]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/power/snapshot.c
gianfar: fix signedness issue
[net-next-2.6.git] / kernel / power / snapshot.c
CommitLineData
25761b6e 1/*
96bc7aec 2 * linux/kernel/power/snapshot.c
25761b6e 3 *
8357376d 4 * This file provides system snapshot/restore functionality for swsusp.
25761b6e 5 *
a2531293 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
8357376d 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
25761b6e 8 *
8357376d 9 * This file is released under the GPLv2.
25761b6e
RW
10 *
11 */
12
f577eb30 13#include <linux/version.h>
25761b6e
RW
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/suspend.h>
25761b6e 17#include <linux/delay.h>
25761b6e 18#include <linux/bitops.h>
25761b6e 19#include <linux/spinlock.h>
25761b6e 20#include <linux/kernel.h>
25761b6e
RW
21#include <linux/pm.h>
22#include <linux/device.h>
74dfd666 23#include <linux/init.h>
25761b6e
RW
24#include <linux/bootmem.h>
25#include <linux/syscalls.h>
26#include <linux/console.h>
27#include <linux/highmem.h>
846705de 28#include <linux/list.h>
5a0e3ad6 29#include <linux/slab.h>
25761b6e
RW
30
31#include <asm/uaccess.h>
32#include <asm/mmu_context.h>
33#include <asm/pgtable.h>
34#include <asm/tlbflush.h>
35#include <asm/io.h>
36
25761b6e
RW
37#include "power.h"
38
74dfd666
RW
39static int swsusp_page_is_free(struct page *);
40static void swsusp_set_page_forbidden(struct page *);
41static void swsusp_unset_page_forbidden(struct page *);
42
fe419535
RW
43/*
44 * Preferred image size in bytes (tunable via /sys/power/image_size).
45 * When it is set to N, swsusp will do its best to ensure the image
46 * size will not exceed N bytes, but if that is impossible, it will
47 * try to create the smallest image possible.
48 */
ac5c24ec
RW
49unsigned long image_size;
50
51void __init hibernate_image_size_init(void)
52{
53 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
54}
fe419535 55
8357376d
RW
56/* List of PBEs needed for restoring the pages that were allocated before
57 * the suspend and included in the suspend image, but have also been
58 * allocated by the "resume" kernel, so their contents cannot be written
59 * directly to their "original" page frames.
60 */
75534b50
RW
61struct pbe *restore_pblist;
62
8357376d 63/* Pointer to an auxiliary buffer (1 page) */
940864dd 64static void *buffer;
7088a5c0 65
f6143aa6
RW
66/**
67 * @safe_needed - on resume, for storing the PBE list and the image,
68 * we can only use memory pages that do not conflict with the pages
8357376d
RW
69 * used before suspend. The unsafe pages have PageNosaveFree set
70 * and we count them using unsafe_pages.
f6143aa6 71 *
8357376d
RW
72 * Each allocated image page is marked as PageNosave and PageNosaveFree
73 * so that swsusp_free() can release it.
f6143aa6
RW
74 */
75
0bcd888d
RW
76#define PG_ANY 0
77#define PG_SAFE 1
78#define PG_UNSAFE_CLEAR 1
79#define PG_UNSAFE_KEEP 0
80
940864dd 81static unsigned int allocated_unsafe_pages;
f6143aa6 82
8357376d 83static void *get_image_page(gfp_t gfp_mask, int safe_needed)
f6143aa6
RW
84{
85 void *res;
86
87 res = (void *)get_zeroed_page(gfp_mask);
88 if (safe_needed)
7be98234 89 while (res && swsusp_page_is_free(virt_to_page(res))) {
f6143aa6 90 /* The page is unsafe, mark it for swsusp_free() */
7be98234 91 swsusp_set_page_forbidden(virt_to_page(res));
940864dd 92 allocated_unsafe_pages++;
f6143aa6
RW
93 res = (void *)get_zeroed_page(gfp_mask);
94 }
95 if (res) {
7be98234
RW
96 swsusp_set_page_forbidden(virt_to_page(res));
97 swsusp_set_page_free(virt_to_page(res));
f6143aa6
RW
98 }
99 return res;
100}
101
102unsigned long get_safe_page(gfp_t gfp_mask)
103{
8357376d
RW
104 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
105}
106
5b6d15de
RW
107static struct page *alloc_image_page(gfp_t gfp_mask)
108{
8357376d
RW
109 struct page *page;
110
111 page = alloc_page(gfp_mask);
112 if (page) {
7be98234
RW
113 swsusp_set_page_forbidden(page);
114 swsusp_set_page_free(page);
8357376d
RW
115 }
116 return page;
f6143aa6
RW
117}
118
119/**
120 * free_image_page - free page represented by @addr, allocated with
8357376d 121 * get_image_page (page flags set by it must be cleared)
f6143aa6
RW
122 */
123
124static inline void free_image_page(void *addr, int clear_nosave_free)
125{
8357376d
RW
126 struct page *page;
127
128 BUG_ON(!virt_addr_valid(addr));
129
130 page = virt_to_page(addr);
131
7be98234 132 swsusp_unset_page_forbidden(page);
f6143aa6 133 if (clear_nosave_free)
7be98234 134 swsusp_unset_page_free(page);
8357376d
RW
135
136 __free_page(page);
f6143aa6
RW
137}
138
b788db79
RW
139/* struct linked_page is used to build chains of pages */
140
141#define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
142
143struct linked_page {
144 struct linked_page *next;
145 char data[LINKED_PAGE_DATA_SIZE];
146} __attribute__((packed));
147
148static inline void
149free_list_of_pages(struct linked_page *list, int clear_page_nosave)
150{
151 while (list) {
152 struct linked_page *lp = list->next;
153
154 free_image_page(list, clear_page_nosave);
155 list = lp;
156 }
157}
158
159/**
160 * struct chain_allocator is used for allocating small objects out of
161 * a linked list of pages called 'the chain'.
162 *
163 * The chain grows each time when there is no room for a new object in
164 * the current page. The allocated objects cannot be freed individually.
165 * It is only possible to free them all at once, by freeing the entire
166 * chain.
167 *
168 * NOTE: The chain allocator may be inefficient if the allocated objects
169 * are not much smaller than PAGE_SIZE.
170 */
171
172struct chain_allocator {
173 struct linked_page *chain; /* the chain */
174 unsigned int used_space; /* total size of objects allocated out
175 * of the current page
176 */
177 gfp_t gfp_mask; /* mask for allocating pages */
178 int safe_needed; /* if set, only "safe" pages are allocated */
179};
180
181static void
182chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
183{
184 ca->chain = NULL;
185 ca->used_space = LINKED_PAGE_DATA_SIZE;
186 ca->gfp_mask = gfp_mask;
187 ca->safe_needed = safe_needed;
188}
189
190static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
191{
192 void *ret;
193
194 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
195 struct linked_page *lp;
196
8357376d 197 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
b788db79
RW
198 if (!lp)
199 return NULL;
200
201 lp->next = ca->chain;
202 ca->chain = lp;
203 ca->used_space = 0;
204 }
205 ret = ca->chain->data + ca->used_space;
206 ca->used_space += size;
207 return ret;
208}
209
b788db79
RW
210/**
211 * Data types related to memory bitmaps.
212 *
213 * Memory bitmap is a structure consiting of many linked lists of
214 * objects. The main list's elements are of type struct zone_bitmap
215 * and each of them corresonds to one zone. For each zone bitmap
216 * object there is a list of objects of type struct bm_block that
0d83304c 217 * represent each blocks of bitmap in which information is stored.
b788db79
RW
218 *
219 * struct memory_bitmap contains a pointer to the main list of zone
220 * bitmap objects, a struct bm_position used for browsing the bitmap,
221 * and a pointer to the list of pages used for allocating all of the
222 * zone bitmap objects and bitmap block objects.
223 *
224 * NOTE: It has to be possible to lay out the bitmap in memory
225 * using only allocations of order 0. Additionally, the bitmap is
226 * designed to work with arbitrary number of zones (this is over the
227 * top for now, but let's avoid making unnecessary assumptions ;-).
228 *
229 * struct zone_bitmap contains a pointer to a list of bitmap block
230 * objects and a pointer to the bitmap block object that has been
231 * most recently used for setting bits. Additionally, it contains the
232 * pfns that correspond to the start and end of the represented zone.
233 *
234 * struct bm_block contains a pointer to the memory page in which
0d83304c
AM
235 * information is stored (in the form of a block of bitmap)
236 * It also contains the pfns that correspond to the start and end of
237 * the represented memory area.
b788db79
RW
238 */
239
240#define BM_END_OF_MAP (~0UL)
241
8de03073 242#define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
b788db79
RW
243
244struct bm_block {
846705de 245 struct list_head hook; /* hook into a list of bitmap blocks */
b788db79
RW
246 unsigned long start_pfn; /* pfn represented by the first bit */
247 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
0d83304c 248 unsigned long *data; /* bitmap representing pages */
b788db79
RW
249};
250
0d83304c
AM
251static inline unsigned long bm_block_bits(struct bm_block *bb)
252{
253 return bb->end_pfn - bb->start_pfn;
254}
255
b788db79
RW
256/* strcut bm_position is used for browsing memory bitmaps */
257
258struct bm_position {
b788db79 259 struct bm_block *block;
b788db79
RW
260 int bit;
261};
262
263struct memory_bitmap {
846705de 264 struct list_head blocks; /* list of bitmap blocks */
b788db79
RW
265 struct linked_page *p_list; /* list of pages used to store zone
266 * bitmap objects and bitmap block
267 * objects
268 */
269 struct bm_position cur; /* most recently used bit position */
270};
271
272/* Functions that operate on memory bitmaps */
273
b788db79
RW
274static void memory_bm_position_reset(struct memory_bitmap *bm)
275{
846705de 276 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
0d83304c 277 bm->cur.bit = 0;
b788db79
RW
278}
279
280static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
281
282/**
283 * create_bm_block_list - create a list of block bitmap objects
8de03073 284 * @pages - number of pages to track
846705de
RW
285 * @list - list to put the allocated blocks into
286 * @ca - chain allocator to be used for allocating memory
b788db79 287 */
846705de
RW
288static int create_bm_block_list(unsigned long pages,
289 struct list_head *list,
290 struct chain_allocator *ca)
b788db79 291{
846705de 292 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
b788db79
RW
293
294 while (nr_blocks-- > 0) {
295 struct bm_block *bb;
296
297 bb = chain_alloc(ca, sizeof(struct bm_block));
298 if (!bb)
846705de
RW
299 return -ENOMEM;
300 list_add(&bb->hook, list);
b788db79 301 }
846705de
RW
302
303 return 0;
b788db79
RW
304}
305
846705de
RW
306struct mem_extent {
307 struct list_head hook;
308 unsigned long start;
309 unsigned long end;
310};
311
b788db79 312/**
846705de
RW
313 * free_mem_extents - free a list of memory extents
314 * @list - list of extents to empty
b788db79 315 */
846705de
RW
316static void free_mem_extents(struct list_head *list)
317{
318 struct mem_extent *ext, *aux;
b788db79 319
846705de
RW
320 list_for_each_entry_safe(ext, aux, list, hook) {
321 list_del(&ext->hook);
322 kfree(ext);
323 }
324}
325
326/**
327 * create_mem_extents - create a list of memory extents representing
328 * contiguous ranges of PFNs
329 * @list - list to put the extents into
330 * @gfp_mask - mask to use for memory allocations
331 */
332static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
b788db79 333{
846705de 334 struct zone *zone;
b788db79 335
846705de 336 INIT_LIST_HEAD(list);
b788db79 337
ee99c71c 338 for_each_populated_zone(zone) {
846705de
RW
339 unsigned long zone_start, zone_end;
340 struct mem_extent *ext, *cur, *aux;
341
846705de
RW
342 zone_start = zone->zone_start_pfn;
343 zone_end = zone->zone_start_pfn + zone->spanned_pages;
344
345 list_for_each_entry(ext, list, hook)
346 if (zone_start <= ext->end)
347 break;
b788db79 348
846705de
RW
349 if (&ext->hook == list || zone_end < ext->start) {
350 /* New extent is necessary */
351 struct mem_extent *new_ext;
352
353 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
354 if (!new_ext) {
355 free_mem_extents(list);
356 return -ENOMEM;
357 }
358 new_ext->start = zone_start;
359 new_ext->end = zone_end;
360 list_add_tail(&new_ext->hook, &ext->hook);
361 continue;
362 }
363
364 /* Merge this zone's range of PFNs with the existing one */
365 if (zone_start < ext->start)
366 ext->start = zone_start;
367 if (zone_end > ext->end)
368 ext->end = zone_end;
369
370 /* More merging may be possible */
371 cur = ext;
372 list_for_each_entry_safe_continue(cur, aux, list, hook) {
373 if (zone_end < cur->start)
374 break;
375 if (zone_end < cur->end)
376 ext->end = cur->end;
377 list_del(&cur->hook);
378 kfree(cur);
379 }
b788db79 380 }
846705de
RW
381
382 return 0;
b788db79
RW
383}
384
385/**
386 * memory_bm_create - allocate memory for a memory bitmap
387 */
b788db79
RW
388static int
389memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
390{
391 struct chain_allocator ca;
846705de
RW
392 struct list_head mem_extents;
393 struct mem_extent *ext;
394 int error;
b788db79
RW
395
396 chain_init(&ca, gfp_mask, safe_needed);
846705de 397 INIT_LIST_HEAD(&bm->blocks);
b788db79 398
846705de
RW
399 error = create_mem_extents(&mem_extents, gfp_mask);
400 if (error)
401 return error;
b788db79 402
846705de
RW
403 list_for_each_entry(ext, &mem_extents, hook) {
404 struct bm_block *bb;
405 unsigned long pfn = ext->start;
406 unsigned long pages = ext->end - ext->start;
b788db79 407
846705de 408 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
b788db79 409
846705de
RW
410 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
411 if (error)
412 goto Error;
b788db79 413
846705de
RW
414 list_for_each_entry_continue(bb, &bm->blocks, hook) {
415 bb->data = get_image_page(gfp_mask, safe_needed);
416 if (!bb->data) {
417 error = -ENOMEM;
418 goto Error;
419 }
b788db79
RW
420
421 bb->start_pfn = pfn;
846705de 422 if (pages >= BM_BITS_PER_BLOCK) {
b788db79 423 pfn += BM_BITS_PER_BLOCK;
846705de 424 pages -= BM_BITS_PER_BLOCK;
b788db79
RW
425 } else {
426 /* This is executed only once in the loop */
846705de 427 pfn += pages;
b788db79
RW
428 }
429 bb->end_pfn = pfn;
b788db79 430 }
b788db79 431 }
846705de 432
b788db79
RW
433 bm->p_list = ca.chain;
434 memory_bm_position_reset(bm);
846705de
RW
435 Exit:
436 free_mem_extents(&mem_extents);
437 return error;
b788db79 438
846705de 439 Error:
b788db79
RW
440 bm->p_list = ca.chain;
441 memory_bm_free(bm, PG_UNSAFE_CLEAR);
846705de 442 goto Exit;
b788db79
RW
443}
444
445/**
446 * memory_bm_free - free memory occupied by the memory bitmap @bm
447 */
b788db79
RW
448static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
449{
846705de 450 struct bm_block *bb;
b788db79 451
846705de
RW
452 list_for_each_entry(bb, &bm->blocks, hook)
453 if (bb->data)
454 free_image_page(bb->data, clear_nosave_free);
b788db79 455
b788db79 456 free_list_of_pages(bm->p_list, clear_nosave_free);
846705de
RW
457
458 INIT_LIST_HEAD(&bm->blocks);
b788db79
RW
459}
460
461/**
74dfd666 462 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
b788db79
RW
463 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
464 * of @bm->cur_zone_bm are updated.
b788db79 465 */
a82f7119 466static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
74dfd666 467 void **addr, unsigned int *bit_nr)
b788db79 468{
b788db79
RW
469 struct bm_block *bb;
470
846705de
RW
471 /*
472 * Check if the pfn corresponds to the current bitmap block and find
473 * the block where it fits if this is not the case.
474 */
475 bb = bm->cur.block;
b788db79 476 if (pfn < bb->start_pfn)
846705de
RW
477 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
478 if (pfn >= bb->start_pfn)
479 break;
b788db79 480
846705de
RW
481 if (pfn >= bb->end_pfn)
482 list_for_each_entry_continue(bb, &bm->blocks, hook)
483 if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
484 break;
74dfd666 485
846705de
RW
486 if (&bb->hook == &bm->blocks)
487 return -EFAULT;
488
489 /* The block has been found */
490 bm->cur.block = bb;
b788db79 491 pfn -= bb->start_pfn;
846705de 492 bm->cur.bit = pfn + 1;
0d83304c
AM
493 *bit_nr = pfn;
494 *addr = bb->data;
a82f7119 495 return 0;
74dfd666
RW
496}
497
498static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
499{
500 void *addr;
501 unsigned int bit;
a82f7119 502 int error;
74dfd666 503
a82f7119
RW
504 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
505 BUG_ON(error);
74dfd666
RW
506 set_bit(bit, addr);
507}
508
a82f7119
RW
509static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
510{
511 void *addr;
512 unsigned int bit;
513 int error;
514
515 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
516 if (!error)
517 set_bit(bit, addr);
518 return error;
519}
520
74dfd666
RW
521static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
522{
523 void *addr;
524 unsigned int bit;
a82f7119 525 int error;
74dfd666 526
a82f7119
RW
527 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
528 BUG_ON(error);
74dfd666
RW
529 clear_bit(bit, addr);
530}
531
532static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
533{
534 void *addr;
535 unsigned int bit;
a82f7119 536 int error;
74dfd666 537
a82f7119
RW
538 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
539 BUG_ON(error);
74dfd666 540 return test_bit(bit, addr);
b788db79
RW
541}
542
69643279
RW
543static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
544{
545 void *addr;
546 unsigned int bit;
547
548 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
549}
550
b788db79
RW
551/**
552 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
553 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
554 * returned.
555 *
556 * It is required to run memory_bm_position_reset() before the first call to
557 * this function.
558 */
559
560static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
561{
b788db79 562 struct bm_block *bb;
b788db79
RW
563 int bit;
564
846705de 565 bb = bm->cur.block;
b788db79 566 do {
846705de
RW
567 bit = bm->cur.bit;
568 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
569 if (bit < bm_block_bits(bb))
570 goto Return_pfn;
571
572 bb = list_entry(bb->hook.next, struct bm_block, hook);
573 bm->cur.block = bb;
574 bm->cur.bit = 0;
575 } while (&bb->hook != &bm->blocks);
576
b788db79
RW
577 memory_bm_position_reset(bm);
578 return BM_END_OF_MAP;
579
59a49335 580 Return_pfn:
0d83304c
AM
581 bm->cur.bit = bit + 1;
582 return bb->start_pfn + bit;
b788db79
RW
583}
584
74dfd666
RW
585/**
586 * This structure represents a range of page frames the contents of which
587 * should not be saved during the suspend.
588 */
589
590struct nosave_region {
591 struct list_head list;
592 unsigned long start_pfn;
593 unsigned long end_pfn;
594};
595
596static LIST_HEAD(nosave_regions);
597
598/**
599 * register_nosave_region - register a range of page frames the contents
600 * of which should not be saved during the suspend (to be used in the early
601 * initialization code)
602 */
603
604void __init
940d67f6
JB
605__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
606 int use_kmalloc)
74dfd666
RW
607{
608 struct nosave_region *region;
609
610 if (start_pfn >= end_pfn)
611 return;
612
613 if (!list_empty(&nosave_regions)) {
614 /* Try to extend the previous region (they should be sorted) */
615 region = list_entry(nosave_regions.prev,
616 struct nosave_region, list);
617 if (region->end_pfn == start_pfn) {
618 region->end_pfn = end_pfn;
619 goto Report;
620 }
621 }
940d67f6
JB
622 if (use_kmalloc) {
623 /* during init, this shouldn't fail */
624 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
625 BUG_ON(!region);
626 } else
627 /* This allocation cannot fail */
3c1596ef 628 region = alloc_bootmem(sizeof(struct nosave_region));
74dfd666
RW
629 region->start_pfn = start_pfn;
630 region->end_pfn = end_pfn;
631 list_add_tail(&region->list, &nosave_regions);
632 Report:
23976728 633 printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
74dfd666
RW
634 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
635}
636
637/*
638 * Set bits in this map correspond to the page frames the contents of which
639 * should not be saved during the suspend.
640 */
641static struct memory_bitmap *forbidden_pages_map;
642
643/* Set bits in this map correspond to free page frames. */
644static struct memory_bitmap *free_pages_map;
645
646/*
647 * Each page frame allocated for creating the image is marked by setting the
648 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
649 */
650
651void swsusp_set_page_free(struct page *page)
652{
653 if (free_pages_map)
654 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
655}
656
657static int swsusp_page_is_free(struct page *page)
658{
659 return free_pages_map ?
660 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
661}
662
663void swsusp_unset_page_free(struct page *page)
664{
665 if (free_pages_map)
666 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
667}
668
669static void swsusp_set_page_forbidden(struct page *page)
670{
671 if (forbidden_pages_map)
672 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
673}
674
675int swsusp_page_is_forbidden(struct page *page)
676{
677 return forbidden_pages_map ?
678 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
679}
680
681static void swsusp_unset_page_forbidden(struct page *page)
682{
683 if (forbidden_pages_map)
684 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
685}
686
687/**
688 * mark_nosave_pages - set bits corresponding to the page frames the
689 * contents of which should not be saved in a given bitmap.
690 */
691
692static void mark_nosave_pages(struct memory_bitmap *bm)
693{
694 struct nosave_region *region;
695
696 if (list_empty(&nosave_regions))
697 return;
698
699 list_for_each_entry(region, &nosave_regions, list) {
700 unsigned long pfn;
701
23976728 702 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
74dfd666
RW
703 region->start_pfn << PAGE_SHIFT,
704 region->end_pfn << PAGE_SHIFT);
705
706 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
a82f7119
RW
707 if (pfn_valid(pfn)) {
708 /*
709 * It is safe to ignore the result of
710 * mem_bm_set_bit_check() here, since we won't
711 * touch the PFNs for which the error is
712 * returned anyway.
713 */
714 mem_bm_set_bit_check(bm, pfn);
715 }
74dfd666
RW
716 }
717}
718
719/**
720 * create_basic_memory_bitmaps - create bitmaps needed for marking page
721 * frames that should not be saved and free page frames. The pointers
722 * forbidden_pages_map and free_pages_map are only modified if everything
723 * goes well, because we don't want the bits to be used before both bitmaps
724 * are set up.
725 */
726
727int create_basic_memory_bitmaps(void)
728{
729 struct memory_bitmap *bm1, *bm2;
730 int error = 0;
731
732 BUG_ON(forbidden_pages_map || free_pages_map);
733
0709db60 734 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
735 if (!bm1)
736 return -ENOMEM;
737
0709db60 738 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
74dfd666
RW
739 if (error)
740 goto Free_first_object;
741
0709db60 742 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
743 if (!bm2)
744 goto Free_first_bitmap;
745
0709db60 746 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
74dfd666
RW
747 if (error)
748 goto Free_second_object;
749
750 forbidden_pages_map = bm1;
751 free_pages_map = bm2;
752 mark_nosave_pages(forbidden_pages_map);
753
23976728 754 pr_debug("PM: Basic memory bitmaps created\n");
74dfd666
RW
755
756 return 0;
757
758 Free_second_object:
759 kfree(bm2);
760 Free_first_bitmap:
761 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
762 Free_first_object:
763 kfree(bm1);
764 return -ENOMEM;
765}
766
767/**
768 * free_basic_memory_bitmaps - free memory bitmaps allocated by
769 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
770 * so that the bitmaps themselves are not referred to while they are being
771 * freed.
772 */
773
774void free_basic_memory_bitmaps(void)
775{
776 struct memory_bitmap *bm1, *bm2;
777
778 BUG_ON(!(forbidden_pages_map && free_pages_map));
779
780 bm1 = forbidden_pages_map;
781 bm2 = free_pages_map;
782 forbidden_pages_map = NULL;
783 free_pages_map = NULL;
784 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
785 kfree(bm1);
786 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
787 kfree(bm2);
788
23976728 789 pr_debug("PM: Basic memory bitmaps freed\n");
74dfd666
RW
790}
791
b788db79
RW
792/**
793 * snapshot_additional_pages - estimate the number of additional pages
794 * be needed for setting up the suspend image data structures for given
795 * zone (usually the returned value is greater than the exact number)
796 */
797
798unsigned int snapshot_additional_pages(struct zone *zone)
799{
800 unsigned int res;
801
802 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
803 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
8357376d 804 return 2 * res;
b788db79
RW
805}
806
8357376d
RW
807#ifdef CONFIG_HIGHMEM
808/**
809 * count_free_highmem_pages - compute the total number of free highmem
810 * pages, system-wide.
811 */
812
813static unsigned int count_free_highmem_pages(void)
814{
815 struct zone *zone;
816 unsigned int cnt = 0;
817
ee99c71c
KM
818 for_each_populated_zone(zone)
819 if (is_highmem(zone))
d23ad423 820 cnt += zone_page_state(zone, NR_FREE_PAGES);
8357376d
RW
821
822 return cnt;
823}
824
825/**
826 * saveable_highmem_page - Determine whether a highmem page should be
827 * included in the suspend image.
828 *
829 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
830 * and it isn't a part of a free chunk of pages.
831 */
846705de 832static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
8357376d
RW
833{
834 struct page *page;
835
836 if (!pfn_valid(pfn))
837 return NULL;
838
839 page = pfn_to_page(pfn);
846705de
RW
840 if (page_zone(page) != zone)
841 return NULL;
8357376d
RW
842
843 BUG_ON(!PageHighMem(page));
844
7be98234
RW
845 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
846 PageReserved(page))
8357376d
RW
847 return NULL;
848
849 return page;
850}
851
852/**
853 * count_highmem_pages - compute the total number of saveable highmem
854 * pages.
855 */
856
fe419535 857static unsigned int count_highmem_pages(void)
8357376d
RW
858{
859 struct zone *zone;
860 unsigned int n = 0;
861
98e73dc5 862 for_each_populated_zone(zone) {
8357376d
RW
863 unsigned long pfn, max_zone_pfn;
864
865 if (!is_highmem(zone))
866 continue;
867
868 mark_free_pages(zone);
869 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
870 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 871 if (saveable_highmem_page(zone, pfn))
8357376d
RW
872 n++;
873 }
874 return n;
875}
876#else
846705de
RW
877static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
878{
879 return NULL;
880}
8357376d
RW
881#endif /* CONFIG_HIGHMEM */
882
25761b6e 883/**
8a235efa
RW
884 * saveable_page - Determine whether a non-highmem page should be included
885 * in the suspend image.
25761b6e 886 *
8357376d
RW
887 * We should save the page if it isn't Nosave, and is not in the range
888 * of pages statically defined as 'unsaveable', and it isn't a part of
889 * a free chunk of pages.
25761b6e 890 */
846705de 891static struct page *saveable_page(struct zone *zone, unsigned long pfn)
25761b6e 892{
de491861 893 struct page *page;
25761b6e
RW
894
895 if (!pfn_valid(pfn))
ae83c5ee 896 return NULL;
25761b6e
RW
897
898 page = pfn_to_page(pfn);
846705de
RW
899 if (page_zone(page) != zone)
900 return NULL;
ae83c5ee 901
8357376d
RW
902 BUG_ON(PageHighMem(page));
903
7be98234 904 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
ae83c5ee 905 return NULL;
8357376d 906
8a235efa
RW
907 if (PageReserved(page)
908 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
ae83c5ee 909 return NULL;
25761b6e 910
ae83c5ee 911 return page;
25761b6e
RW
912}
913
8357376d
RW
914/**
915 * count_data_pages - compute the total number of saveable non-highmem
916 * pages.
917 */
918
fe419535 919static unsigned int count_data_pages(void)
25761b6e
RW
920{
921 struct zone *zone;
ae83c5ee 922 unsigned long pfn, max_zone_pfn;
dc19d507 923 unsigned int n = 0;
25761b6e 924
98e73dc5 925 for_each_populated_zone(zone) {
25761b6e
RW
926 if (is_highmem(zone))
927 continue;
8357376d 928
25761b6e 929 mark_free_pages(zone);
ae83c5ee
RW
930 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
931 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 932 if (saveable_page(zone, pfn))
8357376d 933 n++;
25761b6e 934 }
a0f49651 935 return n;
25761b6e
RW
936}
937
8357376d
RW
938/* This is needed, because copy_page and memcpy are not usable for copying
939 * task structs.
940 */
941static inline void do_copy_page(long *dst, long *src)
f623f0db
RW
942{
943 int n;
944
f623f0db
RW
945 for (n = PAGE_SIZE / sizeof(long); n; n--)
946 *dst++ = *src++;
947}
948
8a235efa
RW
949
950/**
951 * safe_copy_page - check if the page we are going to copy is marked as
952 * present in the kernel page tables (this always is the case if
953 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
954 * kernel_page_present() always returns 'true').
955 */
956static void safe_copy_page(void *dst, struct page *s_page)
957{
958 if (kernel_page_present(s_page)) {
959 do_copy_page(dst, page_address(s_page));
960 } else {
961 kernel_map_pages(s_page, 1, 1);
962 do_copy_page(dst, page_address(s_page));
963 kernel_map_pages(s_page, 1, 0);
964 }
965}
966
967
8357376d
RW
968#ifdef CONFIG_HIGHMEM
969static inline struct page *
970page_is_saveable(struct zone *zone, unsigned long pfn)
971{
972 return is_highmem(zone) ?
846705de 973 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
8357376d
RW
974}
975
8a235efa 976static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d
RW
977{
978 struct page *s_page, *d_page;
979 void *src, *dst;
980
981 s_page = pfn_to_page(src_pfn);
982 d_page = pfn_to_page(dst_pfn);
983 if (PageHighMem(s_page)) {
984 src = kmap_atomic(s_page, KM_USER0);
985 dst = kmap_atomic(d_page, KM_USER1);
986 do_copy_page(dst, src);
8357376d 987 kunmap_atomic(dst, KM_USER1);
61ecdb80 988 kunmap_atomic(src, KM_USER0);
8357376d 989 } else {
8357376d
RW
990 if (PageHighMem(d_page)) {
991 /* Page pointed to by src may contain some kernel
992 * data modified by kmap_atomic()
993 */
8a235efa 994 safe_copy_page(buffer, s_page);
baa5835d 995 dst = kmap_atomic(d_page, KM_USER0);
3ecb01df 996 copy_page(dst, buffer);
8357376d
RW
997 kunmap_atomic(dst, KM_USER0);
998 } else {
8a235efa 999 safe_copy_page(page_address(d_page), s_page);
8357376d
RW
1000 }
1001 }
1002}
1003#else
846705de 1004#define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
8357376d 1005
8a235efa 1006static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d 1007{
8a235efa
RW
1008 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1009 pfn_to_page(src_pfn));
8357376d
RW
1010}
1011#endif /* CONFIG_HIGHMEM */
1012
b788db79
RW
1013static void
1014copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
25761b6e
RW
1015{
1016 struct zone *zone;
b788db79 1017 unsigned long pfn;
25761b6e 1018
98e73dc5 1019 for_each_populated_zone(zone) {
b788db79
RW
1020 unsigned long max_zone_pfn;
1021
25761b6e 1022 mark_free_pages(zone);
ae83c5ee 1023 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
b788db79 1024 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
8357376d 1025 if (page_is_saveable(zone, pfn))
b788db79 1026 memory_bm_set_bit(orig_bm, pfn);
25761b6e 1027 }
b788db79
RW
1028 memory_bm_position_reset(orig_bm);
1029 memory_bm_position_reset(copy_bm);
df7c4872 1030 for(;;) {
b788db79 1031 pfn = memory_bm_next_pfn(orig_bm);
df7c4872
FW
1032 if (unlikely(pfn == BM_END_OF_MAP))
1033 break;
1034 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1035 }
25761b6e
RW
1036}
1037
8357376d
RW
1038/* Total number of image pages */
1039static unsigned int nr_copy_pages;
1040/* Number of pages needed for saving the original pfns of the image pages */
1041static unsigned int nr_meta_pages;
64a473cb
RW
1042/*
1043 * Numbers of normal and highmem page frames allocated for hibernation image
1044 * before suspending devices.
1045 */
1046unsigned int alloc_normal, alloc_highmem;
1047/*
1048 * Memory bitmap used for marking saveable pages (during hibernation) or
1049 * hibernation image pages (during restore)
1050 */
1051static struct memory_bitmap orig_bm;
1052/*
1053 * Memory bitmap used during hibernation for marking allocated page frames that
1054 * will contain copies of saveable pages. During restore it is initially used
1055 * for marking hibernation image pages, but then the set bits from it are
1056 * duplicated in @orig_bm and it is released. On highmem systems it is next
1057 * used for marking "safe" highmem pages, but it has to be reinitialized for
1058 * this purpose.
1059 */
1060static struct memory_bitmap copy_bm;
8357376d 1061
25761b6e 1062/**
940864dd 1063 * swsusp_free - free pages allocated for the suspend.
cd560bb2 1064 *
940864dd
RW
1065 * Suspend pages are alocated before the atomic copy is made, so we
1066 * need to release them after the resume.
25761b6e
RW
1067 */
1068
1069void swsusp_free(void)
1070{
1071 struct zone *zone;
ae83c5ee 1072 unsigned long pfn, max_zone_pfn;
25761b6e 1073
98e73dc5 1074 for_each_populated_zone(zone) {
ae83c5ee
RW
1075 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1076 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1077 if (pfn_valid(pfn)) {
1078 struct page *page = pfn_to_page(pfn);
1079
7be98234
RW
1080 if (swsusp_page_is_forbidden(page) &&
1081 swsusp_page_is_free(page)) {
1082 swsusp_unset_page_forbidden(page);
1083 swsusp_unset_page_free(page);
8357376d 1084 __free_page(page);
25761b6e
RW
1085 }
1086 }
1087 }
f577eb30
RW
1088 nr_copy_pages = 0;
1089 nr_meta_pages = 0;
75534b50 1090 restore_pblist = NULL;
6e1819d6 1091 buffer = NULL;
64a473cb
RW
1092 alloc_normal = 0;
1093 alloc_highmem = 0;
25761b6e
RW
1094}
1095
4bb33435
RW
1096/* Helper functions used for the shrinking of memory. */
1097
1098#define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1099
fe419535 1100/**
4bb33435
RW
1101 * preallocate_image_pages - Allocate a number of pages for hibernation image
1102 * @nr_pages: Number of page frames to allocate.
1103 * @mask: GFP flags to use for the allocation.
fe419535 1104 *
4bb33435
RW
1105 * Return value: Number of page frames actually allocated
1106 */
1107static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1108{
1109 unsigned long nr_alloc = 0;
1110
1111 while (nr_pages > 0) {
64a473cb
RW
1112 struct page *page;
1113
1114 page = alloc_image_page(mask);
1115 if (!page)
4bb33435 1116 break;
64a473cb
RW
1117 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1118 if (PageHighMem(page))
1119 alloc_highmem++;
1120 else
1121 alloc_normal++;
4bb33435
RW
1122 nr_pages--;
1123 nr_alloc++;
1124 }
1125
1126 return nr_alloc;
1127}
1128
6715045d
RW
1129static unsigned long preallocate_image_memory(unsigned long nr_pages,
1130 unsigned long avail_normal)
4bb33435 1131{
6715045d
RW
1132 unsigned long alloc;
1133
1134 if (avail_normal <= alloc_normal)
1135 return 0;
1136
1137 alloc = avail_normal - alloc_normal;
1138 if (nr_pages < alloc)
1139 alloc = nr_pages;
1140
1141 return preallocate_image_pages(alloc, GFP_IMAGE);
4bb33435
RW
1142}
1143
1144#ifdef CONFIG_HIGHMEM
1145static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1146{
1147 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1148}
1149
1150/**
1151 * __fraction - Compute (an approximation of) x * (multiplier / base)
fe419535 1152 */
4bb33435
RW
1153static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1154{
1155 x *= multiplier;
1156 do_div(x, base);
1157 return (unsigned long)x;
1158}
fe419535 1159
4bb33435
RW
1160static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1161 unsigned long highmem,
1162 unsigned long total)
fe419535 1163{
4bb33435
RW
1164 unsigned long alloc = __fraction(nr_pages, highmem, total);
1165
1166 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
fe419535 1167}
4bb33435
RW
1168#else /* CONFIG_HIGHMEM */
1169static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1170{
1171 return 0;
1172}
1173
1174static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1175 unsigned long highmem,
1176 unsigned long total)
1177{
1178 return 0;
1179}
1180#endif /* CONFIG_HIGHMEM */
fe419535 1181
4bb33435 1182/**
64a473cb
RW
1183 * free_unnecessary_pages - Release preallocated pages not needed for the image
1184 */
1185static void free_unnecessary_pages(void)
1186{
6715045d 1187 unsigned long save, to_free_normal, to_free_highmem;
64a473cb 1188
6715045d
RW
1189 save = count_data_pages();
1190 if (alloc_normal >= save) {
1191 to_free_normal = alloc_normal - save;
1192 save = 0;
1193 } else {
1194 to_free_normal = 0;
1195 save -= alloc_normal;
1196 }
1197 save += count_highmem_pages();
1198 if (alloc_highmem >= save) {
1199 to_free_highmem = alloc_highmem - save;
64a473cb
RW
1200 } else {
1201 to_free_highmem = 0;
6715045d 1202 to_free_normal -= save - alloc_highmem;
64a473cb
RW
1203 }
1204
1205 memory_bm_position_reset(&copy_bm);
1206
a9c9b442 1207 while (to_free_normal > 0 || to_free_highmem > 0) {
64a473cb
RW
1208 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1209 struct page *page = pfn_to_page(pfn);
1210
1211 if (PageHighMem(page)) {
1212 if (!to_free_highmem)
1213 continue;
1214 to_free_highmem--;
1215 alloc_highmem--;
1216 } else {
1217 if (!to_free_normal)
1218 continue;
1219 to_free_normal--;
1220 alloc_normal--;
1221 }
1222 memory_bm_clear_bit(&copy_bm, pfn);
1223 swsusp_unset_page_forbidden(page);
1224 swsusp_unset_page_free(page);
1225 __free_page(page);
1226 }
1227}
1228
ef4aede3
RW
1229/**
1230 * minimum_image_size - Estimate the minimum acceptable size of an image
1231 * @saveable: Number of saveable pages in the system.
1232 *
1233 * We want to avoid attempting to free too much memory too hard, so estimate the
1234 * minimum acceptable size of a hibernation image to use as the lower limit for
1235 * preallocating memory.
1236 *
1237 * We assume that the minimum image size should be proportional to
1238 *
1239 * [number of saveable pages] - [number of pages that can be freed in theory]
1240 *
1241 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1242 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1243 * minus mapped file pages.
1244 */
1245static unsigned long minimum_image_size(unsigned long saveable)
1246{
1247 unsigned long size;
1248
1249 size = global_page_state(NR_SLAB_RECLAIMABLE)
1250 + global_page_state(NR_ACTIVE_ANON)
1251 + global_page_state(NR_INACTIVE_ANON)
1252 + global_page_state(NR_ACTIVE_FILE)
1253 + global_page_state(NR_INACTIVE_FILE)
1254 - global_page_state(NR_FILE_MAPPED);
1255
1256 return saveable <= size ? 0 : saveable - size;
1257}
1258
64a473cb
RW
1259/**
1260 * hibernate_preallocate_memory - Preallocate memory for hibernation image
4bb33435
RW
1261 *
1262 * To create a hibernation image it is necessary to make a copy of every page
1263 * frame in use. We also need a number of page frames to be free during
1264 * hibernation for allocations made while saving the image and for device
1265 * drivers, in case they need to allocate memory from their hibernation
1266 * callbacks (these two numbers are given by PAGES_FOR_IO and SPARE_PAGES,
1267 * respectively, both of which are rough estimates). To make this happen, we
1268 * compute the total number of available page frames and allocate at least
1269 *
1270 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 + 2 * SPARE_PAGES
1271 *
1272 * of them, which corresponds to the maximum size of a hibernation image.
1273 *
1274 * If image_size is set below the number following from the above formula,
1275 * the preallocation of memory is continued until the total number of saveable
ef4aede3
RW
1276 * pages in the system is below the requested image size or the minimum
1277 * acceptable image size returned by minimum_image_size(), whichever is greater.
4bb33435 1278 */
64a473cb 1279int hibernate_preallocate_memory(void)
fe419535 1280{
fe419535 1281 struct zone *zone;
4bb33435 1282 unsigned long saveable, size, max_size, count, highmem, pages = 0;
6715045d 1283 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
fe419535 1284 struct timeval start, stop;
64a473cb 1285 int error;
fe419535 1286
64a473cb 1287 printk(KERN_INFO "PM: Preallocating image memory... ");
fe419535 1288 do_gettimeofday(&start);
fe419535 1289
64a473cb
RW
1290 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1291 if (error)
1292 goto err_out;
1293
1294 error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1295 if (error)
1296 goto err_out;
1297
1298 alloc_normal = 0;
1299 alloc_highmem = 0;
1300
4bb33435 1301 /* Count the number of saveable data pages. */
64a473cb 1302 save_highmem = count_highmem_pages();
4bb33435 1303 saveable = count_data_pages();
fe419535 1304
4bb33435
RW
1305 /*
1306 * Compute the total number of page frames we can use (count) and the
1307 * number of pages needed for image metadata (size).
1308 */
1309 count = saveable;
64a473cb
RW
1310 saveable += save_highmem;
1311 highmem = save_highmem;
4bb33435
RW
1312 size = 0;
1313 for_each_populated_zone(zone) {
1314 size += snapshot_additional_pages(zone);
1315 if (is_highmem(zone))
1316 highmem += zone_page_state(zone, NR_FREE_PAGES);
1317 else
1318 count += zone_page_state(zone, NR_FREE_PAGES);
1319 }
6715045d 1320 avail_normal = count;
4bb33435
RW
1321 count += highmem;
1322 count -= totalreserve_pages;
1323
1324 /* Compute the maximum number of saveable pages to leave in memory. */
1325 max_size = (count - (size + PAGES_FOR_IO)) / 2 - 2 * SPARE_PAGES;
266f1a25 1326 /* Compute the desired number of image pages specified by image_size. */
4bb33435
RW
1327 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1328 if (size > max_size)
1329 size = max_size;
1330 /*
266f1a25
RW
1331 * If the desired number of image pages is at least as large as the
1332 * current number of saveable pages in memory, allocate page frames for
1333 * the image and we're done.
4bb33435 1334 */
64a473cb
RW
1335 if (size >= saveable) {
1336 pages = preallocate_image_highmem(save_highmem);
6715045d 1337 pages += preallocate_image_memory(saveable - pages, avail_normal);
4bb33435 1338 goto out;
64a473cb 1339 }
4bb33435 1340
ef4aede3
RW
1341 /* Estimate the minimum size of the image. */
1342 pages = minimum_image_size(saveable);
6715045d
RW
1343 /*
1344 * To avoid excessive pressure on the normal zone, leave room in it to
1345 * accommodate an image of the minimum size (unless it's already too
1346 * small, in which case don't preallocate pages from it at all).
1347 */
1348 if (avail_normal > pages)
1349 avail_normal -= pages;
1350 else
1351 avail_normal = 0;
ef4aede3
RW
1352 if (size < pages)
1353 size = min_t(unsigned long, pages, max_size);
1354
4bb33435
RW
1355 /*
1356 * Let the memory management subsystem know that we're going to need a
1357 * large number of page frames to allocate and make it free some memory.
1358 * NOTE: If this is not done, performance will be hurt badly in some
1359 * test cases.
1360 */
1361 shrink_all_memory(saveable - size);
1362
1363 /*
1364 * The number of saveable pages in memory was too high, so apply some
1365 * pressure to decrease it. First, make room for the largest possible
1366 * image and fail if that doesn't work. Next, try to decrease the size
ef4aede3
RW
1367 * of the image as much as indicated by 'size' using allocations from
1368 * highmem and non-highmem zones separately.
4bb33435
RW
1369 */
1370 pages_highmem = preallocate_image_highmem(highmem / 2);
1371 alloc = (count - max_size) - pages_highmem;
6715045d
RW
1372 pages = preallocate_image_memory(alloc, avail_normal);
1373 if (pages < alloc) {
1374 /* We have exhausted non-highmem pages, try highmem. */
1375 alloc -= pages;
1376 pages += pages_highmem;
1377 pages_highmem = preallocate_image_highmem(alloc);
1378 if (pages_highmem < alloc)
1379 goto err_out;
1380 pages += pages_highmem;
1381 /*
1382 * size is the desired number of saveable pages to leave in
1383 * memory, so try to preallocate (all memory - size) pages.
1384 */
1385 alloc = (count - pages) - size;
1386 pages += preallocate_image_highmem(alloc);
1387 } else {
1388 /*
1389 * There are approximately max_size saveable pages at this point
1390 * and we want to reduce this number down to size.
1391 */
1392 alloc = max_size - size;
1393 size = preallocate_highmem_fraction(alloc, highmem, count);
1394 pages_highmem += size;
1395 alloc -= size;
1396 size = preallocate_image_memory(alloc, avail_normal);
1397 pages_highmem += preallocate_image_highmem(alloc - size);
1398 pages += pages_highmem + size;
1399 }
4bb33435 1400
64a473cb
RW
1401 /*
1402 * We only need as many page frames for the image as there are saveable
1403 * pages in memory, but we have allocated more. Release the excessive
1404 * ones now.
1405 */
1406 free_unnecessary_pages();
4bb33435
RW
1407
1408 out:
fe419535 1409 do_gettimeofday(&stop);
64a473cb
RW
1410 printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1411 swsusp_show_speed(&start, &stop, pages, "Allocated");
fe419535
RW
1412
1413 return 0;
64a473cb
RW
1414
1415 err_out:
1416 printk(KERN_CONT "\n");
1417 swsusp_free();
1418 return -ENOMEM;
fe419535
RW
1419}
1420
8357376d
RW
1421#ifdef CONFIG_HIGHMEM
1422/**
1423 * count_pages_for_highmem - compute the number of non-highmem pages
1424 * that will be necessary for creating copies of highmem pages.
1425 */
1426
1427static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1428{
64a473cb 1429 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
8357376d
RW
1430
1431 if (free_highmem >= nr_highmem)
1432 nr_highmem = 0;
1433 else
1434 nr_highmem -= free_highmem;
1435
1436 return nr_highmem;
1437}
1438#else
1439static unsigned int
1440count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1441#endif /* CONFIG_HIGHMEM */
25761b6e
RW
1442
1443/**
8357376d
RW
1444 * enough_free_mem - Make sure we have enough free memory for the
1445 * snapshot image.
25761b6e
RW
1446 */
1447
8357376d 1448static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
25761b6e 1449{
e5e2fa78 1450 struct zone *zone;
64a473cb 1451 unsigned int free = alloc_normal;
e5e2fa78 1452
98e73dc5 1453 for_each_populated_zone(zone)
8357376d 1454 if (!is_highmem(zone))
d23ad423 1455 free += zone_page_state(zone, NR_FREE_PAGES);
940864dd 1456
8357376d 1457 nr_pages += count_pages_for_highmem(nr_highmem);
64a473cb
RW
1458 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1459 nr_pages, PAGES_FOR_IO, free);
940864dd 1460
64a473cb 1461 return free > nr_pages + PAGES_FOR_IO;
25761b6e
RW
1462}
1463
8357376d
RW
1464#ifdef CONFIG_HIGHMEM
1465/**
1466 * get_highmem_buffer - if there are some highmem pages in the suspend
1467 * image, we may need the buffer to copy them and/or load their data.
1468 */
1469
1470static inline int get_highmem_buffer(int safe_needed)
1471{
1472 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1473 return buffer ? 0 : -ENOMEM;
1474}
1475
1476/**
1477 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1478 * Try to allocate as many pages as needed, but if the number of free
1479 * highmem pages is lesser than that, allocate them all.
1480 */
1481
1482static inline unsigned int
64a473cb 1483alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
8357376d
RW
1484{
1485 unsigned int to_alloc = count_free_highmem_pages();
1486
1487 if (to_alloc > nr_highmem)
1488 to_alloc = nr_highmem;
1489
1490 nr_highmem -= to_alloc;
1491 while (to_alloc-- > 0) {
1492 struct page *page;
1493
1494 page = alloc_image_page(__GFP_HIGHMEM);
1495 memory_bm_set_bit(bm, page_to_pfn(page));
1496 }
1497 return nr_highmem;
1498}
1499#else
1500static inline int get_highmem_buffer(int safe_needed) { return 0; }
1501
1502static inline unsigned int
64a473cb 1503alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
8357376d
RW
1504#endif /* CONFIG_HIGHMEM */
1505
1506/**
1507 * swsusp_alloc - allocate memory for the suspend image
1508 *
1509 * We first try to allocate as many highmem pages as there are
1510 * saveable highmem pages in the system. If that fails, we allocate
1511 * non-highmem pages for the copies of the remaining highmem ones.
1512 *
1513 * In this approach it is likely that the copies of highmem pages will
1514 * also be located in the high memory, because of the way in which
1515 * copy_data_pages() works.
1516 */
1517
b788db79
RW
1518static int
1519swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
8357376d 1520 unsigned int nr_pages, unsigned int nr_highmem)
054bd4c1 1521{
64a473cb 1522 int error = 0;
25761b6e 1523
8357376d
RW
1524 if (nr_highmem > 0) {
1525 error = get_highmem_buffer(PG_ANY);
1526 if (error)
64a473cb
RW
1527 goto err_out;
1528 if (nr_highmem > alloc_highmem) {
1529 nr_highmem -= alloc_highmem;
1530 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1531 }
8357376d 1532 }
64a473cb
RW
1533 if (nr_pages > alloc_normal) {
1534 nr_pages -= alloc_normal;
1535 while (nr_pages-- > 0) {
1536 struct page *page;
1537
1538 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1539 if (!page)
1540 goto err_out;
1541 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1542 }
25761b6e 1543 }
64a473cb 1544
b788db79 1545 return 0;
25761b6e 1546
64a473cb 1547 err_out:
b788db79 1548 swsusp_free();
64a473cb 1549 return error;
25761b6e
RW
1550}
1551
2e32a43e 1552asmlinkage int swsusp_save(void)
25761b6e 1553{
8357376d 1554 unsigned int nr_pages, nr_highmem;
25761b6e 1555
07c3bb57 1556 printk(KERN_INFO "PM: Creating hibernation image:\n");
25761b6e 1557
9f8f2172 1558 drain_local_pages(NULL);
a0f49651 1559 nr_pages = count_data_pages();
8357376d 1560 nr_highmem = count_highmem_pages();
23976728 1561 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
25761b6e 1562
8357376d 1563 if (!enough_free_mem(nr_pages, nr_highmem)) {
23976728 1564 printk(KERN_ERR "PM: Not enough free memory\n");
25761b6e
RW
1565 return -ENOMEM;
1566 }
1567
8357376d 1568 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
23976728 1569 printk(KERN_ERR "PM: Memory allocation failed\n");
a0f49651 1570 return -ENOMEM;
8357376d 1571 }
25761b6e
RW
1572
1573 /* During allocating of suspend pagedir, new cold pages may appear.
1574 * Kill them.
1575 */
9f8f2172 1576 drain_local_pages(NULL);
b788db79 1577 copy_data_pages(&copy_bm, &orig_bm);
25761b6e
RW
1578
1579 /*
1580 * End of critical section. From now on, we can write to memory,
1581 * but we should not touch disk. This specially means we must _not_
1582 * touch swap space! Except we must write out our image of course.
1583 */
1584
8357376d 1585 nr_pages += nr_highmem;
a0f49651 1586 nr_copy_pages = nr_pages;
8357376d 1587 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
a0f49651 1588
23976728
RW
1589 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1590 nr_pages);
8357376d 1591
25761b6e
RW
1592 return 0;
1593}
f577eb30 1594
d307c4a8
RW
1595#ifndef CONFIG_ARCH_HIBERNATION_HEADER
1596static int init_header_complete(struct swsusp_info *info)
f577eb30 1597{
d307c4a8 1598 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
f577eb30 1599 info->version_code = LINUX_VERSION_CODE;
d307c4a8
RW
1600 return 0;
1601}
1602
1603static char *check_image_kernel(struct swsusp_info *info)
1604{
1605 if (info->version_code != LINUX_VERSION_CODE)
1606 return "kernel version";
1607 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1608 return "system type";
1609 if (strcmp(info->uts.release,init_utsname()->release))
1610 return "kernel release";
1611 if (strcmp(info->uts.version,init_utsname()->version))
1612 return "version";
1613 if (strcmp(info->uts.machine,init_utsname()->machine))
1614 return "machine";
1615 return NULL;
1616}
1617#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1618
af508b34
RW
1619unsigned long snapshot_get_image_size(void)
1620{
1621 return nr_copy_pages + nr_meta_pages + 1;
1622}
1623
d307c4a8
RW
1624static int init_header(struct swsusp_info *info)
1625{
1626 memset(info, 0, sizeof(struct swsusp_info));
f577eb30 1627 info->num_physpages = num_physpages;
f577eb30 1628 info->image_pages = nr_copy_pages;
af508b34 1629 info->pages = snapshot_get_image_size();
6e1819d6
RW
1630 info->size = info->pages;
1631 info->size <<= PAGE_SHIFT;
d307c4a8 1632 return init_header_complete(info);
f577eb30
RW
1633}
1634
1635/**
940864dd
RW
1636 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1637 * are stored in the array @buf[] (1 page at a time)
f577eb30
RW
1638 */
1639
b788db79 1640static inline void
940864dd 1641pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
1642{
1643 int j;
1644
b788db79 1645 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
940864dd
RW
1646 buf[j] = memory_bm_next_pfn(bm);
1647 if (unlikely(buf[j] == BM_END_OF_MAP))
b788db79 1648 break;
f577eb30 1649 }
f577eb30
RW
1650}
1651
1652/**
1653 * snapshot_read_next - used for reading the system memory snapshot.
1654 *
1655 * On the first call to it @handle should point to a zeroed
1656 * snapshot_handle structure. The structure gets updated and a pointer
1657 * to it should be passed to this function every next time.
1658 *
f577eb30
RW
1659 * On success the function returns a positive number. Then, the caller
1660 * is allowed to read up to the returned number of bytes from the memory
d3c1b24c 1661 * location computed by the data_of() macro.
f577eb30
RW
1662 *
1663 * The function returns 0 to indicate the end of data stream condition,
1664 * and a negative number is returned on error. In such cases the
1665 * structure pointed to by @handle is not updated and should not be used
1666 * any more.
1667 */
1668
d3c1b24c 1669int snapshot_read_next(struct snapshot_handle *handle)
f577eb30 1670{
fb13a28b 1671 if (handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 1672 return 0;
b788db79 1673
f577eb30
RW
1674 if (!buffer) {
1675 /* This makes the buffer be freed by swsusp_free() */
8357376d 1676 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
f577eb30
RW
1677 if (!buffer)
1678 return -ENOMEM;
1679 }
d3c1b24c 1680 if (!handle->cur) {
d307c4a8
RW
1681 int error;
1682
1683 error = init_header((struct swsusp_info *)buffer);
1684 if (error)
1685 return error;
f577eb30 1686 handle->buffer = buffer;
b788db79
RW
1687 memory_bm_position_reset(&orig_bm);
1688 memory_bm_position_reset(&copy_bm);
d3c1b24c 1689 } else if (handle->cur <= nr_meta_pages) {
3ecb01df 1690 clear_page(buffer);
d3c1b24c
JS
1691 pack_pfns(buffer, &orig_bm);
1692 } else {
1693 struct page *page;
b788db79 1694
d3c1b24c
JS
1695 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1696 if (PageHighMem(page)) {
1697 /* Highmem pages are copied to the buffer,
1698 * because we can't return with a kmapped
1699 * highmem page (we may not be called again).
1700 */
1701 void *kaddr;
8357376d 1702
d3c1b24c 1703 kaddr = kmap_atomic(page, KM_USER0);
3ecb01df 1704 copy_page(buffer, kaddr);
d3c1b24c
JS
1705 kunmap_atomic(kaddr, KM_USER0);
1706 handle->buffer = buffer;
1707 } else {
1708 handle->buffer = page_address(page);
f577eb30 1709 }
f577eb30 1710 }
d3c1b24c
JS
1711 handle->cur++;
1712 return PAGE_SIZE;
f577eb30
RW
1713}
1714
1715/**
1716 * mark_unsafe_pages - mark the pages that cannot be used for storing
1717 * the image during resume, because they conflict with the pages that
1718 * had been used before suspend
1719 */
1720
940864dd 1721static int mark_unsafe_pages(struct memory_bitmap *bm)
f577eb30
RW
1722{
1723 struct zone *zone;
ae83c5ee 1724 unsigned long pfn, max_zone_pfn;
f577eb30
RW
1725
1726 /* Clear page flags */
98e73dc5 1727 for_each_populated_zone(zone) {
ae83c5ee
RW
1728 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1729 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1730 if (pfn_valid(pfn))
7be98234 1731 swsusp_unset_page_free(pfn_to_page(pfn));
f577eb30
RW
1732 }
1733
940864dd
RW
1734 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1735 memory_bm_position_reset(bm);
1736 do {
1737 pfn = memory_bm_next_pfn(bm);
1738 if (likely(pfn != BM_END_OF_MAP)) {
1739 if (likely(pfn_valid(pfn)))
7be98234 1740 swsusp_set_page_free(pfn_to_page(pfn));
940864dd
RW
1741 else
1742 return -EFAULT;
1743 }
1744 } while (pfn != BM_END_OF_MAP);
f577eb30 1745
940864dd 1746 allocated_unsafe_pages = 0;
968808b8 1747
f577eb30
RW
1748 return 0;
1749}
1750
940864dd
RW
1751static void
1752duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
f577eb30 1753{
940864dd
RW
1754 unsigned long pfn;
1755
1756 memory_bm_position_reset(src);
1757 pfn = memory_bm_next_pfn(src);
1758 while (pfn != BM_END_OF_MAP) {
1759 memory_bm_set_bit(dst, pfn);
1760 pfn = memory_bm_next_pfn(src);
f577eb30
RW
1761 }
1762}
1763
d307c4a8 1764static int check_header(struct swsusp_info *info)
f577eb30 1765{
d307c4a8 1766 char *reason;
f577eb30 1767
d307c4a8
RW
1768 reason = check_image_kernel(info);
1769 if (!reason && info->num_physpages != num_physpages)
f577eb30 1770 reason = "memory size";
f577eb30 1771 if (reason) {
23976728 1772 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
f577eb30
RW
1773 return -EPERM;
1774 }
1775 return 0;
1776}
1777
1778/**
1779 * load header - check the image header and copy data from it
1780 */
1781
940864dd
RW
1782static int
1783load_header(struct swsusp_info *info)
f577eb30
RW
1784{
1785 int error;
f577eb30 1786
940864dd 1787 restore_pblist = NULL;
f577eb30
RW
1788 error = check_header(info);
1789 if (!error) {
f577eb30
RW
1790 nr_copy_pages = info->image_pages;
1791 nr_meta_pages = info->pages - info->image_pages - 1;
1792 }
1793 return error;
1794}
1795
1796/**
940864dd
RW
1797 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1798 * the corresponding bit in the memory bitmap @bm
f577eb30 1799 */
69643279 1800static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
1801{
1802 int j;
1803
940864dd
RW
1804 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1805 if (unlikely(buf[j] == BM_END_OF_MAP))
1806 break;
1807
69643279
RW
1808 if (memory_bm_pfn_present(bm, buf[j]))
1809 memory_bm_set_bit(bm, buf[j]);
1810 else
1811 return -EFAULT;
f577eb30 1812 }
69643279
RW
1813
1814 return 0;
f577eb30
RW
1815}
1816
8357376d
RW
1817/* List of "safe" pages that may be used to store data loaded from the suspend
1818 * image
1819 */
1820static struct linked_page *safe_pages_list;
1821
1822#ifdef CONFIG_HIGHMEM
1823/* struct highmem_pbe is used for creating the list of highmem pages that
1824 * should be restored atomically during the resume from disk, because the page
1825 * frames they have occupied before the suspend are in use.
1826 */
1827struct highmem_pbe {
1828 struct page *copy_page; /* data is here now */
1829 struct page *orig_page; /* data was here before the suspend */
1830 struct highmem_pbe *next;
1831};
1832
1833/* List of highmem PBEs needed for restoring the highmem pages that were
1834 * allocated before the suspend and included in the suspend image, but have
1835 * also been allocated by the "resume" kernel, so their contents cannot be
1836 * written directly to their "original" page frames.
1837 */
1838static struct highmem_pbe *highmem_pblist;
1839
1840/**
1841 * count_highmem_image_pages - compute the number of highmem pages in the
1842 * suspend image. The bits in the memory bitmap @bm that correspond to the
1843 * image pages are assumed to be set.
1844 */
1845
1846static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1847{
1848 unsigned long pfn;
1849 unsigned int cnt = 0;
1850
1851 memory_bm_position_reset(bm);
1852 pfn = memory_bm_next_pfn(bm);
1853 while (pfn != BM_END_OF_MAP) {
1854 if (PageHighMem(pfn_to_page(pfn)))
1855 cnt++;
1856
1857 pfn = memory_bm_next_pfn(bm);
1858 }
1859 return cnt;
1860}
1861
1862/**
1863 * prepare_highmem_image - try to allocate as many highmem pages as
1864 * there are highmem image pages (@nr_highmem_p points to the variable
1865 * containing the number of highmem image pages). The pages that are
1866 * "safe" (ie. will not be overwritten when the suspend image is
1867 * restored) have the corresponding bits set in @bm (it must be
1868 * unitialized).
1869 *
1870 * NOTE: This function should not be called if there are no highmem
1871 * image pages.
1872 */
1873
1874static unsigned int safe_highmem_pages;
1875
1876static struct memory_bitmap *safe_highmem_bm;
1877
1878static int
1879prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1880{
1881 unsigned int to_alloc;
1882
1883 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1884 return -ENOMEM;
1885
1886 if (get_highmem_buffer(PG_SAFE))
1887 return -ENOMEM;
1888
1889 to_alloc = count_free_highmem_pages();
1890 if (to_alloc > *nr_highmem_p)
1891 to_alloc = *nr_highmem_p;
1892 else
1893 *nr_highmem_p = to_alloc;
1894
1895 safe_highmem_pages = 0;
1896 while (to_alloc-- > 0) {
1897 struct page *page;
1898
1899 page = alloc_page(__GFP_HIGHMEM);
7be98234 1900 if (!swsusp_page_is_free(page)) {
8357376d
RW
1901 /* The page is "safe", set its bit the bitmap */
1902 memory_bm_set_bit(bm, page_to_pfn(page));
1903 safe_highmem_pages++;
1904 }
1905 /* Mark the page as allocated */
7be98234
RW
1906 swsusp_set_page_forbidden(page);
1907 swsusp_set_page_free(page);
8357376d
RW
1908 }
1909 memory_bm_position_reset(bm);
1910 safe_highmem_bm = bm;
1911 return 0;
1912}
1913
1914/**
1915 * get_highmem_page_buffer - for given highmem image page find the buffer
1916 * that suspend_write_next() should set for its caller to write to.
1917 *
1918 * If the page is to be saved to its "original" page frame or a copy of
1919 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1920 * the copy of the page is to be made in normal memory, so the address of
1921 * the copy is returned.
1922 *
1923 * If @buffer is returned, the caller of suspend_write_next() will write
1924 * the page's contents to @buffer, so they will have to be copied to the
1925 * right location on the next call to suspend_write_next() and it is done
1926 * with the help of copy_last_highmem_page(). For this purpose, if
1927 * @buffer is returned, @last_highmem page is set to the page to which
1928 * the data will have to be copied from @buffer.
1929 */
1930
1931static struct page *last_highmem_page;
1932
1933static void *
1934get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1935{
1936 struct highmem_pbe *pbe;
1937 void *kaddr;
1938
7be98234 1939 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
8357376d
RW
1940 /* We have allocated the "original" page frame and we can
1941 * use it directly to store the loaded page.
1942 */
1943 last_highmem_page = page;
1944 return buffer;
1945 }
1946 /* The "original" page frame has not been allocated and we have to
1947 * use a "safe" page frame to store the loaded page.
1948 */
1949 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1950 if (!pbe) {
1951 swsusp_free();
69643279 1952 return ERR_PTR(-ENOMEM);
8357376d
RW
1953 }
1954 pbe->orig_page = page;
1955 if (safe_highmem_pages > 0) {
1956 struct page *tmp;
1957
1958 /* Copy of the page will be stored in high memory */
1959 kaddr = buffer;
1960 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1961 safe_highmem_pages--;
1962 last_highmem_page = tmp;
1963 pbe->copy_page = tmp;
1964 } else {
1965 /* Copy of the page will be stored in normal memory */
1966 kaddr = safe_pages_list;
1967 safe_pages_list = safe_pages_list->next;
1968 pbe->copy_page = virt_to_page(kaddr);
1969 }
1970 pbe->next = highmem_pblist;
1971 highmem_pblist = pbe;
1972 return kaddr;
1973}
1974
1975/**
1976 * copy_last_highmem_page - copy the contents of a highmem image from
1977 * @buffer, where the caller of snapshot_write_next() has place them,
1978 * to the right location represented by @last_highmem_page .
1979 */
1980
1981static void copy_last_highmem_page(void)
1982{
1983 if (last_highmem_page) {
1984 void *dst;
1985
1986 dst = kmap_atomic(last_highmem_page, KM_USER0);
3ecb01df 1987 copy_page(dst, buffer);
8357376d
RW
1988 kunmap_atomic(dst, KM_USER0);
1989 last_highmem_page = NULL;
1990 }
1991}
1992
1993static inline int last_highmem_page_copied(void)
1994{
1995 return !last_highmem_page;
1996}
1997
1998static inline void free_highmem_data(void)
1999{
2000 if (safe_highmem_bm)
2001 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2002
2003 if (buffer)
2004 free_image_page(buffer, PG_UNSAFE_CLEAR);
2005}
2006#else
2007static inline int get_safe_write_buffer(void) { return 0; }
2008
2009static unsigned int
2010count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2011
2012static inline int
2013prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2014{
2015 return 0;
2016}
2017
2018static inline void *
2019get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2020{
69643279 2021 return ERR_PTR(-EINVAL);
8357376d
RW
2022}
2023
2024static inline void copy_last_highmem_page(void) {}
2025static inline int last_highmem_page_copied(void) { return 1; }
2026static inline void free_highmem_data(void) {}
2027#endif /* CONFIG_HIGHMEM */
2028
f577eb30 2029/**
940864dd
RW
2030 * prepare_image - use the memory bitmap @bm to mark the pages that will
2031 * be overwritten in the process of restoring the system memory state
2032 * from the suspend image ("unsafe" pages) and allocate memory for the
2033 * image.
968808b8 2034 *
940864dd
RW
2035 * The idea is to allocate a new memory bitmap first and then allocate
2036 * as many pages as needed for the image data, but not to assign these
2037 * pages to specific tasks initially. Instead, we just mark them as
8357376d
RW
2038 * allocated and create a lists of "safe" pages that will be used
2039 * later. On systems with high memory a list of "safe" highmem pages is
2040 * also created.
f577eb30
RW
2041 */
2042
940864dd
RW
2043#define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2044
940864dd
RW
2045static int
2046prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
f577eb30 2047{
8357376d 2048 unsigned int nr_pages, nr_highmem;
940864dd
RW
2049 struct linked_page *sp_list, *lp;
2050 int error;
f577eb30 2051
8357376d
RW
2052 /* If there is no highmem, the buffer will not be necessary */
2053 free_image_page(buffer, PG_UNSAFE_CLEAR);
2054 buffer = NULL;
2055
2056 nr_highmem = count_highmem_image_pages(bm);
940864dd
RW
2057 error = mark_unsafe_pages(bm);
2058 if (error)
2059 goto Free;
2060
2061 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2062 if (error)
2063 goto Free;
2064
2065 duplicate_memory_bitmap(new_bm, bm);
2066 memory_bm_free(bm, PG_UNSAFE_KEEP);
8357376d
RW
2067 if (nr_highmem > 0) {
2068 error = prepare_highmem_image(bm, &nr_highmem);
2069 if (error)
2070 goto Free;
2071 }
940864dd
RW
2072 /* Reserve some safe pages for potential later use.
2073 *
2074 * NOTE: This way we make sure there will be enough safe pages for the
2075 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2076 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2077 */
2078 sp_list = NULL;
2079 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
8357376d 2080 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
2081 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2082 while (nr_pages > 0) {
8357376d 2083 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
940864dd 2084 if (!lp) {
f577eb30 2085 error = -ENOMEM;
940864dd
RW
2086 goto Free;
2087 }
2088 lp->next = sp_list;
2089 sp_list = lp;
2090 nr_pages--;
f577eb30 2091 }
940864dd
RW
2092 /* Preallocate memory for the image */
2093 safe_pages_list = NULL;
8357376d 2094 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
2095 while (nr_pages > 0) {
2096 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2097 if (!lp) {
2098 error = -ENOMEM;
2099 goto Free;
2100 }
7be98234 2101 if (!swsusp_page_is_free(virt_to_page(lp))) {
940864dd
RW
2102 /* The page is "safe", add it to the list */
2103 lp->next = safe_pages_list;
2104 safe_pages_list = lp;
968808b8 2105 }
940864dd 2106 /* Mark the page as allocated */
7be98234
RW
2107 swsusp_set_page_forbidden(virt_to_page(lp));
2108 swsusp_set_page_free(virt_to_page(lp));
940864dd 2109 nr_pages--;
968808b8 2110 }
940864dd
RW
2111 /* Free the reserved safe pages so that chain_alloc() can use them */
2112 while (sp_list) {
2113 lp = sp_list->next;
2114 free_image_page(sp_list, PG_UNSAFE_CLEAR);
2115 sp_list = lp;
f577eb30 2116 }
940864dd
RW
2117 return 0;
2118
59a49335 2119 Free:
940864dd 2120 swsusp_free();
f577eb30
RW
2121 return error;
2122}
2123
940864dd
RW
2124/**
2125 * get_buffer - compute the address that snapshot_write_next() should
2126 * set for its caller to write to.
2127 */
2128
2129static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
968808b8 2130{
940864dd 2131 struct pbe *pbe;
69643279
RW
2132 struct page *page;
2133 unsigned long pfn = memory_bm_next_pfn(bm);
968808b8 2134
69643279
RW
2135 if (pfn == BM_END_OF_MAP)
2136 return ERR_PTR(-EFAULT);
2137
2138 page = pfn_to_page(pfn);
8357376d
RW
2139 if (PageHighMem(page))
2140 return get_highmem_page_buffer(page, ca);
2141
7be98234 2142 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
940864dd
RW
2143 /* We have allocated the "original" page frame and we can
2144 * use it directly to store the loaded page.
968808b8 2145 */
940864dd
RW
2146 return page_address(page);
2147
2148 /* The "original" page frame has not been allocated and we have to
2149 * use a "safe" page frame to store the loaded page.
968808b8 2150 */
940864dd
RW
2151 pbe = chain_alloc(ca, sizeof(struct pbe));
2152 if (!pbe) {
2153 swsusp_free();
69643279 2154 return ERR_PTR(-ENOMEM);
940864dd 2155 }
8357376d
RW
2156 pbe->orig_address = page_address(page);
2157 pbe->address = safe_pages_list;
940864dd
RW
2158 safe_pages_list = safe_pages_list->next;
2159 pbe->next = restore_pblist;
2160 restore_pblist = pbe;
8357376d 2161 return pbe->address;
968808b8
RW
2162}
2163
f577eb30
RW
2164/**
2165 * snapshot_write_next - used for writing the system memory snapshot.
2166 *
2167 * On the first call to it @handle should point to a zeroed
2168 * snapshot_handle structure. The structure gets updated and a pointer
2169 * to it should be passed to this function every next time.
2170 *
f577eb30
RW
2171 * On success the function returns a positive number. Then, the caller
2172 * is allowed to write up to the returned number of bytes to the memory
d3c1b24c 2173 * location computed by the data_of() macro.
f577eb30
RW
2174 *
2175 * The function returns 0 to indicate the "end of file" condition,
2176 * and a negative number is returned on error. In such cases the
2177 * structure pointed to by @handle is not updated and should not be used
2178 * any more.
2179 */
2180
d3c1b24c 2181int snapshot_write_next(struct snapshot_handle *handle)
f577eb30 2182{
940864dd 2183 static struct chain_allocator ca;
f577eb30
RW
2184 int error = 0;
2185
940864dd 2186 /* Check if we have already loaded the entire image */
d3c1b24c 2187 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 2188 return 0;
940864dd 2189
d3c1b24c
JS
2190 handle->sync_read = 1;
2191
2192 if (!handle->cur) {
8357376d
RW
2193 if (!buffer)
2194 /* This makes the buffer be freed by swsusp_free() */
2195 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2196
f577eb30
RW
2197 if (!buffer)
2198 return -ENOMEM;
8357376d 2199
f577eb30 2200 handle->buffer = buffer;
d3c1b24c
JS
2201 } else if (handle->cur == 1) {
2202 error = load_header(buffer);
2203 if (error)
2204 return error;
940864dd 2205
d3c1b24c
JS
2206 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2207 if (error)
2208 return error;
2209
2210 } else if (handle->cur <= nr_meta_pages + 1) {
2211 error = unpack_orig_pfns(buffer, &copy_bm);
2212 if (error)
2213 return error;
940864dd 2214
d3c1b24c
JS
2215 if (handle->cur == nr_meta_pages + 1) {
2216 error = prepare_image(&orig_bm, &copy_bm);
69643279
RW
2217 if (error)
2218 return error;
2219
d3c1b24c
JS
2220 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2221 memory_bm_position_reset(&orig_bm);
2222 restore_pblist = NULL;
940864dd 2223 handle->buffer = get_buffer(&orig_bm, &ca);
d3c1b24c 2224 handle->sync_read = 0;
69643279
RW
2225 if (IS_ERR(handle->buffer))
2226 return PTR_ERR(handle->buffer);
f577eb30 2227 }
f577eb30 2228 } else {
d3c1b24c
JS
2229 copy_last_highmem_page();
2230 handle->buffer = get_buffer(&orig_bm, &ca);
2231 if (IS_ERR(handle->buffer))
2232 return PTR_ERR(handle->buffer);
2233 if (handle->buffer != buffer)
2234 handle->sync_read = 0;
f577eb30 2235 }
d3c1b24c
JS
2236 handle->cur++;
2237 return PAGE_SIZE;
f577eb30
RW
2238}
2239
8357376d
RW
2240/**
2241 * snapshot_write_finalize - must be called after the last call to
2242 * snapshot_write_next() in case the last page in the image happens
2243 * to be a highmem page and its contents should be stored in the
2244 * highmem. Additionally, it releases the memory that will not be
2245 * used any more.
2246 */
2247
2248void snapshot_write_finalize(struct snapshot_handle *handle)
2249{
2250 copy_last_highmem_page();
2251 /* Free only if we have loaded the image entirely */
d3c1b24c 2252 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
8357376d
RW
2253 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2254 free_highmem_data();
2255 }
2256}
2257
f577eb30
RW
2258int snapshot_image_loaded(struct snapshot_handle *handle)
2259{
8357376d 2260 return !(!nr_copy_pages || !last_highmem_page_copied() ||
940864dd
RW
2261 handle->cur <= nr_meta_pages + nr_copy_pages);
2262}
2263
8357376d
RW
2264#ifdef CONFIG_HIGHMEM
2265/* Assumes that @buf is ready and points to a "safe" page */
2266static inline void
2267swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
940864dd 2268{
8357376d
RW
2269 void *kaddr1, *kaddr2;
2270
2271 kaddr1 = kmap_atomic(p1, KM_USER0);
2272 kaddr2 = kmap_atomic(p2, KM_USER1);
3ecb01df
JB
2273 copy_page(buf, kaddr1);
2274 copy_page(kaddr1, kaddr2);
2275 copy_page(kaddr2, buf);
8357376d 2276 kunmap_atomic(kaddr2, KM_USER1);
61ecdb80 2277 kunmap_atomic(kaddr1, KM_USER0);
8357376d
RW
2278}
2279
2280/**
2281 * restore_highmem - for each highmem page that was allocated before
2282 * the suspend and included in the suspend image, and also has been
2283 * allocated by the "resume" kernel swap its current (ie. "before
2284 * resume") contents with the previous (ie. "before suspend") one.
2285 *
2286 * If the resume eventually fails, we can call this function once
2287 * again and restore the "before resume" highmem state.
2288 */
2289
2290int restore_highmem(void)
2291{
2292 struct highmem_pbe *pbe = highmem_pblist;
2293 void *buf;
2294
2295 if (!pbe)
2296 return 0;
2297
2298 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2299 if (!buf)
2300 return -ENOMEM;
2301
2302 while (pbe) {
2303 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2304 pbe = pbe->next;
2305 }
2306 free_image_page(buf, PG_UNSAFE_CLEAR);
2307 return 0;
f577eb30 2308}
8357376d 2309#endif /* CONFIG_HIGHMEM */