]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/rcutree_plugin.h
rcu: Add debug checks to TREE_PREEMPT_RCU for premature grace periods
[net-next-2.6.git] / kernel / rcutree_plugin.h
CommitLineData
f41d911f
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptable semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27
28#ifdef CONFIG_TREE_PREEMPT_RCU
29
30struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state);
31DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
32
33/*
34 * Tell them what RCU they are running.
35 */
36static inline void rcu_bootup_announce(void)
37{
38 printk(KERN_INFO
39 "Experimental preemptable hierarchical RCU implementation.\n");
40}
41
42/*
43 * Return the number of RCU-preempt batches processed thus far
44 * for debug and statistics.
45 */
46long rcu_batches_completed_preempt(void)
47{
48 return rcu_preempt_state.completed;
49}
50EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
51
52/*
53 * Return the number of RCU batches processed thus far for debug & stats.
54 */
55long rcu_batches_completed(void)
56{
57 return rcu_batches_completed_preempt();
58}
59EXPORT_SYMBOL_GPL(rcu_batches_completed);
60
61/*
62 * Record a preemptable-RCU quiescent state for the specified CPU. Note
63 * that this just means that the task currently running on the CPU is
64 * not in a quiescent state. There might be any number of tasks blocked
65 * while in an RCU read-side critical section.
66 */
67static void rcu_preempt_qs_record(int cpu)
68{
69 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
70 rdp->passed_quiesc = 1;
71 rdp->passed_quiesc_completed = rdp->completed;
72}
73
74/*
75 * We have entered the scheduler or are between softirqs in ksoftirqd.
76 * If we are in an RCU read-side critical section, we need to reflect
77 * that in the state of the rcu_node structure corresponding to this CPU.
78 * Caller must disable hardirqs.
79 */
80static void rcu_preempt_qs(int cpu)
81{
82 struct task_struct *t = current;
83 int phase;
84 struct rcu_data *rdp;
85 struct rcu_node *rnp;
86
87 if (t->rcu_read_lock_nesting &&
88 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
b0e165c0 89 WARN_ON_ONCE(cpu != smp_processor_id());
f41d911f
PM
90
91 /* Possibly blocking in an RCU read-side critical section. */
92 rdp = rcu_preempt_state.rda[cpu];
93 rnp = rdp->mynode;
94 spin_lock(&rnp->lock);
95 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
86848966 96 t->rcu_blocked_node = rnp;
f41d911f
PM
97
98 /*
99 * If this CPU has already checked in, then this task
100 * will hold up the next grace period rather than the
101 * current grace period. Queue the task accordingly.
102 * If the task is queued for the current grace period
103 * (i.e., this CPU has not yet passed through a quiescent
104 * state for the current grace period), then as long
105 * as that task remains queued, the current grace period
106 * cannot end.
b0e165c0
PM
107 *
108 * But first, note that the current CPU must still be
109 * on line!
f41d911f 110 */
b0e165c0 111 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
f41d911f
PM
112 phase = !(rnp->qsmask & rdp->grpmask) ^ (rnp->gpnum & 0x1);
113 list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]);
114 smp_mb(); /* Ensure later ctxt swtch seen after above. */
115 spin_unlock(&rnp->lock);
116 }
117
118 /*
119 * Either we were not in an RCU read-side critical section to
120 * begin with, or we have now recorded that critical section
121 * globally. Either way, we can now note a quiescent state
122 * for this CPU. Again, if we were in an RCU read-side critical
123 * section, and if that critical section was blocking the current
124 * grace period, then the fact that the task has been enqueued
125 * means that we continue to block the current grace period.
126 */
127 rcu_preempt_qs_record(cpu);
128 t->rcu_read_unlock_special &= ~(RCU_READ_UNLOCK_NEED_QS |
129 RCU_READ_UNLOCK_GOT_QS);
130}
131
132/*
133 * Tree-preemptable RCU implementation for rcu_read_lock().
134 * Just increment ->rcu_read_lock_nesting, shared state will be updated
135 * if we block.
136 */
137void __rcu_read_lock(void)
138{
139 ACCESS_ONCE(current->rcu_read_lock_nesting)++;
140 barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
141}
142EXPORT_SYMBOL_GPL(__rcu_read_lock);
143
144static void rcu_read_unlock_special(struct task_struct *t)
145{
146 int empty;
147 unsigned long flags;
148 unsigned long mask;
149 struct rcu_node *rnp;
150 int special;
151
152 /* NMI handlers cannot block and cannot safely manipulate state. */
153 if (in_nmi())
154 return;
155
156 local_irq_save(flags);
157
158 /*
159 * If RCU core is waiting for this CPU to exit critical section,
160 * let it know that we have done so.
161 */
162 special = t->rcu_read_unlock_special;
163 if (special & RCU_READ_UNLOCK_NEED_QS) {
164 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
165 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_GOT_QS;
166 }
167
168 /* Hardware IRQ handlers cannot block. */
169 if (in_irq()) {
170 local_irq_restore(flags);
171 return;
172 }
173
174 /* Clean up if blocked during RCU read-side critical section. */
175 if (special & RCU_READ_UNLOCK_BLOCKED) {
176 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
177
dd5d19ba
PM
178 /*
179 * Remove this task from the list it blocked on. The
180 * task can migrate while we acquire the lock, but at
181 * most one time. So at most two passes through loop.
182 */
183 for (;;) {
86848966 184 rnp = t->rcu_blocked_node;
dd5d19ba 185 spin_lock(&rnp->lock);
86848966 186 if (rnp == t->rcu_blocked_node)
dd5d19ba
PM
187 break;
188 spin_unlock(&rnp->lock);
189 }
f41d911f
PM
190 empty = list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]);
191 list_del_init(&t->rcu_node_entry);
dd5d19ba 192 t->rcu_blocked_node = NULL;
f41d911f
PM
193
194 /*
195 * If this was the last task on the current list, and if
196 * we aren't waiting on any CPUs, report the quiescent state.
197 * Note that both cpu_quiet_msk_finish() and cpu_quiet_msk()
198 * drop rnp->lock and restore irq.
199 */
200 if (!empty && rnp->qsmask == 0 &&
201 list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1])) {
202 t->rcu_read_unlock_special &=
203 ~(RCU_READ_UNLOCK_NEED_QS |
204 RCU_READ_UNLOCK_GOT_QS);
205 if (rnp->parent == NULL) {
206 /* Only one rcu_node in the tree. */
207 cpu_quiet_msk_finish(&rcu_preempt_state, flags);
208 return;
209 }
210 /* Report up the rest of the hierarchy. */
211 mask = rnp->grpmask;
212 spin_unlock_irqrestore(&rnp->lock, flags);
213 rnp = rnp->parent;
214 spin_lock_irqsave(&rnp->lock, flags);
215 cpu_quiet_msk(mask, &rcu_preempt_state, rnp, flags);
216 return;
217 }
218 spin_unlock(&rnp->lock);
219 }
220 local_irq_restore(flags);
221}
222
223/*
224 * Tree-preemptable RCU implementation for rcu_read_unlock().
225 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
226 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
227 * invoke rcu_read_unlock_special() to clean up after a context switch
228 * in an RCU read-side critical section and other special cases.
229 */
230void __rcu_read_unlock(void)
231{
232 struct task_struct *t = current;
233
234 barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */
235 if (--ACCESS_ONCE(t->rcu_read_lock_nesting) == 0 &&
236 unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
237 rcu_read_unlock_special(t);
238}
239EXPORT_SYMBOL_GPL(__rcu_read_unlock);
240
241#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
242
243/*
244 * Scan the current list of tasks blocked within RCU read-side critical
245 * sections, printing out the tid of each.
246 */
247static void rcu_print_task_stall(struct rcu_node *rnp)
248{
249 unsigned long flags;
250 struct list_head *lp;
251 int phase = rnp->gpnum & 0x1;
252 struct task_struct *t;
253
254 if (!list_empty(&rnp->blocked_tasks[phase])) {
255 spin_lock_irqsave(&rnp->lock, flags);
256 phase = rnp->gpnum & 0x1; /* re-read under lock. */
257 lp = &rnp->blocked_tasks[phase];
258 list_for_each_entry(t, lp, rcu_node_entry)
259 printk(" P%d", t->pid);
260 spin_unlock_irqrestore(&rnp->lock, flags);
261 }
262}
263
264#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
265
b0e165c0
PM
266/*
267 * Check that the list of blocked tasks for the newly completed grace
268 * period is in fact empty. It is a serious bug to complete a grace
269 * period that still has RCU readers blocked! This function must be
270 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
271 * must be held by the caller.
272 */
273static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
274{
275 WARN_ON_ONCE(!list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]));
276}
277
f41d911f
PM
278/*
279 * Check for preempted RCU readers for the specified rcu_node structure.
280 * If the caller needs a reliable answer, it must hold the rcu_node's
281 * >lock.
282 */
283static int rcu_preempted_readers(struct rcu_node *rnp)
284{
285 return !list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]);
286}
287
33f76148
PM
288#ifdef CONFIG_HOTPLUG_CPU
289
dd5d19ba
PM
290/*
291 * Handle tasklist migration for case in which all CPUs covered by the
292 * specified rcu_node have gone offline. Move them up to the root
293 * rcu_node. The reason for not just moving them to the immediate
294 * parent is to remove the need for rcu_read_unlock_special() to
295 * make more than two attempts to acquire the target rcu_node's lock.
296 *
297 * The caller must hold rnp->lock with irqs disabled.
298 */
299static void rcu_preempt_offline_tasks(struct rcu_state *rsp,
300 struct rcu_node *rnp)
301{
302 int i;
303 struct list_head *lp;
304 struct list_head *lp_root;
305 struct rcu_node *rnp_root = rcu_get_root(rsp);
306 struct task_struct *tp;
307
86848966
PM
308 if (rnp == rnp_root) {
309 WARN_ONCE(1, "Last CPU thought to be offlined?");
dd5d19ba 310 return; /* Shouldn't happen: at least one CPU online. */
86848966 311 }
dd5d19ba
PM
312
313 /*
314 * Move tasks up to root rcu_node. Rely on the fact that the
315 * root rcu_node can be at most one ahead of the rest of the
316 * rcu_nodes in terms of gp_num value. This fact allows us to
317 * move the blocked_tasks[] array directly, element by element.
318 */
319 for (i = 0; i < 2; i++) {
320 lp = &rnp->blocked_tasks[i];
321 lp_root = &rnp_root->blocked_tasks[i];
322 while (!list_empty(lp)) {
323 tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);
324 spin_lock(&rnp_root->lock); /* irqs already disabled */
325 list_del(&tp->rcu_node_entry);
326 tp->rcu_blocked_node = rnp_root;
327 list_add(&tp->rcu_node_entry, lp_root);
328 spin_unlock(&rnp_root->lock); /* irqs remain disabled */
329 }
330 }
331}
332
33f76148
PM
333/*
334 * Do CPU-offline processing for preemptable RCU.
335 */
336static void rcu_preempt_offline_cpu(int cpu)
337{
338 __rcu_offline_cpu(cpu, &rcu_preempt_state);
339}
340
341#endif /* #ifdef CONFIG_HOTPLUG_CPU */
342
f41d911f
PM
343/*
344 * Check for a quiescent state from the current CPU. When a task blocks,
345 * the task is recorded in the corresponding CPU's rcu_node structure,
346 * which is checked elsewhere.
347 *
348 * Caller must disable hard irqs.
349 */
350static void rcu_preempt_check_callbacks(int cpu)
351{
352 struct task_struct *t = current;
353
354 if (t->rcu_read_lock_nesting == 0) {
355 t->rcu_read_unlock_special &=
356 ~(RCU_READ_UNLOCK_NEED_QS | RCU_READ_UNLOCK_GOT_QS);
357 rcu_preempt_qs_record(cpu);
358 return;
359 }
360 if (per_cpu(rcu_preempt_data, cpu).qs_pending) {
361 if (t->rcu_read_unlock_special & RCU_READ_UNLOCK_GOT_QS) {
362 rcu_preempt_qs_record(cpu);
363 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_GOT_QS;
364 } else if (!(t->rcu_read_unlock_special &
365 RCU_READ_UNLOCK_NEED_QS)) {
366 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
367 }
368 }
369}
370
371/*
372 * Process callbacks for preemptable RCU.
373 */
374static void rcu_preempt_process_callbacks(void)
375{
376 __rcu_process_callbacks(&rcu_preempt_state,
377 &__get_cpu_var(rcu_preempt_data));
378}
379
380/*
381 * Queue a preemptable-RCU callback for invocation after a grace period.
382 */
383void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
384{
385 __call_rcu(head, func, &rcu_preempt_state);
386}
387EXPORT_SYMBOL_GPL(call_rcu);
388
389/*
390 * Check to see if there is any immediate preemptable-RCU-related work
391 * to be done.
392 */
393static int rcu_preempt_pending(int cpu)
394{
395 return __rcu_pending(&rcu_preempt_state,
396 &per_cpu(rcu_preempt_data, cpu));
397}
398
399/*
400 * Does preemptable RCU need the CPU to stay out of dynticks mode?
401 */
402static int rcu_preempt_needs_cpu(int cpu)
403{
404 return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
405}
406
407/*
408 * Initialize preemptable RCU's per-CPU data.
409 */
410static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
411{
412 rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
413}
414
415/*
416 * Check for a task exiting while in a preemptable-RCU read-side
417 * critical section, clean up if so. No need to issue warnings,
418 * as debug_check_no_locks_held() already does this if lockdep
419 * is enabled.
420 */
421void exit_rcu(void)
422{
423 struct task_struct *t = current;
424
425 if (t->rcu_read_lock_nesting == 0)
426 return;
427 t->rcu_read_lock_nesting = 1;
428 rcu_read_unlock();
429}
430
431#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
432
433/*
434 * Tell them what RCU they are running.
435 */
436static inline void rcu_bootup_announce(void)
437{
438 printk(KERN_INFO "Hierarchical RCU implementation.\n");
439}
440
441/*
442 * Return the number of RCU batches processed thus far for debug & stats.
443 */
444long rcu_batches_completed(void)
445{
446 return rcu_batches_completed_sched();
447}
448EXPORT_SYMBOL_GPL(rcu_batches_completed);
449
450/*
451 * Because preemptable RCU does not exist, we never have to check for
452 * CPUs being in quiescent states.
453 */
454static void rcu_preempt_qs(int cpu)
455{
456}
457
458#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
459
460/*
461 * Because preemptable RCU does not exist, we never have to check for
462 * tasks blocked within RCU read-side critical sections.
463 */
464static void rcu_print_task_stall(struct rcu_node *rnp)
465{
466}
467
468#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
469
b0e165c0
PM
470/*
471 * Because there is no preemptable RCU, there can be no readers blocked,
472 * so there is no need to check for blocked tasks.
473 */
474static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
475{
476}
477
f41d911f
PM
478/*
479 * Because preemptable RCU does not exist, there are never any preempted
480 * RCU readers.
481 */
482static int rcu_preempted_readers(struct rcu_node *rnp)
483{
484 return 0;
485}
486
33f76148
PM
487#ifdef CONFIG_HOTPLUG_CPU
488
dd5d19ba
PM
489/*
490 * Because preemptable RCU does not exist, it never needs to migrate
491 * tasks that were blocked within RCU read-side critical sections.
492 */
493static void rcu_preempt_offline_tasks(struct rcu_state *rsp,
494 struct rcu_node *rnp)
495{
496}
497
33f76148
PM
498/*
499 * Because preemptable RCU does not exist, it never needs CPU-offline
500 * processing.
501 */
502static void rcu_preempt_offline_cpu(int cpu)
503{
504}
505
506#endif /* #ifdef CONFIG_HOTPLUG_CPU */
507
f41d911f
PM
508/*
509 * Because preemptable RCU does not exist, it never has any callbacks
510 * to check.
511 */
512void rcu_preempt_check_callbacks(int cpu)
513{
514}
515
516/*
517 * Because preemptable RCU does not exist, it never has any callbacks
518 * to process.
519 */
520void rcu_preempt_process_callbacks(void)
521{
522}
523
524/*
525 * In classic RCU, call_rcu() is just call_rcu_sched().
526 */
527void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
528{
529 call_rcu_sched(head, func);
530}
531EXPORT_SYMBOL_GPL(call_rcu);
532
533/*
534 * Because preemptable RCU does not exist, it never has any work to do.
535 */
536static int rcu_preempt_pending(int cpu)
537{
538 return 0;
539}
540
541/*
542 * Because preemptable RCU does not exist, it never needs any CPU.
543 */
544static int rcu_preempt_needs_cpu(int cpu)
545{
546 return 0;
547}
548
549/*
550 * Because preemptable RCU does not exist, there is no per-CPU
551 * data to initialize.
552 */
553static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
554{
555}
556
557#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */