]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/rcutree.c
rcu: Fix online/offline indication for rcudata.csv trace file
[net-next-2.6.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
38#include <asm/atomic.h>
39#include <linux/bitops.h>
40#include <linux/module.h>
41#include <linux/completion.h>
42#include <linux/moduleparam.h>
43#include <linux/percpu.h>
44#include <linux/notifier.h>
45#include <linux/cpu.h>
46#include <linux/mutex.h>
47#include <linux/time.h>
48
9f77da9f
PM
49#include "rcutree.h"
50
64db4cff
PM
51#ifdef CONFIG_DEBUG_LOCK_ALLOC
52static struct lock_class_key rcu_lock_key;
53struct lockdep_map rcu_lock_map =
54 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
55EXPORT_SYMBOL_GPL(rcu_lock_map);
56#endif
57
58/* Data structures. */
59
60#define RCU_STATE_INITIALIZER(name) { \
61 .level = { &name.node[0] }, \
62 .levelcnt = { \
63 NUM_RCU_LVL_0, /* root of hierarchy. */ \
64 NUM_RCU_LVL_1, \
65 NUM_RCU_LVL_2, \
66 NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \
67 }, \
68 .signaled = RCU_SIGNAL_INIT, \
69 .gpnum = -300, \
70 .completed = -300, \
71 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
72 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
73 .n_force_qs = 0, \
74 .n_force_qs_ngp = 0, \
75}
76
d6714c22
PM
77struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
78DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 79
6258c4fb
IM
80struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
81DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05
IM
82
83/*
d6714c22 84 * Note a quiescent state. Because we do not need to know
b1f77b05 85 * how many quiescent states passed, just if there was at least
d6714c22 86 * one since the start of the grace period, this just sets a flag.
b1f77b05 87 */
d6714c22 88void rcu_sched_qs(int cpu)
b1f77b05 89{
d6714c22 90 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
b1f77b05
IM
91 rdp->passed_quiesc = 1;
92 rdp->passed_quiesc_completed = rdp->completed;
93}
94
d6714c22 95void rcu_bh_qs(int cpu)
b1f77b05
IM
96{
97 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
98 rdp->passed_quiesc = 1;
99 rdp->passed_quiesc_completed = rdp->completed;
100}
64db4cff
PM
101
102#ifdef CONFIG_NO_HZ
90a4d2c0
PM
103DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
104 .dynticks_nesting = 1,
105 .dynticks = 1,
106};
64db4cff
PM
107#endif /* #ifdef CONFIG_NO_HZ */
108
109static int blimit = 10; /* Maximum callbacks per softirq. */
110static int qhimark = 10000; /* If this many pending, ignore blimit. */
111static int qlowmark = 100; /* Once only this many pending, use blimit. */
112
113static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
114
d6714c22
PM
115/*
116 * Return the number of RCU-sched batches processed thus far for debug & stats.
117 */
118long rcu_batches_completed_sched(void)
119{
120 return rcu_sched_state.completed;
121}
122EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
123
64db4cff
PM
124/*
125 * Return the number of RCU batches processed thus far for debug & stats.
d6714c22 126 * @@@ placeholder, maps to rcu_batches_completed_sched().
64db4cff
PM
127 */
128long rcu_batches_completed(void)
129{
d6714c22 130 return rcu_batches_completed_sched();
64db4cff
PM
131}
132EXPORT_SYMBOL_GPL(rcu_batches_completed);
133
134/*
135 * Return the number of RCU BH batches processed thus far for debug & stats.
136 */
137long rcu_batches_completed_bh(void)
138{
139 return rcu_bh_state.completed;
140}
141EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
142
143/*
144 * Does the CPU have callbacks ready to be invoked?
145 */
146static int
147cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
148{
149 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
150}
151
152/*
153 * Does the current CPU require a yet-as-unscheduled grace period?
154 */
155static int
156cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
157{
158 /* ACCESS_ONCE() because we are accessing outside of lock. */
159 return *rdp->nxttail[RCU_DONE_TAIL] &&
160 ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum);
161}
162
163/*
164 * Return the root node of the specified rcu_state structure.
165 */
166static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
167{
168 return &rsp->node[0];
169}
170
171#ifdef CONFIG_SMP
172
173/*
174 * If the specified CPU is offline, tell the caller that it is in
175 * a quiescent state. Otherwise, whack it with a reschedule IPI.
176 * Grace periods can end up waiting on an offline CPU when that
177 * CPU is in the process of coming online -- it will be added to the
178 * rcu_node bitmasks before it actually makes it online. The same thing
179 * can happen while a CPU is in the process of coming online. Because this
180 * race is quite rare, we check for it after detecting that the grace
181 * period has been delayed rather than checking each and every CPU
182 * each and every time we start a new grace period.
183 */
184static int rcu_implicit_offline_qs(struct rcu_data *rdp)
185{
186 /*
187 * If the CPU is offline, it is in a quiescent state. We can
188 * trust its state not to change because interrupts are disabled.
189 */
190 if (cpu_is_offline(rdp->cpu)) {
191 rdp->offline_fqs++;
192 return 1;
193 }
194
195 /* The CPU is online, so send it a reschedule IPI. */
196 if (rdp->cpu != smp_processor_id())
197 smp_send_reschedule(rdp->cpu);
198 else
199 set_need_resched();
200 rdp->resched_ipi++;
201 return 0;
202}
203
204#endif /* #ifdef CONFIG_SMP */
205
206#ifdef CONFIG_NO_HZ
207static DEFINE_RATELIMIT_STATE(rcu_rs, 10 * HZ, 5);
208
209/**
210 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
211 *
212 * Enter nohz mode, in other words, -leave- the mode in which RCU
213 * read-side critical sections can occur. (Though RCU read-side
214 * critical sections can occur in irq handlers in nohz mode, a possibility
215 * handled by rcu_irq_enter() and rcu_irq_exit()).
216 */
217void rcu_enter_nohz(void)
218{
219 unsigned long flags;
220 struct rcu_dynticks *rdtp;
221
222 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
223 local_irq_save(flags);
224 rdtp = &__get_cpu_var(rcu_dynticks);
225 rdtp->dynticks++;
226 rdtp->dynticks_nesting--;
227 WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs);
228 local_irq_restore(flags);
229}
230
231/*
232 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
233 *
234 * Exit nohz mode, in other words, -enter- the mode in which RCU
235 * read-side critical sections normally occur.
236 */
237void rcu_exit_nohz(void)
238{
239 unsigned long flags;
240 struct rcu_dynticks *rdtp;
241
242 local_irq_save(flags);
243 rdtp = &__get_cpu_var(rcu_dynticks);
244 rdtp->dynticks++;
245 rdtp->dynticks_nesting++;
246 WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs);
247 local_irq_restore(flags);
248 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
249}
250
251/**
252 * rcu_nmi_enter - inform RCU of entry to NMI context
253 *
254 * If the CPU was idle with dynamic ticks active, and there is no
255 * irq handler running, this updates rdtp->dynticks_nmi to let the
256 * RCU grace-period handling know that the CPU is active.
257 */
258void rcu_nmi_enter(void)
259{
260 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
261
262 if (rdtp->dynticks & 0x1)
263 return;
264 rdtp->dynticks_nmi++;
265 WARN_ON_RATELIMIT(!(rdtp->dynticks_nmi & 0x1), &rcu_rs);
266 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
267}
268
269/**
270 * rcu_nmi_exit - inform RCU of exit from NMI context
271 *
272 * If the CPU was idle with dynamic ticks active, and there is no
273 * irq handler running, this updates rdtp->dynticks_nmi to let the
274 * RCU grace-period handling know that the CPU is no longer active.
275 */
276void rcu_nmi_exit(void)
277{
278 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
279
280 if (rdtp->dynticks & 0x1)
281 return;
282 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
283 rdtp->dynticks_nmi++;
284 WARN_ON_RATELIMIT(rdtp->dynticks_nmi & 0x1, &rcu_rs);
285}
286
287/**
288 * rcu_irq_enter - inform RCU of entry to hard irq context
289 *
290 * If the CPU was idle with dynamic ticks active, this updates the
291 * rdtp->dynticks to let the RCU handling know that the CPU is active.
292 */
293void rcu_irq_enter(void)
294{
295 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
296
297 if (rdtp->dynticks_nesting++)
298 return;
299 rdtp->dynticks++;
300 WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs);
301 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
302}
303
304/**
305 * rcu_irq_exit - inform RCU of exit from hard irq context
306 *
307 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
308 * to put let the RCU handling be aware that the CPU is going back to idle
309 * with no ticks.
310 */
311void rcu_irq_exit(void)
312{
313 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
314
315 if (--rdtp->dynticks_nesting)
316 return;
317 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
318 rdtp->dynticks++;
319 WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs);
320
321 /* If the interrupt queued a callback, get out of dyntick mode. */
d6714c22 322 if (__get_cpu_var(rcu_sched_data).nxtlist ||
64db4cff
PM
323 __get_cpu_var(rcu_bh_data).nxtlist)
324 set_need_resched();
325}
326
327/*
328 * Record the specified "completed" value, which is later used to validate
329 * dynticks counter manipulations. Specify "rsp->completed - 1" to
330 * unconditionally invalidate any future dynticks manipulations (which is
331 * useful at the beginning of a grace period).
332 */
333static void dyntick_record_completed(struct rcu_state *rsp, long comp)
334{
335 rsp->dynticks_completed = comp;
336}
337
338#ifdef CONFIG_SMP
339
340/*
341 * Recall the previously recorded value of the completion for dynticks.
342 */
343static long dyntick_recall_completed(struct rcu_state *rsp)
344{
345 return rsp->dynticks_completed;
346}
347
348/*
349 * Snapshot the specified CPU's dynticks counter so that we can later
350 * credit them with an implicit quiescent state. Return 1 if this CPU
351 * is already in a quiescent state courtesy of dynticks idle mode.
352 */
353static int dyntick_save_progress_counter(struct rcu_data *rdp)
354{
355 int ret;
356 int snap;
357 int snap_nmi;
358
359 snap = rdp->dynticks->dynticks;
360 snap_nmi = rdp->dynticks->dynticks_nmi;
361 smp_mb(); /* Order sampling of snap with end of grace period. */
362 rdp->dynticks_snap = snap;
363 rdp->dynticks_nmi_snap = snap_nmi;
364 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
365 if (ret)
366 rdp->dynticks_fqs++;
367 return ret;
368}
369
370/*
371 * Return true if the specified CPU has passed through a quiescent
372 * state by virtue of being in or having passed through an dynticks
373 * idle state since the last call to dyntick_save_progress_counter()
374 * for this same CPU.
375 */
376static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
377{
378 long curr;
379 long curr_nmi;
380 long snap;
381 long snap_nmi;
382
383 curr = rdp->dynticks->dynticks;
384 snap = rdp->dynticks_snap;
385 curr_nmi = rdp->dynticks->dynticks_nmi;
386 snap_nmi = rdp->dynticks_nmi_snap;
387 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
388
389 /*
390 * If the CPU passed through or entered a dynticks idle phase with
391 * no active irq/NMI handlers, then we can safely pretend that the CPU
392 * already acknowledged the request to pass through a quiescent
393 * state. Either way, that CPU cannot possibly be in an RCU
394 * read-side critical section that started before the beginning
395 * of the current RCU grace period.
396 */
397 if ((curr != snap || (curr & 0x1) == 0) &&
398 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
399 rdp->dynticks_fqs++;
400 return 1;
401 }
402
403 /* Go check for the CPU being offline. */
404 return rcu_implicit_offline_qs(rdp);
405}
406
407#endif /* #ifdef CONFIG_SMP */
408
409#else /* #ifdef CONFIG_NO_HZ */
410
411static void dyntick_record_completed(struct rcu_state *rsp, long comp)
412{
413}
414
415#ifdef CONFIG_SMP
416
417/*
418 * If there are no dynticks, then the only way that a CPU can passively
419 * be in a quiescent state is to be offline. Unlike dynticks idle, which
420 * is a point in time during the prior (already finished) grace period,
421 * an offline CPU is always in a quiescent state, and thus can be
422 * unconditionally applied. So just return the current value of completed.
423 */
424static long dyntick_recall_completed(struct rcu_state *rsp)
425{
426 return rsp->completed;
427}
428
429static int dyntick_save_progress_counter(struct rcu_data *rdp)
430{
431 return 0;
432}
433
434static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
435{
436 return rcu_implicit_offline_qs(rdp);
437}
438
439#endif /* #ifdef CONFIG_SMP */
440
441#endif /* #else #ifdef CONFIG_NO_HZ */
442
443#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
444
445static void record_gp_stall_check_time(struct rcu_state *rsp)
446{
447 rsp->gp_start = jiffies;
448 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
449}
450
451static void print_other_cpu_stall(struct rcu_state *rsp)
452{
453 int cpu;
454 long delta;
455 unsigned long flags;
456 struct rcu_node *rnp = rcu_get_root(rsp);
457 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
458 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
459
460 /* Only let one CPU complain about others per time interval. */
461
462 spin_lock_irqsave(&rnp->lock, flags);
463 delta = jiffies - rsp->jiffies_stall;
464 if (delta < RCU_STALL_RAT_DELAY || rsp->gpnum == rsp->completed) {
465 spin_unlock_irqrestore(&rnp->lock, flags);
466 return;
467 }
468 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
469 spin_unlock_irqrestore(&rnp->lock, flags);
470
471 /* OK, time to rat on our buddy... */
472
473 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
474 for (; rnp_cur < rnp_end; rnp_cur++) {
475 if (rnp_cur->qsmask == 0)
476 continue;
477 for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++)
478 if (rnp_cur->qsmask & (1UL << cpu))
479 printk(" %d", rnp_cur->grplo + cpu);
480 }
481 printk(" (detected by %d, t=%ld jiffies)\n",
482 smp_processor_id(), (long)(jiffies - rsp->gp_start));
483 force_quiescent_state(rsp, 0); /* Kick them all. */
484}
485
486static void print_cpu_stall(struct rcu_state *rsp)
487{
488 unsigned long flags;
489 struct rcu_node *rnp = rcu_get_root(rsp);
490
491 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
492 smp_processor_id(), jiffies - rsp->gp_start);
493 dump_stack();
494 spin_lock_irqsave(&rnp->lock, flags);
495 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
496 rsp->jiffies_stall =
497 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
498 spin_unlock_irqrestore(&rnp->lock, flags);
499 set_need_resched(); /* kick ourselves to get things going. */
500}
501
502static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
503{
504 long delta;
505 struct rcu_node *rnp;
506
507 delta = jiffies - rsp->jiffies_stall;
508 rnp = rdp->mynode;
509 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
510
511 /* We haven't checked in, so go dump stack. */
512 print_cpu_stall(rsp);
513
514 } else if (rsp->gpnum != rsp->completed &&
515 delta >= RCU_STALL_RAT_DELAY) {
516
517 /* They had two time units to dump stack, so complain. */
518 print_other_cpu_stall(rsp);
519 }
520}
521
522#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
523
524static void record_gp_stall_check_time(struct rcu_state *rsp)
525{
526}
527
528static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
529{
530}
531
532#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
533
534/*
535 * Update CPU-local rcu_data state to record the newly noticed grace period.
536 * This is used both when we started the grace period and when we notice
537 * that someone else started the grace period.
538 */
539static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
540{
541 rdp->qs_pending = 1;
542 rdp->passed_quiesc = 0;
543 rdp->gpnum = rsp->gpnum;
64db4cff
PM
544}
545
546/*
547 * Did someone else start a new RCU grace period start since we last
548 * checked? Update local state appropriately if so. Must be called
549 * on the CPU corresponding to rdp.
550 */
551static int
552check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
553{
554 unsigned long flags;
555 int ret = 0;
556
557 local_irq_save(flags);
558 if (rdp->gpnum != rsp->gpnum) {
559 note_new_gpnum(rsp, rdp);
560 ret = 1;
561 }
562 local_irq_restore(flags);
563 return ret;
564}
565
566/*
567 * Start a new RCU grace period if warranted, re-initializing the hierarchy
568 * in preparation for detecting the next grace period. The caller must hold
569 * the root node's ->lock, which is released before return. Hard irqs must
570 * be disabled.
571 */
572static void
573rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
574 __releases(rcu_get_root(rsp)->lock)
575{
576 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
577 struct rcu_node *rnp = rcu_get_root(rsp);
578 struct rcu_node *rnp_cur;
579 struct rcu_node *rnp_end;
580
581 if (!cpu_needs_another_gp(rsp, rdp)) {
582 spin_unlock_irqrestore(&rnp->lock, flags);
583 return;
584 }
585
586 /* Advance to a new grace period and initialize state. */
587 rsp->gpnum++;
588 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
589 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff
PM
590 record_gp_stall_check_time(rsp);
591 dyntick_record_completed(rsp, rsp->completed - 1);
592 note_new_gpnum(rsp, rdp);
593
594 /*
595 * Because we are first, we know that all our callbacks will
596 * be covered by this upcoming grace period, even the ones
597 * that were registered arbitrarily recently.
598 */
599 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
600 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
601
602 /* Special-case the common single-level case. */
603 if (NUM_RCU_NODES == 1) {
604 rnp->qsmask = rnp->qsmaskinit;
c12172c0 605 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
64db4cff
PM
606 spin_unlock_irqrestore(&rnp->lock, flags);
607 return;
608 }
609
610 spin_unlock(&rnp->lock); /* leave irqs disabled. */
611
612
613 /* Exclude any concurrent CPU-hotplug operations. */
614 spin_lock(&rsp->onofflock); /* irqs already disabled. */
615
616 /*
617 * Set the quiescent-state-needed bits in all the non-leaf RCU
618 * nodes for all currently online CPUs. This operation relies
619 * on the layout of the hierarchy within the rsp->node[] array.
620 * Note that other CPUs will access only the leaves of the
621 * hierarchy, which still indicate that no grace period is in
622 * progress. In addition, we have excluded CPU-hotplug operations.
623 *
624 * We therefore do not need to hold any locks. Any required
625 * memory barriers will be supplied by the locks guarding the
626 * leaf rcu_nodes in the hierarchy.
627 */
628
629 rnp_end = rsp->level[NUM_RCU_LVLS - 1];
630 for (rnp_cur = &rsp->node[0]; rnp_cur < rnp_end; rnp_cur++)
631 rnp_cur->qsmask = rnp_cur->qsmaskinit;
632
633 /*
634 * Now set up the leaf nodes. Here we must be careful. First,
635 * we need to hold the lock in order to exclude other CPUs, which
636 * might be contending for the leaf nodes' locks. Second, as
637 * soon as we initialize a given leaf node, its CPUs might run
638 * up the rest of the hierarchy. We must therefore acquire locks
639 * for each node that we touch during this stage. (But we still
640 * are excluding CPU-hotplug operations.)
641 *
642 * Note that the grace period cannot complete until we finish
643 * the initialization process, as there will be at least one
644 * qsmask bit set in the root node until that time, namely the
645 * one corresponding to this CPU.
646 */
647 rnp_end = &rsp->node[NUM_RCU_NODES];
648 rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
649 for (; rnp_cur < rnp_end; rnp_cur++) {
650 spin_lock(&rnp_cur->lock); /* irqs already disabled. */
651 rnp_cur->qsmask = rnp_cur->qsmaskinit;
652 spin_unlock(&rnp_cur->lock); /* irqs already disabled. */
653 }
654
655 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
656 spin_unlock_irqrestore(&rsp->onofflock, flags);
657}
658
659/*
660 * Advance this CPU's callbacks, but only if the current grace period
661 * has ended. This may be called only from the CPU to whom the rdp
662 * belongs.
663 */
664static void
665rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
666{
667 long completed_snap;
668 unsigned long flags;
669
670 local_irq_save(flags);
671 completed_snap = ACCESS_ONCE(rsp->completed); /* outside of lock. */
672
673 /* Did another grace period end? */
674 if (rdp->completed != completed_snap) {
675
676 /* Advance callbacks. No harm if list empty. */
677 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
678 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
679 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
680
681 /* Remember that we saw this grace-period completion. */
682 rdp->completed = completed_snap;
683 }
684 local_irq_restore(flags);
685}
686
687/*
688 * Similar to cpu_quiet(), for which it is a helper function. Allows
689 * a group of CPUs to be quieted at one go, though all the CPUs in the
690 * group must be represented by the same leaf rcu_node structure.
691 * That structure's lock must be held upon entry, and it is released
692 * before return.
693 */
694static void
695cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
696 unsigned long flags)
697 __releases(rnp->lock)
698{
699 /* Walk up the rcu_node hierarchy. */
700 for (;;) {
701 if (!(rnp->qsmask & mask)) {
702
703 /* Our bit has already been cleared, so done. */
704 spin_unlock_irqrestore(&rnp->lock, flags);
705 return;
706 }
707 rnp->qsmask &= ~mask;
708 if (rnp->qsmask != 0) {
709
710 /* Other bits still set at this level, so done. */
711 spin_unlock_irqrestore(&rnp->lock, flags);
712 return;
713 }
714 mask = rnp->grpmask;
715 if (rnp->parent == NULL) {
716
717 /* No more levels. Exit loop holding root lock. */
718
719 break;
720 }
721 spin_unlock_irqrestore(&rnp->lock, flags);
722 rnp = rnp->parent;
723 spin_lock_irqsave(&rnp->lock, flags);
724 }
725
726 /*
727 * Get here if we are the last CPU to pass through a quiescent
728 * state for this grace period. Clean up and let rcu_start_gp()
729 * start up the next grace period if one is needed. Note that
730 * we still hold rnp->lock, as required by rcu_start_gp(), which
731 * will release it.
732 */
733 rsp->completed = rsp->gpnum;
734 rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
735 rcu_start_gp(rsp, flags); /* releases rnp->lock. */
736}
737
738/*
739 * Record a quiescent state for the specified CPU, which must either be
740 * the current CPU or an offline CPU. The lastcomp argument is used to
741 * make sure we are still in the grace period of interest. We don't want
742 * to end the current grace period based on quiescent states detected in
743 * an earlier grace period!
744 */
745static void
746cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
747{
748 unsigned long flags;
749 unsigned long mask;
750 struct rcu_node *rnp;
751
752 rnp = rdp->mynode;
753 spin_lock_irqsave(&rnp->lock, flags);
754 if (lastcomp != ACCESS_ONCE(rsp->completed)) {
755
756 /*
757 * Someone beat us to it for this grace period, so leave.
758 * The race with GP start is resolved by the fact that we
759 * hold the leaf rcu_node lock, so that the per-CPU bits
760 * cannot yet be initialized -- so we would simply find our
761 * CPU's bit already cleared in cpu_quiet_msk() if this race
762 * occurred.
763 */
764 rdp->passed_quiesc = 0; /* try again later! */
765 spin_unlock_irqrestore(&rnp->lock, flags);
766 return;
767 }
768 mask = rdp->grpmask;
769 if ((rnp->qsmask & mask) == 0) {
770 spin_unlock_irqrestore(&rnp->lock, flags);
771 } else {
772 rdp->qs_pending = 0;
773
774 /*
775 * This GP can't end until cpu checks in, so all of our
776 * callbacks can be processed during the next GP.
777 */
778 rdp = rsp->rda[smp_processor_id()];
779 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
780
781 cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */
782 }
783}
784
785/*
786 * Check to see if there is a new grace period of which this CPU
787 * is not yet aware, and if so, set up local rcu_data state for it.
788 * Otherwise, see if this CPU has just passed through its first
789 * quiescent state for this grace period, and record that fact if so.
790 */
791static void
792rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
793{
794 /* If there is now a new grace period, record and return. */
795 if (check_for_new_grace_period(rsp, rdp))
796 return;
797
798 /*
799 * Does this CPU still need to do its part for current grace period?
800 * If no, return and let the other CPUs do their part as well.
801 */
802 if (!rdp->qs_pending)
803 return;
804
805 /*
806 * Was there a quiescent state since the beginning of the grace
807 * period? If no, then exit and wait for the next call.
808 */
809 if (!rdp->passed_quiesc)
810 return;
811
812 /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */
813 cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
814}
815
816#ifdef CONFIG_HOTPLUG_CPU
817
818/*
819 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
820 * and move all callbacks from the outgoing CPU to the current one.
821 */
822static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
823{
824 int i;
825 unsigned long flags;
826 long lastcomp;
827 unsigned long mask;
828 struct rcu_data *rdp = rsp->rda[cpu];
829 struct rcu_data *rdp_me;
830 struct rcu_node *rnp;
831
832 /* Exclude any attempts to start a new grace period. */
833 spin_lock_irqsave(&rsp->onofflock, flags);
834
835 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
836 rnp = rdp->mynode;
837 mask = rdp->grpmask; /* rnp->grplo is constant. */
838 do {
839 spin_lock(&rnp->lock); /* irqs already disabled. */
840 rnp->qsmaskinit &= ~mask;
841 if (rnp->qsmaskinit != 0) {
842 spin_unlock(&rnp->lock); /* irqs already disabled. */
843 break;
844 }
845 mask = rnp->grpmask;
846 spin_unlock(&rnp->lock); /* irqs already disabled. */
847 rnp = rnp->parent;
848 } while (rnp != NULL);
849 lastcomp = rsp->completed;
850
851 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
852
853 /* Being offline is a quiescent state, so go record it. */
854 cpu_quiet(cpu, rsp, rdp, lastcomp);
855
856 /*
857 * Move callbacks from the outgoing CPU to the running CPU.
858 * Note that the outgoing CPU is now quiscent, so it is now
d6714c22 859 * (uncharacteristically) safe to access its rcu_data structure.
64db4cff
PM
860 * Note also that we must carefully retain the order of the
861 * outgoing CPU's callbacks in order for rcu_barrier() to work
862 * correctly. Finally, note that we start all the callbacks
863 * afresh, even those that have passed through a grace period
864 * and are therefore ready to invoke. The theory is that hotplug
865 * events are rare, and that if they are frequent enough to
866 * indefinitely delay callbacks, you have far worse things to
867 * be worrying about.
868 */
869 rdp_me = rsp->rda[smp_processor_id()];
870 if (rdp->nxtlist != NULL) {
871 *rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
872 rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
873 rdp->nxtlist = NULL;
874 for (i = 0; i < RCU_NEXT_SIZE; i++)
875 rdp->nxttail[i] = &rdp->nxtlist;
876 rdp_me->qlen += rdp->qlen;
877 rdp->qlen = 0;
878 }
879 local_irq_restore(flags);
880}
881
882/*
883 * Remove the specified CPU from the RCU hierarchy and move any pending
884 * callbacks that it might have to the current CPU. This code assumes
885 * that at least one CPU in the system will remain running at all times.
886 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
887 */
888static void rcu_offline_cpu(int cpu)
889{
d6714c22 890 __rcu_offline_cpu(cpu, &rcu_sched_state);
64db4cff
PM
891 __rcu_offline_cpu(cpu, &rcu_bh_state);
892}
893
894#else /* #ifdef CONFIG_HOTPLUG_CPU */
895
896static void rcu_offline_cpu(int cpu)
897{
898}
899
900#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
901
902/*
903 * Invoke any RCU callbacks that have made it to the end of their grace
904 * period. Thottle as specified by rdp->blimit.
905 */
906static void rcu_do_batch(struct rcu_data *rdp)
907{
908 unsigned long flags;
909 struct rcu_head *next, *list, **tail;
910 int count;
911
912 /* If no callbacks are ready, just return.*/
913 if (!cpu_has_callbacks_ready_to_invoke(rdp))
914 return;
915
916 /*
917 * Extract the list of ready callbacks, disabling to prevent
918 * races with call_rcu() from interrupt handlers.
919 */
920 local_irq_save(flags);
921 list = rdp->nxtlist;
922 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
923 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
924 tail = rdp->nxttail[RCU_DONE_TAIL];
925 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
926 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
927 rdp->nxttail[count] = &rdp->nxtlist;
928 local_irq_restore(flags);
929
930 /* Invoke callbacks. */
931 count = 0;
932 while (list) {
933 next = list->next;
934 prefetch(next);
935 list->func(list);
936 list = next;
937 if (++count >= rdp->blimit)
938 break;
939 }
940
941 local_irq_save(flags);
942
943 /* Update count, and requeue any remaining callbacks. */
944 rdp->qlen -= count;
945 if (list != NULL) {
946 *tail = rdp->nxtlist;
947 rdp->nxtlist = list;
948 for (count = 0; count < RCU_NEXT_SIZE; count++)
949 if (&rdp->nxtlist == rdp->nxttail[count])
950 rdp->nxttail[count] = tail;
951 else
952 break;
953 }
954
955 /* Reinstate batch limit if we have worked down the excess. */
956 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
957 rdp->blimit = blimit;
958
959 local_irq_restore(flags);
960
961 /* Re-raise the RCU softirq if there are callbacks remaining. */
962 if (cpu_has_callbacks_ready_to_invoke(rdp))
963 raise_softirq(RCU_SOFTIRQ);
964}
965
966/*
967 * Check to see if this CPU is in a non-context-switch quiescent state
968 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
969 * Also schedule the RCU softirq handler.
970 *
971 * This function must be called with hardirqs disabled. It is normally
972 * invoked from the scheduling-clock interrupt. If rcu_pending returns
973 * false, there is no point in invoking rcu_check_callbacks().
974 */
975void rcu_check_callbacks(int cpu, int user)
976{
977 if (user ||
a6826048
PM
978 (idle_cpu(cpu) && rcu_scheduler_active &&
979 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
64db4cff
PM
980
981 /*
982 * Get here if this CPU took its interrupt from user
983 * mode or from the idle loop, and if this is not a
984 * nested interrupt. In this case, the CPU is in
d6714c22 985 * a quiescent state, so note it.
64db4cff
PM
986 *
987 * No memory barrier is required here because both
d6714c22
PM
988 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
989 * variables that other CPUs neither access nor modify,
990 * at least not while the corresponding CPU is online.
64db4cff
PM
991 */
992
d6714c22
PM
993 rcu_sched_qs(cpu);
994 rcu_bh_qs(cpu);
64db4cff
PM
995
996 } else if (!in_softirq()) {
997
998 /*
999 * Get here if this CPU did not take its interrupt from
1000 * softirq, in other words, if it is not interrupting
1001 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1002 * critical section, so note it.
64db4cff
PM
1003 */
1004
d6714c22 1005 rcu_bh_qs(cpu);
64db4cff
PM
1006 }
1007 raise_softirq(RCU_SOFTIRQ);
1008}
1009
1010#ifdef CONFIG_SMP
1011
1012/*
1013 * Scan the leaf rcu_node structures, processing dyntick state for any that
1014 * have not yet encountered a quiescent state, using the function specified.
1015 * Returns 1 if the current grace period ends while scanning (possibly
1016 * because we made it end).
1017 */
1018static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
1019 int (*f)(struct rcu_data *))
1020{
1021 unsigned long bit;
1022 int cpu;
1023 unsigned long flags;
1024 unsigned long mask;
1025 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
1026 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
1027
1028 for (; rnp_cur < rnp_end; rnp_cur++) {
1029 mask = 0;
1030 spin_lock_irqsave(&rnp_cur->lock, flags);
1031 if (rsp->completed != lastcomp) {
1032 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1033 return 1;
1034 }
1035 if (rnp_cur->qsmask == 0) {
1036 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1037 continue;
1038 }
1039 cpu = rnp_cur->grplo;
1040 bit = 1;
1041 for (; cpu <= rnp_cur->grphi; cpu++, bit <<= 1) {
1042 if ((rnp_cur->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1043 mask |= bit;
1044 }
1045 if (mask != 0 && rsp->completed == lastcomp) {
1046
1047 /* cpu_quiet_msk() releases rnp_cur->lock. */
1048 cpu_quiet_msk(mask, rsp, rnp_cur, flags);
1049 continue;
1050 }
1051 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1052 }
1053 return 0;
1054}
1055
1056/*
1057 * Force quiescent states on reluctant CPUs, and also detect which
1058 * CPUs are in dyntick-idle mode.
1059 */
1060static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1061{
1062 unsigned long flags;
1063 long lastcomp;
64db4cff
PM
1064 struct rcu_node *rnp = rcu_get_root(rsp);
1065 u8 signaled;
1066
1067 if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum))
1068 return; /* No grace period in progress, nothing to force. */
1069 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
1070 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1071 return; /* Someone else is already on the job. */
1072 }
1073 if (relaxed &&
ef631b0c 1074 (long)(rsp->jiffies_force_qs - jiffies) >= 0)
64db4cff
PM
1075 goto unlock_ret; /* no emergency and done recently. */
1076 rsp->n_force_qs++;
1077 spin_lock(&rnp->lock);
1078 lastcomp = rsp->completed;
1079 signaled = rsp->signaled;
1080 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff
PM
1081 if (lastcomp == rsp->gpnum) {
1082 rsp->n_force_qs_ngp++;
1083 spin_unlock(&rnp->lock);
1084 goto unlock_ret; /* no GP in progress, time updated. */
1085 }
1086 spin_unlock(&rnp->lock);
1087 switch (signaled) {
1088 case RCU_GP_INIT:
1089
1090 break; /* grace period still initializing, ignore. */
1091
1092 case RCU_SAVE_DYNTICK:
1093
1094 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1095 break; /* So gcc recognizes the dead code. */
1096
1097 /* Record dyntick-idle state. */
1098 if (rcu_process_dyntick(rsp, lastcomp,
1099 dyntick_save_progress_counter))
1100 goto unlock_ret;
1101
1102 /* Update state, record completion counter. */
1103 spin_lock(&rnp->lock);
1104 if (lastcomp == rsp->completed) {
1105 rsp->signaled = RCU_FORCE_QS;
1106 dyntick_record_completed(rsp, lastcomp);
1107 }
1108 spin_unlock(&rnp->lock);
1109 break;
1110
1111 case RCU_FORCE_QS:
1112
1113 /* Check dyntick-idle state, send IPI to laggarts. */
1114 if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp),
1115 rcu_implicit_dynticks_qs))
1116 goto unlock_ret;
1117
1118 /* Leave state in case more forcing is required. */
1119
1120 break;
1121 }
1122unlock_ret:
1123 spin_unlock_irqrestore(&rsp->fqslock, flags);
1124}
1125
1126#else /* #ifdef CONFIG_SMP */
1127
1128static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1129{
1130 set_need_resched();
1131}
1132
1133#endif /* #else #ifdef CONFIG_SMP */
1134
1135/*
1136 * This does the RCU processing work from softirq context for the
1137 * specified rcu_state and rcu_data structures. This may be called
1138 * only from the CPU to whom the rdp belongs.
1139 */
1140static void
1141__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1142{
1143 unsigned long flags;
1144
2e597558
PM
1145 WARN_ON_ONCE(rdp->beenonline == 0);
1146
64db4cff
PM
1147 /*
1148 * If an RCU GP has gone long enough, go check for dyntick
1149 * idle CPUs and, if needed, send resched IPIs.
1150 */
ef631b0c 1151 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
64db4cff
PM
1152 force_quiescent_state(rsp, 1);
1153
1154 /*
1155 * Advance callbacks in response to end of earlier grace
1156 * period that some other CPU ended.
1157 */
1158 rcu_process_gp_end(rsp, rdp);
1159
1160 /* Update RCU state based on any recent quiescent states. */
1161 rcu_check_quiescent_state(rsp, rdp);
1162
1163 /* Does this CPU require a not-yet-started grace period? */
1164 if (cpu_needs_another_gp(rsp, rdp)) {
1165 spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1166 rcu_start_gp(rsp, flags); /* releases above lock */
1167 }
1168
1169 /* If there are callbacks ready, invoke them. */
1170 rcu_do_batch(rdp);
1171}
1172
1173/*
1174 * Do softirq processing for the current CPU.
1175 */
1176static void rcu_process_callbacks(struct softirq_action *unused)
1177{
1178 /*
1179 * Memory references from any prior RCU read-side critical sections
1180 * executed by the interrupted code must be seen before any RCU
1181 * grace-period manipulations below.
1182 */
1183 smp_mb(); /* See above block comment. */
1184
d6714c22
PM
1185 __rcu_process_callbacks(&rcu_sched_state,
1186 &__get_cpu_var(rcu_sched_data));
64db4cff
PM
1187 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1188
1189 /*
1190 * Memory references from any later RCU read-side critical sections
1191 * executed by the interrupted code must be seen after any RCU
1192 * grace-period manipulations above.
1193 */
1194 smp_mb(); /* See above block comment. */
1195}
1196
1197static void
1198__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1199 struct rcu_state *rsp)
1200{
1201 unsigned long flags;
1202 struct rcu_data *rdp;
1203
1204 head->func = func;
1205 head->next = NULL;
1206
1207 smp_mb(); /* Ensure RCU update seen before callback registry. */
1208
1209 /*
1210 * Opportunistically note grace-period endings and beginnings.
1211 * Note that we might see a beginning right after we see an
1212 * end, but never vice versa, since this CPU has to pass through
1213 * a quiescent state betweentimes.
1214 */
1215 local_irq_save(flags);
1216 rdp = rsp->rda[smp_processor_id()];
1217 rcu_process_gp_end(rsp, rdp);
1218 check_for_new_grace_period(rsp, rdp);
1219
1220 /* Add the callback to our list. */
1221 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1222 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1223
1224 /* Start a new grace period if one not already started. */
1225 if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum)) {
1226 unsigned long nestflag;
1227 struct rcu_node *rnp_root = rcu_get_root(rsp);
1228
1229 spin_lock_irqsave(&rnp_root->lock, nestflag);
1230 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1231 }
1232
1233 /* Force the grace period if too many callbacks or too long waiting. */
1234 if (unlikely(++rdp->qlen > qhimark)) {
1235 rdp->blimit = LONG_MAX;
1236 force_quiescent_state(rsp, 0);
ef631b0c 1237 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
64db4cff
PM
1238 force_quiescent_state(rsp, 1);
1239 local_irq_restore(flags);
1240}
1241
1242/*
d6714c22
PM
1243 * Queue an RCU-sched callback for invocation after a grace period.
1244 */
1245void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1246{
1247 __call_rcu(head, func, &rcu_sched_state);
1248}
1249EXPORT_SYMBOL_GPL(call_rcu_sched);
1250
1251/*
1252 * @@@ Queue an RCU callback for invocation after a grace period.
1253 * @@@ Placeholder pending rcutree_plugin.h.
64db4cff
PM
1254 */
1255void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1256{
d6714c22 1257 call_rcu_sched(head, func);
64db4cff
PM
1258}
1259EXPORT_SYMBOL_GPL(call_rcu);
1260
d6714c22 1261
64db4cff
PM
1262/*
1263 * Queue an RCU for invocation after a quicker grace period.
1264 */
1265void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1266{
1267 __call_rcu(head, func, &rcu_bh_state);
1268}
1269EXPORT_SYMBOL_GPL(call_rcu_bh);
1270
1271/*
1272 * Check to see if there is any immediate RCU-related work to be done
1273 * by the current CPU, for the specified type of RCU, returning 1 if so.
1274 * The checks are in order of increasing expense: checks that can be
1275 * carried out against CPU-local state are performed first. However,
1276 * we must check for CPU stalls first, else we might not get a chance.
1277 */
1278static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1279{
1280 rdp->n_rcu_pending++;
1281
1282 /* Check for CPU stalls, if enabled. */
1283 check_cpu_stall(rsp, rdp);
1284
1285 /* Is the RCU core waiting for a quiescent state from this CPU? */
7ba5c840
PM
1286 if (rdp->qs_pending) {
1287 rdp->n_rp_qs_pending++;
64db4cff 1288 return 1;
7ba5c840 1289 }
64db4cff
PM
1290
1291 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
1292 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1293 rdp->n_rp_cb_ready++;
64db4cff 1294 return 1;
7ba5c840 1295 }
64db4cff
PM
1296
1297 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
1298 if (cpu_needs_another_gp(rsp, rdp)) {
1299 rdp->n_rp_cpu_needs_gp++;
64db4cff 1300 return 1;
7ba5c840 1301 }
64db4cff
PM
1302
1303 /* Has another RCU grace period completed? */
7ba5c840
PM
1304 if (ACCESS_ONCE(rsp->completed) != rdp->completed) { /* outside lock */
1305 rdp->n_rp_gp_completed++;
64db4cff 1306 return 1;
7ba5c840 1307 }
64db4cff
PM
1308
1309 /* Has a new RCU grace period started? */
7ba5c840
PM
1310 if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) { /* outside lock */
1311 rdp->n_rp_gp_started++;
64db4cff 1312 return 1;
7ba5c840 1313 }
64db4cff
PM
1314
1315 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1316 if (ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum) &&
7ba5c840
PM
1317 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) {
1318 rdp->n_rp_need_fqs++;
64db4cff 1319 return 1;
7ba5c840 1320 }
64db4cff
PM
1321
1322 /* nothing to do */
7ba5c840 1323 rdp->n_rp_need_nothing++;
64db4cff
PM
1324 return 0;
1325}
1326
1327/*
1328 * Check to see if there is any immediate RCU-related work to be done
1329 * by the current CPU, returning 1 if so. This function is part of the
1330 * RCU implementation; it is -not- an exported member of the RCU API.
1331 */
1332int rcu_pending(int cpu)
1333{
d6714c22 1334 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
64db4cff
PM
1335 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu));
1336}
1337
1338/*
1339 * Check to see if any future RCU-related work will need to be done
1340 * by the current CPU, even if none need be done immediately, returning
1341 * 1 if so. This function is part of the RCU implementation; it is -not-
1342 * an exported member of the RCU API.
1343 */
1344int rcu_needs_cpu(int cpu)
1345{
1346 /* RCU callbacks either ready or pending? */
d6714c22 1347 return per_cpu(rcu_sched_data, cpu).nxtlist ||
64db4cff
PM
1348 per_cpu(rcu_bh_data, cpu).nxtlist;
1349}
1350
1351/*
27569620
PM
1352 * Do boot-time initialization of a CPU's per-CPU RCU data.
1353 */
1354static void __init
1355rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1356{
1357 unsigned long flags;
1358 int i;
1359 struct rcu_data *rdp = rsp->rda[cpu];
1360 struct rcu_node *rnp = rcu_get_root(rsp);
1361
1362 /* Set up local state, ensuring consistent view of global state. */
1363 spin_lock_irqsave(&rnp->lock, flags);
1364 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1365 rdp->nxtlist = NULL;
1366 for (i = 0; i < RCU_NEXT_SIZE; i++)
1367 rdp->nxttail[i] = &rdp->nxtlist;
1368 rdp->qlen = 0;
1369#ifdef CONFIG_NO_HZ
1370 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1371#endif /* #ifdef CONFIG_NO_HZ */
1372 rdp->cpu = cpu;
1373 spin_unlock_irqrestore(&rnp->lock, flags);
1374}
1375
1376/*
1377 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1378 * offline event can be happening at a given time. Note also that we
1379 * can accept some slop in the rsp->completed access due to the fact
1380 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 1381 */
e4fa4c97 1382static void __cpuinit
64db4cff
PM
1383rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
1384{
1385 unsigned long flags;
64db4cff
PM
1386 long lastcomp;
1387 unsigned long mask;
1388 struct rcu_data *rdp = rsp->rda[cpu];
1389 struct rcu_node *rnp = rcu_get_root(rsp);
1390
1391 /* Set up local state, ensuring consistent view of global state. */
1392 spin_lock_irqsave(&rnp->lock, flags);
1393 lastcomp = rsp->completed;
1394 rdp->completed = lastcomp;
1395 rdp->gpnum = lastcomp;
1396 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1397 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1398 rdp->beenonline = 1; /* We have now been online. */
1399 rdp->passed_quiesc_completed = lastcomp - 1;
64db4cff 1400 rdp->blimit = blimit;
64db4cff
PM
1401 spin_unlock(&rnp->lock); /* irqs remain disabled. */
1402
1403 /*
1404 * A new grace period might start here. If so, we won't be part
1405 * of it, but that is OK, as we are currently in a quiescent state.
1406 */
1407
1408 /* Exclude any attempts to start a new GP on large systems. */
1409 spin_lock(&rsp->onofflock); /* irqs already disabled. */
1410
1411 /* Add CPU to rcu_node bitmasks. */
1412 rnp = rdp->mynode;
1413 mask = rdp->grpmask;
1414 do {
1415 /* Exclude any attempts to start a new GP on small systems. */
1416 spin_lock(&rnp->lock); /* irqs already disabled. */
1417 rnp->qsmaskinit |= mask;
1418 mask = rnp->grpmask;
1419 spin_unlock(&rnp->lock); /* irqs already disabled. */
1420 rnp = rnp->parent;
1421 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1422
1423 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1424
1425 /*
1426 * A new grace period might start here. If so, we will be part of
1427 * it, and its gpnum will be greater than ours, so we will
1428 * participate. It is also possible for the gpnum to have been
1429 * incremented before this function was called, and the bitmasks
1430 * to not be filled out until now, in which case we will also
1431 * participate due to our gpnum being behind.
1432 */
1433
1434 /* Since it is coming online, the CPU is in a quiescent state. */
1435 cpu_quiet(cpu, rsp, rdp, lastcomp);
1436 local_irq_restore(flags);
1437}
1438
1439static void __cpuinit rcu_online_cpu(int cpu)
1440{
d6714c22 1441 rcu_init_percpu_data(cpu, &rcu_sched_state);
64db4cff 1442 rcu_init_percpu_data(cpu, &rcu_bh_state);
64db4cff
PM
1443}
1444
1445/*
1446 * Handle CPU online/offline notifcation events.
1447 */
2e597558
PM
1448int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1449 unsigned long action, void *hcpu)
64db4cff
PM
1450{
1451 long cpu = (long)hcpu;
1452
1453 switch (action) {
1454 case CPU_UP_PREPARE:
1455 case CPU_UP_PREPARE_FROZEN:
1456 rcu_online_cpu(cpu);
1457 break;
1458 case CPU_DEAD:
1459 case CPU_DEAD_FROZEN:
1460 case CPU_UP_CANCELED:
1461 case CPU_UP_CANCELED_FROZEN:
1462 rcu_offline_cpu(cpu);
1463 break;
1464 default:
1465 break;
1466 }
1467 return NOTIFY_OK;
1468}
1469
1470/*
1471 * Compute the per-level fanout, either using the exact fanout specified
1472 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1473 */
1474#ifdef CONFIG_RCU_FANOUT_EXACT
1475static void __init rcu_init_levelspread(struct rcu_state *rsp)
1476{
1477 int i;
1478
1479 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1480 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1481}
1482#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1483static void __init rcu_init_levelspread(struct rcu_state *rsp)
1484{
1485 int ccur;
1486 int cprv;
1487 int i;
1488
1489 cprv = NR_CPUS;
1490 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1491 ccur = rsp->levelcnt[i];
1492 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1493 cprv = ccur;
1494 }
1495}
1496#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1497
1498/*
1499 * Helper function for rcu_init() that initializes one rcu_state structure.
1500 */
1501static void __init rcu_init_one(struct rcu_state *rsp)
1502{
1503 int cpustride = 1;
1504 int i;
1505 int j;
1506 struct rcu_node *rnp;
1507
1508 /* Initialize the level-tracking arrays. */
1509
1510 for (i = 1; i < NUM_RCU_LVLS; i++)
1511 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1512 rcu_init_levelspread(rsp);
1513
1514 /* Initialize the elements themselves, starting from the leaves. */
1515
1516 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1517 cpustride *= rsp->levelspread[i];
1518 rnp = rsp->level[i];
1519 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1520 spin_lock_init(&rnp->lock);
1521 rnp->qsmask = 0;
1522 rnp->qsmaskinit = 0;
1523 rnp->grplo = j * cpustride;
1524 rnp->grphi = (j + 1) * cpustride - 1;
1525 if (rnp->grphi >= NR_CPUS)
1526 rnp->grphi = NR_CPUS - 1;
1527 if (i == 0) {
1528 rnp->grpnum = 0;
1529 rnp->grpmask = 0;
1530 rnp->parent = NULL;
1531 } else {
1532 rnp->grpnum = j % rsp->levelspread[i - 1];
1533 rnp->grpmask = 1UL << rnp->grpnum;
1534 rnp->parent = rsp->level[i - 1] +
1535 j / rsp->levelspread[i - 1];
1536 }
1537 rnp->level = i;
1538 }
1539 }
1540}
1541
1542/*
1543 * Helper macro for __rcu_init(). To be used nowhere else!
1544 * Assigns leaf node pointers into each CPU's rcu_data structure.
1545 */
1546#define RCU_DATA_PTR_INIT(rsp, rcu_data) \
1547do { \
1548 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1549 j = 0; \
1550 for_each_possible_cpu(i) { \
1551 if (i > rnp[j].grphi) \
1552 j++; \
1553 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1554 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
1555 } \
1556} while (0)
1557
64db4cff
PM
1558void __init __rcu_init(void)
1559{
1560 int i; /* All used by RCU_DATA_PTR_INIT(). */
1561 int j;
1562 struct rcu_node *rnp;
1563
f6faac71 1564 printk(KERN_INFO "Hierarchical RCU implementation.\n");
64db4cff
PM
1565#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1566 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1567#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
d6714c22
PM
1568 rcu_init_one(&rcu_sched_state);
1569 RCU_DATA_PTR_INIT(&rcu_sched_state, rcu_sched_data);
27569620 1570 for_each_possible_cpu(i)
d6714c22 1571 rcu_boot_init_percpu_data(i, &rcu_sched_state);
64db4cff
PM
1572 rcu_init_one(&rcu_bh_state);
1573 RCU_DATA_PTR_INIT(&rcu_bh_state, rcu_bh_data);
27569620
PM
1574 for_each_possible_cpu(i)
1575 rcu_boot_init_percpu_data(i, &rcu_bh_state);
2e597558 1576 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
64db4cff
PM
1577}
1578
1579module_param(blimit, int, 0);
1580module_param(qhimark, int, 0);
1581module_param(qlowmark, int, 0);