group = first_cpu(mask);
5831 if (sg)
5832 *sg = &per_cpu(sched_group_core, group);
5833 return group;
1e9f28fa
SS
5834}
5835#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
5836static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5837 struct sched_group **sg)
1e9f28fa 5838{
6711cab4
SS
5839 if (sg)
5840 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
5841 return cpu;
5842}
5843#endif
5844
1da177e4 5845static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 5846static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 5847
6711cab4
SS
5848static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5849 struct sched_group **sg)
1da177e4 5850{
6711cab4 5851 int group;
48f24c4d 5852#ifdef CONFIG_SCHED_MC
1e9f28fa 5853 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 5854 cpus_and(mask, mask, *cpu_map);
6711cab4 5855 group = first_cpu(mask);
1e9f28fa 5856#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
5857 cpumask_t mask = cpu_sibling_map[cpu];
5858 cpus_and(mask, mask, *cpu_map);
6711cab4 5859 group = first_cpu(mask);
1da177e4 5860#else
6711cab4 5861 group = cpu;
1da177e4 5862#endif
6711cab4
SS
5863 if (sg)
5864 *sg = &per_cpu(sched_group_phys, group);
5865 return group;
1da177e4
LT
5866}
5867
5868#ifdef CONFIG_NUMA
1da177e4 5869/*
9c1cfda2
JH
5870 * The init_sched_build_groups can't handle what we want to do with node
5871 * groups, so roll our own. Now each node has its own list of groups which
5872 * gets dynamically allocated.
1da177e4 5873 */
9c1cfda2 5874static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5875static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5876
9c1cfda2 5877static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 5878static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 5879
6711cab4
SS
5880static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5881 struct sched_group **sg)
9c1cfda2 5882{
6711cab4
SS
5883 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5884 int group;
5885
5886 cpus_and(nodemask, nodemask, *cpu_map);
5887 group = first_cpu(nodemask);
5888
5889 if (sg)
5890 *sg = &per_cpu(sched_group_allnodes, group);
5891 return group;
1da177e4 5892}
6711cab4 5893
08069033
SS
5894static void init_numa_sched_groups_power(struct sched_group *group_head)
5895{
5896 struct sched_group *sg = group_head;
5897 int j;
5898
5899 if (!sg)
5900 return;
5901next_sg:
5902 for_each_cpu_mask(j, sg->cpumask) {
5903 struct sched_domain *sd;
5904
5905 sd = &per_cpu(phys_domains, j);
5906 if (j != first_cpu(sd->groups->cpumask)) {
5907 /*
5908 * Only add "power" once for each
5909 * physical package.
5910 */
5911 continue;
5912 }
5913
5517d86b 5914 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
08069033
SS
5915 }
5916 sg = sg->next;
5917 if (sg != group_head)
5918 goto next_sg;
5919}
1da177e4
LT
5920#endif
5921
a616058b 5922#ifdef CONFIG_NUMA
51888ca2
SV
5923/* Free memory allocated for various sched_group structures */
5924static void free_sched_groups(const cpumask_t *cpu_map)
5925{
a616058b 5926 int cpu, i;
51888ca2
SV
5927
5928 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
5929 struct sched_group **sched_group_nodes
5930 = sched_group_nodes_bycpu[cpu];
5931
51888ca2
SV
5932 if (!sched_group_nodes)
5933 continue;
5934
5935 for (i = 0; i < MAX_NUMNODES; i++) {
5936 cpumask_t nodemask = node_to_cpumask(i);
5937 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5938
5939 cpus_and(nodemask, nodemask, *cpu_map);
5940 if (cpus_empty(nodemask))
5941 continue;
5942
5943 if (sg == NULL)
5944 continue;
5945 sg = sg->next;
5946next_sg:
5947 oldsg = sg;
5948 sg = sg->next;
5949 kfree(oldsg);
5950 if (oldsg != sched_group_nodes[i])
5951 goto next_sg;
5952 }
5953 kfree(sched_group_nodes);
5954 sched_group_nodes_bycpu[cpu] = NULL;
5955 }
51888ca2 5956}
a616058b
SS
5957#else
5958static void free_sched_groups(const cpumask_t *cpu_map)
5959{
5960}
5961#endif
51888ca2 5962
89c4710e
SS
5963/*
5964 * Initialize sched groups cpu_power.
5965 *
5966 * cpu_power indicates the capacity of sched group, which is used while
5967 * distributing the load between different sched groups in a sched domain.
5968 * Typically cpu_power for all the groups in a sched domain will be same unless
5969 * there are asymmetries in the topology. If there are asymmetries, group
5970 * having more cpu_power will pickup more load compared to the group having
5971 * less cpu_power.
5972 *
5973 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5974 * the maximum number of tasks a group can handle in the presence of other idle
5975 * or lightly loaded groups in the same sched domain.
5976 */
5977static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5978{
5979 struct sched_domain *child;
5980 struct sched_group *group;
5981
5982 WARN_ON(!sd || !sd->groups);
5983
5984 if (cpu != first_cpu(sd->groups->cpumask))
5985 return;
5986
5987 child = sd->child;
5988
5517d86b
ED
5989 sd->groups->__cpu_power = 0;
5990
89c4710e
SS
5991 /*
5992 * For perf policy, if the groups in child domain share resources
5993 * (for example cores sharing some portions of the cache hierarchy
5994 * or SMT), then set this domain groups cpu_power such that each group
5995 * can handle only one task, when there are other idle groups in the
5996 * same sched domain.
5997 */
5998 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5999 (child->flags &
6000 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6001 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6002 return;
6003 }
6004
89c4710e
SS
6005 /*
6006 * add cpu_power of each child group to this groups cpu_power
6007 */
6008 group = child->groups;
6009 do {
5517d86b 6010 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6011 group = group->next;
6012 } while (group != child->groups);
6013}
6014
1da177e4 6015/*
1a20ff27
DG
6016 * Build sched domains for a given set of cpus and attach the sched domains
6017 * to the individual cpus
1da177e4 6018 */
51888ca2 6019static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6020{
6021 int i;
d1b55138
JH
6022#ifdef CONFIG_NUMA
6023 struct sched_group **sched_group_nodes = NULL;
6711cab4 6024 int sd_allnodes = 0;
d1b55138
JH
6025
6026 /*
6027 * Allocate the per-node list of sched groups
6028 */
dd41f596 6029 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
d3a5aa98 6030 GFP_KERNEL);
d1b55138
JH
6031 if (!sched_group_nodes) {
6032 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6033 return -ENOMEM;
d1b55138
JH
6034 }
6035 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6036#endif
1da177e4
LT
6037
6038 /*
1a20ff27 6039 * Set up domains for cpus specified by the cpu_map.
1da177e4 6040 */
1a20ff27 6041 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6042 struct sched_domain *sd = NULL, *p;
6043 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6044
1a20ff27 6045 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6046
6047#ifdef CONFIG_NUMA
dd41f596
IM
6048 if (cpus_weight(*cpu_map) >
6049 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6050 sd = &per_cpu(allnodes_domains, i);
6051 *sd = SD_ALLNODES_INIT;
6052 sd->span = *cpu_map;
6711cab4 6053 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6054 p = sd;
6711cab4 6055 sd_allnodes = 1;
9c1cfda2
JH
6056 } else
6057 p = NULL;
6058
1da177e4 6059 sd = &per_cpu(node_domains, i);
1da177e4 6060 *sd = SD_NODE_INIT;
9c1cfda2
JH
6061 sd->span = sched_domain_node_span(cpu_to_node(i));
6062 sd->parent = p;
1a848870
SS
6063 if (p)
6064 p->child = sd;
9c1cfda2 6065 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6066#endif
6067
6068 p = sd;
6069 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6070 *sd = SD_CPU_INIT;
6071 sd->span = nodemask;
6072 sd->parent = p;
1a848870
SS
6073 if (p)
6074 p->child = sd;
6711cab4 6075 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6076
1e9f28fa
SS
6077#ifdef CONFIG_SCHED_MC
6078 p = sd;
6079 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6080 *sd = SD_MC_INIT;
6081 sd->span = cpu_coregroup_map(i);
6082 cpus_and(sd->span, sd->span, *cpu_map);
6083 sd->parent = p;
1a848870 6084 p->child = sd;
6711cab4 6085 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6086#endif
6087
1da177e4
LT
6088#ifdef CONFIG_SCHED_SMT
6089 p = sd;
6090 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
6091 *sd = SD_SIBLING_INIT;
6092 sd->span = cpu_sibling_map[i];
1a20ff27 6093 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6094 sd->parent = p;
1a848870 6095 p->child = sd;
6711cab4 6096 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6097#endif
6098 }
6099
6100#ifdef CONFIG_SCHED_SMT
6101 /* Set up CPU (sibling) groups */
9c1cfda2 6102 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6103 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6104 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6105 if (i != first_cpu(this_sibling_map))
6106 continue;
6107
dd41f596
IM
6108 init_sched_build_groups(this_sibling_map, cpu_map,
6109 &cpu_to_cpu_group);
1da177e4
LT
6110 }
6111#endif
6112
1e9f28fa
SS
6113#ifdef CONFIG_SCHED_MC
6114 /* Set up multi-core groups */
6115 for_each_cpu_mask(i, *cpu_map) {
6116 cpumask_t this_core_map = cpu_coregroup_map(i);
6117 cpus_and(this_core_map, this_core_map, *cpu_map);
6118 if (i != first_cpu(this_core_map))
6119 continue;
dd41f596
IM
6120 init_sched_build_groups(this_core_map, cpu_map,
6121 &cpu_to_core_group);
1e9f28fa
SS
6122 }
6123#endif
6124
1da177e4
LT
6125 /* Set up physical groups */
6126 for (i = 0; i < MAX_NUMNODES; i++) {
6127 cpumask_t nodemask = node_to_cpumask(i);
6128
1a20ff27 6129 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6130 if (cpus_empty(nodemask))
6131 continue;
6132
6711cab4 6133 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6134 }
6135
6136#ifdef CONFIG_NUMA
6137 /* Set up node groups */
6711cab4 6138 if (sd_allnodes)
dd41f596
IM
6139 init_sched_build_groups(*cpu_map, cpu_map,
6140 &cpu_to_allnodes_group);
9c1cfda2
JH
6141
6142 for (i = 0; i < MAX_NUMNODES; i++) {
6143 /* Set up node groups */
6144 struct sched_group *sg, *prev;
6145 cpumask_t nodemask = node_to_cpumask(i);
6146 cpumask_t domainspan;
6147 cpumask_t covered = CPU_MASK_NONE;
6148 int j;
6149
6150 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6151 if (cpus_empty(nodemask)) {
6152 sched_group_nodes[i] = NULL;
9c1cfda2 6153 continue;
d1b55138 6154 }
9c1cfda2
JH
6155
6156 domainspan = sched_domain_node_span(i);
6157 cpus_and(domainspan, domainspan, *cpu_map);
6158
15f0b676 6159 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6160 if (!sg) {
6161 printk(KERN_WARNING "Can not alloc domain group for "
6162 "node %d\n", i);
6163 goto error;
6164 }
9c1cfda2
JH
6165 sched_group_nodes[i] = sg;
6166 for_each_cpu_mask(j, nodemask) {
6167 struct sched_domain *sd;
9761eea8 6168
9c1cfda2
JH
6169 sd = &per_cpu(node_domains, j);
6170 sd->groups = sg;
9c1cfda2 6171 }
5517d86b 6172 sg->__cpu_power = 0;
9c1cfda2 6173 sg->cpumask = nodemask;
51888ca2 6174 sg->next = sg;
9c1cfda2
JH
6175 cpus_or(covered, covered, nodemask);
6176 prev = sg;
6177
6178 for (j = 0; j < MAX_NUMNODES; j++) {
6179 cpumask_t tmp, notcovered;
6180 int n = (i + j) % MAX_NUMNODES;
6181
6182 cpus_complement(notcovered, covered);
6183 cpus_and(tmp, notcovered, *cpu_map);
6184 cpus_and(tmp, tmp, domainspan);
6185 if (cpus_empty(tmp))
6186 break;
6187
6188 nodemask = node_to_cpumask(n);
6189 cpus_and(tmp, tmp, nodemask);
6190 if (cpus_empty(tmp))
6191 continue;
6192
15f0b676
SV
6193 sg = kmalloc_node(sizeof(struct sched_group),
6194 GFP_KERNEL, i);
9c1cfda2
JH
6195 if (!sg) {
6196 printk(KERN_WARNING
6197 "Can not alloc domain group for node %d\n", j);
51888ca2 6198 goto error;
9c1cfda2 6199 }
5517d86b 6200 sg->__cpu_power = 0;
9c1cfda2 6201 sg->cpumask = tmp;
51888ca2 6202 sg->next = prev->next;
9c1cfda2
JH
6203 cpus_or(covered, covered, tmp);
6204 prev->next = sg;
6205 prev = sg;
6206 }
9c1cfda2 6207 }
1da177e4
LT
6208#endif
6209
6210 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6211#ifdef CONFIG_SCHED_SMT
1a20ff27 6212 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6213 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6214
89c4710e 6215 init_sched_groups_power(i, sd);
5c45bf27 6216 }
1da177e4 6217#endif
1e9f28fa 6218#ifdef CONFIG_SCHED_MC
5c45bf27 6219 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6220 struct sched_domain *sd = &per_cpu(core_domains, i);
6221
89c4710e 6222 init_sched_groups_power(i, sd);
5c45bf27
SS
6223 }
6224#endif
1e9f28fa 6225
5c45bf27 6226 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6227 struct sched_domain *sd = &per_cpu(phys_domains, i);
6228
89c4710e 6229 init_sched_groups_power(i, sd);
1da177e4
LT
6230 }
6231
9c1cfda2 6232#ifdef CONFIG_NUMA
08069033
SS
6233 for (i = 0; i < MAX_NUMNODES; i++)
6234 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6235
6711cab4
SS
6236 if (sd_allnodes) {
6237 struct sched_group *sg;
f712c0c7 6238
6711cab4 6239 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6240 init_numa_sched_groups_power(sg);
6241 }
9c1cfda2
JH
6242#endif
6243
1da177e4 6244 /* Attach the domains */
1a20ff27 6245 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6246 struct sched_domain *sd;
6247#ifdef CONFIG_SCHED_SMT
6248 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6249#elif defined(CONFIG_SCHED_MC)
6250 sd = &per_cpu(core_domains, i);
1da177e4
LT
6251#else
6252 sd = &per_cpu(phys_domains, i);
6253#endif
6254 cpu_attach_domain(sd, i);
6255 }
51888ca2
SV
6256
6257 return 0;
6258
a616058b 6259#ifdef CONFIG_NUMA
51888ca2
SV
6260error:
6261 free_sched_groups(cpu_map);
6262 return -ENOMEM;
a616058b 6263#endif
1da177e4 6264}
1a20ff27
DG
6265/*
6266 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6267 */
51888ca2 6268static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6269{
6270 cpumask_t cpu_default_map;
51888ca2 6271 int err;
1da177e4 6272
1a20ff27
DG
6273 /*
6274 * Setup mask for cpus without special case scheduling requirements.
6275 * For now this just excludes isolated cpus, but could be used to
6276 * exclude other special cases in the future.
6277 */
6278 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6279
51888ca2
SV
6280 err = build_sched_domains(&cpu_default_map);
6281
6282 return err;
1a20ff27
DG
6283}
6284
6285static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6286{
51888ca2 6287 free_sched_groups(cpu_map);
9c1cfda2 6288}
1da177e4 6289
1a20ff27
DG
6290/*
6291 * Detach sched domains from a group of cpus specified in cpu_map
6292 * These cpus will now be attached to the NULL domain
6293 */
858119e1 6294static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6295{
6296 int i;
6297
6298 for_each_cpu_mask(i, *cpu_map)
6299 cpu_attach_domain(NULL, i);
6300 synchronize_sched();
6301 arch_destroy_sched_domains(cpu_map);
6302}
6303
6304/*
6305 * Partition sched domains as specified by the cpumasks below.
6306 * This attaches all cpus from the cpumasks to the NULL domain,
6307 * waits for a RCU quiescent period, recalculates sched
6308 * domain information and then attaches them back to the
6309 * correct sched domains
6310 * Call with hotplug lock held
6311 */
51888ca2 6312int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6313{
6314 cpumask_t change_map;
51888ca2 6315 int err = 0;
1a20ff27
DG
6316
6317 cpus_and(*partition1, *partition1, cpu_online_map);
6318 cpus_and(*partition2, *partition2, cpu_online_map);
6319 cpus_or(change_map, *partition1, *partition2);
6320
6321 /* Detach sched domains from all of the affected cpus */
6322 detach_destroy_domains(&change_map);
6323 if (!cpus_empty(*partition1))
51888ca2
SV
6324 err = build_sched_domains(partition1);
6325 if (!err && !cpus_empty(*partition2))
6326 err = build_sched_domains(partition2);
6327
6328 return err;
1a20ff27
DG
6329}
6330
5c45bf27
SS
6331#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6332int arch_reinit_sched_domains(void)
6333{
6334 int err;
6335
5be9361c 6336 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6337 detach_destroy_domains(&cpu_online_map);
6338 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6339 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6340
6341 return err;
6342}
6343
6344static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6345{
6346 int ret;
6347
6348 if (buf[0] != '0' && buf[0] != '1')
6349 return -EINVAL;
6350
6351 if (smt)
6352 sched_smt_power_savings = (buf[0] == '1');
6353 else
6354 sched_mc_power_savings = (buf[0] == '1');
6355
6356 ret = arch_reinit_sched_domains();
6357
6358 return ret ? ret : count;
6359}
6360
6361int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6362{
6363 int err = 0;
48f24c4d 6364
5c45bf27
SS
6365#ifdef CONFIG_SCHED_SMT
6366 if (smt_capable())
6367 err = sysfs_create_file(&cls->kset.kobj,
6368 &attr_sched_smt_power_savings.attr);
6369#endif
6370#ifdef CONFIG_SCHED_MC
6371 if (!err && mc_capable())
6372 err = sysfs_create_file(&cls->kset.kobj,
6373 &attr_sched_mc_power_savings.attr);
6374#endif
6375 return err;
6376}
6377#endif
6378
6379#ifdef CONFIG_SCHED_MC
6380static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6381{
6382 return sprintf(page, "%u\n", sched_mc_power_savings);
6383}
48f24c4d
IM
6384static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6385 const char *buf, size_t count)
5c45bf27
SS
6386{
6387 return sched_power_savings_store(buf, count, 0);
6388}
6389SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6390 sched_mc_power_savings_store);
6391#endif
6392
6393#ifdef CONFIG_SCHED_SMT
6394static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6395{
6396 return sprintf(page, "%u\n", sched_smt_power_savings);
6397}
48f24c4d
IM
6398static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6399 const char *buf, size_t count)
5c45bf27
SS
6400{
6401 return sched_power_savings_store(buf, count, 1);
6402}
6403SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6404 sched_smt_power_savings_store);
6405#endif
6406
1da177e4
LT
6407/*
6408 * Force a reinitialization of the sched domains hierarchy. The domains
6409 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6410 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6411 * which will prevent rebalancing while the sched domains are recalculated.
6412 */
6413static int update_sched_domains(struct notifier_block *nfb,
6414 unsigned long action, void *hcpu)
6415{
1da177e4
LT
6416 switch (action) {
6417 case CPU_UP_PREPARE:
8bb78442 6418 case CPU_UP_PREPARE_FROZEN:
1da177e4 6419 case CPU_DOWN_PREPARE:
8bb78442 6420 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6421 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6422 return NOTIFY_OK;
6423
6424 case CPU_UP_CANCELED:
8bb78442 6425 case CPU_UP_CANCELED_FROZEN:
1da177e4 6426 case CPU_DOWN_FAILED:
8bb78442 6427 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6428 case CPU_ONLINE:
8bb78442 6429 case CPU_ONLINE_FROZEN:
1da177e4 6430 case CPU_DEAD:
8bb78442 6431 case CPU_DEAD_FROZEN:
1da177e4
LT
6432 /*
6433 * Fall through and re-initialise the domains.
6434 */
6435 break;
6436 default:
6437 return NOTIFY_DONE;
6438 }
6439
6440 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6441 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6442
6443 return NOTIFY_OK;
6444}
1da177e4
LT
6445
6446void __init sched_init_smp(void)
6447{
5c1e1767
NP
6448 cpumask_t non_isolated_cpus;
6449
5be9361c 6450 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6451 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6452 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6453 if (cpus_empty(non_isolated_cpus))
6454 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6455 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6456 /* XXX: Theoretical race here - CPU may be hotplugged now */
6457 hotcpu_notifier(update_sched_domains, 0);
5c1e1767 6458
e692ab53
NP
6459 init_sched_domain_sysctl();
6460
5c1e1767
NP
6461 /* Move init over to a non-isolated CPU */
6462 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6463 BUG();
dd41f596 6464 sched_init_granularity();
1da177e4
LT
6465}
6466#else
6467void __init sched_init_smp(void)
6468{
dd41f596 6469 sched_init_granularity();
1da177e4
LT
6470}
6471#endif /* CONFIG_SMP */
6472
6473int in_sched_functions(unsigned long addr)
6474{
6475 /* Linker adds these: start and end of __sched functions */
6476 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6477
1da177e4
LT
6478 return in_lock_functions(addr) ||
6479 (addr >= (unsigned long)__sched_text_start
6480 && addr < (unsigned long)__sched_text_end);
6481}
6482
dd41f596
IM
6483static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6484{
6485 cfs_rq->tasks_timeline = RB_ROOT;
6486 cfs_rq->fair_clock = 1;
6487#ifdef CONFIG_FAIR_GROUP_SCHED
6488 cfs_rq->rq = rq;
6489#endif
6490}
6491
1da177e4
LT
6492void __init sched_init(void)
6493{
dd41f596 6494 u64 now = sched_clock();
476f3534 6495 int highest_cpu = 0;
dd41f596
IM
6496 int i, j;
6497
6498 /*
6499 * Link up the scheduling class hierarchy:
6500 */
6501 rt_sched_class.next = &fair_sched_class;
6502 fair_sched_class.next = &idle_sched_class;
6503 idle_sched_class.next = NULL;
1da177e4 6504
0a945022 6505 for_each_possible_cpu(i) {
dd41f596 6506 struct rt_prio_array *array;
70b97a7f 6507 struct rq *rq;
1da177e4
LT
6508
6509 rq = cpu_rq(i);
6510 spin_lock_init(&rq->lock);
fcb99371 6511 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6512 rq->nr_running = 0;
dd41f596
IM
6513 rq->clock = 1;
6514 init_cfs_rq(&rq->cfs, rq);
6515#ifdef CONFIG_FAIR_GROUP_SCHED
6516 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6517 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6518#endif
6519 rq->ls.load_update_last = now;
6520 rq->ls.load_update_start = now;
1da177e4 6521
dd41f596
IM
6522 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6523 rq->cpu_load[j] = 0;
1da177e4 6524#ifdef CONFIG_SMP
41c7ce9a 6525 rq->sd = NULL;
1da177e4 6526 rq->active_balance = 0;
dd41f596 6527 rq->next_balance = jiffies;
1da177e4 6528 rq->push_cpu = 0;
0a2966b4 6529 rq->cpu = i;
1da177e4
LT
6530 rq->migration_thread = NULL;
6531 INIT_LIST_HEAD(&rq->migration_queue);
6532#endif
6533 atomic_set(&rq->nr_iowait, 0);
6534
dd41f596
IM
6535 array = &rq->rt.active;
6536 for (j = 0; j < MAX_RT_PRIO; j++) {
6537 INIT_LIST_HEAD(array->queue + j);
6538 __clear_bit(j, array->bitmap);
1da177e4 6539 }
476f3534 6540 highest_cpu = i;
dd41f596
IM
6541 /* delimiter for bitsearch: */
6542 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6543 }
6544
2dd73a4f 6545 set_load_weight(&init_task);
b50f60ce 6546
e107be36
AK
6547#ifdef CONFIG_PREEMPT_NOTIFIERS
6548 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6549#endif
6550
c9819f45 6551#ifdef CONFIG_SMP
476f3534 6552 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6553 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6554#endif
6555
b50f60ce
HC
6556#ifdef CONFIG_RT_MUTEXES
6557 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6558#endif
6559
1da177e4
LT
6560 /*
6561 * The boot idle thread does lazy MMU switching as well:
6562 */
6563 atomic_inc(&init_mm.mm_count);
6564 enter_lazy_tlb(&init_mm, current);
6565
6566 /*
6567 * Make us the idle thread. Technically, schedule() should not be
6568 * called from this thread, however somewhere below it might be,
6569 * but because we are the idle thread, we just pick up running again
6570 * when this runqueue becomes "idle".
6571 */
6572 init_idle(current, smp_processor_id());
dd41f596
IM
6573 /*
6574 * During early bootup we pretend to be a normal task:
6575 */
6576 current->sched_class = &fair_sched_class;
1da177e4
LT
6577}
6578
6579#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6580void __might_sleep(char *file, int line)
6581{
48f24c4d 6582#ifdef in_atomic
1da177e4
LT
6583 static unsigned long prev_jiffy; /* ratelimiting */
6584
6585 if ((in_atomic() || irqs_disabled()) &&
6586 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6587 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6588 return;
6589 prev_jiffy = jiffies;
91368d73 6590 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6591 " context at %s:%d\n", file, line);
6592 printk("in_atomic():%d, irqs_disabled():%d\n",
6593 in_atomic(), irqs_disabled());
a4c410f0 6594 debug_show_held_locks(current);
3117df04
IM
6595 if (irqs_disabled())
6596 print_irqtrace_events(current);
1da177e4
LT
6597 dump_stack();
6598 }
6599#endif
6600}
6601EXPORT_SYMBOL(__might_sleep);
6602#endif
6603
6604#ifdef CONFIG_MAGIC_SYSRQ
6605void normalize_rt_tasks(void)
6606{
a0f98a1c 6607 struct task_struct *g, *p;
1da177e4 6608 unsigned long flags;
70b97a7f 6609 struct rq *rq;
dd41f596 6610 int on_rq;
1da177e4
LT
6611
6612 read_lock_irq(&tasklist_lock);
a0f98a1c 6613 do_each_thread(g, p) {
dd41f596
IM
6614 p->se.fair_key = 0;
6615 p->se.wait_runtime = 0;
6cfb0d5d 6616 p->se.exec_start = 0;
dd41f596 6617 p->se.wait_start_fair = 0;
6cfb0d5d
IM
6618 p->se.sleep_start_fair = 0;
6619#ifdef CONFIG_SCHEDSTATS
dd41f596 6620 p->se.wait_start = 0;
dd41f596 6621 p->se.sleep_start = 0;
dd41f596 6622 p->se.block_start = 0;
6cfb0d5d 6623#endif
dd41f596
IM
6624 task_rq(p)->cfs.fair_clock = 0;
6625 task_rq(p)->clock = 0;
6626
6627 if (!rt_task(p)) {
6628 /*
6629 * Renice negative nice level userspace
6630 * tasks back to 0:
6631 */
6632 if (TASK_NICE(p) < 0 && p->mm)
6633 set_user_nice(p, 0);
1da177e4 6634 continue;
dd41f596 6635 }
1da177e4 6636
b29739f9
IM
6637 spin_lock_irqsave(&p->pi_lock, flags);
6638 rq = __task_rq_lock(p);
dd41f596
IM
6639#ifdef CONFIG_SMP
6640 /*
6641 * Do not touch the migration thread:
6642 */
6643 if (p == rq->migration_thread)
6644 goto out_unlock;
6645#endif
1da177e4 6646
dd41f596 6647 on_rq = p->se.on_rq;
a8e504d2
IM
6648 if (on_rq) {
6649 update_rq_clock(task_rq(p));
6650 deactivate_task(task_rq(p), p, 0, task_rq(p)->clock);
6651 }
dd41f596
IM
6652 __setscheduler(rq, p, SCHED_NORMAL, 0);
6653 if (on_rq) {
6654 activate_task(task_rq(p), p, 0);
1da177e4
LT
6655 resched_task(rq->curr);
6656 }
dd41f596
IM
6657#ifdef CONFIG_SMP
6658 out_unlock:
6659#endif
b29739f9
IM
6660 __task_rq_unlock(rq);
6661 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6662 } while_each_thread(g, p);
6663
1da177e4
LT
6664 read_unlock_irq(&tasklist_lock);
6665}
6666
6667#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6668
6669#ifdef CONFIG_IA64
6670/*
6671 * These functions are only useful for the IA64 MCA handling.
6672 *
6673 * They can only be called when the whole system has been
6674 * stopped - every CPU needs to be quiescent, and no scheduling
6675 * activity can take place. Using them for anything else would
6676 * be a serious bug, and as a result, they aren't even visible
6677 * under any other configuration.
6678 */
6679
6680/**
6681 * curr_task - return the current task for a given cpu.
6682 * @cpu: the processor in question.
6683 *
6684 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6685 */
36c8b586 6686struct task_struct *curr_task(int cpu)
1df5c10a
LT
6687{
6688 return cpu_curr(cpu);
6689}
6690
6691/**
6692 * set_curr_task - set the current task for a given cpu.
6693 * @cpu: the processor in question.
6694 * @p: the task pointer to set.
6695 *
6696 * Description: This function must only be used when non-maskable interrupts
6697 * are serviced on a separate stack. It allows the architecture to switch the
6698 * notion of the current task on a cpu in a non-blocking manner. This function
6699 * must be called with all CPU's synchronized, and interrupts disabled, the
6700 * and caller must save the original value of the current task (see
6701 * curr_task() above) and restore that value before reenabling interrupts and
6702 * re-starting the system.
6703 *
6704 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6705 */
36c8b586 6706void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6707{
6708 cpu_curr(cpu) = p;
6709}
6710
6711#endif