]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
[PATCH] sched: new sched domain for representing multi-core
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
c59ede7b 30#include <linux/capability.h>
1da177e4
LT
31#include <linux/completion.h>
32#include <linux/kernel_stat.h>
33#include <linux/security.h>
34#include <linux/notifier.h>
35#include <linux/profile.h>
36#include <linux/suspend.h>
198e2f18 37#include <linux/vmalloc.h>
1da177e4
LT
38#include <linux/blkdev.h>
39#include <linux/delay.h>
40#include <linux/smp.h>
41#include <linux/threads.h>
42#include <linux/timer.h>
43#include <linux/rcupdate.h>
44#include <linux/cpu.h>
45#include <linux/cpuset.h>
46#include <linux/percpu.h>
47#include <linux/kthread.h>
48#include <linux/seq_file.h>
49#include <linux/syscalls.h>
50#include <linux/times.h>
51#include <linux/acct.h>
c6fd91f0 52#include <linux/kprobes.h>
1da177e4
LT
53#include <asm/tlb.h>
54
55#include <asm/unistd.h>
56
57/*
58 * Convert user-nice values [ -20 ... 0 ... 19 ]
59 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
60 * and back.
61 */
62#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
63#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
64#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
65
66/*
67 * 'User priority' is the nice value converted to something we
68 * can work with better when scaling various scheduler parameters,
69 * it's a [ 0 ... 39 ] range.
70 */
71#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
72#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
73#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
74
75/*
76 * Some helpers for converting nanosecond timing to jiffy resolution
77 */
78#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
79#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
80
81/*
82 * These are the 'tuning knobs' of the scheduler:
83 *
84 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
85 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
86 * Timeslices get refilled after they expire.
87 */
88#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
89#define DEF_TIMESLICE (100 * HZ / 1000)
90#define ON_RUNQUEUE_WEIGHT 30
91#define CHILD_PENALTY 95
92#define PARENT_PENALTY 100
93#define EXIT_WEIGHT 3
94#define PRIO_BONUS_RATIO 25
95#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
96#define INTERACTIVE_DELTA 2
97#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
98#define STARVATION_LIMIT (MAX_SLEEP_AVG)
99#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
100
101/*
102 * If a task is 'interactive' then we reinsert it in the active
103 * array after it has expired its current timeslice. (it will not
104 * continue to run immediately, it will still roundrobin with
105 * other interactive tasks.)
106 *
107 * This part scales the interactivity limit depending on niceness.
108 *
109 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
110 * Here are a few examples of different nice levels:
111 *
112 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
113 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
114 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
115 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
116 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
117 *
118 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
119 * priority range a task can explore, a value of '1' means the
120 * task is rated interactive.)
121 *
122 * Ie. nice +19 tasks can never get 'interactive' enough to be
123 * reinserted into the active array. And only heavily CPU-hog nice -20
124 * tasks will be expired. Default nice 0 tasks are somewhere between,
125 * it takes some effort for them to get interactive, but it's not
126 * too hard.
127 */
128
129#define CURRENT_BONUS(p) \
130 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
131 MAX_SLEEP_AVG)
132
133#define GRANULARITY (10 * HZ / 1000 ? : 1)
134
135#ifdef CONFIG_SMP
136#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
137 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
138 num_online_cpus())
139#else
140#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
141 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
142#endif
143
144#define SCALE(v1,v1_max,v2_max) \
145 (v1) * (v2_max) / (v1_max)
146
147#define DELTA(p) \
013d3868
MA
148 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
149 INTERACTIVE_DELTA)
1da177e4
LT
150
151#define TASK_INTERACTIVE(p) \
152 ((p)->prio <= (p)->static_prio - DELTA(p))
153
154#define INTERACTIVE_SLEEP(p) \
155 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
156 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
157
158#define TASK_PREEMPTS_CURR(p, rq) \
159 ((p)->prio < (rq)->curr->prio)
160
161/*
162 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
163 * to time slice values: [800ms ... 100ms ... 5ms]
164 *
165 * The higher a thread's priority, the bigger timeslices
166 * it gets during one round of execution. But even the lowest
167 * priority thread gets MIN_TIMESLICE worth of execution time.
168 */
169
170#define SCALE_PRIO(x, prio) \
171 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
172
48c08d3f 173static unsigned int task_timeslice(task_t *p)
1da177e4
LT
174{
175 if (p->static_prio < NICE_TO_PRIO(0))
176 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
177 else
178 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
179}
180#define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
181 < (long long) (sd)->cache_hot_time)
182
183/*
184 * These are the runqueue data structures:
185 */
186
187#define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
188
189typedef struct runqueue runqueue_t;
190
191struct prio_array {
192 unsigned int nr_active;
193 unsigned long bitmap[BITMAP_SIZE];
194 struct list_head queue[MAX_PRIO];
195};
196
197/*
198 * This is the main, per-CPU runqueue data structure.
199 *
200 * Locking rule: those places that want to lock multiple runqueues
201 * (such as the load balancing or the thread migration code), lock
202 * acquire operations must be ordered by ascending &runqueue.
203 */
204struct runqueue {
205 spinlock_t lock;
206
207 /*
208 * nr_running and cpu_load should be in the same cacheline because
209 * remote CPUs use both these fields when doing load calculation.
210 */
211 unsigned long nr_running;
212#ifdef CONFIG_SMP
7897986b 213 unsigned long cpu_load[3];
1da177e4
LT
214#endif
215 unsigned long long nr_switches;
216
217 /*
218 * This is part of a global counter where only the total sum
219 * over all CPUs matters. A task can increase this counter on
220 * one CPU and if it got migrated afterwards it may decrease
221 * it on another CPU. Always updated under the runqueue lock:
222 */
223 unsigned long nr_uninterruptible;
224
225 unsigned long expired_timestamp;
226 unsigned long long timestamp_last_tick;
227 task_t *curr, *idle;
228 struct mm_struct *prev_mm;
229 prio_array_t *active, *expired, arrays[2];
230 int best_expired_prio;
231 atomic_t nr_iowait;
232
233#ifdef CONFIG_SMP
234 struct sched_domain *sd;
235
236 /* For active balancing */
237 int active_balance;
238 int push_cpu;
239
240 task_t *migration_thread;
241 struct list_head migration_queue;
e9028b0f 242 int cpu;
1da177e4
LT
243#endif
244
245#ifdef CONFIG_SCHEDSTATS
246 /* latency stats */
247 struct sched_info rq_sched_info;
248
249 /* sys_sched_yield() stats */
250 unsigned long yld_exp_empty;
251 unsigned long yld_act_empty;
252 unsigned long yld_both_empty;
253 unsigned long yld_cnt;
254
255 /* schedule() stats */
256 unsigned long sched_switch;
257 unsigned long sched_cnt;
258 unsigned long sched_goidle;
259
260 /* try_to_wake_up() stats */
261 unsigned long ttwu_cnt;
262 unsigned long ttwu_local;
263#endif
264};
265
266static DEFINE_PER_CPU(struct runqueue, runqueues);
267
674311d5
NP
268/*
269 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 270 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
271 *
272 * The domain tree of any CPU may only be accessed from within
273 * preempt-disabled sections.
274 */
1da177e4 275#define for_each_domain(cpu, domain) \
674311d5 276for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
1da177e4
LT
277
278#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
279#define this_rq() (&__get_cpu_var(runqueues))
280#define task_rq(p) cpu_rq(task_cpu(p))
281#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
282
1da177e4 283#ifndef prepare_arch_switch
4866cde0
NP
284# define prepare_arch_switch(next) do { } while (0)
285#endif
286#ifndef finish_arch_switch
287# define finish_arch_switch(prev) do { } while (0)
288#endif
289
290#ifndef __ARCH_WANT_UNLOCKED_CTXSW
291static inline int task_running(runqueue_t *rq, task_t *p)
292{
293 return rq->curr == p;
294}
295
296static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
297{
298}
299
300static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
301{
da04c035
IM
302#ifdef CONFIG_DEBUG_SPINLOCK
303 /* this is a valid case when another task releases the spinlock */
304 rq->lock.owner = current;
305#endif
4866cde0
NP
306 spin_unlock_irq(&rq->lock);
307}
308
309#else /* __ARCH_WANT_UNLOCKED_CTXSW */
310static inline int task_running(runqueue_t *rq, task_t *p)
311{
312#ifdef CONFIG_SMP
313 return p->oncpu;
314#else
315 return rq->curr == p;
316#endif
317}
318
319static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
320{
321#ifdef CONFIG_SMP
322 /*
323 * We can optimise this out completely for !SMP, because the
324 * SMP rebalancing from interrupt is the only thing that cares
325 * here.
326 */
327 next->oncpu = 1;
328#endif
329#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
330 spin_unlock_irq(&rq->lock);
331#else
332 spin_unlock(&rq->lock);
333#endif
334}
335
336static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
337{
338#ifdef CONFIG_SMP
339 /*
340 * After ->oncpu is cleared, the task can be moved to a different CPU.
341 * We must ensure this doesn't happen until the switch is completely
342 * finished.
343 */
344 smp_wmb();
345 prev->oncpu = 0;
346#endif
347#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
348 local_irq_enable();
1da177e4 349#endif
4866cde0
NP
350}
351#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4
LT
352
353/*
354 * task_rq_lock - lock the runqueue a given task resides on and disable
355 * interrupts. Note the ordering: we can safely lookup the task_rq without
356 * explicitly disabling preemption.
357 */
358static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
359 __acquires(rq->lock)
360{
361 struct runqueue *rq;
362
363repeat_lock_task:
364 local_irq_save(*flags);
365 rq = task_rq(p);
366 spin_lock(&rq->lock);
367 if (unlikely(rq != task_rq(p))) {
368 spin_unlock_irqrestore(&rq->lock, *flags);
369 goto repeat_lock_task;
370 }
371 return rq;
372}
373
374static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
375 __releases(rq->lock)
376{
377 spin_unlock_irqrestore(&rq->lock, *flags);
378}
379
380#ifdef CONFIG_SCHEDSTATS
381/*
382 * bump this up when changing the output format or the meaning of an existing
383 * format, so that tools can adapt (or abort)
384 */
68767a0a 385#define SCHEDSTAT_VERSION 12
1da177e4
LT
386
387static int show_schedstat(struct seq_file *seq, void *v)
388{
389 int cpu;
390
391 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
392 seq_printf(seq, "timestamp %lu\n", jiffies);
393 for_each_online_cpu(cpu) {
394 runqueue_t *rq = cpu_rq(cpu);
395#ifdef CONFIG_SMP
396 struct sched_domain *sd;
397 int dcnt = 0;
398#endif
399
400 /* runqueue-specific stats */
401 seq_printf(seq,
402 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
403 cpu, rq->yld_both_empty,
404 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
405 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
406 rq->ttwu_cnt, rq->ttwu_local,
407 rq->rq_sched_info.cpu_time,
408 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
409
410 seq_printf(seq, "\n");
411
412#ifdef CONFIG_SMP
413 /* domain-specific stats */
674311d5 414 preempt_disable();
1da177e4
LT
415 for_each_domain(cpu, sd) {
416 enum idle_type itype;
417 char mask_str[NR_CPUS];
418
419 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
420 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
421 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
422 itype++) {
423 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
424 sd->lb_cnt[itype],
425 sd->lb_balanced[itype],
426 sd->lb_failed[itype],
427 sd->lb_imbalance[itype],
428 sd->lb_gained[itype],
429 sd->lb_hot_gained[itype],
430 sd->lb_nobusyq[itype],
431 sd->lb_nobusyg[itype]);
432 }
68767a0a 433 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
1da177e4 434 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
68767a0a
NP
435 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
436 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
1da177e4
LT
437 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
438 }
674311d5 439 preempt_enable();
1da177e4
LT
440#endif
441 }
442 return 0;
443}
444
445static int schedstat_open(struct inode *inode, struct file *file)
446{
447 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
448 char *buf = kmalloc(size, GFP_KERNEL);
449 struct seq_file *m;
450 int res;
451
452 if (!buf)
453 return -ENOMEM;
454 res = single_open(file, show_schedstat, NULL);
455 if (!res) {
456 m = file->private_data;
457 m->buf = buf;
458 m->size = size;
459 } else
460 kfree(buf);
461 return res;
462}
463
464struct file_operations proc_schedstat_operations = {
465 .open = schedstat_open,
466 .read = seq_read,
467 .llseek = seq_lseek,
468 .release = single_release,
469};
470
471# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
472# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
473#else /* !CONFIG_SCHEDSTATS */
474# define schedstat_inc(rq, field) do { } while (0)
475# define schedstat_add(rq, field, amt) do { } while (0)
476#endif
477
478/*
479 * rq_lock - lock a given runqueue and disable interrupts.
480 */
481static inline runqueue_t *this_rq_lock(void)
482 __acquires(rq->lock)
483{
484 runqueue_t *rq;
485
486 local_irq_disable();
487 rq = this_rq();
488 spin_lock(&rq->lock);
489
490 return rq;
491}
492
1da177e4
LT
493#ifdef CONFIG_SCHEDSTATS
494/*
495 * Called when a process is dequeued from the active array and given
496 * the cpu. We should note that with the exception of interactive
497 * tasks, the expired queue will become the active queue after the active
498 * queue is empty, without explicitly dequeuing and requeuing tasks in the
499 * expired queue. (Interactive tasks may be requeued directly to the
500 * active queue, thus delaying tasks in the expired queue from running;
501 * see scheduler_tick()).
502 *
503 * This function is only called from sched_info_arrive(), rather than
504 * dequeue_task(). Even though a task may be queued and dequeued multiple
505 * times as it is shuffled about, we're really interested in knowing how
506 * long it was from the *first* time it was queued to the time that it
507 * finally hit a cpu.
508 */
509static inline void sched_info_dequeued(task_t *t)
510{
511 t->sched_info.last_queued = 0;
512}
513
514/*
515 * Called when a task finally hits the cpu. We can now calculate how
516 * long it was waiting to run. We also note when it began so that we
517 * can keep stats on how long its timeslice is.
518 */
858119e1 519static void sched_info_arrive(task_t *t)
1da177e4
LT
520{
521 unsigned long now = jiffies, diff = 0;
522 struct runqueue *rq = task_rq(t);
523
524 if (t->sched_info.last_queued)
525 diff = now - t->sched_info.last_queued;
526 sched_info_dequeued(t);
527 t->sched_info.run_delay += diff;
528 t->sched_info.last_arrival = now;
529 t->sched_info.pcnt++;
530
531 if (!rq)
532 return;
533
534 rq->rq_sched_info.run_delay += diff;
535 rq->rq_sched_info.pcnt++;
536}
537
538/*
539 * Called when a process is queued into either the active or expired
540 * array. The time is noted and later used to determine how long we
541 * had to wait for us to reach the cpu. Since the expired queue will
542 * become the active queue after active queue is empty, without dequeuing
543 * and requeuing any tasks, we are interested in queuing to either. It
544 * is unusual but not impossible for tasks to be dequeued and immediately
545 * requeued in the same or another array: this can happen in sched_yield(),
546 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
547 * to runqueue.
548 *
549 * This function is only called from enqueue_task(), but also only updates
550 * the timestamp if it is already not set. It's assumed that
551 * sched_info_dequeued() will clear that stamp when appropriate.
552 */
553static inline void sched_info_queued(task_t *t)
554{
555 if (!t->sched_info.last_queued)
556 t->sched_info.last_queued = jiffies;
557}
558
559/*
560 * Called when a process ceases being the active-running process, either
561 * voluntarily or involuntarily. Now we can calculate how long we ran.
562 */
563static inline void sched_info_depart(task_t *t)
564{
565 struct runqueue *rq = task_rq(t);
566 unsigned long diff = jiffies - t->sched_info.last_arrival;
567
568 t->sched_info.cpu_time += diff;
569
570 if (rq)
571 rq->rq_sched_info.cpu_time += diff;
572}
573
574/*
575 * Called when tasks are switched involuntarily due, typically, to expiring
576 * their time slice. (This may also be called when switching to or from
577 * the idle task.) We are only called when prev != next.
578 */
579static inline void sched_info_switch(task_t *prev, task_t *next)
580{
581 struct runqueue *rq = task_rq(prev);
582
583 /*
584 * prev now departs the cpu. It's not interesting to record
585 * stats about how efficient we were at scheduling the idle
586 * process, however.
587 */
588 if (prev != rq->idle)
589 sched_info_depart(prev);
590
591 if (next != rq->idle)
592 sched_info_arrive(next);
593}
594#else
595#define sched_info_queued(t) do { } while (0)
596#define sched_info_switch(t, next) do { } while (0)
597#endif /* CONFIG_SCHEDSTATS */
598
599/*
600 * Adding/removing a task to/from a priority array:
601 */
602static void dequeue_task(struct task_struct *p, prio_array_t *array)
603{
604 array->nr_active--;
605 list_del(&p->run_list);
606 if (list_empty(array->queue + p->prio))
607 __clear_bit(p->prio, array->bitmap);
608}
609
610static void enqueue_task(struct task_struct *p, prio_array_t *array)
611{
612 sched_info_queued(p);
613 list_add_tail(&p->run_list, array->queue + p->prio);
614 __set_bit(p->prio, array->bitmap);
615 array->nr_active++;
616 p->array = array;
617}
618
619/*
620 * Put task to the end of the run list without the overhead of dequeue
621 * followed by enqueue.
622 */
623static void requeue_task(struct task_struct *p, prio_array_t *array)
624{
625 list_move_tail(&p->run_list, array->queue + p->prio);
626}
627
628static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
629{
630 list_add(&p->run_list, array->queue + p->prio);
631 __set_bit(p->prio, array->bitmap);
632 array->nr_active++;
633 p->array = array;
634}
635
636/*
637 * effective_prio - return the priority that is based on the static
638 * priority but is modified by bonuses/penalties.
639 *
640 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
641 * into the -5 ... 0 ... +5 bonus/penalty range.
642 *
643 * We use 25% of the full 0...39 priority range so that:
644 *
645 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
646 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
647 *
648 * Both properties are important to certain workloads.
649 */
650static int effective_prio(task_t *p)
651{
652 int bonus, prio;
653
654 if (rt_task(p))
655 return p->prio;
656
657 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
658
659 prio = p->static_prio - bonus;
660 if (prio < MAX_RT_PRIO)
661 prio = MAX_RT_PRIO;
662 if (prio > MAX_PRIO-1)
663 prio = MAX_PRIO-1;
664 return prio;
665}
666
667/*
668 * __activate_task - move a task to the runqueue.
669 */
670static inline void __activate_task(task_t *p, runqueue_t *rq)
671{
672 enqueue_task(p, rq->active);
a2000572 673 rq->nr_running++;
1da177e4
LT
674}
675
676/*
677 * __activate_idle_task - move idle task to the _front_ of runqueue.
678 */
679static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
680{
681 enqueue_task_head(p, rq->active);
a2000572 682 rq->nr_running++;
1da177e4
LT
683}
684
a3464a10 685static int recalc_task_prio(task_t *p, unsigned long long now)
1da177e4
LT
686{
687 /* Caller must always ensure 'now >= p->timestamp' */
688 unsigned long long __sleep_time = now - p->timestamp;
689 unsigned long sleep_time;
690
b0a9499c
IM
691 if (unlikely(p->policy == SCHED_BATCH))
692 sleep_time = 0;
693 else {
694 if (__sleep_time > NS_MAX_SLEEP_AVG)
695 sleep_time = NS_MAX_SLEEP_AVG;
696 else
697 sleep_time = (unsigned long)__sleep_time;
698 }
1da177e4
LT
699
700 if (likely(sleep_time > 0)) {
701 /*
702 * User tasks that sleep a long time are categorised as
703 * idle and will get just interactive status to stay active &
704 * prevent them suddenly becoming cpu hogs and starving
705 * other processes.
706 */
707 if (p->mm && p->activated != -1 &&
708 sleep_time > INTERACTIVE_SLEEP(p)) {
709 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
710 DEF_TIMESLICE);
711 } else {
1da177e4
LT
712 /*
713 * Tasks waking from uninterruptible sleep are
714 * limited in their sleep_avg rise as they
715 * are likely to be waiting on I/O
716 */
717 if (p->activated == -1 && p->mm) {
718 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
719 sleep_time = 0;
720 else if (p->sleep_avg + sleep_time >=
721 INTERACTIVE_SLEEP(p)) {
722 p->sleep_avg = INTERACTIVE_SLEEP(p);
723 sleep_time = 0;
724 }
725 }
726
727 /*
728 * This code gives a bonus to interactive tasks.
729 *
730 * The boost works by updating the 'average sleep time'
731 * value here, based on ->timestamp. The more time a
732 * task spends sleeping, the higher the average gets -
733 * and the higher the priority boost gets as well.
734 */
735 p->sleep_avg += sleep_time;
736
737 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
738 p->sleep_avg = NS_MAX_SLEEP_AVG;
739 }
740 }
741
a3464a10 742 return effective_prio(p);
1da177e4
LT
743}
744
745/*
746 * activate_task - move a task to the runqueue and do priority recalculation
747 *
748 * Update all the scheduling statistics stuff. (sleep average
749 * calculation, priority modifiers, etc.)
750 */
751static void activate_task(task_t *p, runqueue_t *rq, int local)
752{
753 unsigned long long now;
754
755 now = sched_clock();
756#ifdef CONFIG_SMP
757 if (!local) {
758 /* Compensate for drifting sched_clock */
759 runqueue_t *this_rq = this_rq();
760 now = (now - this_rq->timestamp_last_tick)
761 + rq->timestamp_last_tick;
762 }
763#endif
764
a47ab937
KC
765 if (!rt_task(p))
766 p->prio = recalc_task_prio(p, now);
1da177e4
LT
767
768 /*
769 * This checks to make sure it's not an uninterruptible task
770 * that is now waking up.
771 */
772 if (!p->activated) {
773 /*
774 * Tasks which were woken up by interrupts (ie. hw events)
775 * are most likely of interactive nature. So we give them
776 * the credit of extending their sleep time to the period
777 * of time they spend on the runqueue, waiting for execution
778 * on a CPU, first time around:
779 */
780 if (in_interrupt())
781 p->activated = 2;
782 else {
783 /*
784 * Normal first-time wakeups get a credit too for
785 * on-runqueue time, but it will be weighted down:
786 */
787 p->activated = 1;
788 }
789 }
790 p->timestamp = now;
791
792 __activate_task(p, rq);
793}
794
795/*
796 * deactivate_task - remove a task from the runqueue.
797 */
798static void deactivate_task(struct task_struct *p, runqueue_t *rq)
799{
a2000572 800 rq->nr_running--;
1da177e4
LT
801 dequeue_task(p, p->array);
802 p->array = NULL;
803}
804
805/*
806 * resched_task - mark a task 'to be rescheduled now'.
807 *
808 * On UP this means the setting of the need_resched flag, on SMP it
809 * might also involve a cross-CPU call to trigger the scheduler on
810 * the target CPU.
811 */
812#ifdef CONFIG_SMP
813static void resched_task(task_t *p)
814{
64c7c8f8 815 int cpu;
1da177e4
LT
816
817 assert_spin_locked(&task_rq(p)->lock);
818
64c7c8f8
NP
819 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
820 return;
821
822 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1da177e4 823
64c7c8f8
NP
824 cpu = task_cpu(p);
825 if (cpu == smp_processor_id())
826 return;
827
828 /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
829 smp_mb();
830 if (!test_tsk_thread_flag(p, TIF_POLLING_NRFLAG))
831 smp_send_reschedule(cpu);
1da177e4
LT
832}
833#else
834static inline void resched_task(task_t *p)
835{
64c7c8f8 836 assert_spin_locked(&task_rq(p)->lock);
1da177e4
LT
837 set_tsk_need_resched(p);
838}
839#endif
840
841/**
842 * task_curr - is this task currently executing on a CPU?
843 * @p: the task in question.
844 */
845inline int task_curr(const task_t *p)
846{
847 return cpu_curr(task_cpu(p)) == p;
848}
849
850#ifdef CONFIG_SMP
1da177e4
LT
851typedef struct {
852 struct list_head list;
1da177e4 853
1da177e4
LT
854 task_t *task;
855 int dest_cpu;
856
1da177e4
LT
857 struct completion done;
858} migration_req_t;
859
860/*
861 * The task's runqueue lock must be held.
862 * Returns true if you have to wait for migration thread.
863 */
864static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
865{
866 runqueue_t *rq = task_rq(p);
867
868 /*
869 * If the task is not on a runqueue (and not running), then
870 * it is sufficient to simply update the task's cpu field.
871 */
872 if (!p->array && !task_running(rq, p)) {
873 set_task_cpu(p, dest_cpu);
874 return 0;
875 }
876
877 init_completion(&req->done);
1da177e4
LT
878 req->task = p;
879 req->dest_cpu = dest_cpu;
880 list_add(&req->list, &rq->migration_queue);
881 return 1;
882}
883
884/*
885 * wait_task_inactive - wait for a thread to unschedule.
886 *
887 * The caller must ensure that the task *will* unschedule sometime soon,
888 * else this function might spin for a *long* time. This function can't
889 * be called with interrupts off, or it may introduce deadlock with
890 * smp_call_function() if an IPI is sent by the same process we are
891 * waiting to become inactive.
892 */
95cdf3b7 893void wait_task_inactive(task_t *p)
1da177e4
LT
894{
895 unsigned long flags;
896 runqueue_t *rq;
897 int preempted;
898
899repeat:
900 rq = task_rq_lock(p, &flags);
901 /* Must be off runqueue entirely, not preempted. */
902 if (unlikely(p->array || task_running(rq, p))) {
903 /* If it's preempted, we yield. It could be a while. */
904 preempted = !task_running(rq, p);
905 task_rq_unlock(rq, &flags);
906 cpu_relax();
907 if (preempted)
908 yield();
909 goto repeat;
910 }
911 task_rq_unlock(rq, &flags);
912}
913
914/***
915 * kick_process - kick a running thread to enter/exit the kernel
916 * @p: the to-be-kicked thread
917 *
918 * Cause a process which is running on another CPU to enter
919 * kernel-mode, without any delay. (to get signals handled.)
920 *
921 * NOTE: this function doesnt have to take the runqueue lock,
922 * because all it wants to ensure is that the remote task enters
923 * the kernel. If the IPI races and the task has been migrated
924 * to another CPU then no harm is done and the purpose has been
925 * achieved as well.
926 */
927void kick_process(task_t *p)
928{
929 int cpu;
930
931 preempt_disable();
932 cpu = task_cpu(p);
933 if ((cpu != smp_processor_id()) && task_curr(p))
934 smp_send_reschedule(cpu);
935 preempt_enable();
936}
937
938/*
939 * Return a low guess at the load of a migration-source cpu.
940 *
941 * We want to under-estimate the load of migration sources, to
942 * balance conservatively.
943 */
a2000572 944static inline unsigned long source_load(int cpu, int type)
1da177e4
LT
945{
946 runqueue_t *rq = cpu_rq(cpu);
a2000572 947 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
3b0bd9bc 948 if (type == 0)
a2000572 949 return load_now;
b910472d 950
a2000572 951 return min(rq->cpu_load[type-1], load_now);
1da177e4
LT
952}
953
954/*
955 * Return a high guess at the load of a migration-target cpu
956 */
a2000572 957static inline unsigned long target_load(int cpu, int type)
1da177e4
LT
958{
959 runqueue_t *rq = cpu_rq(cpu);
a2000572 960 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
7897986b 961 if (type == 0)
a2000572 962 return load_now;
3b0bd9bc 963
a2000572 964 return max(rq->cpu_load[type-1], load_now);
1da177e4
LT
965}
966
147cbb4b
NP
967/*
968 * find_idlest_group finds and returns the least busy CPU group within the
969 * domain.
970 */
971static struct sched_group *
972find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
973{
974 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
975 unsigned long min_load = ULONG_MAX, this_load = 0;
976 int load_idx = sd->forkexec_idx;
977 int imbalance = 100 + (sd->imbalance_pct-100)/2;
978
979 do {
980 unsigned long load, avg_load;
981 int local_group;
982 int i;
983
da5a5522
BD
984 /* Skip over this group if it has no CPUs allowed */
985 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
986 goto nextgroup;
987
147cbb4b 988 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
989
990 /* Tally up the load of all CPUs in the group */
991 avg_load = 0;
992
993 for_each_cpu_mask(i, group->cpumask) {
994 /* Bias balancing toward cpus of our domain */
995 if (local_group)
996 load = source_load(i, load_idx);
997 else
998 load = target_load(i, load_idx);
999
1000 avg_load += load;
1001 }
1002
1003 /* Adjust by relative CPU power of the group */
1004 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1005
1006 if (local_group) {
1007 this_load = avg_load;
1008 this = group;
1009 } else if (avg_load < min_load) {
1010 min_load = avg_load;
1011 idlest = group;
1012 }
da5a5522 1013nextgroup:
147cbb4b
NP
1014 group = group->next;
1015 } while (group != sd->groups);
1016
1017 if (!idlest || 100*this_load < imbalance*min_load)
1018 return NULL;
1019 return idlest;
1020}
1021
1022/*
1023 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1024 */
95cdf3b7
IM
1025static int
1026find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1027{
da5a5522 1028 cpumask_t tmp;
147cbb4b
NP
1029 unsigned long load, min_load = ULONG_MAX;
1030 int idlest = -1;
1031 int i;
1032
da5a5522
BD
1033 /* Traverse only the allowed CPUs */
1034 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1035
1036 for_each_cpu_mask(i, tmp) {
147cbb4b
NP
1037 load = source_load(i, 0);
1038
1039 if (load < min_load || (load == min_load && i == this_cpu)) {
1040 min_load = load;
1041 idlest = i;
1042 }
1043 }
1044
1045 return idlest;
1046}
1047
476d139c
NP
1048/*
1049 * sched_balance_self: balance the current task (running on cpu) in domains
1050 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1051 * SD_BALANCE_EXEC.
1052 *
1053 * Balance, ie. select the least loaded group.
1054 *
1055 * Returns the target CPU number, or the same CPU if no balancing is needed.
1056 *
1057 * preempt must be disabled.
1058 */
1059static int sched_balance_self(int cpu, int flag)
1060{
1061 struct task_struct *t = current;
1062 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1063
476d139c
NP
1064 for_each_domain(cpu, tmp)
1065 if (tmp->flags & flag)
1066 sd = tmp;
1067
1068 while (sd) {
1069 cpumask_t span;
1070 struct sched_group *group;
1071 int new_cpu;
1072 int weight;
1073
1074 span = sd->span;
1075 group = find_idlest_group(sd, t, cpu);
1076 if (!group)
1077 goto nextlevel;
1078
da5a5522 1079 new_cpu = find_idlest_cpu(group, t, cpu);
476d139c
NP
1080 if (new_cpu == -1 || new_cpu == cpu)
1081 goto nextlevel;
1082
1083 /* Now try balancing at a lower domain level */
1084 cpu = new_cpu;
1085nextlevel:
1086 sd = NULL;
1087 weight = cpus_weight(span);
1088 for_each_domain(cpu, tmp) {
1089 if (weight <= cpus_weight(tmp->span))
1090 break;
1091 if (tmp->flags & flag)
1092 sd = tmp;
1093 }
1094 /* while loop will break here if sd == NULL */
1095 }
1096
1097 return cpu;
1098}
1099
1100#endif /* CONFIG_SMP */
1da177e4
LT
1101
1102/*
1103 * wake_idle() will wake a task on an idle cpu if task->cpu is
1104 * not idle and an idle cpu is available. The span of cpus to
1105 * search starts with cpus closest then further out as needed,
1106 * so we always favor a closer, idle cpu.
1107 *
1108 * Returns the CPU we should wake onto.
1109 */
1110#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1111static int wake_idle(int cpu, task_t *p)
1112{
1113 cpumask_t tmp;
1114 struct sched_domain *sd;
1115 int i;
1116
1117 if (idle_cpu(cpu))
1118 return cpu;
1119
1120 for_each_domain(cpu, sd) {
1121 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1122 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1123 for_each_cpu_mask(i, tmp) {
1124 if (idle_cpu(i))
1125 return i;
1126 }
1127 }
e0f364f4
NP
1128 else
1129 break;
1da177e4
LT
1130 }
1131 return cpu;
1132}
1133#else
1134static inline int wake_idle(int cpu, task_t *p)
1135{
1136 return cpu;
1137}
1138#endif
1139
1140/***
1141 * try_to_wake_up - wake up a thread
1142 * @p: the to-be-woken-up thread
1143 * @state: the mask of task states that can be woken
1144 * @sync: do a synchronous wakeup?
1145 *
1146 * Put it on the run-queue if it's not already there. The "current"
1147 * thread is always on the run-queue (except when the actual
1148 * re-schedule is in progress), and as such you're allowed to do
1149 * the simpler "current->state = TASK_RUNNING" to mark yourself
1150 * runnable without the overhead of this.
1151 *
1152 * returns failure only if the task is already active.
1153 */
95cdf3b7 1154static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1da177e4
LT
1155{
1156 int cpu, this_cpu, success = 0;
1157 unsigned long flags;
1158 long old_state;
1159 runqueue_t *rq;
1160#ifdef CONFIG_SMP
1161 unsigned long load, this_load;
7897986b 1162 struct sched_domain *sd, *this_sd = NULL;
1da177e4
LT
1163 int new_cpu;
1164#endif
1165
1166 rq = task_rq_lock(p, &flags);
1167 old_state = p->state;
1168 if (!(old_state & state))
1169 goto out;
1170
1171 if (p->array)
1172 goto out_running;
1173
1174 cpu = task_cpu(p);
1175 this_cpu = smp_processor_id();
1176
1177#ifdef CONFIG_SMP
1178 if (unlikely(task_running(rq, p)))
1179 goto out_activate;
1180
7897986b
NP
1181 new_cpu = cpu;
1182
1da177e4
LT
1183 schedstat_inc(rq, ttwu_cnt);
1184 if (cpu == this_cpu) {
1185 schedstat_inc(rq, ttwu_local);
7897986b
NP
1186 goto out_set_cpu;
1187 }
1188
1189 for_each_domain(this_cpu, sd) {
1190 if (cpu_isset(cpu, sd->span)) {
1191 schedstat_inc(sd, ttwu_wake_remote);
1192 this_sd = sd;
1193 break;
1da177e4
LT
1194 }
1195 }
1da177e4 1196
7897986b 1197 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1198 goto out_set_cpu;
1199
1da177e4 1200 /*
7897986b 1201 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1202 */
7897986b
NP
1203 if (this_sd) {
1204 int idx = this_sd->wake_idx;
1205 unsigned int imbalance;
1da177e4 1206
a3f21bce
NP
1207 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1208
7897986b
NP
1209 load = source_load(cpu, idx);
1210 this_load = target_load(this_cpu, idx);
1da177e4 1211
7897986b
NP
1212 new_cpu = this_cpu; /* Wake to this CPU if we can */
1213
a3f21bce
NP
1214 if (this_sd->flags & SD_WAKE_AFFINE) {
1215 unsigned long tl = this_load;
1da177e4 1216 /*
a3f21bce
NP
1217 * If sync wakeup then subtract the (maximum possible)
1218 * effect of the currently running task from the load
1219 * of the current CPU:
1da177e4 1220 */
a3f21bce
NP
1221 if (sync)
1222 tl -= SCHED_LOAD_SCALE;
1223
1224 if ((tl <= load &&
1225 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1226 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1227 /*
1228 * This domain has SD_WAKE_AFFINE and
1229 * p is cache cold in this domain, and
1230 * there is no bad imbalance.
1231 */
1232 schedstat_inc(this_sd, ttwu_move_affine);
1233 goto out_set_cpu;
1234 }
1235 }
1236
1237 /*
1238 * Start passive balancing when half the imbalance_pct
1239 * limit is reached.
1240 */
1241 if (this_sd->flags & SD_WAKE_BALANCE) {
1242 if (imbalance*this_load <= 100*load) {
1243 schedstat_inc(this_sd, ttwu_move_balance);
1244 goto out_set_cpu;
1245 }
1da177e4
LT
1246 }
1247 }
1248
1249 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1250out_set_cpu:
1251 new_cpu = wake_idle(new_cpu, p);
1252 if (new_cpu != cpu) {
1253 set_task_cpu(p, new_cpu);
1254 task_rq_unlock(rq, &flags);
1255 /* might preempt at this point */
1256 rq = task_rq_lock(p, &flags);
1257 old_state = p->state;
1258 if (!(old_state & state))
1259 goto out;
1260 if (p->array)
1261 goto out_running;
1262
1263 this_cpu = smp_processor_id();
1264 cpu = task_cpu(p);
1265 }
1266
1267out_activate:
1268#endif /* CONFIG_SMP */
1269 if (old_state == TASK_UNINTERRUPTIBLE) {
1270 rq->nr_uninterruptible--;
1271 /*
1272 * Tasks on involuntary sleep don't earn
1273 * sleep_avg beyond just interactive state.
1274 */
1275 p->activated = -1;
1276 }
1277
d79fc0fc
IM
1278 /*
1279 * Tasks that have marked their sleep as noninteractive get
1280 * woken up without updating their sleep average. (i.e. their
1281 * sleep is handled in a priority-neutral manner, no priority
1282 * boost and no penalty.)
1283 */
1284 if (old_state & TASK_NONINTERACTIVE)
1285 __activate_task(p, rq);
1286 else
1287 activate_task(p, rq, cpu == this_cpu);
1da177e4
LT
1288 /*
1289 * Sync wakeups (i.e. those types of wakeups where the waker
1290 * has indicated that it will leave the CPU in short order)
1291 * don't trigger a preemption, if the woken up task will run on
1292 * this cpu. (in this case the 'I will reschedule' promise of
1293 * the waker guarantees that the freshly woken up task is going
1294 * to be considered on this CPU.)
1295 */
1da177e4
LT
1296 if (!sync || cpu != this_cpu) {
1297 if (TASK_PREEMPTS_CURR(p, rq))
1298 resched_task(rq->curr);
1299 }
1300 success = 1;
1301
1302out_running:
1303 p->state = TASK_RUNNING;
1304out:
1305 task_rq_unlock(rq, &flags);
1306
1307 return success;
1308}
1309
95cdf3b7 1310int fastcall wake_up_process(task_t *p)
1da177e4
LT
1311{
1312 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1313 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1314}
1315
1316EXPORT_SYMBOL(wake_up_process);
1317
1318int fastcall wake_up_state(task_t *p, unsigned int state)
1319{
1320 return try_to_wake_up(p, state, 0);
1321}
1322
1da177e4
LT
1323/*
1324 * Perform scheduler related setup for a newly forked process p.
1325 * p is forked by current.
1326 */
476d139c 1327void fastcall sched_fork(task_t *p, int clone_flags)
1da177e4 1328{
476d139c
NP
1329 int cpu = get_cpu();
1330
1331#ifdef CONFIG_SMP
1332 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1333#endif
1334 set_task_cpu(p, cpu);
1335
1da177e4
LT
1336 /*
1337 * We mark the process as running here, but have not actually
1338 * inserted it onto the runqueue yet. This guarantees that
1339 * nobody will actually run it, and a signal or other external
1340 * event cannot wake it up and insert it on the runqueue either.
1341 */
1342 p->state = TASK_RUNNING;
1343 INIT_LIST_HEAD(&p->run_list);
1344 p->array = NULL;
1da177e4
LT
1345#ifdef CONFIG_SCHEDSTATS
1346 memset(&p->sched_info, 0, sizeof(p->sched_info));
1347#endif
d6077cb8 1348#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1349 p->oncpu = 0;
1350#endif
1da177e4 1351#ifdef CONFIG_PREEMPT
4866cde0 1352 /* Want to start with kernel preemption disabled. */
a1261f54 1353 task_thread_info(p)->preempt_count = 1;
1da177e4
LT
1354#endif
1355 /*
1356 * Share the timeslice between parent and child, thus the
1357 * total amount of pending timeslices in the system doesn't change,
1358 * resulting in more scheduling fairness.
1359 */
1360 local_irq_disable();
1361 p->time_slice = (current->time_slice + 1) >> 1;
1362 /*
1363 * The remainder of the first timeslice might be recovered by
1364 * the parent if the child exits early enough.
1365 */
1366 p->first_time_slice = 1;
1367 current->time_slice >>= 1;
1368 p->timestamp = sched_clock();
1369 if (unlikely(!current->time_slice)) {
1370 /*
1371 * This case is rare, it happens when the parent has only
1372 * a single jiffy left from its timeslice. Taking the
1373 * runqueue lock is not a problem.
1374 */
1375 current->time_slice = 1;
1da177e4 1376 scheduler_tick();
476d139c
NP
1377 }
1378 local_irq_enable();
1379 put_cpu();
1da177e4
LT
1380}
1381
1382/*
1383 * wake_up_new_task - wake up a newly created task for the first time.
1384 *
1385 * This function will do some initial scheduler statistics housekeeping
1386 * that must be done for every newly created context, then puts the task
1387 * on the runqueue and wakes it.
1388 */
95cdf3b7 1389void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1da177e4
LT
1390{
1391 unsigned long flags;
1392 int this_cpu, cpu;
1393 runqueue_t *rq, *this_rq;
1394
1395 rq = task_rq_lock(p, &flags);
147cbb4b 1396 BUG_ON(p->state != TASK_RUNNING);
1da177e4 1397 this_cpu = smp_processor_id();
147cbb4b 1398 cpu = task_cpu(p);
1da177e4 1399
1da177e4
LT
1400 /*
1401 * We decrease the sleep average of forking parents
1402 * and children as well, to keep max-interactive tasks
1403 * from forking tasks that are max-interactive. The parent
1404 * (current) is done further down, under its lock.
1405 */
1406 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1407 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1408
1409 p->prio = effective_prio(p);
1410
1411 if (likely(cpu == this_cpu)) {
1412 if (!(clone_flags & CLONE_VM)) {
1413 /*
1414 * The VM isn't cloned, so we're in a good position to
1415 * do child-runs-first in anticipation of an exec. This
1416 * usually avoids a lot of COW overhead.
1417 */
1418 if (unlikely(!current->array))
1419 __activate_task(p, rq);
1420 else {
1421 p->prio = current->prio;
1422 list_add_tail(&p->run_list, &current->run_list);
1423 p->array = current->array;
1424 p->array->nr_active++;
a2000572 1425 rq->nr_running++;
1da177e4
LT
1426 }
1427 set_need_resched();
1428 } else
1429 /* Run child last */
1430 __activate_task(p, rq);
1431 /*
1432 * We skip the following code due to cpu == this_cpu
1433 *
1434 * task_rq_unlock(rq, &flags);
1435 * this_rq = task_rq_lock(current, &flags);
1436 */
1437 this_rq = rq;
1438 } else {
1439 this_rq = cpu_rq(this_cpu);
1440
1441 /*
1442 * Not the local CPU - must adjust timestamp. This should
1443 * get optimised away in the !CONFIG_SMP case.
1444 */
1445 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1446 + rq->timestamp_last_tick;
1447 __activate_task(p, rq);
1448 if (TASK_PREEMPTS_CURR(p, rq))
1449 resched_task(rq->curr);
1450
1451 /*
1452 * Parent and child are on different CPUs, now get the
1453 * parent runqueue to update the parent's ->sleep_avg:
1454 */
1455 task_rq_unlock(rq, &flags);
1456 this_rq = task_rq_lock(current, &flags);
1457 }
1458 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1459 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1460 task_rq_unlock(this_rq, &flags);
1461}
1462
1463/*
1464 * Potentially available exiting-child timeslices are
1465 * retrieved here - this way the parent does not get
1466 * penalized for creating too many threads.
1467 *
1468 * (this cannot be used to 'generate' timeslices
1469 * artificially, because any timeslice recovered here
1470 * was given away by the parent in the first place.)
1471 */
95cdf3b7 1472void fastcall sched_exit(task_t *p)
1da177e4
LT
1473{
1474 unsigned long flags;
1475 runqueue_t *rq;
1476
1477 /*
1478 * If the child was a (relative-) CPU hog then decrease
1479 * the sleep_avg of the parent as well.
1480 */
1481 rq = task_rq_lock(p->parent, &flags);
889dfafe 1482 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1da177e4
LT
1483 p->parent->time_slice += p->time_slice;
1484 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1485 p->parent->time_slice = task_timeslice(p);
1486 }
1487 if (p->sleep_avg < p->parent->sleep_avg)
1488 p->parent->sleep_avg = p->parent->sleep_avg /
1489 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1490 (EXIT_WEIGHT + 1);
1491 task_rq_unlock(rq, &flags);
1492}
1493
4866cde0
NP
1494/**
1495 * prepare_task_switch - prepare to switch tasks
1496 * @rq: the runqueue preparing to switch
1497 * @next: the task we are going to switch to.
1498 *
1499 * This is called with the rq lock held and interrupts off. It must
1500 * be paired with a subsequent finish_task_switch after the context
1501 * switch.
1502 *
1503 * prepare_task_switch sets up locking and calls architecture specific
1504 * hooks.
1505 */
1506static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1507{
1508 prepare_lock_switch(rq, next);
1509 prepare_arch_switch(next);
1510}
1511
1da177e4
LT
1512/**
1513 * finish_task_switch - clean up after a task-switch
344babaa 1514 * @rq: runqueue associated with task-switch
1da177e4
LT
1515 * @prev: the thread we just switched away from.
1516 *
4866cde0
NP
1517 * finish_task_switch must be called after the context switch, paired
1518 * with a prepare_task_switch call before the context switch.
1519 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1520 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1521 *
1522 * Note that we may have delayed dropping an mm in context_switch(). If
1523 * so, we finish that here outside of the runqueue lock. (Doing it
1524 * with the lock held can cause deadlocks; see schedule() for
1525 * details.)
1526 */
4866cde0 1527static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1da177e4
LT
1528 __releases(rq->lock)
1529{
1da177e4
LT
1530 struct mm_struct *mm = rq->prev_mm;
1531 unsigned long prev_task_flags;
1532
1533 rq->prev_mm = NULL;
1534
1535 /*
1536 * A task struct has one reference for the use as "current".
1537 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1538 * calls schedule one last time. The schedule call will never return,
1539 * and the scheduled task must drop that reference.
1540 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1541 * still held, otherwise prev could be scheduled on another cpu, die
1542 * there before we look at prev->state, and then the reference would
1543 * be dropped twice.
1544 * Manfred Spraul <manfred@colorfullife.com>
1545 */
1546 prev_task_flags = prev->flags;
4866cde0
NP
1547 finish_arch_switch(prev);
1548 finish_lock_switch(rq, prev);
1da177e4
LT
1549 if (mm)
1550 mmdrop(mm);
c6fd91f0 1551 if (unlikely(prev_task_flags & PF_DEAD)) {
1552 /*
1553 * Remove function-return probe instances associated with this
1554 * task and put them back on the free list.
1555 */
1556 kprobe_flush_task(prev);
1da177e4 1557 put_task_struct(prev);
c6fd91f0 1558 }
1da177e4
LT
1559}
1560
1561/**
1562 * schedule_tail - first thing a freshly forked thread must call.
1563 * @prev: the thread we just switched away from.
1564 */
1565asmlinkage void schedule_tail(task_t *prev)
1566 __releases(rq->lock)
1567{
4866cde0
NP
1568 runqueue_t *rq = this_rq();
1569 finish_task_switch(rq, prev);
1570#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1571 /* In this case, finish_task_switch does not reenable preemption */
1572 preempt_enable();
1573#endif
1da177e4
LT
1574 if (current->set_child_tid)
1575 put_user(current->pid, current->set_child_tid);
1576}
1577
1578/*
1579 * context_switch - switch to the new MM and the new
1580 * thread's register state.
1581 */
1582static inline
1583task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1584{
1585 struct mm_struct *mm = next->mm;
1586 struct mm_struct *oldmm = prev->active_mm;
1587
1588 if (unlikely(!mm)) {
1589 next->active_mm = oldmm;
1590 atomic_inc(&oldmm->mm_count);
1591 enter_lazy_tlb(oldmm, next);
1592 } else
1593 switch_mm(oldmm, mm, next);
1594
1595 if (unlikely(!prev->mm)) {
1596 prev->active_mm = NULL;
1597 WARN_ON(rq->prev_mm);
1598 rq->prev_mm = oldmm;
1599 }
1600
1601 /* Here we just switch the register state and the stack. */
1602 switch_to(prev, next, prev);
1603
1604 return prev;
1605}
1606
1607/*
1608 * nr_running, nr_uninterruptible and nr_context_switches:
1609 *
1610 * externally visible scheduler statistics: current number of runnable
1611 * threads, current number of uninterruptible-sleeping threads, total
1612 * number of context switches performed since bootup.
1613 */
1614unsigned long nr_running(void)
1615{
1616 unsigned long i, sum = 0;
1617
1618 for_each_online_cpu(i)
1619 sum += cpu_rq(i)->nr_running;
1620
1621 return sum;
1622}
1623
1624unsigned long nr_uninterruptible(void)
1625{
1626 unsigned long i, sum = 0;
1627
1628 for_each_cpu(i)
1629 sum += cpu_rq(i)->nr_uninterruptible;
1630
1631 /*
1632 * Since we read the counters lockless, it might be slightly
1633 * inaccurate. Do not allow it to go below zero though:
1634 */
1635 if (unlikely((long)sum < 0))
1636 sum = 0;
1637
1638 return sum;
1639}
1640
1641unsigned long long nr_context_switches(void)
1642{
1643 unsigned long long i, sum = 0;
1644
1645 for_each_cpu(i)
1646 sum += cpu_rq(i)->nr_switches;
1647
1648 return sum;
1649}
1650
1651unsigned long nr_iowait(void)
1652{
1653 unsigned long i, sum = 0;
1654
1655 for_each_cpu(i)
1656 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1657
1658 return sum;
1659}
1660
1661#ifdef CONFIG_SMP
1662
1663/*
1664 * double_rq_lock - safely lock two runqueues
1665 *
e9028b0f
AB
1666 * We must take them in cpu order to match code in
1667 * dependent_sleeper and wake_dependent_sleeper.
1668 *
1da177e4
LT
1669 * Note this does not disable interrupts like task_rq_lock,
1670 * you need to do so manually before calling.
1671 */
1672static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1673 __acquires(rq1->lock)
1674 __acquires(rq2->lock)
1675{
1676 if (rq1 == rq2) {
1677 spin_lock(&rq1->lock);
1678 __acquire(rq2->lock); /* Fake it out ;) */
1679 } else {
e9028b0f 1680 if (rq1->cpu < rq2->cpu) {
1da177e4
LT
1681 spin_lock(&rq1->lock);
1682 spin_lock(&rq2->lock);
1683 } else {
1684 spin_lock(&rq2->lock);
1685 spin_lock(&rq1->lock);
1686 }
1687 }
1688}
1689
1690/*
1691 * double_rq_unlock - safely unlock two runqueues
1692 *
1693 * Note this does not restore interrupts like task_rq_unlock,
1694 * you need to do so manually after calling.
1695 */
1696static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1697 __releases(rq1->lock)
1698 __releases(rq2->lock)
1699{
1700 spin_unlock(&rq1->lock);
1701 if (rq1 != rq2)
1702 spin_unlock(&rq2->lock);
1703 else
1704 __release(rq2->lock);
1705}
1706
1707/*
1708 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1709 */
1710static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1711 __releases(this_rq->lock)
1712 __acquires(busiest->lock)
1713 __acquires(this_rq->lock)
1714{
1715 if (unlikely(!spin_trylock(&busiest->lock))) {
e9028b0f 1716 if (busiest->cpu < this_rq->cpu) {
1da177e4
LT
1717 spin_unlock(&this_rq->lock);
1718 spin_lock(&busiest->lock);
1719 spin_lock(&this_rq->lock);
1720 } else
1721 spin_lock(&busiest->lock);
1722 }
1723}
1724
1da177e4
LT
1725/*
1726 * If dest_cpu is allowed for this process, migrate the task to it.
1727 * This is accomplished by forcing the cpu_allowed mask to only
1728 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1729 * the cpu_allowed mask is restored.
1730 */
1731static void sched_migrate_task(task_t *p, int dest_cpu)
1732{
1733 migration_req_t req;
1734 runqueue_t *rq;
1735 unsigned long flags;
1736
1737 rq = task_rq_lock(p, &flags);
1738 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1739 || unlikely(cpu_is_offline(dest_cpu)))
1740 goto out;
1741
1742 /* force the process onto the specified CPU */
1743 if (migrate_task(p, dest_cpu, &req)) {
1744 /* Need to wait for migration thread (might exit: take ref). */
1745 struct task_struct *mt = rq->migration_thread;
1746 get_task_struct(mt);
1747 task_rq_unlock(rq, &flags);
1748 wake_up_process(mt);
1749 put_task_struct(mt);
1750 wait_for_completion(&req.done);
1751 return;
1752 }
1753out:
1754 task_rq_unlock(rq, &flags);
1755}
1756
1757/*
476d139c
NP
1758 * sched_exec - execve() is a valuable balancing opportunity, because at
1759 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
1760 */
1761void sched_exec(void)
1762{
1da177e4 1763 int new_cpu, this_cpu = get_cpu();
476d139c 1764 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 1765 put_cpu();
476d139c
NP
1766 if (new_cpu != this_cpu)
1767 sched_migrate_task(current, new_cpu);
1da177e4
LT
1768}
1769
1770/*
1771 * pull_task - move a task from a remote runqueue to the local runqueue.
1772 * Both runqueues must be locked.
1773 */
858119e1 1774static
1da177e4
LT
1775void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1776 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1777{
1778 dequeue_task(p, src_array);
a2000572 1779 src_rq->nr_running--;
1da177e4 1780 set_task_cpu(p, this_cpu);
a2000572 1781 this_rq->nr_running++;
1da177e4
LT
1782 enqueue_task(p, this_array);
1783 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1784 + this_rq->timestamp_last_tick;
1785 /*
1786 * Note that idle threads have a prio of MAX_PRIO, for this test
1787 * to be always true for them.
1788 */
1789 if (TASK_PREEMPTS_CURR(p, this_rq))
1790 resched_task(this_rq->curr);
1791}
1792
1793/*
1794 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1795 */
858119e1 1796static
1da177e4 1797int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
95cdf3b7
IM
1798 struct sched_domain *sd, enum idle_type idle,
1799 int *all_pinned)
1da177e4
LT
1800{
1801 /*
1802 * We do not migrate tasks that are:
1803 * 1) running (obviously), or
1804 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1805 * 3) are cache-hot on their current CPU.
1806 */
1da177e4
LT
1807 if (!cpu_isset(this_cpu, p->cpus_allowed))
1808 return 0;
81026794
NP
1809 *all_pinned = 0;
1810
1811 if (task_running(rq, p))
1812 return 0;
1da177e4
LT
1813
1814 /*
1815 * Aggressive migration if:
cafb20c1 1816 * 1) task is cache cold, or
1da177e4
LT
1817 * 2) too many balance attempts have failed.
1818 */
1819
cafb20c1 1820 if (sd->nr_balance_failed > sd->cache_nice_tries)
1da177e4
LT
1821 return 1;
1822
1823 if (task_hot(p, rq->timestamp_last_tick, sd))
81026794 1824 return 0;
1da177e4
LT
1825 return 1;
1826}
1827
1828/*
1829 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1830 * as part of a balancing operation within "domain". Returns the number of
1831 * tasks moved.
1832 *
1833 * Called with both runqueues locked.
1834 */
1835static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1836 unsigned long max_nr_move, struct sched_domain *sd,
81026794 1837 enum idle_type idle, int *all_pinned)
1da177e4
LT
1838{
1839 prio_array_t *array, *dst_array;
1840 struct list_head *head, *curr;
81026794 1841 int idx, pulled = 0, pinned = 0;
1da177e4
LT
1842 task_t *tmp;
1843
81026794 1844 if (max_nr_move == 0)
1da177e4
LT
1845 goto out;
1846
81026794
NP
1847 pinned = 1;
1848
1da177e4
LT
1849 /*
1850 * We first consider expired tasks. Those will likely not be
1851 * executed in the near future, and they are most likely to
1852 * be cache-cold, thus switching CPUs has the least effect
1853 * on them.
1854 */
1855 if (busiest->expired->nr_active) {
1856 array = busiest->expired;
1857 dst_array = this_rq->expired;
1858 } else {
1859 array = busiest->active;
1860 dst_array = this_rq->active;
1861 }
1862
1863new_array:
1864 /* Start searching at priority 0: */
1865 idx = 0;
1866skip_bitmap:
1867 if (!idx)
1868 idx = sched_find_first_bit(array->bitmap);
1869 else
1870 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1871 if (idx >= MAX_PRIO) {
1872 if (array == busiest->expired && busiest->active->nr_active) {
1873 array = busiest->active;
1874 dst_array = this_rq->active;
1875 goto new_array;
1876 }
1877 goto out;
1878 }
1879
1880 head = array->queue + idx;
1881 curr = head->prev;
1882skip_queue:
1883 tmp = list_entry(curr, task_t, run_list);
1884
1885 curr = curr->prev;
1886
81026794 1887 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1da177e4
LT
1888 if (curr != head)
1889 goto skip_queue;
1890 idx++;
1891 goto skip_bitmap;
1892 }
1893
1894#ifdef CONFIG_SCHEDSTATS
1895 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1896 schedstat_inc(sd, lb_hot_gained[idle]);
1897#endif
1898
1899 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1900 pulled++;
1901
1902 /* We only want to steal up to the prescribed number of tasks. */
1903 if (pulled < max_nr_move) {
1904 if (curr != head)
1905 goto skip_queue;
1906 idx++;
1907 goto skip_bitmap;
1908 }
1909out:
1910 /*
1911 * Right now, this is the only place pull_task() is called,
1912 * so we can safely collect pull_task() stats here rather than
1913 * inside pull_task().
1914 */
1915 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
1916
1917 if (all_pinned)
1918 *all_pinned = pinned;
1da177e4
LT
1919 return pulled;
1920}
1921
1922/*
1923 * find_busiest_group finds and returns the busiest CPU group within the
1924 * domain. It calculates and returns the number of tasks which should be
1925 * moved to restore balance via the imbalance parameter.
1926 */
1927static struct sched_group *
1928find_busiest_group(struct sched_domain *sd, int this_cpu,
5969fe06 1929 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1da177e4
LT
1930{
1931 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1932 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 1933 unsigned long max_pull;
7897986b 1934 int load_idx;
1da177e4
LT
1935
1936 max_load = this_load = total_load = total_pwr = 0;
7897986b
NP
1937 if (idle == NOT_IDLE)
1938 load_idx = sd->busy_idx;
1939 else if (idle == NEWLY_IDLE)
1940 load_idx = sd->newidle_idx;
1941 else
1942 load_idx = sd->idle_idx;
1da177e4
LT
1943
1944 do {
1945 unsigned long load;
1946 int local_group;
1947 int i;
1948
1949 local_group = cpu_isset(this_cpu, group->cpumask);
1950
1951 /* Tally up the load of all CPUs in the group */
1952 avg_load = 0;
1953
1954 for_each_cpu_mask(i, group->cpumask) {
5969fe06
NP
1955 if (*sd_idle && !idle_cpu(i))
1956 *sd_idle = 0;
1957
1da177e4
LT
1958 /* Bias balancing toward cpus of our domain */
1959 if (local_group)
a2000572 1960 load = target_load(i, load_idx);
1da177e4 1961 else
a2000572 1962 load = source_load(i, load_idx);
1da177e4
LT
1963
1964 avg_load += load;
1965 }
1966
1967 total_load += avg_load;
1968 total_pwr += group->cpu_power;
1969
1970 /* Adjust by relative CPU power of the group */
1971 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1972
1973 if (local_group) {
1974 this_load = avg_load;
1975 this = group;
1da177e4
LT
1976 } else if (avg_load > max_load) {
1977 max_load = avg_load;
1978 busiest = group;
1979 }
1da177e4
LT
1980 group = group->next;
1981 } while (group != sd->groups);
1982
0c117f1b 1983 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
1da177e4
LT
1984 goto out_balanced;
1985
1986 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1987
1988 if (this_load >= avg_load ||
1989 100*max_load <= sd->imbalance_pct*this_load)
1990 goto out_balanced;
1991
1992 /*
1993 * We're trying to get all the cpus to the average_load, so we don't
1994 * want to push ourselves above the average load, nor do we wish to
1995 * reduce the max loaded cpu below the average load, as either of these
1996 * actions would just result in more rebalancing later, and ping-pong
1997 * tasks around. Thus we look for the minimum possible imbalance.
1998 * Negative imbalances (*we* are more loaded than anyone else) will
1999 * be counted as no imbalance for these purposes -- we can't fix that
2000 * by pulling tasks to us. Be careful of negative numbers as they'll
2001 * appear as very large values with unsigned longs.
2002 */
0c117f1b
SS
2003
2004 /* Don't want to pull so many tasks that a group would go idle */
2005 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2006
1da177e4 2007 /* How much load to actually move to equalise the imbalance */
0c117f1b 2008 *imbalance = min(max_pull * busiest->cpu_power,
1da177e4
LT
2009 (avg_load - this_load) * this->cpu_power)
2010 / SCHED_LOAD_SCALE;
2011
2012 if (*imbalance < SCHED_LOAD_SCALE) {
2013 unsigned long pwr_now = 0, pwr_move = 0;
2014 unsigned long tmp;
2015
2016 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2017 *imbalance = 1;
2018 return busiest;
2019 }
2020
2021 /*
2022 * OK, we don't have enough imbalance to justify moving tasks,
2023 * however we may be able to increase total CPU power used by
2024 * moving them.
2025 */
2026
2027 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2028 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2029 pwr_now /= SCHED_LOAD_SCALE;
2030
2031 /* Amount of load we'd subtract */
2032 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2033 if (max_load > tmp)
2034 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2035 max_load - tmp);
2036
2037 /* Amount of load we'd add */
2038 if (max_load*busiest->cpu_power <
2039 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2040 tmp = max_load*busiest->cpu_power/this->cpu_power;
2041 else
2042 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2043 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2044 pwr_move /= SCHED_LOAD_SCALE;
2045
2046 /* Move if we gain throughput */
2047 if (pwr_move <= pwr_now)
2048 goto out_balanced;
2049
2050 *imbalance = 1;
2051 return busiest;
2052 }
2053
2054 /* Get rid of the scaling factor, rounding down as we divide */
2055 *imbalance = *imbalance / SCHED_LOAD_SCALE;
1da177e4
LT
2056 return busiest;
2057
2058out_balanced:
1da177e4
LT
2059
2060 *imbalance = 0;
2061 return NULL;
2062}
2063
2064/*
2065 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2066 */
b910472d
CK
2067static runqueue_t *find_busiest_queue(struct sched_group *group,
2068 enum idle_type idle)
1da177e4
LT
2069{
2070 unsigned long load, max_load = 0;
2071 runqueue_t *busiest = NULL;
2072 int i;
2073
2074 for_each_cpu_mask(i, group->cpumask) {
a2000572 2075 load = source_load(i, 0);
1da177e4
LT
2076
2077 if (load > max_load) {
2078 max_load = load;
2079 busiest = cpu_rq(i);
2080 }
2081 }
2082
2083 return busiest;
2084}
2085
77391d71
NP
2086/*
2087 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2088 * so long as it is large enough.
2089 */
2090#define MAX_PINNED_INTERVAL 512
2091
1da177e4
LT
2092/*
2093 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2094 * tasks if there is an imbalance.
2095 *
2096 * Called with this_rq unlocked.
2097 */
2098static int load_balance(int this_cpu, runqueue_t *this_rq,
2099 struct sched_domain *sd, enum idle_type idle)
2100{
2101 struct sched_group *group;
2102 runqueue_t *busiest;
2103 unsigned long imbalance;
77391d71 2104 int nr_moved, all_pinned = 0;
81026794 2105 int active_balance = 0;
5969fe06
NP
2106 int sd_idle = 0;
2107
2108 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2109 sd_idle = 1;
1da177e4 2110
1da177e4
LT
2111 schedstat_inc(sd, lb_cnt[idle]);
2112
5969fe06 2113 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
1da177e4
LT
2114 if (!group) {
2115 schedstat_inc(sd, lb_nobusyg[idle]);
2116 goto out_balanced;
2117 }
2118
b910472d 2119 busiest = find_busiest_queue(group, idle);
1da177e4
LT
2120 if (!busiest) {
2121 schedstat_inc(sd, lb_nobusyq[idle]);
2122 goto out_balanced;
2123 }
2124
db935dbd 2125 BUG_ON(busiest == this_rq);
1da177e4
LT
2126
2127 schedstat_add(sd, lb_imbalance[idle], imbalance);
2128
2129 nr_moved = 0;
2130 if (busiest->nr_running > 1) {
2131 /*
2132 * Attempt to move tasks. If find_busiest_group has found
2133 * an imbalance but busiest->nr_running <= 1, the group is
2134 * still unbalanced. nr_moved simply stays zero, so it is
2135 * correctly treated as an imbalance.
2136 */
e17224bf 2137 double_rq_lock(this_rq, busiest);
1da177e4 2138 nr_moved = move_tasks(this_rq, this_cpu, busiest,
d6d5cfaf 2139 imbalance, sd, idle, &all_pinned);
e17224bf 2140 double_rq_unlock(this_rq, busiest);
81026794
NP
2141
2142 /* All tasks on this runqueue were pinned by CPU affinity */
2143 if (unlikely(all_pinned))
2144 goto out_balanced;
1da177e4 2145 }
81026794 2146
1da177e4
LT
2147 if (!nr_moved) {
2148 schedstat_inc(sd, lb_failed[idle]);
2149 sd->nr_balance_failed++;
2150
2151 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4
LT
2152
2153 spin_lock(&busiest->lock);
fa3b6ddc
SS
2154
2155 /* don't kick the migration_thread, if the curr
2156 * task on busiest cpu can't be moved to this_cpu
2157 */
2158 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2159 spin_unlock(&busiest->lock);
2160 all_pinned = 1;
2161 goto out_one_pinned;
2162 }
2163
1da177e4
LT
2164 if (!busiest->active_balance) {
2165 busiest->active_balance = 1;
2166 busiest->push_cpu = this_cpu;
81026794 2167 active_balance = 1;
1da177e4
LT
2168 }
2169 spin_unlock(&busiest->lock);
81026794 2170 if (active_balance)
1da177e4
LT
2171 wake_up_process(busiest->migration_thread);
2172
2173 /*
2174 * We've kicked active balancing, reset the failure
2175 * counter.
2176 */
39507451 2177 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2178 }
81026794 2179 } else
1da177e4
LT
2180 sd->nr_balance_failed = 0;
2181
81026794 2182 if (likely(!active_balance)) {
1da177e4
LT
2183 /* We were unbalanced, so reset the balancing interval */
2184 sd->balance_interval = sd->min_interval;
81026794
NP
2185 } else {
2186 /*
2187 * If we've begun active balancing, start to back off. This
2188 * case may not be covered by the all_pinned logic if there
2189 * is only 1 task on the busy runqueue (because we don't call
2190 * move_tasks).
2191 */
2192 if (sd->balance_interval < sd->max_interval)
2193 sd->balance_interval *= 2;
1da177e4
LT
2194 }
2195
5969fe06
NP
2196 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2197 return -1;
1da177e4
LT
2198 return nr_moved;
2199
2200out_balanced:
1da177e4
LT
2201 schedstat_inc(sd, lb_balanced[idle]);
2202
16cfb1c0 2203 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2204
2205out_one_pinned:
1da177e4 2206 /* tune up the balancing interval */
77391d71
NP
2207 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2208 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2209 sd->balance_interval *= 2;
2210
5969fe06
NP
2211 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2212 return -1;
1da177e4
LT
2213 return 0;
2214}
2215
2216/*
2217 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2218 * tasks if there is an imbalance.
2219 *
2220 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2221 * this_rq is locked.
2222 */
2223static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2224 struct sched_domain *sd)
2225{
2226 struct sched_group *group;
2227 runqueue_t *busiest = NULL;
2228 unsigned long imbalance;
2229 int nr_moved = 0;
5969fe06
NP
2230 int sd_idle = 0;
2231
2232 if (sd->flags & SD_SHARE_CPUPOWER)
2233 sd_idle = 1;
1da177e4
LT
2234
2235 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
5969fe06 2236 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
1da177e4 2237 if (!group) {
1da177e4 2238 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
16cfb1c0 2239 goto out_balanced;
1da177e4
LT
2240 }
2241
b910472d 2242 busiest = find_busiest_queue(group, NEWLY_IDLE);
db935dbd 2243 if (!busiest) {
1da177e4 2244 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
16cfb1c0 2245 goto out_balanced;
1da177e4
LT
2246 }
2247
db935dbd
NP
2248 BUG_ON(busiest == this_rq);
2249
1da177e4 2250 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
d6d5cfaf
NP
2251
2252 nr_moved = 0;
2253 if (busiest->nr_running > 1) {
2254 /* Attempt to move tasks */
2255 double_lock_balance(this_rq, busiest);
2256 nr_moved = move_tasks(this_rq, this_cpu, busiest,
81026794 2257 imbalance, sd, NEWLY_IDLE, NULL);
d6d5cfaf
NP
2258 spin_unlock(&busiest->lock);
2259 }
2260
5969fe06 2261 if (!nr_moved) {
1da177e4 2262 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
5969fe06
NP
2263 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2264 return -1;
2265 } else
16cfb1c0 2266 sd->nr_balance_failed = 0;
1da177e4 2267
1da177e4 2268 return nr_moved;
16cfb1c0
NP
2269
2270out_balanced:
2271 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
5969fe06
NP
2272 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2273 return -1;
16cfb1c0
NP
2274 sd->nr_balance_failed = 0;
2275 return 0;
1da177e4
LT
2276}
2277
2278/*
2279 * idle_balance is called by schedule() if this_cpu is about to become
2280 * idle. Attempts to pull tasks from other CPUs.
2281 */
858119e1 2282static void idle_balance(int this_cpu, runqueue_t *this_rq)
1da177e4
LT
2283{
2284 struct sched_domain *sd;
2285
2286 for_each_domain(this_cpu, sd) {
2287 if (sd->flags & SD_BALANCE_NEWIDLE) {
2288 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2289 /* We've pulled tasks over so stop searching */
2290 break;
2291 }
2292 }
2293 }
2294}
2295
2296/*
2297 * active_load_balance is run by migration threads. It pushes running tasks
2298 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2299 * running on each physical CPU where possible, and avoids physical /
2300 * logical imbalances.
2301 *
2302 * Called with busiest_rq locked.
2303 */
2304static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2305{
2306 struct sched_domain *sd;
1da177e4 2307 runqueue_t *target_rq;
39507451
NP
2308 int target_cpu = busiest_rq->push_cpu;
2309
2310 if (busiest_rq->nr_running <= 1)
2311 /* no task to move */
2312 return;
2313
2314 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2315
2316 /*
39507451
NP
2317 * This condition is "impossible", if it occurs
2318 * we need to fix it. Originally reported by
2319 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2320 */
39507451 2321 BUG_ON(busiest_rq == target_rq);
1da177e4 2322
39507451
NP
2323 /* move a task from busiest_rq to target_rq */
2324 double_lock_balance(busiest_rq, target_rq);
2325
2326 /* Search for an sd spanning us and the target CPU. */
2327 for_each_domain(target_cpu, sd)
2328 if ((sd->flags & SD_LOAD_BALANCE) &&
2329 cpu_isset(busiest_cpu, sd->span))
2330 break;
2331
2332 if (unlikely(sd == NULL))
2333 goto out;
2334
2335 schedstat_inc(sd, alb_cnt);
2336
2337 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2338 schedstat_inc(sd, alb_pushed);
2339 else
2340 schedstat_inc(sd, alb_failed);
2341out:
2342 spin_unlock(&target_rq->lock);
1da177e4
LT
2343}
2344
2345/*
2346 * rebalance_tick will get called every timer tick, on every CPU.
2347 *
2348 * It checks each scheduling domain to see if it is due to be balanced,
2349 * and initiates a balancing operation if so.
2350 *
2351 * Balancing parameters are set up in arch_init_sched_domains.
2352 */
2353
2354/* Don't have all balancing operations going off at once */
2355#define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2356
2357static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2358 enum idle_type idle)
2359{
2360 unsigned long old_load, this_load;
2361 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2362 struct sched_domain *sd;
7897986b 2363 int i;
1da177e4 2364
1da177e4 2365 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
7897986b
NP
2366 /* Update our load */
2367 for (i = 0; i < 3; i++) {
2368 unsigned long new_load = this_load;
2369 int scale = 1 << i;
2370 old_load = this_rq->cpu_load[i];
2371 /*
2372 * Round up the averaging division if load is increasing. This
2373 * prevents us from getting stuck on 9 if the load is 10, for
2374 * example.
2375 */
2376 if (new_load > old_load)
2377 new_load += scale-1;
2378 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2379 }
1da177e4
LT
2380
2381 for_each_domain(this_cpu, sd) {
2382 unsigned long interval;
2383
2384 if (!(sd->flags & SD_LOAD_BALANCE))
2385 continue;
2386
2387 interval = sd->balance_interval;
2388 if (idle != SCHED_IDLE)
2389 interval *= sd->busy_factor;
2390
2391 /* scale ms to jiffies */
2392 interval = msecs_to_jiffies(interval);
2393 if (unlikely(!interval))
2394 interval = 1;
2395
2396 if (j - sd->last_balance >= interval) {
2397 if (load_balance(this_cpu, this_rq, sd, idle)) {
fa3b6ddc
SS
2398 /*
2399 * We've pulled tasks over so either we're no
5969fe06
NP
2400 * longer idle, or one of our SMT siblings is
2401 * not idle.
2402 */
1da177e4
LT
2403 idle = NOT_IDLE;
2404 }
2405 sd->last_balance += interval;
2406 }
2407 }
2408}
2409#else
2410/*
2411 * on UP we do not need to balance between CPUs:
2412 */
2413static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2414{
2415}
2416static inline void idle_balance(int cpu, runqueue_t *rq)
2417{
2418}
2419#endif
2420
2421static inline int wake_priority_sleeper(runqueue_t *rq)
2422{
2423 int ret = 0;
2424#ifdef CONFIG_SCHED_SMT
2425 spin_lock(&rq->lock);
2426 /*
2427 * If an SMT sibling task has been put to sleep for priority
2428 * reasons reschedule the idle task to see if it can now run.
2429 */
2430 if (rq->nr_running) {
2431 resched_task(rq->idle);
2432 ret = 1;
2433 }
2434 spin_unlock(&rq->lock);
2435#endif
2436 return ret;
2437}
2438
2439DEFINE_PER_CPU(struct kernel_stat, kstat);
2440
2441EXPORT_PER_CPU_SYMBOL(kstat);
2442
2443/*
2444 * This is called on clock ticks and on context switches.
2445 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2446 */
2447static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2448 unsigned long long now)
2449{
2450 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2451 p->sched_time += now - last;
2452}
2453
2454/*
2455 * Return current->sched_time plus any more ns on the sched_clock
2456 * that have not yet been banked.
2457 */
2458unsigned long long current_sched_time(const task_t *tsk)
2459{
2460 unsigned long long ns;
2461 unsigned long flags;
2462 local_irq_save(flags);
2463 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2464 ns = tsk->sched_time + (sched_clock() - ns);
2465 local_irq_restore(flags);
2466 return ns;
2467}
2468
2469/*
2470 * We place interactive tasks back into the active array, if possible.
2471 *
2472 * To guarantee that this does not starve expired tasks we ignore the
2473 * interactivity of a task if the first expired task had to wait more
2474 * than a 'reasonable' amount of time. This deadline timeout is
2475 * load-dependent, as the frequency of array switched decreases with
2476 * increasing number of running tasks. We also ignore the interactivity
2477 * if a better static_prio task has expired:
2478 */
2479#define EXPIRED_STARVING(rq) \
2480 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2481 (jiffies - (rq)->expired_timestamp >= \
2482 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2483 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2484
2485/*
2486 * Account user cpu time to a process.
2487 * @p: the process that the cpu time gets accounted to
2488 * @hardirq_offset: the offset to subtract from hardirq_count()
2489 * @cputime: the cpu time spent in user space since the last update
2490 */
2491void account_user_time(struct task_struct *p, cputime_t cputime)
2492{
2493 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2494 cputime64_t tmp;
2495
2496 p->utime = cputime_add(p->utime, cputime);
2497
2498 /* Add user time to cpustat. */
2499 tmp = cputime_to_cputime64(cputime);
2500 if (TASK_NICE(p) > 0)
2501 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2502 else
2503 cpustat->user = cputime64_add(cpustat->user, tmp);
2504}
2505
2506/*
2507 * Account system cpu time to a process.
2508 * @p: the process that the cpu time gets accounted to
2509 * @hardirq_offset: the offset to subtract from hardirq_count()
2510 * @cputime: the cpu time spent in kernel space since the last update
2511 */
2512void account_system_time(struct task_struct *p, int hardirq_offset,
2513 cputime_t cputime)
2514{
2515 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2516 runqueue_t *rq = this_rq();
2517 cputime64_t tmp;
2518
2519 p->stime = cputime_add(p->stime, cputime);
2520
2521 /* Add system time to cpustat. */
2522 tmp = cputime_to_cputime64(cputime);
2523 if (hardirq_count() - hardirq_offset)
2524 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2525 else if (softirq_count())
2526 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2527 else if (p != rq->idle)
2528 cpustat->system = cputime64_add(cpustat->system, tmp);
2529 else if (atomic_read(&rq->nr_iowait) > 0)
2530 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2531 else
2532 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2533 /* Account for system time used */
2534 acct_update_integrals(p);
1da177e4
LT
2535}
2536
2537/*
2538 * Account for involuntary wait time.
2539 * @p: the process from which the cpu time has been stolen
2540 * @steal: the cpu time spent in involuntary wait
2541 */
2542void account_steal_time(struct task_struct *p, cputime_t steal)
2543{
2544 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2545 cputime64_t tmp = cputime_to_cputime64(steal);
2546 runqueue_t *rq = this_rq();
2547
2548 if (p == rq->idle) {
2549 p->stime = cputime_add(p->stime, steal);
2550 if (atomic_read(&rq->nr_iowait) > 0)
2551 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2552 else
2553 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2554 } else
2555 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2556}
2557
2558/*
2559 * This function gets called by the timer code, with HZ frequency.
2560 * We call it with interrupts disabled.
2561 *
2562 * It also gets called by the fork code, when changing the parent's
2563 * timeslices.
2564 */
2565void scheduler_tick(void)
2566{
2567 int cpu = smp_processor_id();
2568 runqueue_t *rq = this_rq();
2569 task_t *p = current;
2570 unsigned long long now = sched_clock();
2571
2572 update_cpu_clock(p, rq, now);
2573
2574 rq->timestamp_last_tick = now;
2575
2576 if (p == rq->idle) {
2577 if (wake_priority_sleeper(rq))
2578 goto out;
2579 rebalance_tick(cpu, rq, SCHED_IDLE);
2580 return;
2581 }
2582
2583 /* Task might have expired already, but not scheduled off yet */
2584 if (p->array != rq->active) {
2585 set_tsk_need_resched(p);
2586 goto out;
2587 }
2588 spin_lock(&rq->lock);
2589 /*
2590 * The task was running during this tick - update the
2591 * time slice counter. Note: we do not update a thread's
2592 * priority until it either goes to sleep or uses up its
2593 * timeslice. This makes it possible for interactive tasks
2594 * to use up their timeslices at their highest priority levels.
2595 */
2596 if (rt_task(p)) {
2597 /*
2598 * RR tasks need a special form of timeslice management.
2599 * FIFO tasks have no timeslices.
2600 */
2601 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2602 p->time_slice = task_timeslice(p);
2603 p->first_time_slice = 0;
2604 set_tsk_need_resched(p);
2605
2606 /* put it at the end of the queue: */
2607 requeue_task(p, rq->active);
2608 }
2609 goto out_unlock;
2610 }
2611 if (!--p->time_slice) {
2612 dequeue_task(p, rq->active);
2613 set_tsk_need_resched(p);
2614 p->prio = effective_prio(p);
2615 p->time_slice = task_timeslice(p);
2616 p->first_time_slice = 0;
2617
2618 if (!rq->expired_timestamp)
2619 rq->expired_timestamp = jiffies;
2620 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2621 enqueue_task(p, rq->expired);
2622 if (p->static_prio < rq->best_expired_prio)
2623 rq->best_expired_prio = p->static_prio;
2624 } else
2625 enqueue_task(p, rq->active);
2626 } else {
2627 /*
2628 * Prevent a too long timeslice allowing a task to monopolize
2629 * the CPU. We do this by splitting up the timeslice into
2630 * smaller pieces.
2631 *
2632 * Note: this does not mean the task's timeslices expire or
2633 * get lost in any way, they just might be preempted by
2634 * another task of equal priority. (one with higher
2635 * priority would have preempted this task already.) We
2636 * requeue this task to the end of the list on this priority
2637 * level, which is in essence a round-robin of tasks with
2638 * equal priority.
2639 *
2640 * This only applies to tasks in the interactive
2641 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2642 */
2643 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2644 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2645 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2646 (p->array == rq->active)) {
2647
2648 requeue_task(p, rq->active);
2649 set_tsk_need_resched(p);
2650 }
2651 }
2652out_unlock:
2653 spin_unlock(&rq->lock);
2654out:
2655 rebalance_tick(cpu, rq, NOT_IDLE);
2656}
2657
2658#ifdef CONFIG_SCHED_SMT
fc38ed75
CK
2659static inline void wakeup_busy_runqueue(runqueue_t *rq)
2660{
2661 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2662 if (rq->curr == rq->idle && rq->nr_running)
2663 resched_task(rq->idle);
2664}
2665
858119e1 2666static void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
1da177e4 2667{
41c7ce9a 2668 struct sched_domain *tmp, *sd = NULL;
1da177e4
LT
2669 cpumask_t sibling_map;
2670 int i;
2671
41c7ce9a
NP
2672 for_each_domain(this_cpu, tmp)
2673 if (tmp->flags & SD_SHARE_CPUPOWER)
2674 sd = tmp;
2675
2676 if (!sd)
1da177e4
LT
2677 return;
2678
2679 /*
2680 * Unlock the current runqueue because we have to lock in
2681 * CPU order to avoid deadlocks. Caller knows that we might
2682 * unlock. We keep IRQs disabled.
2683 */
2684 spin_unlock(&this_rq->lock);
2685
2686 sibling_map = sd->span;
2687
2688 for_each_cpu_mask(i, sibling_map)
2689 spin_lock(&cpu_rq(i)->lock);
2690 /*
2691 * We clear this CPU from the mask. This both simplifies the
2692 * inner loop and keps this_rq locked when we exit:
2693 */
2694 cpu_clear(this_cpu, sibling_map);
2695
2696 for_each_cpu_mask(i, sibling_map) {
2697 runqueue_t *smt_rq = cpu_rq(i);
2698
fc38ed75 2699 wakeup_busy_runqueue(smt_rq);
1da177e4
LT
2700 }
2701
2702 for_each_cpu_mask(i, sibling_map)
2703 spin_unlock(&cpu_rq(i)->lock);
2704 /*
2705 * We exit with this_cpu's rq still held and IRQs
2706 * still disabled:
2707 */
2708}
2709
67f9a619
IM
2710/*
2711 * number of 'lost' timeslices this task wont be able to fully
2712 * utilize, if another task runs on a sibling. This models the
2713 * slowdown effect of other tasks running on siblings:
2714 */
2715static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2716{
2717 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2718}
2719
858119e1 2720static int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
1da177e4 2721{
41c7ce9a 2722 struct sched_domain *tmp, *sd = NULL;
1da177e4
LT
2723 cpumask_t sibling_map;
2724 prio_array_t *array;
2725 int ret = 0, i;
2726 task_t *p;
2727
41c7ce9a
NP
2728 for_each_domain(this_cpu, tmp)
2729 if (tmp->flags & SD_SHARE_CPUPOWER)
2730 sd = tmp;
2731
2732 if (!sd)
1da177e4
LT
2733 return 0;
2734
2735 /*
2736 * The same locking rules and details apply as for
2737 * wake_sleeping_dependent():
2738 */
2739 spin_unlock(&this_rq->lock);
2740 sibling_map = sd->span;
2741 for_each_cpu_mask(i, sibling_map)
2742 spin_lock(&cpu_rq(i)->lock);
2743 cpu_clear(this_cpu, sibling_map);
2744
2745 /*
2746 * Establish next task to be run - it might have gone away because
2747 * we released the runqueue lock above:
2748 */
2749 if (!this_rq->nr_running)
2750 goto out_unlock;
2751 array = this_rq->active;
2752 if (!array->nr_active)
2753 array = this_rq->expired;
2754 BUG_ON(!array->nr_active);
2755
2756 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2757 task_t, run_list);
2758
2759 for_each_cpu_mask(i, sibling_map) {
2760 runqueue_t *smt_rq = cpu_rq(i);
2761 task_t *smt_curr = smt_rq->curr;
2762
fc38ed75
CK
2763 /* Kernel threads do not participate in dependent sleeping */
2764 if (!p->mm || !smt_curr->mm || rt_task(p))
2765 goto check_smt_task;
2766
1da177e4
LT
2767 /*
2768 * If a user task with lower static priority than the
2769 * running task on the SMT sibling is trying to schedule,
2770 * delay it till there is proportionately less timeslice
2771 * left of the sibling task to prevent a lower priority
2772 * task from using an unfair proportion of the
2773 * physical cpu's resources. -ck
2774 */
fc38ed75
CK
2775 if (rt_task(smt_curr)) {
2776 /*
2777 * With real time tasks we run non-rt tasks only
2778 * per_cpu_gain% of the time.
2779 */
2780 if ((jiffies % DEF_TIMESLICE) >
2781 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2782 ret = 1;
2783 } else
67f9a619
IM
2784 if (smt_curr->static_prio < p->static_prio &&
2785 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2786 smt_slice(smt_curr, sd) > task_timeslice(p))
fc38ed75
CK
2787 ret = 1;
2788
2789check_smt_task:
2790 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2791 rt_task(smt_curr))
2792 continue;
2793 if (!p->mm) {
2794 wakeup_busy_runqueue(smt_rq);
2795 continue;
2796 }
1da177e4
LT
2797
2798 /*
fc38ed75
CK
2799 * Reschedule a lower priority task on the SMT sibling for
2800 * it to be put to sleep, or wake it up if it has been put to
2801 * sleep for priority reasons to see if it should run now.
1da177e4 2802 */
fc38ed75
CK
2803 if (rt_task(p)) {
2804 if ((jiffies % DEF_TIMESLICE) >
2805 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2806 resched_task(smt_curr);
2807 } else {
67f9a619
IM
2808 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2809 smt_slice(p, sd) > task_timeslice(smt_curr))
fc38ed75
CK
2810 resched_task(smt_curr);
2811 else
2812 wakeup_busy_runqueue(smt_rq);
2813 }
1da177e4
LT
2814 }
2815out_unlock:
2816 for_each_cpu_mask(i, sibling_map)
2817 spin_unlock(&cpu_rq(i)->lock);
2818 return ret;
2819}
2820#else
2821static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2822{
2823}
2824
2825static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2826{
2827 return 0;
2828}
2829#endif
2830
2831#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2832
2833void fastcall add_preempt_count(int val)
2834{
2835 /*
2836 * Underflow?
2837 */
be5b4fbd 2838 BUG_ON((preempt_count() < 0));
1da177e4
LT
2839 preempt_count() += val;
2840 /*
2841 * Spinlock count overflowing soon?
2842 */
2843 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2844}
2845EXPORT_SYMBOL(add_preempt_count);
2846
2847void fastcall sub_preempt_count(int val)
2848{
2849 /*
2850 * Underflow?
2851 */
2852 BUG_ON(val > preempt_count());
2853 /*
2854 * Is the spinlock portion underflowing?
2855 */
2856 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2857 preempt_count() -= val;
2858}
2859EXPORT_SYMBOL(sub_preempt_count);
2860
2861#endif
2862
2863/*
2864 * schedule() is the main scheduler function.
2865 */
2866asmlinkage void __sched schedule(void)
2867{
2868 long *switch_count;
2869 task_t *prev, *next;
2870 runqueue_t *rq;
2871 prio_array_t *array;
2872 struct list_head *queue;
2873 unsigned long long now;
2874 unsigned long run_time;
a3464a10 2875 int cpu, idx, new_prio;
1da177e4
LT
2876
2877 /*
2878 * Test if we are atomic. Since do_exit() needs to call into
2879 * schedule() atomically, we ignore that path for now.
2880 * Otherwise, whine if we are scheduling when we should not be.
2881 */
77e4bfbc
AM
2882 if (unlikely(in_atomic() && !current->exit_state)) {
2883 printk(KERN_ERR "BUG: scheduling while atomic: "
2884 "%s/0x%08x/%d\n",
2885 current->comm, preempt_count(), current->pid);
2886 dump_stack();
1da177e4
LT
2887 }
2888 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2889
2890need_resched:
2891 preempt_disable();
2892 prev = current;
2893 release_kernel_lock(prev);
2894need_resched_nonpreemptible:
2895 rq = this_rq();
2896
2897 /*
2898 * The idle thread is not allowed to schedule!
2899 * Remove this check after it has been exercised a bit.
2900 */
2901 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2902 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2903 dump_stack();
2904 }
2905
2906 schedstat_inc(rq, sched_cnt);
2907 now = sched_clock();
238628ed 2908 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
1da177e4 2909 run_time = now - prev->timestamp;
238628ed 2910 if (unlikely((long long)(now - prev->timestamp) < 0))
1da177e4
LT
2911 run_time = 0;
2912 } else
2913 run_time = NS_MAX_SLEEP_AVG;
2914
2915 /*
2916 * Tasks charged proportionately less run_time at high sleep_avg to
2917 * delay them losing their interactive status
2918 */
2919 run_time /= (CURRENT_BONUS(prev) ? : 1);
2920
2921 spin_lock_irq(&rq->lock);
2922
2923 if (unlikely(prev->flags & PF_DEAD))
2924 prev->state = EXIT_DEAD;
2925
2926 switch_count = &prev->nivcsw;
2927 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2928 switch_count = &prev->nvcsw;
2929 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2930 unlikely(signal_pending(prev))))
2931 prev->state = TASK_RUNNING;
2932 else {
2933 if (prev->state == TASK_UNINTERRUPTIBLE)
2934 rq->nr_uninterruptible++;
2935 deactivate_task(prev, rq);
2936 }
2937 }
2938
2939 cpu = smp_processor_id();
2940 if (unlikely(!rq->nr_running)) {
2941go_idle:
2942 idle_balance(cpu, rq);
2943 if (!rq->nr_running) {
2944 next = rq->idle;
2945 rq->expired_timestamp = 0;
2946 wake_sleeping_dependent(cpu, rq);
2947 /*
2948 * wake_sleeping_dependent() might have released
2949 * the runqueue, so break out if we got new
2950 * tasks meanwhile:
2951 */
2952 if (!rq->nr_running)
2953 goto switch_tasks;
2954 }
2955 } else {
2956 if (dependent_sleeper(cpu, rq)) {
2957 next = rq->idle;
2958 goto switch_tasks;
2959 }
2960 /*
2961 * dependent_sleeper() releases and reacquires the runqueue
2962 * lock, hence go into the idle loop if the rq went
2963 * empty meanwhile:
2964 */
2965 if (unlikely(!rq->nr_running))
2966 goto go_idle;
2967 }
2968
2969 array = rq->active;
2970 if (unlikely(!array->nr_active)) {
2971 /*
2972 * Switch the active and expired arrays.
2973 */
2974 schedstat_inc(rq, sched_switch);
2975 rq->active = rq->expired;
2976 rq->expired = array;
2977 array = rq->active;
2978 rq->expired_timestamp = 0;
2979 rq->best_expired_prio = MAX_PRIO;
2980 }
2981
2982 idx = sched_find_first_bit(array->bitmap);
2983 queue = array->queue + idx;
2984 next = list_entry(queue->next, task_t, run_list);
2985
2986 if (!rt_task(next) && next->activated > 0) {
2987 unsigned long long delta = now - next->timestamp;
238628ed 2988 if (unlikely((long long)(now - next->timestamp) < 0))
1da177e4
LT
2989 delta = 0;
2990
2991 if (next->activated == 1)
2992 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2993
2994 array = next->array;
a3464a10
CS
2995 new_prio = recalc_task_prio(next, next->timestamp + delta);
2996
2997 if (unlikely(next->prio != new_prio)) {
2998 dequeue_task(next, array);
2999 next->prio = new_prio;
3000 enqueue_task(next, array);
3001 } else
3002 requeue_task(next, array);
1da177e4
LT
3003 }
3004 next->activated = 0;
3005switch_tasks:
3006 if (next == rq->idle)
3007 schedstat_inc(rq, sched_goidle);
3008 prefetch(next);
383f2835 3009 prefetch_stack(next);
1da177e4
LT
3010 clear_tsk_need_resched(prev);
3011 rcu_qsctr_inc(task_cpu(prev));
3012
3013 update_cpu_clock(prev, rq, now);
3014
3015 prev->sleep_avg -= run_time;
3016 if ((long)prev->sleep_avg <= 0)
3017 prev->sleep_avg = 0;
3018 prev->timestamp = prev->last_ran = now;
3019
3020 sched_info_switch(prev, next);
3021 if (likely(prev != next)) {
3022 next->timestamp = now;
3023 rq->nr_switches++;
3024 rq->curr = next;
3025 ++*switch_count;
3026
4866cde0 3027 prepare_task_switch(rq, next);
1da177e4
LT
3028 prev = context_switch(rq, prev, next);
3029 barrier();
4866cde0
NP
3030 /*
3031 * this_rq must be evaluated again because prev may have moved
3032 * CPUs since it called schedule(), thus the 'rq' on its stack
3033 * frame will be invalid.
3034 */
3035 finish_task_switch(this_rq(), prev);
1da177e4
LT
3036 } else
3037 spin_unlock_irq(&rq->lock);
3038
3039 prev = current;
3040 if (unlikely(reacquire_kernel_lock(prev) < 0))
3041 goto need_resched_nonpreemptible;
3042 preempt_enable_no_resched();
3043 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3044 goto need_resched;
3045}
3046
3047EXPORT_SYMBOL(schedule);
3048
3049#ifdef CONFIG_PREEMPT
3050/*
3051 * this is is the entry point to schedule() from in-kernel preemption
3052 * off of preempt_enable. Kernel preemptions off return from interrupt
3053 * occur there and call schedule directly.
3054 */
3055asmlinkage void __sched preempt_schedule(void)
3056{
3057 struct thread_info *ti = current_thread_info();
3058#ifdef CONFIG_PREEMPT_BKL
3059 struct task_struct *task = current;
3060 int saved_lock_depth;
3061#endif
3062 /*
3063 * If there is a non-zero preempt_count or interrupts are disabled,
3064 * we do not want to preempt the current task. Just return..
3065 */
3066 if (unlikely(ti->preempt_count || irqs_disabled()))
3067 return;
3068
3069need_resched:
3070 add_preempt_count(PREEMPT_ACTIVE);
3071 /*
3072 * We keep the big kernel semaphore locked, but we
3073 * clear ->lock_depth so that schedule() doesnt
3074 * auto-release the semaphore:
3075 */
3076#ifdef CONFIG_PREEMPT_BKL
3077 saved_lock_depth = task->lock_depth;
3078 task->lock_depth = -1;
3079#endif
3080 schedule();
3081#ifdef CONFIG_PREEMPT_BKL
3082 task->lock_depth = saved_lock_depth;
3083#endif
3084 sub_preempt_count(PREEMPT_ACTIVE);
3085
3086 /* we could miss a preemption opportunity between schedule and now */
3087 barrier();
3088 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3089 goto need_resched;
3090}
3091
3092EXPORT_SYMBOL(preempt_schedule);
3093
3094/*
3095 * this is is the entry point to schedule() from kernel preemption
3096 * off of irq context.
3097 * Note, that this is called and return with irqs disabled. This will
3098 * protect us against recursive calling from irq.
3099 */
3100asmlinkage void __sched preempt_schedule_irq(void)
3101{
3102 struct thread_info *ti = current_thread_info();
3103#ifdef CONFIG_PREEMPT_BKL
3104 struct task_struct *task = current;
3105 int saved_lock_depth;
3106#endif
3107 /* Catch callers which need to be fixed*/
3108 BUG_ON(ti->preempt_count || !irqs_disabled());
3109
3110need_resched:
3111 add_preempt_count(PREEMPT_ACTIVE);
3112 /*
3113 * We keep the big kernel semaphore locked, but we
3114 * clear ->lock_depth so that schedule() doesnt
3115 * auto-release the semaphore:
3116 */
3117#ifdef CONFIG_PREEMPT_BKL
3118 saved_lock_depth = task->lock_depth;
3119 task->lock_depth = -1;
3120#endif
3121 local_irq_enable();
3122 schedule();
3123 local_irq_disable();
3124#ifdef CONFIG_PREEMPT_BKL
3125 task->lock_depth = saved_lock_depth;
3126#endif
3127 sub_preempt_count(PREEMPT_ACTIVE);
3128
3129 /* we could miss a preemption opportunity between schedule and now */
3130 barrier();
3131 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3132 goto need_resched;
3133}
3134
3135#endif /* CONFIG_PREEMPT */
3136
95cdf3b7
IM
3137int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3138 void *key)
1da177e4 3139{
c43dc2fd 3140 task_t *p = curr->private;
1da177e4
LT
3141 return try_to_wake_up(p, mode, sync);
3142}
3143
3144EXPORT_SYMBOL(default_wake_function);
3145
3146/*
3147 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3148 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3149 * number) then we wake all the non-exclusive tasks and one exclusive task.
3150 *
3151 * There are circumstances in which we can try to wake a task which has already
3152 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3153 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3154 */
3155static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3156 int nr_exclusive, int sync, void *key)
3157{
3158 struct list_head *tmp, *next;
3159
3160 list_for_each_safe(tmp, next, &q->task_list) {
3161 wait_queue_t *curr;
3162 unsigned flags;
3163 curr = list_entry(tmp, wait_queue_t, task_list);
3164 flags = curr->flags;
3165 if (curr->func(curr, mode, sync, key) &&
3166 (flags & WQ_FLAG_EXCLUSIVE) &&
3167 !--nr_exclusive)
3168 break;
3169 }
3170}
3171
3172/**
3173 * __wake_up - wake up threads blocked on a waitqueue.
3174 * @q: the waitqueue
3175 * @mode: which threads
3176 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3177 * @key: is directly passed to the wakeup function
1da177e4
LT
3178 */
3179void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3180 int nr_exclusive, void *key)
1da177e4
LT
3181{
3182 unsigned long flags;
3183
3184 spin_lock_irqsave(&q->lock, flags);
3185 __wake_up_common(q, mode, nr_exclusive, 0, key);
3186 spin_unlock_irqrestore(&q->lock, flags);
3187}
3188
3189EXPORT_SYMBOL(__wake_up);
3190
3191/*
3192 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3193 */
3194void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3195{
3196 __wake_up_common(q, mode, 1, 0, NULL);
3197}
3198
3199/**
67be2dd1 3200 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3201 * @q: the waitqueue
3202 * @mode: which threads
3203 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3204 *
3205 * The sync wakeup differs that the waker knows that it will schedule
3206 * away soon, so while the target thread will be woken up, it will not
3207 * be migrated to another CPU - ie. the two threads are 'synchronized'
3208 * with each other. This can prevent needless bouncing between CPUs.
3209 *
3210 * On UP it can prevent extra preemption.
3211 */
95cdf3b7
IM
3212void fastcall
3213__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3214{
3215 unsigned long flags;
3216 int sync = 1;
3217
3218 if (unlikely(!q))
3219 return;
3220
3221 if (unlikely(!nr_exclusive))
3222 sync = 0;
3223
3224 spin_lock_irqsave(&q->lock, flags);
3225 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3226 spin_unlock_irqrestore(&q->lock, flags);
3227}
3228EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3229
3230void fastcall complete(struct completion *x)
3231{
3232 unsigned long flags;
3233
3234 spin_lock_irqsave(&x->wait.lock, flags);
3235 x->done++;
3236 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3237 1, 0, NULL);
3238 spin_unlock_irqrestore(&x->wait.lock, flags);
3239}
3240EXPORT_SYMBOL(complete);
3241
3242void fastcall complete_all(struct completion *x)
3243{
3244 unsigned long flags;
3245
3246 spin_lock_irqsave(&x->wait.lock, flags);
3247 x->done += UINT_MAX/2;
3248 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3249 0, 0, NULL);
3250 spin_unlock_irqrestore(&x->wait.lock, flags);
3251}
3252EXPORT_SYMBOL(complete_all);
3253
3254void fastcall __sched wait_for_completion(struct completion *x)
3255{
3256 might_sleep();
3257 spin_lock_irq(&x->wait.lock);
3258 if (!x->done) {
3259 DECLARE_WAITQUEUE(wait, current);
3260
3261 wait.flags |= WQ_FLAG_EXCLUSIVE;
3262 __add_wait_queue_tail(&x->wait, &wait);
3263 do {
3264 __set_current_state(TASK_UNINTERRUPTIBLE);
3265 spin_unlock_irq(&x->wait.lock);
3266 schedule();
3267 spin_lock_irq(&x->wait.lock);
3268 } while (!x->done);
3269 __remove_wait_queue(&x->wait, &wait);
3270 }
3271 x->done--;
3272 spin_unlock_irq(&x->wait.lock);
3273}
3274EXPORT_SYMBOL(wait_for_completion);
3275
3276unsigned long fastcall __sched
3277wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3278{
3279 might_sleep();
3280
3281 spin_lock_irq(&x->wait.lock);
3282 if (!x->done) {
3283 DECLARE_WAITQUEUE(wait, current);
3284
3285 wait.flags |= WQ_FLAG_EXCLUSIVE;
3286 __add_wait_queue_tail(&x->wait, &wait);
3287 do {
3288 __set_current_state(TASK_UNINTERRUPTIBLE);
3289 spin_unlock_irq(&x->wait.lock);
3290 timeout = schedule_timeout(timeout);
3291 spin_lock_irq(&x->wait.lock);
3292 if (!timeout) {
3293 __remove_wait_queue(&x->wait, &wait);
3294 goto out;
3295 }
3296 } while (!x->done);
3297 __remove_wait_queue(&x->wait, &wait);
3298 }
3299 x->done--;
3300out:
3301 spin_unlock_irq(&x->wait.lock);
3302 return timeout;
3303}
3304EXPORT_SYMBOL(wait_for_completion_timeout);
3305
3306int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3307{
3308 int ret = 0;
3309
3310 might_sleep();
3311
3312 spin_lock_irq(&x->wait.lock);
3313 if (!x->done) {
3314 DECLARE_WAITQUEUE(wait, current);
3315
3316 wait.flags |= WQ_FLAG_EXCLUSIVE;
3317 __add_wait_queue_tail(&x->wait, &wait);
3318 do {
3319 if (signal_pending(current)) {
3320 ret = -ERESTARTSYS;
3321 __remove_wait_queue(&x->wait, &wait);
3322 goto out;
3323 }
3324 __set_current_state(TASK_INTERRUPTIBLE);
3325 spin_unlock_irq(&x->wait.lock);
3326 schedule();
3327 spin_lock_irq(&x->wait.lock);
3328 } while (!x->done);
3329 __remove_wait_queue(&x->wait, &wait);
3330 }
3331 x->done--;
3332out:
3333 spin_unlock_irq(&x->wait.lock);
3334
3335 return ret;
3336}
3337EXPORT_SYMBOL(wait_for_completion_interruptible);
3338
3339unsigned long fastcall __sched
3340wait_for_completion_interruptible_timeout(struct completion *x,
3341 unsigned long timeout)
3342{
3343 might_sleep();
3344
3345 spin_lock_irq(&x->wait.lock);
3346 if (!x->done) {
3347 DECLARE_WAITQUEUE(wait, current);
3348
3349 wait.flags |= WQ_FLAG_EXCLUSIVE;
3350 __add_wait_queue_tail(&x->wait, &wait);
3351 do {
3352 if (signal_pending(current)) {
3353 timeout = -ERESTARTSYS;
3354 __remove_wait_queue(&x->wait, &wait);
3355 goto out;
3356 }
3357 __set_current_state(TASK_INTERRUPTIBLE);
3358 spin_unlock_irq(&x->wait.lock);
3359 timeout = schedule_timeout(timeout);
3360 spin_lock_irq(&x->wait.lock);
3361 if (!timeout) {
3362 __remove_wait_queue(&x->wait, &wait);
3363 goto out;
3364 }
3365 } while (!x->done);
3366 __remove_wait_queue(&x->wait, &wait);
3367 }
3368 x->done--;
3369out:
3370 spin_unlock_irq(&x->wait.lock);
3371 return timeout;
3372}
3373EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3374
3375
3376#define SLEEP_ON_VAR \
3377 unsigned long flags; \
3378 wait_queue_t wait; \
3379 init_waitqueue_entry(&wait, current);
3380
3381#define SLEEP_ON_HEAD \
3382 spin_lock_irqsave(&q->lock,flags); \
3383 __add_wait_queue(q, &wait); \
3384 spin_unlock(&q->lock);
3385
3386#define SLEEP_ON_TAIL \
3387 spin_lock_irq(&q->lock); \
3388 __remove_wait_queue(q, &wait); \
3389 spin_unlock_irqrestore(&q->lock, flags);
3390
3391void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3392{
3393 SLEEP_ON_VAR
3394
3395 current->state = TASK_INTERRUPTIBLE;
3396
3397 SLEEP_ON_HEAD
3398 schedule();
3399 SLEEP_ON_TAIL
3400}
3401
3402EXPORT_SYMBOL(interruptible_sleep_on);
3403
95cdf3b7
IM
3404long fastcall __sched
3405interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4
LT
3406{
3407 SLEEP_ON_VAR
3408
3409 current->state = TASK_INTERRUPTIBLE;
3410
3411 SLEEP_ON_HEAD
3412 timeout = schedule_timeout(timeout);
3413 SLEEP_ON_TAIL
3414
3415 return timeout;
3416}
3417
3418EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3419
3420void fastcall __sched sleep_on(wait_queue_head_t *q)
3421{
3422 SLEEP_ON_VAR
3423
3424 current->state = TASK_UNINTERRUPTIBLE;
3425
3426 SLEEP_ON_HEAD
3427 schedule();
3428 SLEEP_ON_TAIL
3429}
3430
3431EXPORT_SYMBOL(sleep_on);
3432
3433long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3434{
3435 SLEEP_ON_VAR
3436
3437 current->state = TASK_UNINTERRUPTIBLE;
3438
3439 SLEEP_ON_HEAD
3440 timeout = schedule_timeout(timeout);
3441 SLEEP_ON_TAIL
3442
3443 return timeout;
3444}
3445
3446EXPORT_SYMBOL(sleep_on_timeout);
3447
3448void set_user_nice(task_t *p, long nice)
3449{
3450 unsigned long flags;
3451 prio_array_t *array;
3452 runqueue_t *rq;
3453 int old_prio, new_prio, delta;
3454
3455 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3456 return;
3457 /*
3458 * We have to be careful, if called from sys_setpriority(),
3459 * the task might be in the middle of scheduling on another CPU.
3460 */
3461 rq = task_rq_lock(p, &flags);
3462 /*
3463 * The RT priorities are set via sched_setscheduler(), but we still
3464 * allow the 'normal' nice value to be set - but as expected
3465 * it wont have any effect on scheduling until the task is
b0a9499c 3466 * not SCHED_NORMAL/SCHED_BATCH:
1da177e4
LT
3467 */
3468 if (rt_task(p)) {
3469 p->static_prio = NICE_TO_PRIO(nice);
3470 goto out_unlock;
3471 }
3472 array = p->array;
a2000572 3473 if (array)
1da177e4
LT
3474 dequeue_task(p, array);
3475
3476 old_prio = p->prio;
3477 new_prio = NICE_TO_PRIO(nice);
3478 delta = new_prio - old_prio;
3479 p->static_prio = NICE_TO_PRIO(nice);
3480 p->prio += delta;
3481
3482 if (array) {
3483 enqueue_task(p, array);
3484 /*
3485 * If the task increased its priority or is running and
3486 * lowered its priority, then reschedule its CPU:
3487 */
3488 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3489 resched_task(rq->curr);
3490 }
3491out_unlock:
3492 task_rq_unlock(rq, &flags);
3493}
3494
3495EXPORT_SYMBOL(set_user_nice);
3496
e43379f1
MM
3497/*
3498 * can_nice - check if a task can reduce its nice value
3499 * @p: task
3500 * @nice: nice value
3501 */
3502int can_nice(const task_t *p, const int nice)
3503{
024f4747
MM
3504 /* convert nice value [19,-20] to rlimit style value [1,40] */
3505 int nice_rlim = 20 - nice;
e43379f1
MM
3506 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3507 capable(CAP_SYS_NICE));
3508}
3509
1da177e4
LT
3510#ifdef __ARCH_WANT_SYS_NICE
3511
3512/*
3513 * sys_nice - change the priority of the current process.
3514 * @increment: priority increment
3515 *
3516 * sys_setpriority is a more generic, but much slower function that
3517 * does similar things.
3518 */
3519asmlinkage long sys_nice(int increment)
3520{
3521 int retval;
3522 long nice;
3523
3524 /*
3525 * Setpriority might change our priority at the same moment.
3526 * We don't have to worry. Conceptually one call occurs first
3527 * and we have a single winner.
3528 */
e43379f1
MM
3529 if (increment < -40)
3530 increment = -40;
1da177e4
LT
3531 if (increment > 40)
3532 increment = 40;
3533
3534 nice = PRIO_TO_NICE(current->static_prio) + increment;
3535 if (nice < -20)
3536 nice = -20;
3537 if (nice > 19)
3538 nice = 19;
3539
e43379f1
MM
3540 if (increment < 0 && !can_nice(current, nice))
3541 return -EPERM;
3542
1da177e4
LT
3543 retval = security_task_setnice(current, nice);
3544 if (retval)
3545 return retval;
3546
3547 set_user_nice(current, nice);
3548 return 0;
3549}
3550
3551#endif
3552
3553/**
3554 * task_prio - return the priority value of a given task.
3555 * @p: the task in question.
3556 *
3557 * This is the priority value as seen by users in /proc.
3558 * RT tasks are offset by -200. Normal tasks are centered
3559 * around 0, value goes from -16 to +15.
3560 */
3561int task_prio(const task_t *p)
3562{
3563 return p->prio - MAX_RT_PRIO;
3564}
3565
3566/**
3567 * task_nice - return the nice value of a given task.
3568 * @p: the task in question.
3569 */
3570int task_nice(const task_t *p)
3571{
3572 return TASK_NICE(p);
3573}
1da177e4 3574EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
3575
3576/**
3577 * idle_cpu - is a given cpu idle currently?
3578 * @cpu: the processor in question.
3579 */
3580int idle_cpu(int cpu)
3581{
3582 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3583}
3584
1da177e4
LT
3585/**
3586 * idle_task - return the idle task for a given cpu.
3587 * @cpu: the processor in question.
3588 */
3589task_t *idle_task(int cpu)
3590{
3591 return cpu_rq(cpu)->idle;
3592}
3593
3594/**
3595 * find_process_by_pid - find a process with a matching PID value.
3596 * @pid: the pid in question.
3597 */
3598static inline task_t *find_process_by_pid(pid_t pid)
3599{
3600 return pid ? find_task_by_pid(pid) : current;
3601}
3602
3603/* Actually do priority change: must hold rq lock. */
3604static void __setscheduler(struct task_struct *p, int policy, int prio)
3605{
3606 BUG_ON(p->array);
3607 p->policy = policy;
3608 p->rt_priority = prio;
b0a9499c 3609 if (policy != SCHED_NORMAL && policy != SCHED_BATCH) {
d46523ea 3610 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
b0a9499c 3611 } else {
1da177e4 3612 p->prio = p->static_prio;
b0a9499c
IM
3613 /*
3614 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3615 */
3616 if (policy == SCHED_BATCH)
3617 p->sleep_avg = 0;
3618 }
1da177e4
LT
3619}
3620
3621/**
3622 * sched_setscheduler - change the scheduling policy and/or RT priority of
3623 * a thread.
3624 * @p: the task in question.
3625 * @policy: new policy.
3626 * @param: structure containing the new RT priority.
3627 */
95cdf3b7
IM
3628int sched_setscheduler(struct task_struct *p, int policy,
3629 struct sched_param *param)
1da177e4
LT
3630{
3631 int retval;
3632 int oldprio, oldpolicy = -1;
3633 prio_array_t *array;
3634 unsigned long flags;
3635 runqueue_t *rq;
3636
3637recheck:
3638 /* double check policy once rq lock held */
3639 if (policy < 0)
3640 policy = oldpolicy = p->policy;
3641 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
b0a9499c
IM
3642 policy != SCHED_NORMAL && policy != SCHED_BATCH)
3643 return -EINVAL;
1da177e4
LT
3644 /*
3645 * Valid priorities for SCHED_FIFO and SCHED_RR are
b0a9499c
IM
3646 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
3647 * SCHED_BATCH is 0.
1da177e4
LT
3648 */
3649 if (param->sched_priority < 0 ||
95cdf3b7 3650 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3651 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3652 return -EINVAL;
b0a9499c
IM
3653 if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
3654 != (param->sched_priority == 0))
1da177e4
LT
3655 return -EINVAL;
3656
37e4ab3f
OC
3657 /*
3658 * Allow unprivileged RT tasks to decrease priority:
3659 */
3660 if (!capable(CAP_SYS_NICE)) {
b0a9499c
IM
3661 /*
3662 * can't change policy, except between SCHED_NORMAL
3663 * and SCHED_BATCH:
3664 */
3665 if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
3666 (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
3667 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
37e4ab3f
OC
3668 return -EPERM;
3669 /* can't increase priority */
b0a9499c 3670 if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
37e4ab3f
OC
3671 param->sched_priority > p->rt_priority &&
3672 param->sched_priority >
3673 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3674 return -EPERM;
3675 /* can't change other user's priorities */
3676 if ((current->euid != p->euid) &&
3677 (current->euid != p->uid))
3678 return -EPERM;
3679 }
1da177e4
LT
3680
3681 retval = security_task_setscheduler(p, policy, param);
3682 if (retval)
3683 return retval;
3684 /*
3685 * To be able to change p->policy safely, the apropriate
3686 * runqueue lock must be held.
3687 */
3688 rq = task_rq_lock(p, &flags);
3689 /* recheck policy now with rq lock held */
3690 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3691 policy = oldpolicy = -1;
3692 task_rq_unlock(rq, &flags);
3693 goto recheck;
3694 }
3695 array = p->array;
3696 if (array)
3697 deactivate_task(p, rq);
3698 oldprio = p->prio;
3699 __setscheduler(p, policy, param->sched_priority);
3700 if (array) {
3701 __activate_task(p, rq);
3702 /*
3703 * Reschedule if we are currently running on this runqueue and
3704 * our priority decreased, or if we are not currently running on
3705 * this runqueue and our priority is higher than the current's
3706 */
3707 if (task_running(rq, p)) {
3708 if (p->prio > oldprio)
3709 resched_task(rq->curr);
3710 } else if (TASK_PREEMPTS_CURR(p, rq))
3711 resched_task(rq->curr);
3712 }
3713 task_rq_unlock(rq, &flags);
3714 return 0;
3715}
3716EXPORT_SYMBOL_GPL(sched_setscheduler);
3717
95cdf3b7
IM
3718static int
3719do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4
LT
3720{
3721 int retval;
3722 struct sched_param lparam;
3723 struct task_struct *p;
3724
3725 if (!param || pid < 0)
3726 return -EINVAL;
3727 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3728 return -EFAULT;
3729 read_lock_irq(&tasklist_lock);
3730 p = find_process_by_pid(pid);
3731 if (!p) {
3732 read_unlock_irq(&tasklist_lock);
3733 return -ESRCH;
3734 }
3735 retval = sched_setscheduler(p, policy, &lparam);
3736 read_unlock_irq(&tasklist_lock);
3737 return retval;
3738}
3739
3740/**
3741 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3742 * @pid: the pid in question.
3743 * @policy: new policy.
3744 * @param: structure containing the new RT priority.
3745 */
3746asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3747 struct sched_param __user *param)
3748{
c21761f1
JB
3749 /* negative values for policy are not valid */
3750 if (policy < 0)
3751 return -EINVAL;
3752
1da177e4
LT
3753 return do_sched_setscheduler(pid, policy, param);
3754}
3755
3756/**
3757 * sys_sched_setparam - set/change the RT priority of a thread
3758 * @pid: the pid in question.
3759 * @param: structure containing the new RT priority.
3760 */
3761asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3762{
3763 return do_sched_setscheduler(pid, -1, param);
3764}
3765
3766/**
3767 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3768 * @pid: the pid in question.
3769 */
3770asmlinkage long sys_sched_getscheduler(pid_t pid)
3771{
3772 int retval = -EINVAL;
3773 task_t *p;
3774
3775 if (pid < 0)
3776 goto out_nounlock;
3777
3778 retval = -ESRCH;
3779 read_lock(&tasklist_lock);
3780 p = find_process_by_pid(pid);
3781 if (p) {
3782 retval = security_task_getscheduler(p);
3783 if (!retval)
3784 retval = p->policy;
3785 }
3786 read_unlock(&tasklist_lock);
3787
3788out_nounlock:
3789 return retval;
3790}
3791
3792/**
3793 * sys_sched_getscheduler - get the RT priority of a thread
3794 * @pid: the pid in question.
3795 * @param: structure containing the RT priority.
3796 */
3797asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3798{
3799 struct sched_param lp;
3800 int retval = -EINVAL;
3801 task_t *p;
3802
3803 if (!param || pid < 0)
3804 goto out_nounlock;
3805
3806 read_lock(&tasklist_lock);
3807 p = find_process_by_pid(pid);
3808 retval = -ESRCH;
3809 if (!p)
3810 goto out_unlock;
3811
3812 retval = security_task_getscheduler(p);
3813 if (retval)
3814 goto out_unlock;
3815
3816 lp.sched_priority = p->rt_priority;
3817 read_unlock(&tasklist_lock);
3818
3819 /*
3820 * This one might sleep, we cannot do it with a spinlock held ...
3821 */
3822 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3823
3824out_nounlock:
3825 return retval;
3826
3827out_unlock:
3828 read_unlock(&tasklist_lock);
3829 return retval;
3830}
3831
3832long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3833{
3834 task_t *p;
3835 int retval;
3836 cpumask_t cpus_allowed;
3837
3838 lock_cpu_hotplug();
3839 read_lock(&tasklist_lock);
3840
3841 p = find_process_by_pid(pid);
3842 if (!p) {
3843 read_unlock(&tasklist_lock);
3844 unlock_cpu_hotplug();
3845 return -ESRCH;
3846 }
3847
3848 /*
3849 * It is not safe to call set_cpus_allowed with the
3850 * tasklist_lock held. We will bump the task_struct's
3851 * usage count and then drop tasklist_lock.
3852 */
3853 get_task_struct(p);
3854 read_unlock(&tasklist_lock);
3855
3856 retval = -EPERM;
3857 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3858 !capable(CAP_SYS_NICE))
3859 goto out_unlock;
3860
3861 cpus_allowed = cpuset_cpus_allowed(p);
3862 cpus_and(new_mask, new_mask, cpus_allowed);
3863 retval = set_cpus_allowed(p, new_mask);
3864
3865out_unlock:
3866 put_task_struct(p);
3867 unlock_cpu_hotplug();
3868 return retval;
3869}
3870
3871static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3872 cpumask_t *new_mask)
3873{
3874 if (len < sizeof(cpumask_t)) {
3875 memset(new_mask, 0, sizeof(cpumask_t));
3876 } else if (len > sizeof(cpumask_t)) {
3877 len = sizeof(cpumask_t);
3878 }
3879 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3880}
3881
3882/**
3883 * sys_sched_setaffinity - set the cpu affinity of a process
3884 * @pid: pid of the process
3885 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3886 * @user_mask_ptr: user-space pointer to the new cpu mask
3887 */
3888asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3889 unsigned long __user *user_mask_ptr)
3890{
3891 cpumask_t new_mask;
3892 int retval;
3893
3894 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3895 if (retval)
3896 return retval;
3897
3898 return sched_setaffinity(pid, new_mask);
3899}
3900
3901/*
3902 * Represents all cpu's present in the system
3903 * In systems capable of hotplug, this map could dynamically grow
3904 * as new cpu's are detected in the system via any platform specific
3905 * method, such as ACPI for e.g.
3906 */
3907
4cef0c61 3908cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
3909EXPORT_SYMBOL(cpu_present_map);
3910
3911#ifndef CONFIG_SMP
4cef0c61
AK
3912cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
3913cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
1da177e4
LT
3914#endif
3915
3916long sched_getaffinity(pid_t pid, cpumask_t *mask)
3917{
3918 int retval;
3919 task_t *p;
3920
3921 lock_cpu_hotplug();
3922 read_lock(&tasklist_lock);
3923
3924 retval = -ESRCH;
3925 p = find_process_by_pid(pid);
3926 if (!p)
3927 goto out_unlock;
3928
3929 retval = 0;
2f7016d9 3930 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
3931
3932out_unlock:
3933 read_unlock(&tasklist_lock);
3934 unlock_cpu_hotplug();
3935 if (retval)
3936 return retval;
3937
3938 return 0;
3939}
3940
3941/**
3942 * sys_sched_getaffinity - get the cpu affinity of a process
3943 * @pid: pid of the process
3944 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3945 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3946 */
3947asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3948 unsigned long __user *user_mask_ptr)
3949{
3950 int ret;
3951 cpumask_t mask;
3952
3953 if (len < sizeof(cpumask_t))
3954 return -EINVAL;
3955
3956 ret = sched_getaffinity(pid, &mask);
3957 if (ret < 0)
3958 return ret;
3959
3960 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3961 return -EFAULT;
3962
3963 return sizeof(cpumask_t);
3964}
3965
3966/**
3967 * sys_sched_yield - yield the current processor to other threads.
3968 *
3969 * this function yields the current CPU by moving the calling thread
3970 * to the expired array. If there are no other threads running on this
3971 * CPU then this function will return.
3972 */
3973asmlinkage long sys_sched_yield(void)
3974{
3975 runqueue_t *rq = this_rq_lock();
3976 prio_array_t *array = current->array;
3977 prio_array_t *target = rq->expired;
3978
3979 schedstat_inc(rq, yld_cnt);
3980 /*
3981 * We implement yielding by moving the task into the expired
3982 * queue.
3983 *
3984 * (special rule: RT tasks will just roundrobin in the active
3985 * array.)
3986 */
3987 if (rt_task(current))
3988 target = rq->active;
3989
5927ad78 3990 if (array->nr_active == 1) {
1da177e4
LT
3991 schedstat_inc(rq, yld_act_empty);
3992 if (!rq->expired->nr_active)
3993 schedstat_inc(rq, yld_both_empty);
3994 } else if (!rq->expired->nr_active)
3995 schedstat_inc(rq, yld_exp_empty);
3996
3997 if (array != target) {
3998 dequeue_task(current, array);
3999 enqueue_task(current, target);
4000 } else
4001 /*
4002 * requeue_task is cheaper so perform that if possible.
4003 */
4004 requeue_task(current, array);
4005
4006 /*
4007 * Since we are going to call schedule() anyway, there's
4008 * no need to preempt or enable interrupts:
4009 */
4010 __release(rq->lock);
4011 _raw_spin_unlock(&rq->lock);
4012 preempt_enable_no_resched();
4013
4014 schedule();
4015
4016 return 0;
4017}
4018
4019static inline void __cond_resched(void)
4020{
5bbcfd90
IM
4021 /*
4022 * The BKS might be reacquired before we have dropped
4023 * PREEMPT_ACTIVE, which could trigger a second
4024 * cond_resched() call.
4025 */
4026 if (unlikely(preempt_count()))
4027 return;
8ba7b0a1
LT
4028 if (unlikely(system_state != SYSTEM_RUNNING))
4029 return;
1da177e4
LT
4030 do {
4031 add_preempt_count(PREEMPT_ACTIVE);
4032 schedule();
4033 sub_preempt_count(PREEMPT_ACTIVE);
4034 } while (need_resched());
4035}
4036
4037int __sched cond_resched(void)
4038{
4039 if (need_resched()) {
4040 __cond_resched();
4041 return 1;
4042 }
4043 return 0;
4044}
4045
4046EXPORT_SYMBOL(cond_resched);
4047
4048/*
4049 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4050 * call schedule, and on return reacquire the lock.
4051 *
4052 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4053 * operations here to prevent schedule() from being called twice (once via
4054 * spin_unlock(), once by hand).
4055 */
95cdf3b7 4056int cond_resched_lock(spinlock_t *lock)
1da177e4 4057{
6df3cecb
JK
4058 int ret = 0;
4059
1da177e4
LT
4060 if (need_lockbreak(lock)) {
4061 spin_unlock(lock);
4062 cpu_relax();
6df3cecb 4063 ret = 1;
1da177e4
LT
4064 spin_lock(lock);
4065 }
4066 if (need_resched()) {
4067 _raw_spin_unlock(lock);
4068 preempt_enable_no_resched();
4069 __cond_resched();
6df3cecb 4070 ret = 1;
1da177e4 4071 spin_lock(lock);
1da177e4 4072 }
6df3cecb 4073 return ret;
1da177e4
LT
4074}
4075
4076EXPORT_SYMBOL(cond_resched_lock);
4077
4078int __sched cond_resched_softirq(void)
4079{
4080 BUG_ON(!in_softirq());
4081
4082 if (need_resched()) {
4083 __local_bh_enable();
4084 __cond_resched();
4085 local_bh_disable();
4086 return 1;
4087 }
4088 return 0;
4089}
4090
4091EXPORT_SYMBOL(cond_resched_softirq);
4092
4093
4094/**
4095 * yield - yield the current processor to other threads.
4096 *
4097 * this is a shortcut for kernel-space yielding - it marks the
4098 * thread runnable and calls sys_sched_yield().
4099 */
4100void __sched yield(void)
4101{
4102 set_current_state(TASK_RUNNING);
4103 sys_sched_yield();
4104}
4105
4106EXPORT_SYMBOL(yield);
4107
4108/*
4109 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4110 * that process accounting knows that this is a task in IO wait state.
4111 *
4112 * But don't do that if it is a deliberate, throttling IO wait (this task
4113 * has set its backing_dev_info: the queue against which it should throttle)
4114 */
4115void __sched io_schedule(void)
4116{
39c715b7 4117 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
1da177e4
LT
4118
4119 atomic_inc(&rq->nr_iowait);
4120 schedule();
4121 atomic_dec(&rq->nr_iowait);
4122}
4123
4124EXPORT_SYMBOL(io_schedule);
4125
4126long __sched io_schedule_timeout(long timeout)
4127{
39c715b7 4128 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
1da177e4
LT
4129 long ret;
4130
4131 atomic_inc(&rq->nr_iowait);
4132 ret = schedule_timeout(timeout);
4133 atomic_dec(&rq->nr_iowait);
4134 return ret;
4135}
4136
4137/**
4138 * sys_sched_get_priority_max - return maximum RT priority.
4139 * @policy: scheduling class.
4140 *
4141 * this syscall returns the maximum rt_priority that can be used
4142 * by a given scheduling class.
4143 */
4144asmlinkage long sys_sched_get_priority_max(int policy)
4145{
4146 int ret = -EINVAL;
4147
4148 switch (policy) {
4149 case SCHED_FIFO:
4150 case SCHED_RR:
4151 ret = MAX_USER_RT_PRIO-1;
4152 break;
4153 case SCHED_NORMAL:
b0a9499c 4154 case SCHED_BATCH:
1da177e4
LT
4155 ret = 0;
4156 break;
4157 }
4158 return ret;
4159}
4160
4161/**
4162 * sys_sched_get_priority_min - return minimum RT priority.
4163 * @policy: scheduling class.
4164 *
4165 * this syscall returns the minimum rt_priority that can be used
4166 * by a given scheduling class.
4167 */
4168asmlinkage long sys_sched_get_priority_min(int policy)
4169{
4170 int ret = -EINVAL;
4171
4172 switch (policy) {
4173 case SCHED_FIFO:
4174 case SCHED_RR:
4175 ret = 1;
4176 break;
4177 case SCHED_NORMAL:
b0a9499c 4178 case SCHED_BATCH:
1da177e4
LT
4179 ret = 0;
4180 }
4181 return ret;
4182}
4183
4184/**
4185 * sys_sched_rr_get_interval - return the default timeslice of a process.
4186 * @pid: pid of the process.
4187 * @interval: userspace pointer to the timeslice value.
4188 *
4189 * this syscall writes the default timeslice value of a given process
4190 * into the user-space timespec buffer. A value of '0' means infinity.
4191 */
4192asmlinkage
4193long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4194{
4195 int retval = -EINVAL;
4196 struct timespec t;
4197 task_t *p;
4198
4199 if (pid < 0)
4200 goto out_nounlock;
4201
4202 retval = -ESRCH;
4203 read_lock(&tasklist_lock);
4204 p = find_process_by_pid(pid);
4205 if (!p)
4206 goto out_unlock;
4207
4208 retval = security_task_getscheduler(p);
4209 if (retval)
4210 goto out_unlock;
4211
4212 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4213 0 : task_timeslice(p), &t);
4214 read_unlock(&tasklist_lock);
4215 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4216out_nounlock:
4217 return retval;
4218out_unlock:
4219 read_unlock(&tasklist_lock);
4220 return retval;
4221}
4222
4223static inline struct task_struct *eldest_child(struct task_struct *p)
4224{
4225 if (list_empty(&p->children)) return NULL;
4226 return list_entry(p->children.next,struct task_struct,sibling);
4227}
4228
4229static inline struct task_struct *older_sibling(struct task_struct *p)
4230{
4231 if (p->sibling.prev==&p->parent->children) return NULL;
4232 return list_entry(p->sibling.prev,struct task_struct,sibling);
4233}
4234
4235static inline struct task_struct *younger_sibling(struct task_struct *p)
4236{
4237 if (p->sibling.next==&p->parent->children) return NULL;
4238 return list_entry(p->sibling.next,struct task_struct,sibling);
4239}
4240
95cdf3b7 4241static void show_task(task_t *p)
1da177e4
LT
4242{
4243 task_t *relative;
4244 unsigned state;
4245 unsigned long free = 0;
4246 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4247
4248 printk("%-13.13s ", p->comm);
4249 state = p->state ? __ffs(p->state) + 1 : 0;
4250 if (state < ARRAY_SIZE(stat_nam))
4251 printk(stat_nam[state]);
4252 else
4253 printk("?");
4254#if (BITS_PER_LONG == 32)
4255 if (state == TASK_RUNNING)
4256 printk(" running ");
4257 else
4258 printk(" %08lX ", thread_saved_pc(p));
4259#else
4260 if (state == TASK_RUNNING)
4261 printk(" running task ");
4262 else
4263 printk(" %016lx ", thread_saved_pc(p));
4264#endif
4265#ifdef CONFIG_DEBUG_STACK_USAGE
4266 {
10ebffde 4267 unsigned long *n = end_of_stack(p);
1da177e4
LT
4268 while (!*n)
4269 n++;
10ebffde 4270 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4271 }
4272#endif
4273 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4274 if ((relative = eldest_child(p)))
4275 printk("%5d ", relative->pid);
4276 else
4277 printk(" ");
4278 if ((relative = younger_sibling(p)))
4279 printk("%7d", relative->pid);
4280 else
4281 printk(" ");
4282 if ((relative = older_sibling(p)))
4283 printk(" %5d", relative->pid);
4284 else
4285 printk(" ");
4286 if (!p->mm)
4287 printk(" (L-TLB)\n");
4288 else
4289 printk(" (NOTLB)\n");
4290
4291 if (state != TASK_RUNNING)
4292 show_stack(p, NULL);
4293}
4294
4295void show_state(void)
4296{
4297 task_t *g, *p;
4298
4299#if (BITS_PER_LONG == 32)
4300 printk("\n"
4301 " sibling\n");
4302 printk(" task PC pid father child younger older\n");
4303#else
4304 printk("\n"
4305 " sibling\n");
4306 printk(" task PC pid father child younger older\n");
4307#endif
4308 read_lock(&tasklist_lock);
4309 do_each_thread(g, p) {
4310 /*
4311 * reset the NMI-timeout, listing all files on a slow
4312 * console might take alot of time:
4313 */
4314 touch_nmi_watchdog();
4315 show_task(p);
4316 } while_each_thread(g, p);
4317
4318 read_unlock(&tasklist_lock);
de5097c2 4319 mutex_debug_show_all_locks();
1da177e4
LT
4320}
4321
f340c0d1
IM
4322/**
4323 * init_idle - set up an idle thread for a given CPU
4324 * @idle: task in question
4325 * @cpu: cpu the idle task belongs to
4326 *
4327 * NOTE: this function does not set the idle thread's NEED_RESCHED
4328 * flag, to make booting more robust.
4329 */
1da177e4
LT
4330void __devinit init_idle(task_t *idle, int cpu)
4331{
4332 runqueue_t *rq = cpu_rq(cpu);
4333 unsigned long flags;
4334
81c29a85 4335 idle->timestamp = sched_clock();
1da177e4
LT
4336 idle->sleep_avg = 0;
4337 idle->array = NULL;
4338 idle->prio = MAX_PRIO;
4339 idle->state = TASK_RUNNING;
4340 idle->cpus_allowed = cpumask_of_cpu(cpu);
4341 set_task_cpu(idle, cpu);
4342
4343 spin_lock_irqsave(&rq->lock, flags);
4344 rq->curr = rq->idle = idle;
4866cde0
NP
4345#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4346 idle->oncpu = 1;
4347#endif
1da177e4
LT
4348 spin_unlock_irqrestore(&rq->lock, flags);
4349
4350 /* Set the preempt count _outside_ the spinlocks! */
4351#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4352 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4353#else
a1261f54 4354 task_thread_info(idle)->preempt_count = 0;
1da177e4
LT
4355#endif
4356}
4357
4358/*
4359 * In a system that switches off the HZ timer nohz_cpu_mask
4360 * indicates which cpus entered this state. This is used
4361 * in the rcu update to wait only for active cpus. For system
4362 * which do not switch off the HZ timer nohz_cpu_mask should
4363 * always be CPU_MASK_NONE.
4364 */
4365cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4366
4367#ifdef CONFIG_SMP
4368/*
4369 * This is how migration works:
4370 *
4371 * 1) we queue a migration_req_t structure in the source CPU's
4372 * runqueue and wake up that CPU's migration thread.
4373 * 2) we down() the locked semaphore => thread blocks.
4374 * 3) migration thread wakes up (implicitly it forces the migrated
4375 * thread off the CPU)
4376 * 4) it gets the migration request and checks whether the migrated
4377 * task is still in the wrong runqueue.
4378 * 5) if it's in the wrong runqueue then the migration thread removes
4379 * it and puts it into the right queue.
4380 * 6) migration thread up()s the semaphore.
4381 * 7) we wake up and the migration is done.
4382 */
4383
4384/*
4385 * Change a given task's CPU affinity. Migrate the thread to a
4386 * proper CPU and schedule it away if the CPU it's executing on
4387 * is removed from the allowed bitmask.
4388 *
4389 * NOTE: the caller must have a valid reference to the task, the
4390 * task must not exit() & deallocate itself prematurely. The
4391 * call is not atomic; no spinlocks may be held.
4392 */
4393int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4394{
4395 unsigned long flags;
4396 int ret = 0;
4397 migration_req_t req;
4398 runqueue_t *rq;
4399
4400 rq = task_rq_lock(p, &flags);
4401 if (!cpus_intersects(new_mask, cpu_online_map)) {
4402 ret = -EINVAL;
4403 goto out;
4404 }
4405
4406 p->cpus_allowed = new_mask;
4407 /* Can the task run on the task's current CPU? If so, we're done */
4408 if (cpu_isset(task_cpu(p), new_mask))
4409 goto out;
4410
4411 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4412 /* Need help from migration thread: drop lock and wait. */
4413 task_rq_unlock(rq, &flags);
4414 wake_up_process(rq->migration_thread);
4415 wait_for_completion(&req.done);
4416 tlb_migrate_finish(p->mm);
4417 return 0;
4418 }
4419out:
4420 task_rq_unlock(rq, &flags);
4421 return ret;
4422}
4423
4424EXPORT_SYMBOL_GPL(set_cpus_allowed);
4425
4426/*
4427 * Move (not current) task off this cpu, onto dest cpu. We're doing
4428 * this because either it can't run here any more (set_cpus_allowed()
4429 * away from this CPU, or CPU going down), or because we're
4430 * attempting to rebalance this task on exec (sched_exec).
4431 *
4432 * So we race with normal scheduler movements, but that's OK, as long
4433 * as the task is no longer on this CPU.
4434 */
4435static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4436{
4437 runqueue_t *rq_dest, *rq_src;
4438
4439 if (unlikely(cpu_is_offline(dest_cpu)))
4440 return;
4441
4442 rq_src = cpu_rq(src_cpu);
4443 rq_dest = cpu_rq(dest_cpu);
4444
4445 double_rq_lock(rq_src, rq_dest);
4446 /* Already moved. */
4447 if (task_cpu(p) != src_cpu)
4448 goto out;
4449 /* Affinity changed (again). */
4450 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4451 goto out;
4452
4453 set_task_cpu(p, dest_cpu);
4454 if (p->array) {
4455 /*
4456 * Sync timestamp with rq_dest's before activating.
4457 * The same thing could be achieved by doing this step
4458 * afterwards, and pretending it was a local activate.
4459 * This way is cleaner and logically correct.
4460 */
4461 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4462 + rq_dest->timestamp_last_tick;
4463 deactivate_task(p, rq_src);
4464 activate_task(p, rq_dest, 0);
4465 if (TASK_PREEMPTS_CURR(p, rq_dest))
4466 resched_task(rq_dest->curr);
4467 }
4468
4469out:
4470 double_rq_unlock(rq_src, rq_dest);
4471}
4472
4473/*
4474 * migration_thread - this is a highprio system thread that performs
4475 * thread migration by bumping thread off CPU then 'pushing' onto
4476 * another runqueue.
4477 */
95cdf3b7 4478static int migration_thread(void *data)
1da177e4
LT
4479{
4480 runqueue_t *rq;
4481 int cpu = (long)data;
4482
4483 rq = cpu_rq(cpu);
4484 BUG_ON(rq->migration_thread != current);
4485
4486 set_current_state(TASK_INTERRUPTIBLE);
4487 while (!kthread_should_stop()) {
4488 struct list_head *head;
4489 migration_req_t *req;
4490
3e1d1d28 4491 try_to_freeze();
1da177e4
LT
4492
4493 spin_lock_irq(&rq->lock);
4494
4495 if (cpu_is_offline(cpu)) {
4496 spin_unlock_irq(&rq->lock);
4497 goto wait_to_die;
4498 }
4499
4500 if (rq->active_balance) {
4501 active_load_balance(rq, cpu);
4502 rq->active_balance = 0;
4503 }
4504
4505 head = &rq->migration_queue;
4506
4507 if (list_empty(head)) {
4508 spin_unlock_irq(&rq->lock);
4509 schedule();
4510 set_current_state(TASK_INTERRUPTIBLE);
4511 continue;
4512 }
4513 req = list_entry(head->next, migration_req_t, list);
4514 list_del_init(head->next);
4515
674311d5
NP
4516 spin_unlock(&rq->lock);
4517 __migrate_task(req->task, cpu, req->dest_cpu);
4518 local_irq_enable();
1da177e4
LT
4519
4520 complete(&req->done);
4521 }
4522 __set_current_state(TASK_RUNNING);
4523 return 0;
4524
4525wait_to_die:
4526 /* Wait for kthread_stop */
4527 set_current_state(TASK_INTERRUPTIBLE);
4528 while (!kthread_should_stop()) {
4529 schedule();
4530 set_current_state(TASK_INTERRUPTIBLE);
4531 }
4532 __set_current_state(TASK_RUNNING);
4533 return 0;
4534}
4535
4536#ifdef CONFIG_HOTPLUG_CPU
4537/* Figure out where task on dead CPU should go, use force if neccessary. */
4538static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4539{
4540 int dest_cpu;
4541 cpumask_t mask;
4542
4543 /* On same node? */
4544 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4545 cpus_and(mask, mask, tsk->cpus_allowed);
4546 dest_cpu = any_online_cpu(mask);
4547
4548 /* On any allowed CPU? */
4549 if (dest_cpu == NR_CPUS)
4550 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4551
4552 /* No more Mr. Nice Guy. */
4553 if (dest_cpu == NR_CPUS) {
b39c4fab 4554 cpus_setall(tsk->cpus_allowed);
1da177e4
LT
4555 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4556
4557 /*
4558 * Don't tell them about moving exiting tasks or
4559 * kernel threads (both mm NULL), since they never
4560 * leave kernel.
4561 */
4562 if (tsk->mm && printk_ratelimit())
4563 printk(KERN_INFO "process %d (%s) no "
4564 "longer affine to cpu%d\n",
4565 tsk->pid, tsk->comm, dead_cpu);
4566 }
4567 __migrate_task(tsk, dead_cpu, dest_cpu);
4568}
4569
4570/*
4571 * While a dead CPU has no uninterruptible tasks queued at this point,
4572 * it might still have a nonzero ->nr_uninterruptible counter, because
4573 * for performance reasons the counter is not stricly tracking tasks to
4574 * their home CPUs. So we just add the counter to another CPU's counter,
4575 * to keep the global sum constant after CPU-down:
4576 */
4577static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4578{
4579 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4580 unsigned long flags;
4581
4582 local_irq_save(flags);
4583 double_rq_lock(rq_src, rq_dest);
4584 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4585 rq_src->nr_uninterruptible = 0;
4586 double_rq_unlock(rq_src, rq_dest);
4587 local_irq_restore(flags);
4588}
4589
4590/* Run through task list and migrate tasks from the dead cpu. */
4591static void migrate_live_tasks(int src_cpu)
4592{
4593 struct task_struct *tsk, *t;
4594
4595 write_lock_irq(&tasklist_lock);
4596
4597 do_each_thread(t, tsk) {
4598 if (tsk == current)
4599 continue;
4600
4601 if (task_cpu(tsk) == src_cpu)
4602 move_task_off_dead_cpu(src_cpu, tsk);
4603 } while_each_thread(t, tsk);
4604
4605 write_unlock_irq(&tasklist_lock);
4606}
4607
4608/* Schedules idle task to be the next runnable task on current CPU.
4609 * It does so by boosting its priority to highest possible and adding it to
4610 * the _front_ of runqueue. Used by CPU offline code.
4611 */
4612void sched_idle_next(void)
4613{
4614 int cpu = smp_processor_id();
4615 runqueue_t *rq = this_rq();
4616 struct task_struct *p = rq->idle;
4617 unsigned long flags;
4618
4619 /* cpu has to be offline */
4620 BUG_ON(cpu_online(cpu));
4621
4622 /* Strictly not necessary since rest of the CPUs are stopped by now
4623 * and interrupts disabled on current cpu.
4624 */
4625 spin_lock_irqsave(&rq->lock, flags);
4626
4627 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4628 /* Add idle task to _front_ of it's priority queue */
4629 __activate_idle_task(p, rq);
4630
4631 spin_unlock_irqrestore(&rq->lock, flags);
4632}
4633
4634/* Ensures that the idle task is using init_mm right before its cpu goes
4635 * offline.
4636 */
4637void idle_task_exit(void)
4638{
4639 struct mm_struct *mm = current->active_mm;
4640
4641 BUG_ON(cpu_online(smp_processor_id()));
4642
4643 if (mm != &init_mm)
4644 switch_mm(mm, &init_mm, current);
4645 mmdrop(mm);
4646}
4647
4648static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4649{
4650 struct runqueue *rq = cpu_rq(dead_cpu);
4651
4652 /* Must be exiting, otherwise would be on tasklist. */
4653 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4654
4655 /* Cannot have done final schedule yet: would have vanished. */
4656 BUG_ON(tsk->flags & PF_DEAD);
4657
4658 get_task_struct(tsk);
4659
4660 /*
4661 * Drop lock around migration; if someone else moves it,
4662 * that's OK. No task can be added to this CPU, so iteration is
4663 * fine.
4664 */
4665 spin_unlock_irq(&rq->lock);
4666 move_task_off_dead_cpu(dead_cpu, tsk);
4667 spin_lock_irq(&rq->lock);
4668
4669 put_task_struct(tsk);
4670}
4671
4672/* release_task() removes task from tasklist, so we won't find dead tasks. */
4673static void migrate_dead_tasks(unsigned int dead_cpu)
4674{
4675 unsigned arr, i;
4676 struct runqueue *rq = cpu_rq(dead_cpu);
4677
4678 for (arr = 0; arr < 2; arr++) {
4679 for (i = 0; i < MAX_PRIO; i++) {
4680 struct list_head *list = &rq->arrays[arr].queue[i];
4681 while (!list_empty(list))
4682 migrate_dead(dead_cpu,
4683 list_entry(list->next, task_t,
4684 run_list));
4685 }
4686 }
4687}
4688#endif /* CONFIG_HOTPLUG_CPU */
4689
4690/*
4691 * migration_call - callback that gets triggered when a CPU is added.
4692 * Here we can start up the necessary migration thread for the new CPU.
4693 */
4694static int migration_call(struct notifier_block *nfb, unsigned long action,
4695 void *hcpu)
4696{
4697 int cpu = (long)hcpu;
4698 struct task_struct *p;
4699 struct runqueue *rq;
4700 unsigned long flags;
4701
4702 switch (action) {
4703 case CPU_UP_PREPARE:
4704 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4705 if (IS_ERR(p))
4706 return NOTIFY_BAD;
4707 p->flags |= PF_NOFREEZE;
4708 kthread_bind(p, cpu);
4709 /* Must be high prio: stop_machine expects to yield to it. */
4710 rq = task_rq_lock(p, &flags);
4711 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4712 task_rq_unlock(rq, &flags);
4713 cpu_rq(cpu)->migration_thread = p;
4714 break;
4715 case CPU_ONLINE:
4716 /* Strictly unneccessary, as first user will wake it. */
4717 wake_up_process(cpu_rq(cpu)->migration_thread);
4718 break;
4719#ifdef CONFIG_HOTPLUG_CPU
4720 case CPU_UP_CANCELED:
4721 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
4722 kthread_bind(cpu_rq(cpu)->migration_thread,
4723 any_online_cpu(cpu_online_map));
1da177e4
LT
4724 kthread_stop(cpu_rq(cpu)->migration_thread);
4725 cpu_rq(cpu)->migration_thread = NULL;
4726 break;
4727 case CPU_DEAD:
4728 migrate_live_tasks(cpu);
4729 rq = cpu_rq(cpu);
4730 kthread_stop(rq->migration_thread);
4731 rq->migration_thread = NULL;
4732 /* Idle task back to normal (off runqueue, low prio) */
4733 rq = task_rq_lock(rq->idle, &flags);
4734 deactivate_task(rq->idle, rq);
4735 rq->idle->static_prio = MAX_PRIO;
4736 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4737 migrate_dead_tasks(cpu);
4738 task_rq_unlock(rq, &flags);
4739 migrate_nr_uninterruptible(rq);
4740 BUG_ON(rq->nr_running != 0);
4741
4742 /* No need to migrate the tasks: it was best-effort if
4743 * they didn't do lock_cpu_hotplug(). Just wake up
4744 * the requestors. */
4745 spin_lock_irq(&rq->lock);
4746 while (!list_empty(&rq->migration_queue)) {
4747 migration_req_t *req;
4748 req = list_entry(rq->migration_queue.next,
4749 migration_req_t, list);
1da177e4
LT
4750 list_del_init(&req->list);
4751 complete(&req->done);
4752 }
4753 spin_unlock_irq(&rq->lock);
4754 break;
4755#endif
4756 }
4757 return NOTIFY_OK;
4758}
4759
4760/* Register at highest priority so that task migration (migrate_all_tasks)
4761 * happens before everything else.
4762 */
4763static struct notifier_block __devinitdata migration_notifier = {
4764 .notifier_call = migration_call,
4765 .priority = 10
4766};
4767
4768int __init migration_init(void)
4769{
4770 void *cpu = (void *)(long)smp_processor_id();
4771 /* Start one for boot CPU. */
4772 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4773 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4774 register_cpu_notifier(&migration_notifier);
4775 return 0;
4776}
4777#endif
4778
4779#ifdef CONFIG_SMP
1a20ff27 4780#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
4781#ifdef SCHED_DOMAIN_DEBUG
4782static void sched_domain_debug(struct sched_domain *sd, int cpu)
4783{
4784 int level = 0;
4785
41c7ce9a
NP
4786 if (!sd) {
4787 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4788 return;
4789 }
4790
1da177e4
LT
4791 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4792
4793 do {
4794 int i;
4795 char str[NR_CPUS];
4796 struct sched_group *group = sd->groups;
4797 cpumask_t groupmask;
4798
4799 cpumask_scnprintf(str, NR_CPUS, sd->span);
4800 cpus_clear(groupmask);
4801
4802 printk(KERN_DEBUG);
4803 for (i = 0; i < level + 1; i++)
4804 printk(" ");
4805 printk("domain %d: ", level);
4806
4807 if (!(sd->flags & SD_LOAD_BALANCE)) {
4808 printk("does not load-balance\n");
4809 if (sd->parent)
4810 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4811 break;
4812 }
4813
4814 printk("span %s\n", str);
4815
4816 if (!cpu_isset(cpu, sd->span))
4817 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4818 if (!cpu_isset(cpu, group->cpumask))
4819 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4820
4821 printk(KERN_DEBUG);
4822 for (i = 0; i < level + 2; i++)
4823 printk(" ");
4824 printk("groups:");
4825 do {
4826 if (!group) {
4827 printk("\n");
4828 printk(KERN_ERR "ERROR: group is NULL\n");
4829 break;
4830 }
4831
4832 if (!group->cpu_power) {
4833 printk("\n");
4834 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4835 }
4836
4837 if (!cpus_weight(group->cpumask)) {
4838 printk("\n");
4839 printk(KERN_ERR "ERROR: empty group\n");
4840 }
4841
4842 if (cpus_intersects(groupmask, group->cpumask)) {
4843 printk("\n");
4844 printk(KERN_ERR "ERROR: repeated CPUs\n");
4845 }
4846
4847 cpus_or(groupmask, groupmask, group->cpumask);
4848
4849 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4850 printk(" %s", str);
4851
4852 group = group->next;
4853 } while (group != sd->groups);
4854 printk("\n");
4855
4856 if (!cpus_equal(sd->span, groupmask))
4857 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4858
4859 level++;
4860 sd = sd->parent;
4861
4862 if (sd) {
4863 if (!cpus_subset(groupmask, sd->span))
4864 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4865 }
4866
4867 } while (sd);
4868}
4869#else
4870#define sched_domain_debug(sd, cpu) {}
4871#endif
4872
1a20ff27 4873static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
4874{
4875 if (cpus_weight(sd->span) == 1)
4876 return 1;
4877
4878 /* Following flags need at least 2 groups */
4879 if (sd->flags & (SD_LOAD_BALANCE |
4880 SD_BALANCE_NEWIDLE |
4881 SD_BALANCE_FORK |
4882 SD_BALANCE_EXEC)) {
4883 if (sd->groups != sd->groups->next)
4884 return 0;
4885 }
4886
4887 /* Following flags don't use groups */
4888 if (sd->flags & (SD_WAKE_IDLE |
4889 SD_WAKE_AFFINE |
4890 SD_WAKE_BALANCE))
4891 return 0;
4892
4893 return 1;
4894}
4895
1a20ff27 4896static int sd_parent_degenerate(struct sched_domain *sd,
245af2c7
SS
4897 struct sched_domain *parent)
4898{
4899 unsigned long cflags = sd->flags, pflags = parent->flags;
4900
4901 if (sd_degenerate(parent))
4902 return 1;
4903
4904 if (!cpus_equal(sd->span, parent->span))
4905 return 0;
4906
4907 /* Does parent contain flags not in child? */
4908 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4909 if (cflags & SD_WAKE_AFFINE)
4910 pflags &= ~SD_WAKE_BALANCE;
4911 /* Flags needing groups don't count if only 1 group in parent */
4912 if (parent->groups == parent->groups->next) {
4913 pflags &= ~(SD_LOAD_BALANCE |
4914 SD_BALANCE_NEWIDLE |
4915 SD_BALANCE_FORK |
4916 SD_BALANCE_EXEC);
4917 }
4918 if (~cflags & pflags)
4919 return 0;
4920
4921 return 1;
4922}
4923
1da177e4
LT
4924/*
4925 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4926 * hold the hotplug lock.
4927 */
9c1cfda2 4928static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 4929{
1da177e4 4930 runqueue_t *rq = cpu_rq(cpu);
245af2c7
SS
4931 struct sched_domain *tmp;
4932
4933 /* Remove the sched domains which do not contribute to scheduling. */
4934 for (tmp = sd; tmp; tmp = tmp->parent) {
4935 struct sched_domain *parent = tmp->parent;
4936 if (!parent)
4937 break;
4938 if (sd_parent_degenerate(tmp, parent))
4939 tmp->parent = parent->parent;
4940 }
4941
4942 if (sd && sd_degenerate(sd))
4943 sd = sd->parent;
1da177e4
LT
4944
4945 sched_domain_debug(sd, cpu);
4946
674311d5 4947 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
4948}
4949
4950/* cpus with isolated domains */
9c1cfda2 4951static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
4952
4953/* Setup the mask of cpus configured for isolated domains */
4954static int __init isolated_cpu_setup(char *str)
4955{
4956 int ints[NR_CPUS], i;
4957
4958 str = get_options(str, ARRAY_SIZE(ints), ints);
4959 cpus_clear(cpu_isolated_map);
4960 for (i = 1; i <= ints[0]; i++)
4961 if (ints[i] < NR_CPUS)
4962 cpu_set(ints[i], cpu_isolated_map);
4963 return 1;
4964}
4965
4966__setup ("isolcpus=", isolated_cpu_setup);
4967
4968/*
4969 * init_sched_build_groups takes an array of groups, the cpumask we wish
4970 * to span, and a pointer to a function which identifies what group a CPU
4971 * belongs to. The return value of group_fn must be a valid index into the
4972 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4973 * keep track of groups covered with a cpumask_t).
4974 *
4975 * init_sched_build_groups will build a circular linked list of the groups
4976 * covered by the given span, and will set each group's ->cpumask correctly,
4977 * and ->cpu_power to 0.
4978 */
9c1cfda2
JH
4979static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
4980 int (*group_fn)(int cpu))
1da177e4
LT
4981{
4982 struct sched_group *first = NULL, *last = NULL;
4983 cpumask_t covered = CPU_MASK_NONE;
4984 int i;
4985
4986 for_each_cpu_mask(i, span) {
4987 int group = group_fn(i);
4988 struct sched_group *sg = &groups[group];
4989 int j;
4990
4991 if (cpu_isset(i, covered))
4992 continue;
4993
4994 sg->cpumask = CPU_MASK_NONE;
4995 sg->cpu_power = 0;
4996
4997 for_each_cpu_mask(j, span) {
4998 if (group_fn(j) != group)
4999 continue;
5000
5001 cpu_set(j, covered);
5002 cpu_set(j, sg->cpumask);
5003 }
5004 if (!first)
5005 first = sg;
5006 if (last)
5007 last->next = sg;
5008 last = sg;
5009 }
5010 last->next = first;
5011}
5012
9c1cfda2 5013#define SD_NODES_PER_DOMAIN 16
1da177e4 5014
198e2f18
AM
5015/*
5016 * Self-tuning task migration cost measurement between source and target CPUs.
5017 *
5018 * This is done by measuring the cost of manipulating buffers of varying
5019 * sizes. For a given buffer-size here are the steps that are taken:
5020 *
5021 * 1) the source CPU reads+dirties a shared buffer
5022 * 2) the target CPU reads+dirties the same shared buffer
5023 *
5024 * We measure how long they take, in the following 4 scenarios:
5025 *
5026 * - source: CPU1, target: CPU2 | cost1
5027 * - source: CPU2, target: CPU1 | cost2
5028 * - source: CPU1, target: CPU1 | cost3
5029 * - source: CPU2, target: CPU2 | cost4
5030 *
5031 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5032 * the cost of migration.
5033 *
5034 * We then start off from a small buffer-size and iterate up to larger
5035 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5036 * doing a maximum search for the cost. (The maximum cost for a migration
5037 * normally occurs when the working set size is around the effective cache
5038 * size.)
5039 */
5040#define SEARCH_SCOPE 2
5041#define MIN_CACHE_SIZE (64*1024U)
5042#define DEFAULT_CACHE_SIZE (5*1024*1024U)
70b4d63e 5043#define ITERATIONS 1
198e2f18
AM
5044#define SIZE_THRESH 130
5045#define COST_THRESH 130
5046
5047/*
5048 * The migration cost is a function of 'domain distance'. Domain
5049 * distance is the number of steps a CPU has to iterate down its
5050 * domain tree to share a domain with the other CPU. The farther
5051 * two CPUs are from each other, the larger the distance gets.
5052 *
5053 * Note that we use the distance only to cache measurement results,
5054 * the distance value is not used numerically otherwise. When two
5055 * CPUs have the same distance it is assumed that the migration
5056 * cost is the same. (this is a simplification but quite practical)
5057 */
5058#define MAX_DOMAIN_DISTANCE 32
5059
5060static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
4bbf39c2
IM
5061 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5062/*
5063 * Architectures may override the migration cost and thus avoid
5064 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5065 * virtualized hardware:
5066 */
5067#ifdef CONFIG_DEFAULT_MIGRATION_COST
5068 CONFIG_DEFAULT_MIGRATION_COST
5069#else
5070 -1LL
5071#endif
5072};
198e2f18
AM
5073
5074/*
5075 * Allow override of migration cost - in units of microseconds.
5076 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5077 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5078 */
5079static int __init migration_cost_setup(char *str)
5080{
5081 int ints[MAX_DOMAIN_DISTANCE+1], i;
5082
5083 str = get_options(str, ARRAY_SIZE(ints), ints);
5084
5085 printk("#ints: %d\n", ints[0]);
5086 for (i = 1; i <= ints[0]; i++) {
5087 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5088 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5089 }
5090 return 1;
5091}
5092
5093__setup ("migration_cost=", migration_cost_setup);
5094
5095/*
5096 * Global multiplier (divisor) for migration-cutoff values,
5097 * in percentiles. E.g. use a value of 150 to get 1.5 times
5098 * longer cache-hot cutoff times.
5099 *
5100 * (We scale it from 100 to 128 to long long handling easier.)
5101 */
5102
5103#define MIGRATION_FACTOR_SCALE 128
5104
5105static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5106
5107static int __init setup_migration_factor(char *str)
5108{
5109 get_option(&str, &migration_factor);
5110 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5111 return 1;
5112}
5113
5114__setup("migration_factor=", setup_migration_factor);
5115
5116/*
5117 * Estimated distance of two CPUs, measured via the number of domains
5118 * we have to pass for the two CPUs to be in the same span:
5119 */
5120static unsigned long domain_distance(int cpu1, int cpu2)
5121{
5122 unsigned long distance = 0;
5123 struct sched_domain *sd;
5124
5125 for_each_domain(cpu1, sd) {
5126 WARN_ON(!cpu_isset(cpu1, sd->span));
5127 if (cpu_isset(cpu2, sd->span))
5128 return distance;
5129 distance++;
5130 }
5131 if (distance >= MAX_DOMAIN_DISTANCE) {
5132 WARN_ON(1);
5133 distance = MAX_DOMAIN_DISTANCE-1;
5134 }
5135
5136 return distance;
5137}
5138
5139static unsigned int migration_debug;
5140
5141static int __init setup_migration_debug(char *str)
5142{
5143 get_option(&str, &migration_debug);
5144 return 1;
5145}
5146
5147__setup("migration_debug=", setup_migration_debug);
5148
5149/*
5150 * Maximum cache-size that the scheduler should try to measure.
5151 * Architectures with larger caches should tune this up during
5152 * bootup. Gets used in the domain-setup code (i.e. during SMP
5153 * bootup).
5154 */
5155unsigned int max_cache_size;
5156
5157static int __init setup_max_cache_size(char *str)
5158{
5159 get_option(&str, &max_cache_size);
5160 return 1;
5161}
5162
5163__setup("max_cache_size=", setup_max_cache_size);
5164
5165/*
5166 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5167 * is the operation that is timed, so we try to generate unpredictable
5168 * cachemisses that still end up filling the L2 cache:
5169 */
5170static void touch_cache(void *__cache, unsigned long __size)
5171{
5172 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5173 chunk2 = 2*size/3;
5174 unsigned long *cache = __cache;
5175 int i;
5176
5177 for (i = 0; i < size/6; i += 8) {
5178 switch (i % 6) {
5179 case 0: cache[i]++;
5180 case 1: cache[size-1-i]++;
5181 case 2: cache[chunk1-i]++;
5182 case 3: cache[chunk1+i]++;
5183 case 4: cache[chunk2-i]++;
5184 case 5: cache[chunk2+i]++;
5185 }
5186 }
5187}
5188
5189/*
5190 * Measure the cache-cost of one task migration. Returns in units of nsec.
5191 */
5192static unsigned long long measure_one(void *cache, unsigned long size,
5193 int source, int target)
5194{
5195 cpumask_t mask, saved_mask;
5196 unsigned long long t0, t1, t2, t3, cost;
5197
5198 saved_mask = current->cpus_allowed;
5199
5200 /*
5201 * Flush source caches to RAM and invalidate them:
5202 */
5203 sched_cacheflush();
5204
5205 /*
5206 * Migrate to the source CPU:
5207 */
5208 mask = cpumask_of_cpu(source);
5209 set_cpus_allowed(current, mask);
5210 WARN_ON(smp_processor_id() != source);
5211
5212 /*
5213 * Dirty the working set:
5214 */
5215 t0 = sched_clock();
5216 touch_cache(cache, size);
5217 t1 = sched_clock();
5218
5219 /*
5220 * Migrate to the target CPU, dirty the L2 cache and access
5221 * the shared buffer. (which represents the working set
5222 * of a migrated task.)
5223 */
5224 mask = cpumask_of_cpu(target);
5225 set_cpus_allowed(current, mask);
5226 WARN_ON(smp_processor_id() != target);
5227
5228 t2 = sched_clock();
5229 touch_cache(cache, size);
5230 t3 = sched_clock();
5231
5232 cost = t1-t0 + t3-t2;
5233
5234 if (migration_debug >= 2)
5235 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5236 source, target, t1-t0, t1-t0, t3-t2, cost);
5237 /*
5238 * Flush target caches to RAM and invalidate them:
5239 */
5240 sched_cacheflush();
5241
5242 set_cpus_allowed(current, saved_mask);
5243
5244 return cost;
5245}
5246
5247/*
5248 * Measure a series of task migrations and return the average
5249 * result. Since this code runs early during bootup the system
5250 * is 'undisturbed' and the average latency makes sense.
5251 *
5252 * The algorithm in essence auto-detects the relevant cache-size,
5253 * so it will properly detect different cachesizes for different
5254 * cache-hierarchies, depending on how the CPUs are connected.
5255 *
5256 * Architectures can prime the upper limit of the search range via
5257 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5258 */
5259static unsigned long long
5260measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5261{
5262 unsigned long long cost1, cost2;
5263 int i;
5264
5265 /*
5266 * Measure the migration cost of 'size' bytes, over an
5267 * average of 10 runs:
5268 *
5269 * (We perturb the cache size by a small (0..4k)
5270 * value to compensate size/alignment related artifacts.
5271 * We also subtract the cost of the operation done on
5272 * the same CPU.)
5273 */
5274 cost1 = 0;
5275
5276 /*
5277 * dry run, to make sure we start off cache-cold on cpu1,
5278 * and to get any vmalloc pagefaults in advance:
5279 */
5280 measure_one(cache, size, cpu1, cpu2);
5281 for (i = 0; i < ITERATIONS; i++)
5282 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5283
5284 measure_one(cache, size, cpu2, cpu1);
5285 for (i = 0; i < ITERATIONS; i++)
5286 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5287
5288 /*
5289 * (We measure the non-migrating [cached] cost on both
5290 * cpu1 and cpu2, to handle CPUs with different speeds)
5291 */
5292 cost2 = 0;
5293
5294 measure_one(cache, size, cpu1, cpu1);
5295 for (i = 0; i < ITERATIONS; i++)
5296 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5297
5298 measure_one(cache, size, cpu2, cpu2);
5299 for (i = 0; i < ITERATIONS; i++)
5300 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5301
5302 /*
5303 * Get the per-iteration migration cost:
5304 */
5305 do_div(cost1, 2*ITERATIONS);
5306 do_div(cost2, 2*ITERATIONS);
5307
5308 return cost1 - cost2;
5309}
5310
5311static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5312{
5313 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5314 unsigned int max_size, size, size_found = 0;
5315 long long cost = 0, prev_cost;
5316 void *cache;
5317
5318 /*
5319 * Search from max_cache_size*5 down to 64K - the real relevant
5320 * cachesize has to lie somewhere inbetween.
5321 */
5322 if (max_cache_size) {
5323 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5324 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5325 } else {
5326 /*
5327 * Since we have no estimation about the relevant
5328 * search range
5329 */
5330 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5331 size = MIN_CACHE_SIZE;
5332 }
5333
5334 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5335 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5336 return 0;
5337 }
5338
5339 /*
5340 * Allocate the working set:
5341 */
5342 cache = vmalloc(max_size);
5343 if (!cache) {
5344 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5345 return 1000000; // return 1 msec on very small boxen
5346 }
5347
5348 while (size <= max_size) {
5349 prev_cost = cost;
5350 cost = measure_cost(cpu1, cpu2, cache, size);
5351
5352 /*
5353 * Update the max:
5354 */
5355 if (cost > 0) {
5356 if (max_cost < cost) {
5357 max_cost = cost;
5358 size_found = size;
5359 }
5360 }
5361 /*
5362 * Calculate average fluctuation, we use this to prevent
5363 * noise from triggering an early break out of the loop:
5364 */
5365 fluct = abs(cost - prev_cost);
5366 avg_fluct = (avg_fluct + fluct)/2;
5367
5368 if (migration_debug)
5369 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5370 cpu1, cpu2, size,
5371 (long)cost / 1000000,
5372 ((long)cost / 100000) % 10,
5373 (long)max_cost / 1000000,
5374 ((long)max_cost / 100000) % 10,
5375 domain_distance(cpu1, cpu2),
5376 cost, avg_fluct);
5377
5378 /*
5379 * If we iterated at least 20% past the previous maximum,
5380 * and the cost has dropped by more than 20% already,
5381 * (taking fluctuations into account) then we assume to
5382 * have found the maximum and break out of the loop early:
5383 */
5384 if (size_found && (size*100 > size_found*SIZE_THRESH))
5385 if (cost+avg_fluct <= 0 ||
5386 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5387
5388 if (migration_debug)
5389 printk("-> found max.\n");
5390 break;
5391 }
5392 /*
70b4d63e 5393 * Increase the cachesize in 10% steps:
198e2f18 5394 */
70b4d63e 5395 size = size * 10 / 9;
198e2f18
AM
5396 }
5397
5398 if (migration_debug)
5399 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5400 cpu1, cpu2, size_found, max_cost);
5401
5402 vfree(cache);
5403
5404 /*
5405 * A task is considered 'cache cold' if at least 2 times
5406 * the worst-case cost of migration has passed.
5407 *
5408 * (this limit is only listened to if the load-balancing
5409 * situation is 'nice' - if there is a large imbalance we
5410 * ignore it for the sake of CPU utilization and
5411 * processing fairness.)
5412 */
5413 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5414}
5415
5416static void calibrate_migration_costs(const cpumask_t *cpu_map)
5417{
5418 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5419 unsigned long j0, j1, distance, max_distance = 0;
5420 struct sched_domain *sd;
5421
5422 j0 = jiffies;
5423
5424 /*
5425 * First pass - calculate the cacheflush times:
5426 */
5427 for_each_cpu_mask(cpu1, *cpu_map) {
5428 for_each_cpu_mask(cpu2, *cpu_map) {
5429 if (cpu1 == cpu2)
5430 continue;
5431 distance = domain_distance(cpu1, cpu2);
5432 max_distance = max(max_distance, distance);
5433 /*
5434 * No result cached yet?
5435 */
5436 if (migration_cost[distance] == -1LL)
5437 migration_cost[distance] =
5438 measure_migration_cost(cpu1, cpu2);
5439 }
5440 }
5441 /*
5442 * Second pass - update the sched domain hierarchy with
5443 * the new cache-hot-time estimations:
5444 */
5445 for_each_cpu_mask(cpu, *cpu_map) {
5446 distance = 0;
5447 for_each_domain(cpu, sd) {
5448 sd->cache_hot_time = migration_cost[distance];
5449 distance++;
5450 }
5451 }
5452 /*
5453 * Print the matrix:
5454 */
5455 if (migration_debug)
5456 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5457 max_cache_size,
5458#ifdef CONFIG_X86
5459 cpu_khz/1000
5460#else
5461 -1
5462#endif
5463 );
bd576c95
CE
5464 if (system_state == SYSTEM_BOOTING) {
5465 printk("migration_cost=");
5466 for (distance = 0; distance <= max_distance; distance++) {
5467 if (distance)
5468 printk(",");
5469 printk("%ld", (long)migration_cost[distance] / 1000);
5470 }
5471 printk("\n");
198e2f18 5472 }
198e2f18
AM
5473 j1 = jiffies;
5474 if (migration_debug)
5475 printk("migration: %ld seconds\n", (j1-j0)/HZ);
5476
5477 /*
5478 * Move back to the original CPU. NUMA-Q gets confused
5479 * if we migrate to another quad during bootup.
5480 */
5481 if (raw_smp_processor_id() != orig_cpu) {
5482 cpumask_t mask = cpumask_of_cpu(orig_cpu),
5483 saved_mask = current->cpus_allowed;
5484
5485 set_cpus_allowed(current, mask);
5486 set_cpus_allowed(current, saved_mask);
5487 }
5488}
5489
9c1cfda2 5490#ifdef CONFIG_NUMA
198e2f18 5491
9c1cfda2
JH
5492/**
5493 * find_next_best_node - find the next node to include in a sched_domain
5494 * @node: node whose sched_domain we're building
5495 * @used_nodes: nodes already in the sched_domain
5496 *
5497 * Find the next node to include in a given scheduling domain. Simply
5498 * finds the closest node not already in the @used_nodes map.
5499 *
5500 * Should use nodemask_t.
5501 */
5502static int find_next_best_node(int node, unsigned long *used_nodes)
5503{
5504 int i, n, val, min_val, best_node = 0;
5505
5506 min_val = INT_MAX;
5507
5508 for (i = 0; i < MAX_NUMNODES; i++) {
5509 /* Start at @node */
5510 n = (node + i) % MAX_NUMNODES;
5511
5512 if (!nr_cpus_node(n))
5513 continue;
5514
5515 /* Skip already used nodes */
5516 if (test_bit(n, used_nodes))
5517 continue;
5518
5519 /* Simple min distance search */
5520 val = node_distance(node, n);
5521
5522 if (val < min_val) {
5523 min_val = val;
5524 best_node = n;
5525 }
5526 }
5527
5528 set_bit(best_node, used_nodes);
5529 return best_node;
5530}
5531
5532/**
5533 * sched_domain_node_span - get a cpumask for a node's sched_domain
5534 * @node: node whose cpumask we're constructing
5535 * @size: number of nodes to include in this span
5536 *
5537 * Given a node, construct a good cpumask for its sched_domain to span. It
5538 * should be one that prevents unnecessary balancing, but also spreads tasks
5539 * out optimally.
5540 */
5541static cpumask_t sched_domain_node_span(int node)
5542{
5543 int i;
5544 cpumask_t span, nodemask;
5545 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5546
5547 cpus_clear(span);
5548 bitmap_zero(used_nodes, MAX_NUMNODES);
5549
5550 nodemask = node_to_cpumask(node);
5551 cpus_or(span, span, nodemask);
5552 set_bit(node, used_nodes);
5553
5554 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5555 int next_node = find_next_best_node(node, used_nodes);
5556 nodemask = node_to_cpumask(next_node);
5557 cpus_or(span, span, nodemask);
5558 }
5559
5560 return span;
5561}
5562#endif
5563
5564/*
5565 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5566 * can switch it on easily if needed.
5567 */
1da177e4
LT
5568#ifdef CONFIG_SCHED_SMT
5569static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5570static struct sched_group sched_group_cpus[NR_CPUS];
1a20ff27 5571static int cpu_to_cpu_group(int cpu)
1da177e4
LT
5572{
5573 return cpu;
5574}
5575#endif
5576
1e9f28fa
SS
5577#ifdef CONFIG_SCHED_MC
5578static DEFINE_PER_CPU(struct sched_domain, core_domains);
5579static struct sched_group sched_group_core[NR_CPUS];
5580#endif
5581
5582#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5583static int cpu_to_core_group(int cpu)
5584{
5585 return first_cpu(cpu_sibling_map[cpu]);
5586}
5587#elif defined(CONFIG_SCHED_MC)
5588static int cpu_to_core_group(int cpu)
5589{
5590 return cpu;
5591}
5592#endif
5593
1da177e4
LT
5594static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5595static struct sched_group sched_group_phys[NR_CPUS];
1a20ff27 5596static int cpu_to_phys_group(int cpu)
1da177e4 5597{
1e9f28fa
SS
5598#if defined(CONFIG_SCHED_MC)
5599 cpumask_t mask = cpu_coregroup_map(cpu);
5600 return first_cpu(mask);
5601#elif defined(CONFIG_SCHED_SMT)
1da177e4
LT
5602 return first_cpu(cpu_sibling_map[cpu]);
5603#else
5604 return cpu;
5605#endif
5606}
5607
5608#ifdef CONFIG_NUMA
1da177e4 5609/*
9c1cfda2
JH
5610 * The init_sched_build_groups can't handle what we want to do with node
5611 * groups, so roll our own. Now each node has its own list of groups which
5612 * gets dynamically allocated.
1da177e4 5613 */
9c1cfda2 5614static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5615static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5616
9c1cfda2 5617static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
d1b55138 5618static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
9c1cfda2
JH
5619
5620static int cpu_to_allnodes_group(int cpu)
5621{
5622 return cpu_to_node(cpu);
1da177e4
LT
5623}
5624#endif
5625
5626/*
1a20ff27
DG
5627 * Build sched domains for a given set of cpus and attach the sched domains
5628 * to the individual cpus
1da177e4 5629 */
9c1cfda2 5630void build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
5631{
5632 int i;
d1b55138
JH
5633#ifdef CONFIG_NUMA
5634 struct sched_group **sched_group_nodes = NULL;
5635 struct sched_group *sched_group_allnodes = NULL;
5636
5637 /*
5638 * Allocate the per-node list of sched groups
5639 */
5640 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5641 GFP_ATOMIC);
5642 if (!sched_group_nodes) {
5643 printk(KERN_WARNING "Can not alloc sched group node list\n");
5644 return;
5645 }
5646 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5647#endif
1da177e4
LT
5648
5649 /*
1a20ff27 5650 * Set up domains for cpus specified by the cpu_map.
1da177e4 5651 */
1a20ff27 5652 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5653 int group;
5654 struct sched_domain *sd = NULL, *p;
5655 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5656
1a20ff27 5657 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
5658
5659#ifdef CONFIG_NUMA
d1b55138 5660 if (cpus_weight(*cpu_map)
9c1cfda2 5661 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
d1b55138
JH
5662 if (!sched_group_allnodes) {
5663 sched_group_allnodes
5664 = kmalloc(sizeof(struct sched_group)
5665 * MAX_NUMNODES,
5666 GFP_KERNEL);
5667 if (!sched_group_allnodes) {
5668 printk(KERN_WARNING
5669 "Can not alloc allnodes sched group\n");
5670 break;
5671 }
5672 sched_group_allnodes_bycpu[i]
5673 = sched_group_allnodes;
5674 }
9c1cfda2
JH
5675 sd = &per_cpu(allnodes_domains, i);
5676 *sd = SD_ALLNODES_INIT;
5677 sd->span = *cpu_map;
5678 group = cpu_to_allnodes_group(i);
5679 sd->groups = &sched_group_allnodes[group];
5680 p = sd;
5681 } else
5682 p = NULL;
5683
1da177e4 5684 sd = &per_cpu(node_domains, i);
1da177e4 5685 *sd = SD_NODE_INIT;
9c1cfda2
JH
5686 sd->span = sched_domain_node_span(cpu_to_node(i));
5687 sd->parent = p;
5688 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
5689#endif
5690
5691 p = sd;
5692 sd = &per_cpu(phys_domains, i);
5693 group = cpu_to_phys_group(i);
5694 *sd = SD_CPU_INIT;
5695 sd->span = nodemask;
5696 sd->parent = p;
5697 sd->groups = &sched_group_phys[group];
5698
1e9f28fa
SS
5699#ifdef CONFIG_SCHED_MC
5700 p = sd;
5701 sd = &per_cpu(core_domains, i);
5702 group = cpu_to_core_group(i);
5703 *sd = SD_MC_INIT;
5704 sd->span = cpu_coregroup_map(i);
5705 cpus_and(sd->span, sd->span, *cpu_map);
5706 sd->parent = p;
5707 sd->groups = &sched_group_core[group];
5708#endif
5709
1da177e4
LT
5710#ifdef CONFIG_SCHED_SMT
5711 p = sd;
5712 sd = &per_cpu(cpu_domains, i);
5713 group = cpu_to_cpu_group(i);
5714 *sd = SD_SIBLING_INIT;
5715 sd->span = cpu_sibling_map[i];
1a20ff27 5716 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
5717 sd->parent = p;
5718 sd->groups = &sched_group_cpus[group];
5719#endif
5720 }
5721
5722#ifdef CONFIG_SCHED_SMT
5723 /* Set up CPU (sibling) groups */
9c1cfda2 5724 for_each_cpu_mask(i, *cpu_map) {
1da177e4 5725 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 5726 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
5727 if (i != first_cpu(this_sibling_map))
5728 continue;
5729
5730 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5731 &cpu_to_cpu_group);
5732 }
5733#endif
5734
1e9f28fa
SS
5735#ifdef CONFIG_SCHED_MC
5736 /* Set up multi-core groups */
5737 for_each_cpu_mask(i, *cpu_map) {
5738 cpumask_t this_core_map = cpu_coregroup_map(i);
5739 cpus_and(this_core_map, this_core_map, *cpu_map);
5740 if (i != first_cpu(this_core_map))
5741 continue;
5742 init_sched_build_groups(sched_group_core, this_core_map,
5743 &cpu_to_core_group);
5744 }
5745#endif
5746
5747
1da177e4
LT
5748 /* Set up physical groups */
5749 for (i = 0; i < MAX_NUMNODES; i++) {
5750 cpumask_t nodemask = node_to_cpumask(i);
5751
1a20ff27 5752 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
5753 if (cpus_empty(nodemask))
5754 continue;
5755
5756 init_sched_build_groups(sched_group_phys, nodemask,
5757 &cpu_to_phys_group);
5758 }
5759
5760#ifdef CONFIG_NUMA
5761 /* Set up node groups */
d1b55138
JH
5762 if (sched_group_allnodes)
5763 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5764 &cpu_to_allnodes_group);
9c1cfda2
JH
5765
5766 for (i = 0; i < MAX_NUMNODES; i++) {
5767 /* Set up node groups */
5768 struct sched_group *sg, *prev;
5769 cpumask_t nodemask = node_to_cpumask(i);
5770 cpumask_t domainspan;
5771 cpumask_t covered = CPU_MASK_NONE;
5772 int j;
5773
5774 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
5775 if (cpus_empty(nodemask)) {
5776 sched_group_nodes[i] = NULL;
9c1cfda2 5777 continue;
d1b55138 5778 }
9c1cfda2
JH
5779
5780 domainspan = sched_domain_node_span(i);
5781 cpus_and(domainspan, domainspan, *cpu_map);
5782
5783 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5784 sched_group_nodes[i] = sg;
5785 for_each_cpu_mask(j, nodemask) {
5786 struct sched_domain *sd;
5787 sd = &per_cpu(node_domains, j);
5788 sd->groups = sg;
5789 if (sd->groups == NULL) {
5790 /* Turn off balancing if we have no groups */
5791 sd->flags = 0;
5792 }
5793 }
5794 if (!sg) {
5795 printk(KERN_WARNING
5796 "Can not alloc domain group for node %d\n", i);
5797 continue;
5798 }
5799 sg->cpu_power = 0;
5800 sg->cpumask = nodemask;
5801 cpus_or(covered, covered, nodemask);
5802 prev = sg;
5803
5804 for (j = 0; j < MAX_NUMNODES; j++) {
5805 cpumask_t tmp, notcovered;
5806 int n = (i + j) % MAX_NUMNODES;
5807
5808 cpus_complement(notcovered, covered);
5809 cpus_and(tmp, notcovered, *cpu_map);
5810 cpus_and(tmp, tmp, domainspan);
5811 if (cpus_empty(tmp))
5812 break;
5813
5814 nodemask = node_to_cpumask(n);
5815 cpus_and(tmp, tmp, nodemask);
5816 if (cpus_empty(tmp))
5817 continue;
5818
5819 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5820 if (!sg) {
5821 printk(KERN_WARNING
5822 "Can not alloc domain group for node %d\n", j);
5823 break;
5824 }
5825 sg->cpu_power = 0;
5826 sg->cpumask = tmp;
5827 cpus_or(covered, covered, tmp);
5828 prev->next = sg;
5829 prev = sg;
5830 }
5831 prev->next = sched_group_nodes[i];
5832 }
1da177e4
LT
5833#endif
5834
5835 /* Calculate CPU power for physical packages and nodes */
1a20ff27 5836 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5837 int power;
5838 struct sched_domain *sd;
5839#ifdef CONFIG_SCHED_SMT
5840 sd = &per_cpu(cpu_domains, i);
5841 power = SCHED_LOAD_SCALE;
5842 sd->groups->cpu_power = power;
5843#endif
1e9f28fa
SS
5844#ifdef CONFIG_SCHED_MC
5845 sd = &per_cpu(core_domains, i);
5846 power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
5847 * SCHED_LOAD_SCALE / 10;
5848 sd->groups->cpu_power = power;
5849
5850 sd = &per_cpu(phys_domains, i);
1da177e4 5851
1e9f28fa
SS
5852 /*
5853 * This has to be < 2 * SCHED_LOAD_SCALE
5854 * Lets keep it SCHED_LOAD_SCALE, so that
5855 * while calculating NUMA group's cpu_power
5856 * we can simply do
5857 * numa_group->cpu_power += phys_group->cpu_power;
5858 *
5859 * See "only add power once for each physical pkg"
5860 * comment below
5861 */
5862 sd->groups->cpu_power = SCHED_LOAD_SCALE;
5863#else
1da177e4
LT
5864 sd = &per_cpu(phys_domains, i);
5865 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5866 (cpus_weight(sd->groups->cpumask)-1) / 10;
5867 sd->groups->cpu_power = power;
1e9f28fa 5868#endif
1da177e4
LT
5869
5870#ifdef CONFIG_NUMA
9c1cfda2
JH
5871 sd = &per_cpu(allnodes_domains, i);
5872 if (sd->groups) {
5873 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5874 (cpus_weight(sd->groups->cpumask)-1) / 10;
5875 sd->groups->cpu_power = power;
1da177e4
LT
5876 }
5877#endif
5878 }
5879
9c1cfda2
JH
5880#ifdef CONFIG_NUMA
5881 for (i = 0; i < MAX_NUMNODES; i++) {
5882 struct sched_group *sg = sched_group_nodes[i];
5883 int j;
5884
5885 if (sg == NULL)
5886 continue;
5887next_sg:
5888 for_each_cpu_mask(j, sg->cpumask) {
5889 struct sched_domain *sd;
9c1cfda2
JH
5890
5891 sd = &per_cpu(phys_domains, j);
5892 if (j != first_cpu(sd->groups->cpumask)) {
5893 /*
5894 * Only add "power" once for each
5895 * physical package.
5896 */
5897 continue;
5898 }
9c1cfda2 5899
1e9f28fa 5900 sg->cpu_power += sd->groups->cpu_power;
9c1cfda2
JH
5901 }
5902 sg = sg->next;
5903 if (sg != sched_group_nodes[i])
5904 goto next_sg;
5905 }
5906#endif
5907
1da177e4 5908 /* Attach the domains */
1a20ff27 5909 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5910 struct sched_domain *sd;
5911#ifdef CONFIG_SCHED_SMT
5912 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
5913#elif defined(CONFIG_SCHED_MC)
5914 sd = &per_cpu(core_domains, i);
1da177e4
LT
5915#else
5916 sd = &per_cpu(phys_domains, i);
5917#endif
5918 cpu_attach_domain(sd, i);
5919 }
198e2f18
AM
5920 /*
5921 * Tune cache-hot values:
5922 */
5923 calibrate_migration_costs(cpu_map);
1da177e4 5924}
1a20ff27
DG
5925/*
5926 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5927 */
9c1cfda2 5928static void arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
5929{
5930 cpumask_t cpu_default_map;
1da177e4 5931
1a20ff27
DG
5932 /*
5933 * Setup mask for cpus without special case scheduling requirements.
5934 * For now this just excludes isolated cpus, but could be used to
5935 * exclude other special cases in the future.
5936 */
5937 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5938
5939 build_sched_domains(&cpu_default_map);
5940}
5941
5942static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 5943{
9c1cfda2
JH
5944#ifdef CONFIG_NUMA
5945 int i;
d1b55138 5946 int cpu;
1da177e4 5947
d1b55138
JH
5948 for_each_cpu_mask(cpu, *cpu_map) {
5949 struct sched_group *sched_group_allnodes
5950 = sched_group_allnodes_bycpu[cpu];
5951 struct sched_group **sched_group_nodes
5952 = sched_group_nodes_bycpu[cpu];
9c1cfda2 5953
d1b55138
JH
5954 if (sched_group_allnodes) {
5955 kfree(sched_group_allnodes);
5956 sched_group_allnodes_bycpu[cpu] = NULL;
5957 }
5958
5959 if (!sched_group_nodes)
9c1cfda2 5960 continue;
d1b55138
JH
5961
5962 for (i = 0; i < MAX_NUMNODES; i++) {
5963 cpumask_t nodemask = node_to_cpumask(i);
5964 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5965
5966 cpus_and(nodemask, nodemask, *cpu_map);
5967 if (cpus_empty(nodemask))
5968 continue;
5969
5970 if (sg == NULL)
5971 continue;
5972 sg = sg->next;
9c1cfda2 5973next_sg:
d1b55138
JH
5974 oldsg = sg;
5975 sg = sg->next;
5976 kfree(oldsg);
5977 if (oldsg != sched_group_nodes[i])
5978 goto next_sg;
5979 }
5980 kfree(sched_group_nodes);
5981 sched_group_nodes_bycpu[cpu] = NULL;
9c1cfda2
JH
5982 }
5983#endif
5984}
1da177e4 5985
1a20ff27
DG
5986/*
5987 * Detach sched domains from a group of cpus specified in cpu_map
5988 * These cpus will now be attached to the NULL domain
5989 */
858119e1 5990static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
5991{
5992 int i;
5993
5994 for_each_cpu_mask(i, *cpu_map)
5995 cpu_attach_domain(NULL, i);
5996 synchronize_sched();
5997 arch_destroy_sched_domains(cpu_map);
5998}
5999
6000/*
6001 * Partition sched domains as specified by the cpumasks below.
6002 * This attaches all cpus from the cpumasks to the NULL domain,
6003 * waits for a RCU quiescent period, recalculates sched
6004 * domain information and then attaches them back to the
6005 * correct sched domains
6006 * Call with hotplug lock held
6007 */
6008void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6009{
6010 cpumask_t change_map;
6011
6012 cpus_and(*partition1, *partition1, cpu_online_map);
6013 cpus_and(*partition2, *partition2, cpu_online_map);
6014 cpus_or(change_map, *partition1, *partition2);
6015
6016 /* Detach sched domains from all of the affected cpus */
6017 detach_destroy_domains(&change_map);
6018 if (!cpus_empty(*partition1))
6019 build_sched_domains(partition1);
6020 if (!cpus_empty(*partition2))
6021 build_sched_domains(partition2);
6022}
6023
1da177e4
LT
6024#ifdef CONFIG_HOTPLUG_CPU
6025/*
6026 * Force a reinitialization of the sched domains hierarchy. The domains
6027 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6028 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6029 * which will prevent rebalancing while the sched domains are recalculated.
6030 */
6031static int update_sched_domains(struct notifier_block *nfb,
6032 unsigned long action, void *hcpu)
6033{
1da177e4
LT
6034 switch (action) {
6035 case CPU_UP_PREPARE:
6036 case CPU_DOWN_PREPARE:
1a20ff27 6037 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6038 return NOTIFY_OK;
6039
6040 case CPU_UP_CANCELED:
6041 case CPU_DOWN_FAILED:
6042 case CPU_ONLINE:
6043 case CPU_DEAD:
6044 /*
6045 * Fall through and re-initialise the domains.
6046 */
6047 break;
6048 default:
6049 return NOTIFY_DONE;
6050 }
6051
6052 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6053 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6054
6055 return NOTIFY_OK;
6056}
6057#endif
6058
6059void __init sched_init_smp(void)
6060{
6061 lock_cpu_hotplug();
1a20ff27 6062 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6063 unlock_cpu_hotplug();
6064 /* XXX: Theoretical race here - CPU may be hotplugged now */
6065 hotcpu_notifier(update_sched_domains, 0);
6066}
6067#else
6068void __init sched_init_smp(void)
6069{
6070}
6071#endif /* CONFIG_SMP */
6072
6073int in_sched_functions(unsigned long addr)
6074{
6075 /* Linker adds these: start and end of __sched functions */
6076 extern char __sched_text_start[], __sched_text_end[];
6077 return in_lock_functions(addr) ||
6078 (addr >= (unsigned long)__sched_text_start
6079 && addr < (unsigned long)__sched_text_end);
6080}
6081
6082void __init sched_init(void)
6083{
6084 runqueue_t *rq;
6085 int i, j, k;
6086
88a2a4ac 6087 for_each_cpu(i) {
1da177e4
LT
6088 prio_array_t *array;
6089
6090 rq = cpu_rq(i);
6091 spin_lock_init(&rq->lock);
7897986b 6092 rq->nr_running = 0;
1da177e4
LT
6093 rq->active = rq->arrays;
6094 rq->expired = rq->arrays + 1;
6095 rq->best_expired_prio = MAX_PRIO;
6096
6097#ifdef CONFIG_SMP
41c7ce9a 6098 rq->sd = NULL;
7897986b
NP
6099 for (j = 1; j < 3; j++)
6100 rq->cpu_load[j] = 0;
1da177e4
LT
6101 rq->active_balance = 0;
6102 rq->push_cpu = 0;
6103 rq->migration_thread = NULL;
6104 INIT_LIST_HEAD(&rq->migration_queue);
e9028b0f 6105 rq->cpu = i;
1da177e4
LT
6106#endif
6107 atomic_set(&rq->nr_iowait, 0);
6108
6109 for (j = 0; j < 2; j++) {
6110 array = rq->arrays + j;
6111 for (k = 0; k < MAX_PRIO; k++) {
6112 INIT_LIST_HEAD(array->queue + k);
6113 __clear_bit(k, array->bitmap);
6114 }
6115 // delimiter for bitsearch
6116 __set_bit(MAX_PRIO, array->bitmap);
6117 }
6118 }
6119
6120 /*
6121 * The boot idle thread does lazy MMU switching as well:
6122 */
6123 atomic_inc(&init_mm.mm_count);
6124 enter_lazy_tlb(&init_mm, current);
6125
6126 /*
6127 * Make us the idle thread. Technically, schedule() should not be
6128 * called from this thread, however somewhere below it might be,
6129 * but because we are the idle thread, we just pick up running again
6130 * when this runqueue becomes "idle".
6131 */
6132 init_idle(current, smp_processor_id());
6133}
6134
6135#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6136void __might_sleep(char *file, int line)
6137{
6138#if defined(in_atomic)
6139 static unsigned long prev_jiffy; /* ratelimiting */
6140
6141 if ((in_atomic() || irqs_disabled()) &&
6142 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6143 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6144 return;
6145 prev_jiffy = jiffies;
91368d73 6146 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6147 " context at %s:%d\n", file, line);
6148 printk("in_atomic():%d, irqs_disabled():%d\n",
6149 in_atomic(), irqs_disabled());
6150 dump_stack();
6151 }
6152#endif
6153}
6154EXPORT_SYMBOL(__might_sleep);
6155#endif
6156
6157#ifdef CONFIG_MAGIC_SYSRQ
6158void normalize_rt_tasks(void)
6159{
6160 struct task_struct *p;
6161 prio_array_t *array;
6162 unsigned long flags;
6163 runqueue_t *rq;
6164
6165 read_lock_irq(&tasklist_lock);
6166 for_each_process (p) {
6167 if (!rt_task(p))
6168 continue;
6169
6170 rq = task_rq_lock(p, &flags);
6171
6172 array = p->array;
6173 if (array)
6174 deactivate_task(p, task_rq(p));
6175 __setscheduler(p, SCHED_NORMAL, 0);
6176 if (array) {
6177 __activate_task(p, task_rq(p));
6178 resched_task(rq->curr);
6179 }
6180
6181 task_rq_unlock(rq, &flags);
6182 }
6183 read_unlock_irq(&tasklist_lock);
6184}
6185
6186#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6187
6188#ifdef CONFIG_IA64
6189/*
6190 * These functions are only useful for the IA64 MCA handling.
6191 *
6192 * They can only be called when the whole system has been
6193 * stopped - every CPU needs to be quiescent, and no scheduling
6194 * activity can take place. Using them for anything else would
6195 * be a serious bug, and as a result, they aren't even visible
6196 * under any other configuration.
6197 */
6198
6199/**
6200 * curr_task - return the current task for a given cpu.
6201 * @cpu: the processor in question.
6202 *
6203 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6204 */
6205task_t *curr_task(int cpu)
6206{
6207 return cpu_curr(cpu);
6208}
6209
6210/**
6211 * set_curr_task - set the current task for a given cpu.
6212 * @cpu: the processor in question.
6213 * @p: the task pointer to set.
6214 *
6215 * Description: This function must only be used when non-maskable interrupts
6216 * are serviced on a separate stack. It allows the architecture to switch the
6217 * notion of the current task on a cpu in a non-blocking manner. This function
6218 * must be called with all CPU's synchronized, and interrupts disabled, the
6219 * and caller must save the original value of the current task (see
6220 * curr_task() above) and restore that value before reenabling interrupts and
6221 * re-starting the system.
6222 *
6223 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6224 */
6225void set_curr_task(int cpu, task_t *p)
6226{
6227 cpu_curr(cpu) = p;
6228}
6229
6230#endif