]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/power/snapshot.c
PM/Hibernate: Rework shrinking of memory
[net-next-2.6.git] / kernel / power / snapshot.c
CommitLineData
25761b6e 1/*
96bc7aec 2 * linux/kernel/power/snapshot.c
25761b6e 3 *
8357376d 4 * This file provides system snapshot/restore functionality for swsusp.
25761b6e
RW
5 *
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
8357376d 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
25761b6e 8 *
8357376d 9 * This file is released under the GPLv2.
25761b6e
RW
10 *
11 */
12
f577eb30 13#include <linux/version.h>
25761b6e
RW
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/suspend.h>
25761b6e 17#include <linux/delay.h>
25761b6e 18#include <linux/bitops.h>
25761b6e 19#include <linux/spinlock.h>
25761b6e 20#include <linux/kernel.h>
25761b6e
RW
21#include <linux/pm.h>
22#include <linux/device.h>
74dfd666 23#include <linux/init.h>
25761b6e
RW
24#include <linux/bootmem.h>
25#include <linux/syscalls.h>
26#include <linux/console.h>
27#include <linux/highmem.h>
846705de 28#include <linux/list.h>
25761b6e
RW
29
30#include <asm/uaccess.h>
31#include <asm/mmu_context.h>
32#include <asm/pgtable.h>
33#include <asm/tlbflush.h>
34#include <asm/io.h>
35
25761b6e
RW
36#include "power.h"
37
74dfd666
RW
38static int swsusp_page_is_free(struct page *);
39static void swsusp_set_page_forbidden(struct page *);
40static void swsusp_unset_page_forbidden(struct page *);
41
fe419535
RW
42/*
43 * Preferred image size in bytes (tunable via /sys/power/image_size).
44 * When it is set to N, swsusp will do its best to ensure the image
45 * size will not exceed N bytes, but if that is impossible, it will
46 * try to create the smallest image possible.
47 */
48unsigned long image_size = 500 * 1024 * 1024;
49
8357376d
RW
50/* List of PBEs needed for restoring the pages that were allocated before
51 * the suspend and included in the suspend image, but have also been
52 * allocated by the "resume" kernel, so their contents cannot be written
53 * directly to their "original" page frames.
54 */
75534b50
RW
55struct pbe *restore_pblist;
56
8357376d 57/* Pointer to an auxiliary buffer (1 page) */
940864dd 58static void *buffer;
7088a5c0 59
f6143aa6
RW
60/**
61 * @safe_needed - on resume, for storing the PBE list and the image,
62 * we can only use memory pages that do not conflict with the pages
8357376d
RW
63 * used before suspend. The unsafe pages have PageNosaveFree set
64 * and we count them using unsafe_pages.
f6143aa6 65 *
8357376d
RW
66 * Each allocated image page is marked as PageNosave and PageNosaveFree
67 * so that swsusp_free() can release it.
f6143aa6
RW
68 */
69
0bcd888d
RW
70#define PG_ANY 0
71#define PG_SAFE 1
72#define PG_UNSAFE_CLEAR 1
73#define PG_UNSAFE_KEEP 0
74
940864dd 75static unsigned int allocated_unsafe_pages;
f6143aa6 76
8357376d 77static void *get_image_page(gfp_t gfp_mask, int safe_needed)
f6143aa6
RW
78{
79 void *res;
80
81 res = (void *)get_zeroed_page(gfp_mask);
82 if (safe_needed)
7be98234 83 while (res && swsusp_page_is_free(virt_to_page(res))) {
f6143aa6 84 /* The page is unsafe, mark it for swsusp_free() */
7be98234 85 swsusp_set_page_forbidden(virt_to_page(res));
940864dd 86 allocated_unsafe_pages++;
f6143aa6
RW
87 res = (void *)get_zeroed_page(gfp_mask);
88 }
89 if (res) {
7be98234
RW
90 swsusp_set_page_forbidden(virt_to_page(res));
91 swsusp_set_page_free(virt_to_page(res));
f6143aa6
RW
92 }
93 return res;
94}
95
96unsigned long get_safe_page(gfp_t gfp_mask)
97{
8357376d
RW
98 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
99}
100
5b6d15de
RW
101static struct page *alloc_image_page(gfp_t gfp_mask)
102{
8357376d
RW
103 struct page *page;
104
105 page = alloc_page(gfp_mask);
106 if (page) {
7be98234
RW
107 swsusp_set_page_forbidden(page);
108 swsusp_set_page_free(page);
8357376d
RW
109 }
110 return page;
f6143aa6
RW
111}
112
113/**
114 * free_image_page - free page represented by @addr, allocated with
8357376d 115 * get_image_page (page flags set by it must be cleared)
f6143aa6
RW
116 */
117
118static inline void free_image_page(void *addr, int clear_nosave_free)
119{
8357376d
RW
120 struct page *page;
121
122 BUG_ON(!virt_addr_valid(addr));
123
124 page = virt_to_page(addr);
125
7be98234 126 swsusp_unset_page_forbidden(page);
f6143aa6 127 if (clear_nosave_free)
7be98234 128 swsusp_unset_page_free(page);
8357376d
RW
129
130 __free_page(page);
f6143aa6
RW
131}
132
b788db79
RW
133/* struct linked_page is used to build chains of pages */
134
135#define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
136
137struct linked_page {
138 struct linked_page *next;
139 char data[LINKED_PAGE_DATA_SIZE];
140} __attribute__((packed));
141
142static inline void
143free_list_of_pages(struct linked_page *list, int clear_page_nosave)
144{
145 while (list) {
146 struct linked_page *lp = list->next;
147
148 free_image_page(list, clear_page_nosave);
149 list = lp;
150 }
151}
152
153/**
154 * struct chain_allocator is used for allocating small objects out of
155 * a linked list of pages called 'the chain'.
156 *
157 * The chain grows each time when there is no room for a new object in
158 * the current page. The allocated objects cannot be freed individually.
159 * It is only possible to free them all at once, by freeing the entire
160 * chain.
161 *
162 * NOTE: The chain allocator may be inefficient if the allocated objects
163 * are not much smaller than PAGE_SIZE.
164 */
165
166struct chain_allocator {
167 struct linked_page *chain; /* the chain */
168 unsigned int used_space; /* total size of objects allocated out
169 * of the current page
170 */
171 gfp_t gfp_mask; /* mask for allocating pages */
172 int safe_needed; /* if set, only "safe" pages are allocated */
173};
174
175static void
176chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
177{
178 ca->chain = NULL;
179 ca->used_space = LINKED_PAGE_DATA_SIZE;
180 ca->gfp_mask = gfp_mask;
181 ca->safe_needed = safe_needed;
182}
183
184static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
185{
186 void *ret;
187
188 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
189 struct linked_page *lp;
190
8357376d 191 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
b788db79
RW
192 if (!lp)
193 return NULL;
194
195 lp->next = ca->chain;
196 ca->chain = lp;
197 ca->used_space = 0;
198 }
199 ret = ca->chain->data + ca->used_space;
200 ca->used_space += size;
201 return ret;
202}
203
b788db79
RW
204/**
205 * Data types related to memory bitmaps.
206 *
207 * Memory bitmap is a structure consiting of many linked lists of
208 * objects. The main list's elements are of type struct zone_bitmap
209 * and each of them corresonds to one zone. For each zone bitmap
210 * object there is a list of objects of type struct bm_block that
0d83304c 211 * represent each blocks of bitmap in which information is stored.
b788db79
RW
212 *
213 * struct memory_bitmap contains a pointer to the main list of zone
214 * bitmap objects, a struct bm_position used for browsing the bitmap,
215 * and a pointer to the list of pages used for allocating all of the
216 * zone bitmap objects and bitmap block objects.
217 *
218 * NOTE: It has to be possible to lay out the bitmap in memory
219 * using only allocations of order 0. Additionally, the bitmap is
220 * designed to work with arbitrary number of zones (this is over the
221 * top for now, but let's avoid making unnecessary assumptions ;-).
222 *
223 * struct zone_bitmap contains a pointer to a list of bitmap block
224 * objects and a pointer to the bitmap block object that has been
225 * most recently used for setting bits. Additionally, it contains the
226 * pfns that correspond to the start and end of the represented zone.
227 *
228 * struct bm_block contains a pointer to the memory page in which
0d83304c
AM
229 * information is stored (in the form of a block of bitmap)
230 * It also contains the pfns that correspond to the start and end of
231 * the represented memory area.
b788db79
RW
232 */
233
234#define BM_END_OF_MAP (~0UL)
235
b788db79
RW
236#define BM_BITS_PER_BLOCK (PAGE_SIZE << 3)
237
238struct bm_block {
846705de 239 struct list_head hook; /* hook into a list of bitmap blocks */
b788db79
RW
240 unsigned long start_pfn; /* pfn represented by the first bit */
241 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
0d83304c 242 unsigned long *data; /* bitmap representing pages */
b788db79
RW
243};
244
0d83304c
AM
245static inline unsigned long bm_block_bits(struct bm_block *bb)
246{
247 return bb->end_pfn - bb->start_pfn;
248}
249
b788db79
RW
250/* strcut bm_position is used for browsing memory bitmaps */
251
252struct bm_position {
b788db79 253 struct bm_block *block;
b788db79
RW
254 int bit;
255};
256
257struct memory_bitmap {
846705de 258 struct list_head blocks; /* list of bitmap blocks */
b788db79
RW
259 struct linked_page *p_list; /* list of pages used to store zone
260 * bitmap objects and bitmap block
261 * objects
262 */
263 struct bm_position cur; /* most recently used bit position */
264};
265
266/* Functions that operate on memory bitmaps */
267
b788db79
RW
268static void memory_bm_position_reset(struct memory_bitmap *bm)
269{
846705de 270 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
0d83304c 271 bm->cur.bit = 0;
b788db79
RW
272}
273
274static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
275
276/**
277 * create_bm_block_list - create a list of block bitmap objects
846705de
RW
278 * @nr_blocks - number of blocks to allocate
279 * @list - list to put the allocated blocks into
280 * @ca - chain allocator to be used for allocating memory
b788db79 281 */
846705de
RW
282static int create_bm_block_list(unsigned long pages,
283 struct list_head *list,
284 struct chain_allocator *ca)
b788db79 285{
846705de 286 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
b788db79
RW
287
288 while (nr_blocks-- > 0) {
289 struct bm_block *bb;
290
291 bb = chain_alloc(ca, sizeof(struct bm_block));
292 if (!bb)
846705de
RW
293 return -ENOMEM;
294 list_add(&bb->hook, list);
b788db79 295 }
846705de
RW
296
297 return 0;
b788db79
RW
298}
299
846705de
RW
300struct mem_extent {
301 struct list_head hook;
302 unsigned long start;
303 unsigned long end;
304};
305
b788db79 306/**
846705de
RW
307 * free_mem_extents - free a list of memory extents
308 * @list - list of extents to empty
b788db79 309 */
846705de
RW
310static void free_mem_extents(struct list_head *list)
311{
312 struct mem_extent *ext, *aux;
b788db79 313
846705de
RW
314 list_for_each_entry_safe(ext, aux, list, hook) {
315 list_del(&ext->hook);
316 kfree(ext);
317 }
318}
319
320/**
321 * create_mem_extents - create a list of memory extents representing
322 * contiguous ranges of PFNs
323 * @list - list to put the extents into
324 * @gfp_mask - mask to use for memory allocations
325 */
326static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
b788db79 327{
846705de 328 struct zone *zone;
b788db79 329
846705de 330 INIT_LIST_HEAD(list);
b788db79 331
ee99c71c 332 for_each_populated_zone(zone) {
846705de
RW
333 unsigned long zone_start, zone_end;
334 struct mem_extent *ext, *cur, *aux;
335
846705de
RW
336 zone_start = zone->zone_start_pfn;
337 zone_end = zone->zone_start_pfn + zone->spanned_pages;
338
339 list_for_each_entry(ext, list, hook)
340 if (zone_start <= ext->end)
341 break;
b788db79 342
846705de
RW
343 if (&ext->hook == list || zone_end < ext->start) {
344 /* New extent is necessary */
345 struct mem_extent *new_ext;
346
347 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
348 if (!new_ext) {
349 free_mem_extents(list);
350 return -ENOMEM;
351 }
352 new_ext->start = zone_start;
353 new_ext->end = zone_end;
354 list_add_tail(&new_ext->hook, &ext->hook);
355 continue;
356 }
357
358 /* Merge this zone's range of PFNs with the existing one */
359 if (zone_start < ext->start)
360 ext->start = zone_start;
361 if (zone_end > ext->end)
362 ext->end = zone_end;
363
364 /* More merging may be possible */
365 cur = ext;
366 list_for_each_entry_safe_continue(cur, aux, list, hook) {
367 if (zone_end < cur->start)
368 break;
369 if (zone_end < cur->end)
370 ext->end = cur->end;
371 list_del(&cur->hook);
372 kfree(cur);
373 }
b788db79 374 }
846705de
RW
375
376 return 0;
b788db79
RW
377}
378
379/**
380 * memory_bm_create - allocate memory for a memory bitmap
381 */
b788db79
RW
382static int
383memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
384{
385 struct chain_allocator ca;
846705de
RW
386 struct list_head mem_extents;
387 struct mem_extent *ext;
388 int error;
b788db79
RW
389
390 chain_init(&ca, gfp_mask, safe_needed);
846705de 391 INIT_LIST_HEAD(&bm->blocks);
b788db79 392
846705de
RW
393 error = create_mem_extents(&mem_extents, gfp_mask);
394 if (error)
395 return error;
b788db79 396
846705de
RW
397 list_for_each_entry(ext, &mem_extents, hook) {
398 struct bm_block *bb;
399 unsigned long pfn = ext->start;
400 unsigned long pages = ext->end - ext->start;
b788db79 401
846705de 402 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
b788db79 403
846705de
RW
404 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
405 if (error)
406 goto Error;
b788db79 407
846705de
RW
408 list_for_each_entry_continue(bb, &bm->blocks, hook) {
409 bb->data = get_image_page(gfp_mask, safe_needed);
410 if (!bb->data) {
411 error = -ENOMEM;
412 goto Error;
413 }
b788db79
RW
414
415 bb->start_pfn = pfn;
846705de 416 if (pages >= BM_BITS_PER_BLOCK) {
b788db79 417 pfn += BM_BITS_PER_BLOCK;
846705de 418 pages -= BM_BITS_PER_BLOCK;
b788db79
RW
419 } else {
420 /* This is executed only once in the loop */
846705de 421 pfn += pages;
b788db79
RW
422 }
423 bb->end_pfn = pfn;
b788db79 424 }
b788db79 425 }
846705de 426
b788db79
RW
427 bm->p_list = ca.chain;
428 memory_bm_position_reset(bm);
846705de
RW
429 Exit:
430 free_mem_extents(&mem_extents);
431 return error;
b788db79 432
846705de 433 Error:
b788db79
RW
434 bm->p_list = ca.chain;
435 memory_bm_free(bm, PG_UNSAFE_CLEAR);
846705de 436 goto Exit;
b788db79
RW
437}
438
439/**
440 * memory_bm_free - free memory occupied by the memory bitmap @bm
441 */
b788db79
RW
442static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
443{
846705de 444 struct bm_block *bb;
b788db79 445
846705de
RW
446 list_for_each_entry(bb, &bm->blocks, hook)
447 if (bb->data)
448 free_image_page(bb->data, clear_nosave_free);
b788db79 449
b788db79 450 free_list_of_pages(bm->p_list, clear_nosave_free);
846705de
RW
451
452 INIT_LIST_HEAD(&bm->blocks);
b788db79
RW
453}
454
455/**
74dfd666 456 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
b788db79
RW
457 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
458 * of @bm->cur_zone_bm are updated.
b788db79 459 */
a82f7119 460static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
74dfd666 461 void **addr, unsigned int *bit_nr)
b788db79 462{
b788db79
RW
463 struct bm_block *bb;
464
846705de
RW
465 /*
466 * Check if the pfn corresponds to the current bitmap block and find
467 * the block where it fits if this is not the case.
468 */
469 bb = bm->cur.block;
b788db79 470 if (pfn < bb->start_pfn)
846705de
RW
471 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
472 if (pfn >= bb->start_pfn)
473 break;
b788db79 474
846705de
RW
475 if (pfn >= bb->end_pfn)
476 list_for_each_entry_continue(bb, &bm->blocks, hook)
477 if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
478 break;
74dfd666 479
846705de
RW
480 if (&bb->hook == &bm->blocks)
481 return -EFAULT;
482
483 /* The block has been found */
484 bm->cur.block = bb;
b788db79 485 pfn -= bb->start_pfn;
846705de 486 bm->cur.bit = pfn + 1;
0d83304c
AM
487 *bit_nr = pfn;
488 *addr = bb->data;
a82f7119 489 return 0;
74dfd666
RW
490}
491
492static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
493{
494 void *addr;
495 unsigned int bit;
a82f7119 496 int error;
74dfd666 497
a82f7119
RW
498 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
499 BUG_ON(error);
74dfd666
RW
500 set_bit(bit, addr);
501}
502
a82f7119
RW
503static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
504{
505 void *addr;
506 unsigned int bit;
507 int error;
508
509 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
510 if (!error)
511 set_bit(bit, addr);
512 return error;
513}
514
74dfd666
RW
515static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
516{
517 void *addr;
518 unsigned int bit;
a82f7119 519 int error;
74dfd666 520
a82f7119
RW
521 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
522 BUG_ON(error);
74dfd666
RW
523 clear_bit(bit, addr);
524}
525
526static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
527{
528 void *addr;
529 unsigned int bit;
a82f7119 530 int error;
74dfd666 531
a82f7119
RW
532 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
533 BUG_ON(error);
74dfd666 534 return test_bit(bit, addr);
b788db79
RW
535}
536
69643279
RW
537static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
538{
539 void *addr;
540 unsigned int bit;
541
542 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
543}
544
b788db79
RW
545/**
546 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
547 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
548 * returned.
549 *
550 * It is required to run memory_bm_position_reset() before the first call to
551 * this function.
552 */
553
554static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
555{
b788db79 556 struct bm_block *bb;
b788db79
RW
557 int bit;
558
846705de 559 bb = bm->cur.block;
b788db79 560 do {
846705de
RW
561 bit = bm->cur.bit;
562 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
563 if (bit < bm_block_bits(bb))
564 goto Return_pfn;
565
566 bb = list_entry(bb->hook.next, struct bm_block, hook);
567 bm->cur.block = bb;
568 bm->cur.bit = 0;
569 } while (&bb->hook != &bm->blocks);
570
b788db79
RW
571 memory_bm_position_reset(bm);
572 return BM_END_OF_MAP;
573
59a49335 574 Return_pfn:
0d83304c
AM
575 bm->cur.bit = bit + 1;
576 return bb->start_pfn + bit;
b788db79
RW
577}
578
74dfd666
RW
579/**
580 * This structure represents a range of page frames the contents of which
581 * should not be saved during the suspend.
582 */
583
584struct nosave_region {
585 struct list_head list;
586 unsigned long start_pfn;
587 unsigned long end_pfn;
588};
589
590static LIST_HEAD(nosave_regions);
591
592/**
593 * register_nosave_region - register a range of page frames the contents
594 * of which should not be saved during the suspend (to be used in the early
595 * initialization code)
596 */
597
598void __init
940d67f6
JB
599__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
600 int use_kmalloc)
74dfd666
RW
601{
602 struct nosave_region *region;
603
604 if (start_pfn >= end_pfn)
605 return;
606
607 if (!list_empty(&nosave_regions)) {
608 /* Try to extend the previous region (they should be sorted) */
609 region = list_entry(nosave_regions.prev,
610 struct nosave_region, list);
611 if (region->end_pfn == start_pfn) {
612 region->end_pfn = end_pfn;
613 goto Report;
614 }
615 }
940d67f6
JB
616 if (use_kmalloc) {
617 /* during init, this shouldn't fail */
618 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
619 BUG_ON(!region);
620 } else
621 /* This allocation cannot fail */
622 region = alloc_bootmem_low(sizeof(struct nosave_region));
74dfd666
RW
623 region->start_pfn = start_pfn;
624 region->end_pfn = end_pfn;
625 list_add_tail(&region->list, &nosave_regions);
626 Report:
23976728 627 printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
74dfd666
RW
628 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
629}
630
631/*
632 * Set bits in this map correspond to the page frames the contents of which
633 * should not be saved during the suspend.
634 */
635static struct memory_bitmap *forbidden_pages_map;
636
637/* Set bits in this map correspond to free page frames. */
638static struct memory_bitmap *free_pages_map;
639
640/*
641 * Each page frame allocated for creating the image is marked by setting the
642 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
643 */
644
645void swsusp_set_page_free(struct page *page)
646{
647 if (free_pages_map)
648 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
649}
650
651static int swsusp_page_is_free(struct page *page)
652{
653 return free_pages_map ?
654 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
655}
656
657void swsusp_unset_page_free(struct page *page)
658{
659 if (free_pages_map)
660 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
661}
662
663static void swsusp_set_page_forbidden(struct page *page)
664{
665 if (forbidden_pages_map)
666 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
667}
668
669int swsusp_page_is_forbidden(struct page *page)
670{
671 return forbidden_pages_map ?
672 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
673}
674
675static void swsusp_unset_page_forbidden(struct page *page)
676{
677 if (forbidden_pages_map)
678 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
679}
680
681/**
682 * mark_nosave_pages - set bits corresponding to the page frames the
683 * contents of which should not be saved in a given bitmap.
684 */
685
686static void mark_nosave_pages(struct memory_bitmap *bm)
687{
688 struct nosave_region *region;
689
690 if (list_empty(&nosave_regions))
691 return;
692
693 list_for_each_entry(region, &nosave_regions, list) {
694 unsigned long pfn;
695
23976728 696 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
74dfd666
RW
697 region->start_pfn << PAGE_SHIFT,
698 region->end_pfn << PAGE_SHIFT);
699
700 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
a82f7119
RW
701 if (pfn_valid(pfn)) {
702 /*
703 * It is safe to ignore the result of
704 * mem_bm_set_bit_check() here, since we won't
705 * touch the PFNs for which the error is
706 * returned anyway.
707 */
708 mem_bm_set_bit_check(bm, pfn);
709 }
74dfd666
RW
710 }
711}
712
713/**
714 * create_basic_memory_bitmaps - create bitmaps needed for marking page
715 * frames that should not be saved and free page frames. The pointers
716 * forbidden_pages_map and free_pages_map are only modified if everything
717 * goes well, because we don't want the bits to be used before both bitmaps
718 * are set up.
719 */
720
721int create_basic_memory_bitmaps(void)
722{
723 struct memory_bitmap *bm1, *bm2;
724 int error = 0;
725
726 BUG_ON(forbidden_pages_map || free_pages_map);
727
0709db60 728 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
729 if (!bm1)
730 return -ENOMEM;
731
0709db60 732 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
74dfd666
RW
733 if (error)
734 goto Free_first_object;
735
0709db60 736 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
737 if (!bm2)
738 goto Free_first_bitmap;
739
0709db60 740 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
74dfd666
RW
741 if (error)
742 goto Free_second_object;
743
744 forbidden_pages_map = bm1;
745 free_pages_map = bm2;
746 mark_nosave_pages(forbidden_pages_map);
747
23976728 748 pr_debug("PM: Basic memory bitmaps created\n");
74dfd666
RW
749
750 return 0;
751
752 Free_second_object:
753 kfree(bm2);
754 Free_first_bitmap:
755 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
756 Free_first_object:
757 kfree(bm1);
758 return -ENOMEM;
759}
760
761/**
762 * free_basic_memory_bitmaps - free memory bitmaps allocated by
763 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
764 * so that the bitmaps themselves are not referred to while they are being
765 * freed.
766 */
767
768void free_basic_memory_bitmaps(void)
769{
770 struct memory_bitmap *bm1, *bm2;
771
772 BUG_ON(!(forbidden_pages_map && free_pages_map));
773
774 bm1 = forbidden_pages_map;
775 bm2 = free_pages_map;
776 forbidden_pages_map = NULL;
777 free_pages_map = NULL;
778 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
779 kfree(bm1);
780 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
781 kfree(bm2);
782
23976728 783 pr_debug("PM: Basic memory bitmaps freed\n");
74dfd666
RW
784}
785
b788db79
RW
786/**
787 * snapshot_additional_pages - estimate the number of additional pages
788 * be needed for setting up the suspend image data structures for given
789 * zone (usually the returned value is greater than the exact number)
790 */
791
792unsigned int snapshot_additional_pages(struct zone *zone)
793{
794 unsigned int res;
795
796 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
797 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
8357376d 798 return 2 * res;
b788db79
RW
799}
800
8357376d
RW
801#ifdef CONFIG_HIGHMEM
802/**
803 * count_free_highmem_pages - compute the total number of free highmem
804 * pages, system-wide.
805 */
806
807static unsigned int count_free_highmem_pages(void)
808{
809 struct zone *zone;
810 unsigned int cnt = 0;
811
ee99c71c
KM
812 for_each_populated_zone(zone)
813 if (is_highmem(zone))
d23ad423 814 cnt += zone_page_state(zone, NR_FREE_PAGES);
8357376d
RW
815
816 return cnt;
817}
818
819/**
820 * saveable_highmem_page - Determine whether a highmem page should be
821 * included in the suspend image.
822 *
823 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
824 * and it isn't a part of a free chunk of pages.
825 */
846705de 826static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
8357376d
RW
827{
828 struct page *page;
829
830 if (!pfn_valid(pfn))
831 return NULL;
832
833 page = pfn_to_page(pfn);
846705de
RW
834 if (page_zone(page) != zone)
835 return NULL;
8357376d
RW
836
837 BUG_ON(!PageHighMem(page));
838
7be98234
RW
839 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
840 PageReserved(page))
8357376d
RW
841 return NULL;
842
843 return page;
844}
845
846/**
847 * count_highmem_pages - compute the total number of saveable highmem
848 * pages.
849 */
850
fe419535 851static unsigned int count_highmem_pages(void)
8357376d
RW
852{
853 struct zone *zone;
854 unsigned int n = 0;
855
856 for_each_zone(zone) {
857 unsigned long pfn, max_zone_pfn;
858
859 if (!is_highmem(zone))
860 continue;
861
862 mark_free_pages(zone);
863 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
864 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 865 if (saveable_highmem_page(zone, pfn))
8357376d
RW
866 n++;
867 }
868 return n;
869}
870#else
846705de
RW
871static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
872{
873 return NULL;
874}
8357376d
RW
875#endif /* CONFIG_HIGHMEM */
876
25761b6e 877/**
8a235efa
RW
878 * saveable_page - Determine whether a non-highmem page should be included
879 * in the suspend image.
25761b6e 880 *
8357376d
RW
881 * We should save the page if it isn't Nosave, and is not in the range
882 * of pages statically defined as 'unsaveable', and it isn't a part of
883 * a free chunk of pages.
25761b6e 884 */
846705de 885static struct page *saveable_page(struct zone *zone, unsigned long pfn)
25761b6e 886{
de491861 887 struct page *page;
25761b6e
RW
888
889 if (!pfn_valid(pfn))
ae83c5ee 890 return NULL;
25761b6e
RW
891
892 page = pfn_to_page(pfn);
846705de
RW
893 if (page_zone(page) != zone)
894 return NULL;
ae83c5ee 895
8357376d
RW
896 BUG_ON(PageHighMem(page));
897
7be98234 898 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
ae83c5ee 899 return NULL;
8357376d 900
8a235efa
RW
901 if (PageReserved(page)
902 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
ae83c5ee 903 return NULL;
25761b6e 904
ae83c5ee 905 return page;
25761b6e
RW
906}
907
8357376d
RW
908/**
909 * count_data_pages - compute the total number of saveable non-highmem
910 * pages.
911 */
912
fe419535 913static unsigned int count_data_pages(void)
25761b6e
RW
914{
915 struct zone *zone;
ae83c5ee 916 unsigned long pfn, max_zone_pfn;
dc19d507 917 unsigned int n = 0;
25761b6e 918
8357376d 919 for_each_zone(zone) {
25761b6e
RW
920 if (is_highmem(zone))
921 continue;
8357376d 922
25761b6e 923 mark_free_pages(zone);
ae83c5ee
RW
924 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
925 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 926 if (saveable_page(zone, pfn))
8357376d 927 n++;
25761b6e 928 }
a0f49651 929 return n;
25761b6e
RW
930}
931
8357376d
RW
932/* This is needed, because copy_page and memcpy are not usable for copying
933 * task structs.
934 */
935static inline void do_copy_page(long *dst, long *src)
f623f0db
RW
936{
937 int n;
938
f623f0db
RW
939 for (n = PAGE_SIZE / sizeof(long); n; n--)
940 *dst++ = *src++;
941}
942
8a235efa
RW
943
944/**
945 * safe_copy_page - check if the page we are going to copy is marked as
946 * present in the kernel page tables (this always is the case if
947 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
948 * kernel_page_present() always returns 'true').
949 */
950static void safe_copy_page(void *dst, struct page *s_page)
951{
952 if (kernel_page_present(s_page)) {
953 do_copy_page(dst, page_address(s_page));
954 } else {
955 kernel_map_pages(s_page, 1, 1);
956 do_copy_page(dst, page_address(s_page));
957 kernel_map_pages(s_page, 1, 0);
958 }
959}
960
961
8357376d
RW
962#ifdef CONFIG_HIGHMEM
963static inline struct page *
964page_is_saveable(struct zone *zone, unsigned long pfn)
965{
966 return is_highmem(zone) ?
846705de 967 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
8357376d
RW
968}
969
8a235efa 970static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d
RW
971{
972 struct page *s_page, *d_page;
973 void *src, *dst;
974
975 s_page = pfn_to_page(src_pfn);
976 d_page = pfn_to_page(dst_pfn);
977 if (PageHighMem(s_page)) {
978 src = kmap_atomic(s_page, KM_USER0);
979 dst = kmap_atomic(d_page, KM_USER1);
980 do_copy_page(dst, src);
981 kunmap_atomic(src, KM_USER0);
982 kunmap_atomic(dst, KM_USER1);
983 } else {
8357376d
RW
984 if (PageHighMem(d_page)) {
985 /* Page pointed to by src may contain some kernel
986 * data modified by kmap_atomic()
987 */
8a235efa 988 safe_copy_page(buffer, s_page);
baa5835d 989 dst = kmap_atomic(d_page, KM_USER0);
8357376d
RW
990 memcpy(dst, buffer, PAGE_SIZE);
991 kunmap_atomic(dst, KM_USER0);
992 } else {
8a235efa 993 safe_copy_page(page_address(d_page), s_page);
8357376d
RW
994 }
995 }
996}
997#else
846705de 998#define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
8357376d 999
8a235efa 1000static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d 1001{
8a235efa
RW
1002 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1003 pfn_to_page(src_pfn));
8357376d
RW
1004}
1005#endif /* CONFIG_HIGHMEM */
1006
b788db79
RW
1007static void
1008copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
25761b6e
RW
1009{
1010 struct zone *zone;
b788db79 1011 unsigned long pfn;
25761b6e 1012
8357376d 1013 for_each_zone(zone) {
b788db79
RW
1014 unsigned long max_zone_pfn;
1015
25761b6e 1016 mark_free_pages(zone);
ae83c5ee 1017 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
b788db79 1018 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
8357376d 1019 if (page_is_saveable(zone, pfn))
b788db79 1020 memory_bm_set_bit(orig_bm, pfn);
25761b6e 1021 }
b788db79
RW
1022 memory_bm_position_reset(orig_bm);
1023 memory_bm_position_reset(copy_bm);
df7c4872 1024 for(;;) {
b788db79 1025 pfn = memory_bm_next_pfn(orig_bm);
df7c4872
FW
1026 if (unlikely(pfn == BM_END_OF_MAP))
1027 break;
1028 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1029 }
25761b6e
RW
1030}
1031
8357376d
RW
1032/* Total number of image pages */
1033static unsigned int nr_copy_pages;
1034/* Number of pages needed for saving the original pfns of the image pages */
1035static unsigned int nr_meta_pages;
1036
25761b6e 1037/**
940864dd 1038 * swsusp_free - free pages allocated for the suspend.
cd560bb2 1039 *
940864dd
RW
1040 * Suspend pages are alocated before the atomic copy is made, so we
1041 * need to release them after the resume.
25761b6e
RW
1042 */
1043
1044void swsusp_free(void)
1045{
1046 struct zone *zone;
ae83c5ee 1047 unsigned long pfn, max_zone_pfn;
25761b6e
RW
1048
1049 for_each_zone(zone) {
ae83c5ee
RW
1050 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1051 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1052 if (pfn_valid(pfn)) {
1053 struct page *page = pfn_to_page(pfn);
1054
7be98234
RW
1055 if (swsusp_page_is_forbidden(page) &&
1056 swsusp_page_is_free(page)) {
1057 swsusp_unset_page_forbidden(page);
1058 swsusp_unset_page_free(page);
8357376d 1059 __free_page(page);
25761b6e
RW
1060 }
1061 }
1062 }
f577eb30
RW
1063 nr_copy_pages = 0;
1064 nr_meta_pages = 0;
75534b50 1065 restore_pblist = NULL;
6e1819d6 1066 buffer = NULL;
25761b6e
RW
1067}
1068
4bb33435
RW
1069/* Helper functions used for the shrinking of memory. */
1070
1071#define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1072
fe419535 1073/**
4bb33435
RW
1074 * preallocate_image_pages - Allocate a number of pages for hibernation image
1075 * @nr_pages: Number of page frames to allocate.
1076 * @mask: GFP flags to use for the allocation.
fe419535 1077 *
4bb33435
RW
1078 * Return value: Number of page frames actually allocated
1079 */
1080static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1081{
1082 unsigned long nr_alloc = 0;
1083
1084 while (nr_pages > 0) {
1085 if (!alloc_image_page(mask))
1086 break;
1087 nr_pages--;
1088 nr_alloc++;
1089 }
1090
1091 return nr_alloc;
1092}
1093
1094static unsigned long preallocate_image_memory(unsigned long nr_pages)
1095{
1096 return preallocate_image_pages(nr_pages, GFP_IMAGE);
1097}
1098
1099#ifdef CONFIG_HIGHMEM
1100static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1101{
1102 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1103}
1104
1105/**
1106 * __fraction - Compute (an approximation of) x * (multiplier / base)
fe419535 1107 */
4bb33435
RW
1108static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1109{
1110 x *= multiplier;
1111 do_div(x, base);
1112 return (unsigned long)x;
1113}
fe419535 1114
4bb33435
RW
1115static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1116 unsigned long highmem,
1117 unsigned long total)
fe419535 1118{
4bb33435
RW
1119 unsigned long alloc = __fraction(nr_pages, highmem, total);
1120
1121 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
fe419535 1122}
4bb33435
RW
1123#else /* CONFIG_HIGHMEM */
1124static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1125{
1126 return 0;
1127}
1128
1129static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1130 unsigned long highmem,
1131 unsigned long total)
1132{
1133 return 0;
1134}
1135#endif /* CONFIG_HIGHMEM */
fe419535 1136
4bb33435
RW
1137/**
1138 * swsusp_shrink_memory - Make the kernel release as much memory as needed
1139 *
1140 * To create a hibernation image it is necessary to make a copy of every page
1141 * frame in use. We also need a number of page frames to be free during
1142 * hibernation for allocations made while saving the image and for device
1143 * drivers, in case they need to allocate memory from their hibernation
1144 * callbacks (these two numbers are given by PAGES_FOR_IO and SPARE_PAGES,
1145 * respectively, both of which are rough estimates). To make this happen, we
1146 * compute the total number of available page frames and allocate at least
1147 *
1148 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 + 2 * SPARE_PAGES
1149 *
1150 * of them, which corresponds to the maximum size of a hibernation image.
1151 *
1152 * If image_size is set below the number following from the above formula,
1153 * the preallocation of memory is continued until the total number of saveable
1154 * pages in the system is below the requested image size or it is impossible to
1155 * allocate more memory, whichever happens first.
1156 */
fe419535
RW
1157int swsusp_shrink_memory(void)
1158{
fe419535 1159 struct zone *zone;
4bb33435
RW
1160 unsigned long saveable, size, max_size, count, highmem, pages = 0;
1161 unsigned long alloc, pages_highmem;
fe419535 1162 struct timeval start, stop;
4bb33435 1163 int error = 0;
fe419535 1164
4bb33435 1165 printk(KERN_INFO "PM: Shrinking memory... ");
fe419535 1166 do_gettimeofday(&start);
fe419535 1167
4bb33435
RW
1168 /* Count the number of saveable data pages. */
1169 highmem = count_highmem_pages();
1170 saveable = count_data_pages();
fe419535 1171
4bb33435
RW
1172 /*
1173 * Compute the total number of page frames we can use (count) and the
1174 * number of pages needed for image metadata (size).
1175 */
1176 count = saveable;
1177 saveable += highmem;
1178 size = 0;
1179 for_each_populated_zone(zone) {
1180 size += snapshot_additional_pages(zone);
1181 if (is_highmem(zone))
1182 highmem += zone_page_state(zone, NR_FREE_PAGES);
1183 else
1184 count += zone_page_state(zone, NR_FREE_PAGES);
1185 }
1186 count += highmem;
1187 count -= totalreserve_pages;
1188
1189 /* Compute the maximum number of saveable pages to leave in memory. */
1190 max_size = (count - (size + PAGES_FOR_IO)) / 2 - 2 * SPARE_PAGES;
1191 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1192 if (size > max_size)
1193 size = max_size;
1194 /*
1195 * If the maximum is not less than the current number of saveable pages
1196 * in memory, we don't need to do anything more.
1197 */
1198 if (size >= saveable)
1199 goto out;
1200
1201 /*
1202 * Let the memory management subsystem know that we're going to need a
1203 * large number of page frames to allocate and make it free some memory.
1204 * NOTE: If this is not done, performance will be hurt badly in some
1205 * test cases.
1206 */
1207 shrink_all_memory(saveable - size);
1208
1209 /*
1210 * The number of saveable pages in memory was too high, so apply some
1211 * pressure to decrease it. First, make room for the largest possible
1212 * image and fail if that doesn't work. Next, try to decrease the size
1213 * of the image as much as indicated by image_size using allocations
1214 * from highmem and non-highmem zones separately.
1215 */
1216 pages_highmem = preallocate_image_highmem(highmem / 2);
1217 alloc = (count - max_size) - pages_highmem;
1218 pages = preallocate_image_memory(alloc);
1219 if (pages < alloc) {
1220 error = -ENOMEM;
1221 goto free_out;
1222 }
1223 size = max_size - size;
1224 alloc = size;
1225 size = preallocate_highmem_fraction(size, highmem, count);
1226 pages_highmem += size;
1227 alloc -= size;
1228 pages += preallocate_image_memory(alloc);
1229 pages += pages_highmem;
1230
1231 free_out:
1232 /* Release all of the preallocated page frames. */
1233 swsusp_free();
1234
1235 if (error) {
1236 printk(KERN_CONT "\n");
1237 return error;
1238 }
1239
1240 out:
fe419535 1241 do_gettimeofday(&stop);
4bb33435 1242 printk(KERN_CONT "done (preallocated %lu free pages)\n", pages);
fe419535
RW
1243 swsusp_show_speed(&start, &stop, pages, "Freed");
1244
1245 return 0;
1246}
1247
8357376d
RW
1248#ifdef CONFIG_HIGHMEM
1249/**
1250 * count_pages_for_highmem - compute the number of non-highmem pages
1251 * that will be necessary for creating copies of highmem pages.
1252 */
1253
1254static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1255{
1256 unsigned int free_highmem = count_free_highmem_pages();
1257
1258 if (free_highmem >= nr_highmem)
1259 nr_highmem = 0;
1260 else
1261 nr_highmem -= free_highmem;
1262
1263 return nr_highmem;
1264}
1265#else
1266static unsigned int
1267count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1268#endif /* CONFIG_HIGHMEM */
25761b6e
RW
1269
1270/**
8357376d
RW
1271 * enough_free_mem - Make sure we have enough free memory for the
1272 * snapshot image.
25761b6e
RW
1273 */
1274
8357376d 1275static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
25761b6e 1276{
e5e2fa78 1277 struct zone *zone;
940864dd 1278 unsigned int free = 0, meta = 0;
e5e2fa78 1279
8357376d
RW
1280 for_each_zone(zone) {
1281 meta += snapshot_additional_pages(zone);
1282 if (!is_highmem(zone))
d23ad423 1283 free += zone_page_state(zone, NR_FREE_PAGES);
8357376d 1284 }
940864dd 1285
8357376d 1286 nr_pages += count_pages_for_highmem(nr_highmem);
23976728 1287 pr_debug("PM: Normal pages needed: %u + %u + %u, available pages: %u\n",
940864dd
RW
1288 nr_pages, PAGES_FOR_IO, meta, free);
1289
1290 return free > nr_pages + PAGES_FOR_IO + meta;
25761b6e
RW
1291}
1292
8357376d
RW
1293#ifdef CONFIG_HIGHMEM
1294/**
1295 * get_highmem_buffer - if there are some highmem pages in the suspend
1296 * image, we may need the buffer to copy them and/or load their data.
1297 */
1298
1299static inline int get_highmem_buffer(int safe_needed)
1300{
1301 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1302 return buffer ? 0 : -ENOMEM;
1303}
1304
1305/**
1306 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1307 * Try to allocate as many pages as needed, but if the number of free
1308 * highmem pages is lesser than that, allocate them all.
1309 */
1310
1311static inline unsigned int
1312alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1313{
1314 unsigned int to_alloc = count_free_highmem_pages();
1315
1316 if (to_alloc > nr_highmem)
1317 to_alloc = nr_highmem;
1318
1319 nr_highmem -= to_alloc;
1320 while (to_alloc-- > 0) {
1321 struct page *page;
1322
1323 page = alloc_image_page(__GFP_HIGHMEM);
1324 memory_bm_set_bit(bm, page_to_pfn(page));
1325 }
1326 return nr_highmem;
1327}
1328#else
1329static inline int get_highmem_buffer(int safe_needed) { return 0; }
1330
1331static inline unsigned int
1332alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1333#endif /* CONFIG_HIGHMEM */
1334
1335/**
1336 * swsusp_alloc - allocate memory for the suspend image
1337 *
1338 * We first try to allocate as many highmem pages as there are
1339 * saveable highmem pages in the system. If that fails, we allocate
1340 * non-highmem pages for the copies of the remaining highmem ones.
1341 *
1342 * In this approach it is likely that the copies of highmem pages will
1343 * also be located in the high memory, because of the way in which
1344 * copy_data_pages() works.
1345 */
1346
b788db79
RW
1347static int
1348swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
8357376d 1349 unsigned int nr_pages, unsigned int nr_highmem)
054bd4c1 1350{
b788db79 1351 int error;
054bd4c1 1352
b788db79
RW
1353 error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1354 if (error)
1355 goto Free;
25761b6e 1356
b788db79
RW
1357 error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1358 if (error)
1359 goto Free;
25761b6e 1360
8357376d
RW
1361 if (nr_highmem > 0) {
1362 error = get_highmem_buffer(PG_ANY);
1363 if (error)
1364 goto Free;
1365
1366 nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
1367 }
b788db79 1368 while (nr_pages-- > 0) {
8357376d
RW
1369 struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1370
b788db79
RW
1371 if (!page)
1372 goto Free;
25761b6e 1373
b788db79 1374 memory_bm_set_bit(copy_bm, page_to_pfn(page));
25761b6e 1375 }
b788db79 1376 return 0;
25761b6e 1377
59a49335 1378 Free:
b788db79
RW
1379 swsusp_free();
1380 return -ENOMEM;
25761b6e
RW
1381}
1382
8357376d
RW
1383/* Memory bitmap used for marking saveable pages (during suspend) or the
1384 * suspend image pages (during resume)
1385 */
b788db79 1386static struct memory_bitmap orig_bm;
8357376d
RW
1387/* Memory bitmap used on suspend for marking allocated pages that will contain
1388 * the copies of saveable pages. During resume it is initially used for
1389 * marking the suspend image pages, but then its set bits are duplicated in
1390 * @orig_bm and it is released. Next, on systems with high memory, it may be
1391 * used for marking "safe" highmem pages, but it has to be reinitialized for
1392 * this purpose.
b788db79
RW
1393 */
1394static struct memory_bitmap copy_bm;
1395
2e32a43e 1396asmlinkage int swsusp_save(void)
25761b6e 1397{
8357376d 1398 unsigned int nr_pages, nr_highmem;
25761b6e 1399
23976728 1400 printk(KERN_INFO "PM: Creating hibernation image: \n");
25761b6e 1401
9f8f2172 1402 drain_local_pages(NULL);
a0f49651 1403 nr_pages = count_data_pages();
8357376d 1404 nr_highmem = count_highmem_pages();
23976728 1405 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
25761b6e 1406
8357376d 1407 if (!enough_free_mem(nr_pages, nr_highmem)) {
23976728 1408 printk(KERN_ERR "PM: Not enough free memory\n");
25761b6e
RW
1409 return -ENOMEM;
1410 }
1411
8357376d 1412 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
23976728 1413 printk(KERN_ERR "PM: Memory allocation failed\n");
a0f49651 1414 return -ENOMEM;
8357376d 1415 }
25761b6e
RW
1416
1417 /* During allocating of suspend pagedir, new cold pages may appear.
1418 * Kill them.
1419 */
9f8f2172 1420 drain_local_pages(NULL);
b788db79 1421 copy_data_pages(&copy_bm, &orig_bm);
25761b6e
RW
1422
1423 /*
1424 * End of critical section. From now on, we can write to memory,
1425 * but we should not touch disk. This specially means we must _not_
1426 * touch swap space! Except we must write out our image of course.
1427 */
1428
8357376d 1429 nr_pages += nr_highmem;
a0f49651 1430 nr_copy_pages = nr_pages;
8357376d 1431 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
a0f49651 1432
23976728
RW
1433 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1434 nr_pages);
8357376d 1435
25761b6e
RW
1436 return 0;
1437}
f577eb30 1438
d307c4a8
RW
1439#ifndef CONFIG_ARCH_HIBERNATION_HEADER
1440static int init_header_complete(struct swsusp_info *info)
f577eb30 1441{
d307c4a8 1442 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
f577eb30 1443 info->version_code = LINUX_VERSION_CODE;
d307c4a8
RW
1444 return 0;
1445}
1446
1447static char *check_image_kernel(struct swsusp_info *info)
1448{
1449 if (info->version_code != LINUX_VERSION_CODE)
1450 return "kernel version";
1451 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1452 return "system type";
1453 if (strcmp(info->uts.release,init_utsname()->release))
1454 return "kernel release";
1455 if (strcmp(info->uts.version,init_utsname()->version))
1456 return "version";
1457 if (strcmp(info->uts.machine,init_utsname()->machine))
1458 return "machine";
1459 return NULL;
1460}
1461#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1462
af508b34
RW
1463unsigned long snapshot_get_image_size(void)
1464{
1465 return nr_copy_pages + nr_meta_pages + 1;
1466}
1467
d307c4a8
RW
1468static int init_header(struct swsusp_info *info)
1469{
1470 memset(info, 0, sizeof(struct swsusp_info));
f577eb30 1471 info->num_physpages = num_physpages;
f577eb30 1472 info->image_pages = nr_copy_pages;
af508b34 1473 info->pages = snapshot_get_image_size();
6e1819d6
RW
1474 info->size = info->pages;
1475 info->size <<= PAGE_SHIFT;
d307c4a8 1476 return init_header_complete(info);
f577eb30
RW
1477}
1478
1479/**
940864dd
RW
1480 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1481 * are stored in the array @buf[] (1 page at a time)
f577eb30
RW
1482 */
1483
b788db79 1484static inline void
940864dd 1485pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
1486{
1487 int j;
1488
b788db79 1489 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
940864dd
RW
1490 buf[j] = memory_bm_next_pfn(bm);
1491 if (unlikely(buf[j] == BM_END_OF_MAP))
b788db79 1492 break;
f577eb30 1493 }
f577eb30
RW
1494}
1495
1496/**
1497 * snapshot_read_next - used for reading the system memory snapshot.
1498 *
1499 * On the first call to it @handle should point to a zeroed
1500 * snapshot_handle structure. The structure gets updated and a pointer
1501 * to it should be passed to this function every next time.
1502 *
1503 * The @count parameter should contain the number of bytes the caller
1504 * wants to read from the snapshot. It must not be zero.
1505 *
1506 * On success the function returns a positive number. Then, the caller
1507 * is allowed to read up to the returned number of bytes from the memory
1508 * location computed by the data_of() macro. The number returned
1509 * may be smaller than @count, but this only happens if the read would
1510 * cross a page boundary otherwise.
1511 *
1512 * The function returns 0 to indicate the end of data stream condition,
1513 * and a negative number is returned on error. In such cases the
1514 * structure pointed to by @handle is not updated and should not be used
1515 * any more.
1516 */
1517
1518int snapshot_read_next(struct snapshot_handle *handle, size_t count)
1519{
fb13a28b 1520 if (handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 1521 return 0;
b788db79 1522
f577eb30
RW
1523 if (!buffer) {
1524 /* This makes the buffer be freed by swsusp_free() */
8357376d 1525 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
f577eb30
RW
1526 if (!buffer)
1527 return -ENOMEM;
1528 }
1529 if (!handle->offset) {
d307c4a8
RW
1530 int error;
1531
1532 error = init_header((struct swsusp_info *)buffer);
1533 if (error)
1534 return error;
f577eb30 1535 handle->buffer = buffer;
b788db79
RW
1536 memory_bm_position_reset(&orig_bm);
1537 memory_bm_position_reset(&copy_bm);
f577eb30 1538 }
fb13a28b
RW
1539 if (handle->prev < handle->cur) {
1540 if (handle->cur <= nr_meta_pages) {
b788db79 1541 memset(buffer, 0, PAGE_SIZE);
940864dd 1542 pack_pfns(buffer, &orig_bm);
f577eb30 1543 } else {
8357376d 1544 struct page *page;
b788db79 1545
8357376d
RW
1546 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1547 if (PageHighMem(page)) {
1548 /* Highmem pages are copied to the buffer,
1549 * because we can't return with a kmapped
1550 * highmem page (we may not be called again).
1551 */
1552 void *kaddr;
1553
1554 kaddr = kmap_atomic(page, KM_USER0);
1555 memcpy(buffer, kaddr, PAGE_SIZE);
1556 kunmap_atomic(kaddr, KM_USER0);
1557 handle->buffer = buffer;
1558 } else {
1559 handle->buffer = page_address(page);
1560 }
f577eb30 1561 }
fb13a28b 1562 handle->prev = handle->cur;
f577eb30 1563 }
fb13a28b
RW
1564 handle->buf_offset = handle->cur_offset;
1565 if (handle->cur_offset + count >= PAGE_SIZE) {
1566 count = PAGE_SIZE - handle->cur_offset;
1567 handle->cur_offset = 0;
1568 handle->cur++;
f577eb30 1569 } else {
fb13a28b 1570 handle->cur_offset += count;
f577eb30
RW
1571 }
1572 handle->offset += count;
1573 return count;
1574}
1575
1576/**
1577 * mark_unsafe_pages - mark the pages that cannot be used for storing
1578 * the image during resume, because they conflict with the pages that
1579 * had been used before suspend
1580 */
1581
940864dd 1582static int mark_unsafe_pages(struct memory_bitmap *bm)
f577eb30
RW
1583{
1584 struct zone *zone;
ae83c5ee 1585 unsigned long pfn, max_zone_pfn;
f577eb30
RW
1586
1587 /* Clear page flags */
8357376d 1588 for_each_zone(zone) {
ae83c5ee
RW
1589 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1590 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1591 if (pfn_valid(pfn))
7be98234 1592 swsusp_unset_page_free(pfn_to_page(pfn));
f577eb30
RW
1593 }
1594
940864dd
RW
1595 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1596 memory_bm_position_reset(bm);
1597 do {
1598 pfn = memory_bm_next_pfn(bm);
1599 if (likely(pfn != BM_END_OF_MAP)) {
1600 if (likely(pfn_valid(pfn)))
7be98234 1601 swsusp_set_page_free(pfn_to_page(pfn));
940864dd
RW
1602 else
1603 return -EFAULT;
1604 }
1605 } while (pfn != BM_END_OF_MAP);
f577eb30 1606
940864dd 1607 allocated_unsafe_pages = 0;
968808b8 1608
f577eb30
RW
1609 return 0;
1610}
1611
940864dd
RW
1612static void
1613duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
f577eb30 1614{
940864dd
RW
1615 unsigned long pfn;
1616
1617 memory_bm_position_reset(src);
1618 pfn = memory_bm_next_pfn(src);
1619 while (pfn != BM_END_OF_MAP) {
1620 memory_bm_set_bit(dst, pfn);
1621 pfn = memory_bm_next_pfn(src);
f577eb30
RW
1622 }
1623}
1624
d307c4a8 1625static int check_header(struct swsusp_info *info)
f577eb30 1626{
d307c4a8 1627 char *reason;
f577eb30 1628
d307c4a8
RW
1629 reason = check_image_kernel(info);
1630 if (!reason && info->num_physpages != num_physpages)
f577eb30 1631 reason = "memory size";
f577eb30 1632 if (reason) {
23976728 1633 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
f577eb30
RW
1634 return -EPERM;
1635 }
1636 return 0;
1637}
1638
1639/**
1640 * load header - check the image header and copy data from it
1641 */
1642
940864dd
RW
1643static int
1644load_header(struct swsusp_info *info)
f577eb30
RW
1645{
1646 int error;
f577eb30 1647
940864dd 1648 restore_pblist = NULL;
f577eb30
RW
1649 error = check_header(info);
1650 if (!error) {
f577eb30
RW
1651 nr_copy_pages = info->image_pages;
1652 nr_meta_pages = info->pages - info->image_pages - 1;
1653 }
1654 return error;
1655}
1656
1657/**
940864dd
RW
1658 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1659 * the corresponding bit in the memory bitmap @bm
f577eb30 1660 */
69643279 1661static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
1662{
1663 int j;
1664
940864dd
RW
1665 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1666 if (unlikely(buf[j] == BM_END_OF_MAP))
1667 break;
1668
69643279
RW
1669 if (memory_bm_pfn_present(bm, buf[j]))
1670 memory_bm_set_bit(bm, buf[j]);
1671 else
1672 return -EFAULT;
f577eb30 1673 }
69643279
RW
1674
1675 return 0;
f577eb30
RW
1676}
1677
8357376d
RW
1678/* List of "safe" pages that may be used to store data loaded from the suspend
1679 * image
1680 */
1681static struct linked_page *safe_pages_list;
1682
1683#ifdef CONFIG_HIGHMEM
1684/* struct highmem_pbe is used for creating the list of highmem pages that
1685 * should be restored atomically during the resume from disk, because the page
1686 * frames they have occupied before the suspend are in use.
1687 */
1688struct highmem_pbe {
1689 struct page *copy_page; /* data is here now */
1690 struct page *orig_page; /* data was here before the suspend */
1691 struct highmem_pbe *next;
1692};
1693
1694/* List of highmem PBEs needed for restoring the highmem pages that were
1695 * allocated before the suspend and included in the suspend image, but have
1696 * also been allocated by the "resume" kernel, so their contents cannot be
1697 * written directly to their "original" page frames.
1698 */
1699static struct highmem_pbe *highmem_pblist;
1700
1701/**
1702 * count_highmem_image_pages - compute the number of highmem pages in the
1703 * suspend image. The bits in the memory bitmap @bm that correspond to the
1704 * image pages are assumed to be set.
1705 */
1706
1707static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1708{
1709 unsigned long pfn;
1710 unsigned int cnt = 0;
1711
1712 memory_bm_position_reset(bm);
1713 pfn = memory_bm_next_pfn(bm);
1714 while (pfn != BM_END_OF_MAP) {
1715 if (PageHighMem(pfn_to_page(pfn)))
1716 cnt++;
1717
1718 pfn = memory_bm_next_pfn(bm);
1719 }
1720 return cnt;
1721}
1722
1723/**
1724 * prepare_highmem_image - try to allocate as many highmem pages as
1725 * there are highmem image pages (@nr_highmem_p points to the variable
1726 * containing the number of highmem image pages). The pages that are
1727 * "safe" (ie. will not be overwritten when the suspend image is
1728 * restored) have the corresponding bits set in @bm (it must be
1729 * unitialized).
1730 *
1731 * NOTE: This function should not be called if there are no highmem
1732 * image pages.
1733 */
1734
1735static unsigned int safe_highmem_pages;
1736
1737static struct memory_bitmap *safe_highmem_bm;
1738
1739static int
1740prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1741{
1742 unsigned int to_alloc;
1743
1744 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1745 return -ENOMEM;
1746
1747 if (get_highmem_buffer(PG_SAFE))
1748 return -ENOMEM;
1749
1750 to_alloc = count_free_highmem_pages();
1751 if (to_alloc > *nr_highmem_p)
1752 to_alloc = *nr_highmem_p;
1753 else
1754 *nr_highmem_p = to_alloc;
1755
1756 safe_highmem_pages = 0;
1757 while (to_alloc-- > 0) {
1758 struct page *page;
1759
1760 page = alloc_page(__GFP_HIGHMEM);
7be98234 1761 if (!swsusp_page_is_free(page)) {
8357376d
RW
1762 /* The page is "safe", set its bit the bitmap */
1763 memory_bm_set_bit(bm, page_to_pfn(page));
1764 safe_highmem_pages++;
1765 }
1766 /* Mark the page as allocated */
7be98234
RW
1767 swsusp_set_page_forbidden(page);
1768 swsusp_set_page_free(page);
8357376d
RW
1769 }
1770 memory_bm_position_reset(bm);
1771 safe_highmem_bm = bm;
1772 return 0;
1773}
1774
1775/**
1776 * get_highmem_page_buffer - for given highmem image page find the buffer
1777 * that suspend_write_next() should set for its caller to write to.
1778 *
1779 * If the page is to be saved to its "original" page frame or a copy of
1780 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1781 * the copy of the page is to be made in normal memory, so the address of
1782 * the copy is returned.
1783 *
1784 * If @buffer is returned, the caller of suspend_write_next() will write
1785 * the page's contents to @buffer, so they will have to be copied to the
1786 * right location on the next call to suspend_write_next() and it is done
1787 * with the help of copy_last_highmem_page(). For this purpose, if
1788 * @buffer is returned, @last_highmem page is set to the page to which
1789 * the data will have to be copied from @buffer.
1790 */
1791
1792static struct page *last_highmem_page;
1793
1794static void *
1795get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1796{
1797 struct highmem_pbe *pbe;
1798 void *kaddr;
1799
7be98234 1800 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
8357376d
RW
1801 /* We have allocated the "original" page frame and we can
1802 * use it directly to store the loaded page.
1803 */
1804 last_highmem_page = page;
1805 return buffer;
1806 }
1807 /* The "original" page frame has not been allocated and we have to
1808 * use a "safe" page frame to store the loaded page.
1809 */
1810 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1811 if (!pbe) {
1812 swsusp_free();
69643279 1813 return ERR_PTR(-ENOMEM);
8357376d
RW
1814 }
1815 pbe->orig_page = page;
1816 if (safe_highmem_pages > 0) {
1817 struct page *tmp;
1818
1819 /* Copy of the page will be stored in high memory */
1820 kaddr = buffer;
1821 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1822 safe_highmem_pages--;
1823 last_highmem_page = tmp;
1824 pbe->copy_page = tmp;
1825 } else {
1826 /* Copy of the page will be stored in normal memory */
1827 kaddr = safe_pages_list;
1828 safe_pages_list = safe_pages_list->next;
1829 pbe->copy_page = virt_to_page(kaddr);
1830 }
1831 pbe->next = highmem_pblist;
1832 highmem_pblist = pbe;
1833 return kaddr;
1834}
1835
1836/**
1837 * copy_last_highmem_page - copy the contents of a highmem image from
1838 * @buffer, where the caller of snapshot_write_next() has place them,
1839 * to the right location represented by @last_highmem_page .
1840 */
1841
1842static void copy_last_highmem_page(void)
1843{
1844 if (last_highmem_page) {
1845 void *dst;
1846
1847 dst = kmap_atomic(last_highmem_page, KM_USER0);
1848 memcpy(dst, buffer, PAGE_SIZE);
1849 kunmap_atomic(dst, KM_USER0);
1850 last_highmem_page = NULL;
1851 }
1852}
1853
1854static inline int last_highmem_page_copied(void)
1855{
1856 return !last_highmem_page;
1857}
1858
1859static inline void free_highmem_data(void)
1860{
1861 if (safe_highmem_bm)
1862 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
1863
1864 if (buffer)
1865 free_image_page(buffer, PG_UNSAFE_CLEAR);
1866}
1867#else
1868static inline int get_safe_write_buffer(void) { return 0; }
1869
1870static unsigned int
1871count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
1872
1873static inline int
1874prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1875{
1876 return 0;
1877}
1878
1879static inline void *
1880get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1881{
69643279 1882 return ERR_PTR(-EINVAL);
8357376d
RW
1883}
1884
1885static inline void copy_last_highmem_page(void) {}
1886static inline int last_highmem_page_copied(void) { return 1; }
1887static inline void free_highmem_data(void) {}
1888#endif /* CONFIG_HIGHMEM */
1889
f577eb30 1890/**
940864dd
RW
1891 * prepare_image - use the memory bitmap @bm to mark the pages that will
1892 * be overwritten in the process of restoring the system memory state
1893 * from the suspend image ("unsafe" pages) and allocate memory for the
1894 * image.
968808b8 1895 *
940864dd
RW
1896 * The idea is to allocate a new memory bitmap first and then allocate
1897 * as many pages as needed for the image data, but not to assign these
1898 * pages to specific tasks initially. Instead, we just mark them as
8357376d
RW
1899 * allocated and create a lists of "safe" pages that will be used
1900 * later. On systems with high memory a list of "safe" highmem pages is
1901 * also created.
f577eb30
RW
1902 */
1903
940864dd
RW
1904#define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
1905
940864dd
RW
1906static int
1907prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
f577eb30 1908{
8357376d 1909 unsigned int nr_pages, nr_highmem;
940864dd
RW
1910 struct linked_page *sp_list, *lp;
1911 int error;
f577eb30 1912
8357376d
RW
1913 /* If there is no highmem, the buffer will not be necessary */
1914 free_image_page(buffer, PG_UNSAFE_CLEAR);
1915 buffer = NULL;
1916
1917 nr_highmem = count_highmem_image_pages(bm);
940864dd
RW
1918 error = mark_unsafe_pages(bm);
1919 if (error)
1920 goto Free;
1921
1922 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
1923 if (error)
1924 goto Free;
1925
1926 duplicate_memory_bitmap(new_bm, bm);
1927 memory_bm_free(bm, PG_UNSAFE_KEEP);
8357376d
RW
1928 if (nr_highmem > 0) {
1929 error = prepare_highmem_image(bm, &nr_highmem);
1930 if (error)
1931 goto Free;
1932 }
940864dd
RW
1933 /* Reserve some safe pages for potential later use.
1934 *
1935 * NOTE: This way we make sure there will be enough safe pages for the
1936 * chain_alloc() in get_buffer(). It is a bit wasteful, but
1937 * nr_copy_pages cannot be greater than 50% of the memory anyway.
1938 */
1939 sp_list = NULL;
1940 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
8357376d 1941 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
1942 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
1943 while (nr_pages > 0) {
8357376d 1944 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
940864dd 1945 if (!lp) {
f577eb30 1946 error = -ENOMEM;
940864dd
RW
1947 goto Free;
1948 }
1949 lp->next = sp_list;
1950 sp_list = lp;
1951 nr_pages--;
f577eb30 1952 }
940864dd
RW
1953 /* Preallocate memory for the image */
1954 safe_pages_list = NULL;
8357376d 1955 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
1956 while (nr_pages > 0) {
1957 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
1958 if (!lp) {
1959 error = -ENOMEM;
1960 goto Free;
1961 }
7be98234 1962 if (!swsusp_page_is_free(virt_to_page(lp))) {
940864dd
RW
1963 /* The page is "safe", add it to the list */
1964 lp->next = safe_pages_list;
1965 safe_pages_list = lp;
968808b8 1966 }
940864dd 1967 /* Mark the page as allocated */
7be98234
RW
1968 swsusp_set_page_forbidden(virt_to_page(lp));
1969 swsusp_set_page_free(virt_to_page(lp));
940864dd 1970 nr_pages--;
968808b8 1971 }
940864dd
RW
1972 /* Free the reserved safe pages so that chain_alloc() can use them */
1973 while (sp_list) {
1974 lp = sp_list->next;
1975 free_image_page(sp_list, PG_UNSAFE_CLEAR);
1976 sp_list = lp;
f577eb30 1977 }
940864dd
RW
1978 return 0;
1979
59a49335 1980 Free:
940864dd 1981 swsusp_free();
f577eb30
RW
1982 return error;
1983}
1984
940864dd
RW
1985/**
1986 * get_buffer - compute the address that snapshot_write_next() should
1987 * set for its caller to write to.
1988 */
1989
1990static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
968808b8 1991{
940864dd 1992 struct pbe *pbe;
69643279
RW
1993 struct page *page;
1994 unsigned long pfn = memory_bm_next_pfn(bm);
968808b8 1995
69643279
RW
1996 if (pfn == BM_END_OF_MAP)
1997 return ERR_PTR(-EFAULT);
1998
1999 page = pfn_to_page(pfn);
8357376d
RW
2000 if (PageHighMem(page))
2001 return get_highmem_page_buffer(page, ca);
2002
7be98234 2003 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
940864dd
RW
2004 /* We have allocated the "original" page frame and we can
2005 * use it directly to store the loaded page.
968808b8 2006 */
940864dd
RW
2007 return page_address(page);
2008
2009 /* The "original" page frame has not been allocated and we have to
2010 * use a "safe" page frame to store the loaded page.
968808b8 2011 */
940864dd
RW
2012 pbe = chain_alloc(ca, sizeof(struct pbe));
2013 if (!pbe) {
2014 swsusp_free();
69643279 2015 return ERR_PTR(-ENOMEM);
940864dd 2016 }
8357376d
RW
2017 pbe->orig_address = page_address(page);
2018 pbe->address = safe_pages_list;
940864dd
RW
2019 safe_pages_list = safe_pages_list->next;
2020 pbe->next = restore_pblist;
2021 restore_pblist = pbe;
8357376d 2022 return pbe->address;
968808b8
RW
2023}
2024
f577eb30
RW
2025/**
2026 * snapshot_write_next - used for writing the system memory snapshot.
2027 *
2028 * On the first call to it @handle should point to a zeroed
2029 * snapshot_handle structure. The structure gets updated and a pointer
2030 * to it should be passed to this function every next time.
2031 *
2032 * The @count parameter should contain the number of bytes the caller
2033 * wants to write to the image. It must not be zero.
2034 *
2035 * On success the function returns a positive number. Then, the caller
2036 * is allowed to write up to the returned number of bytes to the memory
2037 * location computed by the data_of() macro. The number returned
2038 * may be smaller than @count, but this only happens if the write would
2039 * cross a page boundary otherwise.
2040 *
2041 * The function returns 0 to indicate the "end of file" condition,
2042 * and a negative number is returned on error. In such cases the
2043 * structure pointed to by @handle is not updated and should not be used
2044 * any more.
2045 */
2046
2047int snapshot_write_next(struct snapshot_handle *handle, size_t count)
2048{
940864dd 2049 static struct chain_allocator ca;
f577eb30
RW
2050 int error = 0;
2051
940864dd 2052 /* Check if we have already loaded the entire image */
fb13a28b 2053 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 2054 return 0;
940864dd 2055
8357376d
RW
2056 if (handle->offset == 0) {
2057 if (!buffer)
2058 /* This makes the buffer be freed by swsusp_free() */
2059 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2060
f577eb30
RW
2061 if (!buffer)
2062 return -ENOMEM;
8357376d 2063
f577eb30 2064 handle->buffer = buffer;
8357376d 2065 }
546e0d27 2066 handle->sync_read = 1;
fb13a28b 2067 if (handle->prev < handle->cur) {
940864dd
RW
2068 if (handle->prev == 0) {
2069 error = load_header(buffer);
2070 if (error)
2071 return error;
2072
2073 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
f577eb30
RW
2074 if (error)
2075 return error;
940864dd 2076
f577eb30 2077 } else if (handle->prev <= nr_meta_pages) {
69643279
RW
2078 error = unpack_orig_pfns(buffer, &copy_bm);
2079 if (error)
2080 return error;
2081
940864dd
RW
2082 if (handle->prev == nr_meta_pages) {
2083 error = prepare_image(&orig_bm, &copy_bm);
f577eb30
RW
2084 if (error)
2085 return error;
940864dd
RW
2086
2087 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2088 memory_bm_position_reset(&orig_bm);
2089 restore_pblist = NULL;
2090 handle->buffer = get_buffer(&orig_bm, &ca);
546e0d27 2091 handle->sync_read = 0;
69643279
RW
2092 if (IS_ERR(handle->buffer))
2093 return PTR_ERR(handle->buffer);
f577eb30
RW
2094 }
2095 } else {
8357376d 2096 copy_last_highmem_page();
940864dd 2097 handle->buffer = get_buffer(&orig_bm, &ca);
69643279
RW
2098 if (IS_ERR(handle->buffer))
2099 return PTR_ERR(handle->buffer);
8357376d
RW
2100 if (handle->buffer != buffer)
2101 handle->sync_read = 0;
f577eb30 2102 }
fb13a28b 2103 handle->prev = handle->cur;
f577eb30 2104 }
fb13a28b
RW
2105 handle->buf_offset = handle->cur_offset;
2106 if (handle->cur_offset + count >= PAGE_SIZE) {
2107 count = PAGE_SIZE - handle->cur_offset;
2108 handle->cur_offset = 0;
2109 handle->cur++;
f577eb30 2110 } else {
fb13a28b 2111 handle->cur_offset += count;
f577eb30
RW
2112 }
2113 handle->offset += count;
2114 return count;
2115}
2116
8357376d
RW
2117/**
2118 * snapshot_write_finalize - must be called after the last call to
2119 * snapshot_write_next() in case the last page in the image happens
2120 * to be a highmem page and its contents should be stored in the
2121 * highmem. Additionally, it releases the memory that will not be
2122 * used any more.
2123 */
2124
2125void snapshot_write_finalize(struct snapshot_handle *handle)
2126{
2127 copy_last_highmem_page();
2128 /* Free only if we have loaded the image entirely */
2129 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
2130 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2131 free_highmem_data();
2132 }
2133}
2134
f577eb30
RW
2135int snapshot_image_loaded(struct snapshot_handle *handle)
2136{
8357376d 2137 return !(!nr_copy_pages || !last_highmem_page_copied() ||
940864dd
RW
2138 handle->cur <= nr_meta_pages + nr_copy_pages);
2139}
2140
8357376d
RW
2141#ifdef CONFIG_HIGHMEM
2142/* Assumes that @buf is ready and points to a "safe" page */
2143static inline void
2144swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
940864dd 2145{
8357376d
RW
2146 void *kaddr1, *kaddr2;
2147
2148 kaddr1 = kmap_atomic(p1, KM_USER0);
2149 kaddr2 = kmap_atomic(p2, KM_USER1);
2150 memcpy(buf, kaddr1, PAGE_SIZE);
2151 memcpy(kaddr1, kaddr2, PAGE_SIZE);
2152 memcpy(kaddr2, buf, PAGE_SIZE);
2153 kunmap_atomic(kaddr1, KM_USER0);
2154 kunmap_atomic(kaddr2, KM_USER1);
2155}
2156
2157/**
2158 * restore_highmem - for each highmem page that was allocated before
2159 * the suspend and included in the suspend image, and also has been
2160 * allocated by the "resume" kernel swap its current (ie. "before
2161 * resume") contents with the previous (ie. "before suspend") one.
2162 *
2163 * If the resume eventually fails, we can call this function once
2164 * again and restore the "before resume" highmem state.
2165 */
2166
2167int restore_highmem(void)
2168{
2169 struct highmem_pbe *pbe = highmem_pblist;
2170 void *buf;
2171
2172 if (!pbe)
2173 return 0;
2174
2175 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2176 if (!buf)
2177 return -ENOMEM;
2178
2179 while (pbe) {
2180 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2181 pbe = pbe->next;
2182 }
2183 free_image_page(buf, PG_UNSAFE_CLEAR);
2184 return 0;
f577eb30 2185}
8357376d 2186#endif /* CONFIG_HIGHMEM */