]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/posix-timers.c
[PATCH] hrtimer: make clockid_t arguments const
[net-next-2.6.git] / kernel / posix-timers.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/posix_timers.c
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30/* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33#include <linux/mm.h>
34#include <linux/smp_lock.h>
35#include <linux/interrupt.h>
36#include <linux/slab.h>
37#include <linux/time.h>
67924be8 38#include <linux/calc64.h>
1da177e4
LT
39
40#include <asm/uaccess.h>
41#include <asm/semaphore.h>
42#include <linux/list.h>
43#include <linux/init.h>
44#include <linux/compiler.h>
45#include <linux/idr.h>
46#include <linux/posix-timers.h>
47#include <linux/syscalls.h>
48#include <linux/wait.h>
49#include <linux/workqueue.h>
50#include <linux/module.h>
51
1da177e4
LT
52#define CLOCK_REALTIME_RES TICK_NSEC /* In nano seconds. */
53
54static inline u64 mpy_l_X_l_ll(unsigned long mpy1,unsigned long mpy2)
55{
56 return (u64)mpy1 * mpy2;
57}
58/*
59 * Management arrays for POSIX timers. Timers are kept in slab memory
60 * Timer ids are allocated by an external routine that keeps track of the
61 * id and the timer. The external interface is:
62 *
63 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
64 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
65 * related it to <ptr>
66 * void idr_remove(struct idr *idp, int id); to release <id>
67 * void idr_init(struct idr *idp); to initialize <idp>
68 * which we supply.
69 * The idr_get_new *may* call slab for more memory so it must not be
70 * called under a spin lock. Likewise idr_remore may release memory
71 * (but it may be ok to do this under a lock...).
72 * idr_find is just a memory look up and is quite fast. A -1 return
73 * indicates that the requested id does not exist.
74 */
75
76/*
77 * Lets keep our timers in a slab cache :-)
78 */
79static kmem_cache_t *posix_timers_cache;
80static struct idr posix_timers_id;
81static DEFINE_SPINLOCK(idr_lock);
82
1da177e4
LT
83/*
84 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
85 * SIGEV values. Here we put out an error if this assumption fails.
86 */
87#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
88 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
89#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
90#endif
91
92
93/*
94 * The timer ID is turned into a timer address by idr_find().
95 * Verifying a valid ID consists of:
96 *
97 * a) checking that idr_find() returns other than -1.
98 * b) checking that the timer id matches the one in the timer itself.
99 * c) that the timer owner is in the callers thread group.
100 */
101
102/*
103 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
104 * to implement others. This structure defines the various
105 * clocks and allows the possibility of adding others. We
106 * provide an interface to add clocks to the table and expect
107 * the "arch" code to add at least one clock that is high
108 * resolution. Here we define the standard CLOCK_REALTIME as a
109 * 1/HZ resolution clock.
110 *
111 * RESOLUTION: Clock resolution is used to round up timer and interval
112 * times, NOT to report clock times, which are reported with as
113 * much resolution as the system can muster. In some cases this
114 * resolution may depend on the underlying clock hardware and
115 * may not be quantifiable until run time, and only then is the
116 * necessary code is written. The standard says we should say
117 * something about this issue in the documentation...
118 *
119 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
120 * various clock functions. For clocks that use the standard
121 * system timer code these entries should be NULL. This will
122 * allow dispatch without the overhead of indirect function
123 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
124 * must supply functions here, even if the function just returns
125 * ENOSYS. The standard POSIX timer management code assumes the
126 * following: 1.) The k_itimer struct (sched.h) is used for the
127 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
128 * fields are not modified by timer code.
129 *
130 * At this time all functions EXCEPT clock_nanosleep can be
131 * redirected by the CLOCKS structure. Clock_nanosleep is in
132 * there, but the code ignores it.
133 *
134 * Permissions: It is assumed that the clock_settime() function defined
135 * for each clock will take care of permission checks. Some
136 * clocks may be set able by any user (i.e. local process
137 * clocks) others not. Currently the only set able clock we
138 * have is CLOCK_REALTIME and its high res counter part, both of
139 * which we beg off on and pass to do_sys_settimeofday().
140 */
141
142static struct k_clock posix_clocks[MAX_CLOCKS];
143/*
144 * We only have one real clock that can be set so we need only one abs list,
145 * even if we should want to have several clocks with differing resolutions.
146 */
147static struct k_clock_abs abs_list = {.list = LIST_HEAD_INIT(abs_list.list),
148 .lock = SPIN_LOCK_UNLOCKED};
149
150static void posix_timer_fn(unsigned long);
151static u64 do_posix_clock_monotonic_gettime_parts(
152 struct timespec *tp, struct timespec *mo);
153int do_posix_clock_monotonic_gettime(struct timespec *tp);
a924b04d 154static int do_posix_clock_monotonic_get(const clockid_t, struct timespec *tp);
1da177e4
LT
155
156static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
157
158static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
159{
160 spin_unlock_irqrestore(&timr->it_lock, flags);
161}
162
163/*
164 * Call the k_clock hook function if non-null, or the default function.
165 */
166#define CLOCK_DISPATCH(clock, call, arglist) \
167 ((clock) < 0 ? posix_cpu_##call arglist : \
168 (posix_clocks[clock].call != NULL \
169 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
170
171/*
172 * Default clock hook functions when the struct k_clock passed
173 * to register_posix_clock leaves a function pointer null.
174 *
175 * The function common_CALL is the default implementation for
176 * the function pointer CALL in struct k_clock.
177 */
178
a924b04d 179static inline int common_clock_getres(const clockid_t which_clock,
1da177e4
LT
180 struct timespec *tp)
181{
182 tp->tv_sec = 0;
183 tp->tv_nsec = posix_clocks[which_clock].res;
184 return 0;
185}
186
a924b04d
TG
187static inline int common_clock_get(const clockid_t which_clock,
188 struct timespec *tp)
1da177e4
LT
189{
190 getnstimeofday(tp);
191 return 0;
192}
193
a924b04d
TG
194static inline int common_clock_set(const clockid_t which_clock,
195 struct timespec *tp)
1da177e4
LT
196{
197 return do_sys_settimeofday(tp, NULL);
198}
199
200static inline int common_timer_create(struct k_itimer *new_timer)
201{
202 INIT_LIST_HEAD(&new_timer->it.real.abs_timer_entry);
203 init_timer(&new_timer->it.real.timer);
204 new_timer->it.real.timer.data = (unsigned long) new_timer;
205 new_timer->it.real.timer.function = posix_timer_fn;
1da177e4
LT
206 return 0;
207}
208
209/*
210 * These ones are defined below.
211 */
a924b04d 212static int common_nsleep(const clockid_t, int flags, struct timespec *t);
1da177e4
LT
213static void common_timer_get(struct k_itimer *, struct itimerspec *);
214static int common_timer_set(struct k_itimer *, int,
215 struct itimerspec *, struct itimerspec *);
216static int common_timer_del(struct k_itimer *timer);
217
218/*
219 * Return nonzero iff we know a priori this clockid_t value is bogus.
220 */
a924b04d 221static inline int invalid_clockid(const clockid_t which_clock)
1da177e4
LT
222{
223 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
224 return 0;
225 if ((unsigned) which_clock >= MAX_CLOCKS)
226 return 1;
227 if (posix_clocks[which_clock].clock_getres != NULL)
228 return 0;
229#ifndef CLOCK_DISPATCH_DIRECT
230 if (posix_clocks[which_clock].res != 0)
231 return 0;
232#endif
233 return 1;
234}
235
236
237/*
238 * Initialize everything, well, just everything in Posix clocks/timers ;)
239 */
240static __init int init_posix_timers(void)
241{
242 struct k_clock clock_realtime = {.res = CLOCK_REALTIME_RES,
243 .abs_struct = &abs_list
244 };
245 struct k_clock clock_monotonic = {.res = CLOCK_REALTIME_RES,
246 .abs_struct = NULL,
247 .clock_get = do_posix_clock_monotonic_get,
248 .clock_set = do_posix_clock_nosettime
249 };
250
251 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
252 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
253
254 posix_timers_cache = kmem_cache_create("posix_timers_cache",
255 sizeof (struct k_itimer), 0, 0, NULL, NULL);
256 idr_init(&posix_timers_id);
257 return 0;
258}
259
260__initcall(init_posix_timers);
261
262static void tstojiffie(struct timespec *tp, int res, u64 *jiff)
263{
264 long sec = tp->tv_sec;
265 long nsec = tp->tv_nsec + res - 1;
266
3f39894d 267 if (nsec >= NSEC_PER_SEC) {
1da177e4
LT
268 sec++;
269 nsec -= NSEC_PER_SEC;
270 }
271
272 /*
273 * The scaling constants are defined in <linux/time.h>
274 * The difference between there and here is that we do the
275 * res rounding and compute a 64-bit result (well so does that
276 * but it then throws away the high bits).
277 */
278 *jiff = (mpy_l_X_l_ll(sec, SEC_CONVERSION) +
279 (mpy_l_X_l_ll(nsec, NSEC_CONVERSION) >>
280 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
281}
282
283/*
284 * This function adjusts the timer as needed as a result of the clock
285 * being set. It should only be called for absolute timers, and then
286 * under the abs_list lock. It computes the time difference and sets
287 * the new jiffies value in the timer. It also updates the timers
288 * reference wall_to_monotonic value. It is complicated by the fact
289 * that tstojiffies() only handles positive times and it needs to work
290 * with both positive and negative times. Also, for negative offsets,
291 * we need to defeat the res round up.
292 *
293 * Return is true if there is a new time, else false.
294 */
295static long add_clockset_delta(struct k_itimer *timr,
296 struct timespec *new_wall_to)
297{
298 struct timespec delta;
299 int sign = 0;
300 u64 exp;
301
302 set_normalized_timespec(&delta,
303 new_wall_to->tv_sec -
304 timr->it.real.wall_to_prev.tv_sec,
305 new_wall_to->tv_nsec -
306 timr->it.real.wall_to_prev.tv_nsec);
307 if (likely(!(delta.tv_sec | delta.tv_nsec)))
308 return 0;
309 if (delta.tv_sec < 0) {
310 set_normalized_timespec(&delta,
311 -delta.tv_sec,
312 1 - delta.tv_nsec -
313 posix_clocks[timr->it_clock].res);
314 sign++;
315 }
316 tstojiffie(&delta, posix_clocks[timr->it_clock].res, &exp);
317 timr->it.real.wall_to_prev = *new_wall_to;
318 timr->it.real.timer.expires += (sign ? -exp : exp);
319 return 1;
320}
321
322static void remove_from_abslist(struct k_itimer *timr)
323{
324 if (!list_empty(&timr->it.real.abs_timer_entry)) {
325 spin_lock(&abs_list.lock);
326 list_del_init(&timr->it.real.abs_timer_entry);
327 spin_unlock(&abs_list.lock);
328 }
329}
330
331static void schedule_next_timer(struct k_itimer *timr)
332{
333 struct timespec new_wall_to;
334 struct now_struct now;
335 unsigned long seq;
336
337 /*
338 * Set up the timer for the next interval (if there is one).
339 * Note: this code uses the abs_timer_lock to protect
340 * it.real.wall_to_prev and must hold it until exp is set, not exactly
341 * obvious...
342
343 * This function is used for CLOCK_REALTIME* and
344 * CLOCK_MONOTONIC* timers. If we ever want to handle other
345 * CLOCKs, the calling code (do_schedule_next_timer) would need
346 * to pull the "clock" info from the timer and dispatch the
347 * "other" CLOCKs "next timer" code (which, I suppose should
348 * also be added to the k_clock structure).
349 */
350 if (!timr->it.real.incr)
351 return;
352
353 do {
354 seq = read_seqbegin(&xtime_lock);
355 new_wall_to = wall_to_monotonic;
356 posix_get_now(&now);
357 } while (read_seqretry(&xtime_lock, seq));
358
359 if (!list_empty(&timr->it.real.abs_timer_entry)) {
360 spin_lock(&abs_list.lock);
361 add_clockset_delta(timr, &new_wall_to);
362
363 posix_bump_timer(timr, now);
364
365 spin_unlock(&abs_list.lock);
366 } else {
367 posix_bump_timer(timr, now);
368 }
369 timr->it_overrun_last = timr->it_overrun;
370 timr->it_overrun = -1;
371 ++timr->it_requeue_pending;
372 add_timer(&timr->it.real.timer);
373}
374
375/*
376 * This function is exported for use by the signal deliver code. It is
377 * called just prior to the info block being released and passes that
378 * block to us. It's function is to update the overrun entry AND to
379 * restart the timer. It should only be called if the timer is to be
380 * restarted (i.e. we have flagged this in the sys_private entry of the
381 * info block).
382 *
383 * To protect aginst the timer going away while the interrupt is queued,
384 * we require that the it_requeue_pending flag be set.
385 */
386void do_schedule_next_timer(struct siginfo *info)
387{
388 struct k_itimer *timr;
389 unsigned long flags;
390
391 timr = lock_timer(info->si_tid, &flags);
392
393 if (!timr || timr->it_requeue_pending != info->si_sys_private)
394 goto exit;
395
396 if (timr->it_clock < 0) /* CPU clock */
397 posix_cpu_timer_schedule(timr);
398 else
399 schedule_next_timer(timr);
400 info->si_overrun = timr->it_overrun_last;
401exit:
402 if (timr)
403 unlock_timer(timr, flags);
404}
405
406int posix_timer_event(struct k_itimer *timr,int si_private)
407{
408 memset(&timr->sigq->info, 0, sizeof(siginfo_t));
409 timr->sigq->info.si_sys_private = si_private;
410 /*
411 * Send signal to the process that owns this timer.
412
413 * This code assumes that all the possible abs_lists share the
414 * same lock (there is only one list at this time). If this is
415 * not the case, the CLOCK info would need to be used to find
416 * the proper abs list lock.
417 */
418
419 timr->sigq->info.si_signo = timr->it_sigev_signo;
420 timr->sigq->info.si_errno = 0;
421 timr->sigq->info.si_code = SI_TIMER;
422 timr->sigq->info.si_tid = timr->it_id;
423 timr->sigq->info.si_value = timr->it_sigev_value;
e752dd6c 424
1da177e4 425 if (timr->it_sigev_notify & SIGEV_THREAD_ID) {
e752dd6c
ON
426 struct task_struct *leader;
427 int ret = send_sigqueue(timr->it_sigev_signo, timr->sigq,
428 timr->it_process);
429
430 if (likely(ret >= 0))
431 return ret;
432
433 timr->it_sigev_notify = SIGEV_SIGNAL;
434 leader = timr->it_process->group_leader;
435 put_task_struct(timr->it_process);
436 timr->it_process = leader;
1da177e4 437 }
e752dd6c
ON
438
439 return send_group_sigqueue(timr->it_sigev_signo, timr->sigq,
440 timr->it_process);
1da177e4
LT
441}
442EXPORT_SYMBOL_GPL(posix_timer_event);
443
444/*
445 * This function gets called when a POSIX.1b interval timer expires. It
446 * is used as a callback from the kernel internal timer. The
447 * run_timer_list code ALWAYS calls with interrupts on.
448
449 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
450 */
451static void posix_timer_fn(unsigned long __data)
452{
453 struct k_itimer *timr = (struct k_itimer *) __data;
454 unsigned long flags;
455 unsigned long seq;
456 struct timespec delta, new_wall_to;
457 u64 exp = 0;
458 int do_notify = 1;
459
460 spin_lock_irqsave(&timr->it_lock, flags);
1da177e4
LT
461 if (!list_empty(&timr->it.real.abs_timer_entry)) {
462 spin_lock(&abs_list.lock);
463 do {
464 seq = read_seqbegin(&xtime_lock);
465 new_wall_to = wall_to_monotonic;
466 } while (read_seqretry(&xtime_lock, seq));
467 set_normalized_timespec(&delta,
468 new_wall_to.tv_sec -
469 timr->it.real.wall_to_prev.tv_sec,
470 new_wall_to.tv_nsec -
471 timr->it.real.wall_to_prev.tv_nsec);
472 if (likely((delta.tv_sec | delta.tv_nsec ) == 0)) {
473 /* do nothing, timer is on time */
474 } else if (delta.tv_sec < 0) {
475 /* do nothing, timer is already late */
476 } else {
477 /* timer is early due to a clock set */
478 tstojiffie(&delta,
479 posix_clocks[timr->it_clock].res,
480 &exp);
481 timr->it.real.wall_to_prev = new_wall_to;
482 timr->it.real.timer.expires += exp;
483 add_timer(&timr->it.real.timer);
484 do_notify = 0;
485 }
486 spin_unlock(&abs_list.lock);
487
488 }
489 if (do_notify) {
490 int si_private=0;
491
492 if (timr->it.real.incr)
493 si_private = ++timr->it_requeue_pending;
494 else {
495 remove_from_abslist(timr);
496 }
497
498 if (posix_timer_event(timr, si_private))
499 /*
500 * signal was not sent because of sig_ignor
501 * we will not get a call back to restart it AND
502 * it should be restarted.
503 */
504 schedule_next_timer(timr);
505 }
506 unlock_timer(timr, flags); /* hold thru abs lock to keep irq off */
507}
508
509
510static inline struct task_struct * good_sigevent(sigevent_t * event)
511{
512 struct task_struct *rtn = current->group_leader;
513
514 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
515 (!(rtn = find_task_by_pid(event->sigev_notify_thread_id)) ||
516 rtn->tgid != current->tgid ||
517 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
518 return NULL;
519
520 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
521 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
522 return NULL;
523
524 return rtn;
525}
526
a924b04d 527void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
1da177e4
LT
528{
529 if ((unsigned) clock_id >= MAX_CLOCKS) {
530 printk("POSIX clock register failed for clock_id %d\n",
531 clock_id);
532 return;
533 }
534
535 posix_clocks[clock_id] = *new_clock;
536}
537EXPORT_SYMBOL_GPL(register_posix_clock);
538
539static struct k_itimer * alloc_posix_timer(void)
540{
541 struct k_itimer *tmr;
542 tmr = kmem_cache_alloc(posix_timers_cache, GFP_KERNEL);
543 if (!tmr)
544 return tmr;
545 memset(tmr, 0, sizeof (struct k_itimer));
546 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
547 kmem_cache_free(posix_timers_cache, tmr);
548 tmr = NULL;
549 }
550 return tmr;
551}
552
553#define IT_ID_SET 1
554#define IT_ID_NOT_SET 0
555static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
556{
557 if (it_id_set) {
558 unsigned long flags;
559 spin_lock_irqsave(&idr_lock, flags);
560 idr_remove(&posix_timers_id, tmr->it_id);
561 spin_unlock_irqrestore(&idr_lock, flags);
562 }
563 sigqueue_free(tmr->sigq);
564 if (unlikely(tmr->it_process) &&
565 tmr->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
566 put_task_struct(tmr->it_process);
567 kmem_cache_free(posix_timers_cache, tmr);
568}
569
570/* Create a POSIX.1b interval timer. */
571
572asmlinkage long
a924b04d 573sys_timer_create(const clockid_t which_clock,
1da177e4
LT
574 struct sigevent __user *timer_event_spec,
575 timer_t __user * created_timer_id)
576{
577 int error = 0;
578 struct k_itimer *new_timer = NULL;
579 int new_timer_id;
580 struct task_struct *process = NULL;
581 unsigned long flags;
582 sigevent_t event;
583 int it_id_set = IT_ID_NOT_SET;
584
585 if (invalid_clockid(which_clock))
586 return -EINVAL;
587
588 new_timer = alloc_posix_timer();
589 if (unlikely(!new_timer))
590 return -EAGAIN;
591
592 spin_lock_init(&new_timer->it_lock);
593 retry:
594 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
595 error = -EAGAIN;
596 goto out;
597 }
598 spin_lock_irq(&idr_lock);
599 error = idr_get_new(&posix_timers_id,
600 (void *) new_timer,
601 &new_timer_id);
602 spin_unlock_irq(&idr_lock);
603 if (error == -EAGAIN)
604 goto retry;
605 else if (error) {
606 /*
607 * Wierd looking, but we return EAGAIN if the IDR is
608 * full (proper POSIX return value for this)
609 */
610 error = -EAGAIN;
611 goto out;
612 }
613
614 it_id_set = IT_ID_SET;
615 new_timer->it_id = (timer_t) new_timer_id;
616 new_timer->it_clock = which_clock;
617 new_timer->it_overrun = -1;
618 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
619 if (error)
620 goto out;
621
622 /*
623 * return the timer_id now. The next step is hard to
624 * back out if there is an error.
625 */
626 if (copy_to_user(created_timer_id,
627 &new_timer_id, sizeof (new_timer_id))) {
628 error = -EFAULT;
629 goto out;
630 }
631 if (timer_event_spec) {
632 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
633 error = -EFAULT;
634 goto out;
635 }
636 new_timer->it_sigev_notify = event.sigev_notify;
637 new_timer->it_sigev_signo = event.sigev_signo;
638 new_timer->it_sigev_value = event.sigev_value;
639
640 read_lock(&tasklist_lock);
641 if ((process = good_sigevent(&event))) {
642 /*
643 * We may be setting up this process for another
644 * thread. It may be exiting. To catch this
645 * case the we check the PF_EXITING flag. If
646 * the flag is not set, the siglock will catch
647 * him before it is too late (in exit_itimers).
648 *
649 * The exec case is a bit more invloved but easy
650 * to code. If the process is in our thread
651 * group (and it must be or we would not allow
652 * it here) and is doing an exec, it will cause
653 * us to be killed. In this case it will wait
654 * for us to die which means we can finish this
655 * linkage with our last gasp. I.e. no code :)
656 */
657 spin_lock_irqsave(&process->sighand->siglock, flags);
658 if (!(process->flags & PF_EXITING)) {
659 new_timer->it_process = process;
660 list_add(&new_timer->list,
661 &process->signal->posix_timers);
662 spin_unlock_irqrestore(&process->sighand->siglock, flags);
663 if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
664 get_task_struct(process);
665 } else {
666 spin_unlock_irqrestore(&process->sighand->siglock, flags);
667 process = NULL;
668 }
669 }
670 read_unlock(&tasklist_lock);
671 if (!process) {
672 error = -EINVAL;
673 goto out;
674 }
675 } else {
676 new_timer->it_sigev_notify = SIGEV_SIGNAL;
677 new_timer->it_sigev_signo = SIGALRM;
678 new_timer->it_sigev_value.sival_int = new_timer->it_id;
679 process = current->group_leader;
680 spin_lock_irqsave(&process->sighand->siglock, flags);
681 new_timer->it_process = process;
682 list_add(&new_timer->list, &process->signal->posix_timers);
683 spin_unlock_irqrestore(&process->sighand->siglock, flags);
684 }
685
686 /*
687 * In the case of the timer belonging to another task, after
688 * the task is unlocked, the timer is owned by the other task
689 * and may cease to exist at any time. Don't use or modify
690 * new_timer after the unlock call.
691 */
692
693out:
694 if (error)
695 release_posix_timer(new_timer, it_id_set);
696
697 return error;
698}
699
700/*
701 * good_timespec
702 *
703 * This function checks the elements of a timespec structure.
704 *
705 * Arguments:
706 * ts : Pointer to the timespec structure to check
707 *
708 * Return value:
709 * If a NULL pointer was passed in, or the tv_nsec field was less than 0
710 * or greater than NSEC_PER_SEC, or the tv_sec field was less than 0,
711 * this function returns 0. Otherwise it returns 1.
712 */
713static int good_timespec(const struct timespec *ts)
714{
715 if ((!ts) || (ts->tv_sec < 0) ||
716 ((unsigned) ts->tv_nsec >= NSEC_PER_SEC))
717 return 0;
718 return 1;
719}
720
721/*
722 * Locking issues: We need to protect the result of the id look up until
723 * we get the timer locked down so it is not deleted under us. The
724 * removal is done under the idr spinlock so we use that here to bridge
725 * the find to the timer lock. To avoid a dead lock, the timer id MUST
726 * be release with out holding the timer lock.
727 */
728static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
729{
730 struct k_itimer *timr;
731 /*
732 * Watch out here. We do a irqsave on the idr_lock and pass the
733 * flags part over to the timer lock. Must not let interrupts in
734 * while we are moving the lock.
735 */
736
737 spin_lock_irqsave(&idr_lock, *flags);
738 timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
739 if (timr) {
740 spin_lock(&timr->it_lock);
741 spin_unlock(&idr_lock);
742
743 if ((timr->it_id != timer_id) || !(timr->it_process) ||
744 timr->it_process->tgid != current->tgid) {
745 unlock_timer(timr, *flags);
746 timr = NULL;
747 }
748 } else
749 spin_unlock_irqrestore(&idr_lock, *flags);
750
751 return timr;
752}
753
754/*
755 * Get the time remaining on a POSIX.1b interval timer. This function
756 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
757 * mess with irq.
758 *
759 * We have a couple of messes to clean up here. First there is the case
760 * of a timer that has a requeue pending. These timers should appear to
761 * be in the timer list with an expiry as if we were to requeue them
762 * now.
763 *
764 * The second issue is the SIGEV_NONE timer which may be active but is
765 * not really ever put in the timer list (to save system resources).
766 * This timer may be expired, and if so, we will do it here. Otherwise
767 * it is the same as a requeue pending timer WRT to what we should
768 * report.
769 */
770static void
771common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
772{
773 unsigned long expires;
774 struct now_struct now;
775
776 do
777 expires = timr->it.real.timer.expires;
778 while ((volatile long) (timr->it.real.timer.expires) != expires);
779
780 posix_get_now(&now);
781
782 if (expires &&
783 ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) &&
784 !timr->it.real.incr &&
785 posix_time_before(&timr->it.real.timer, &now))
786 timr->it.real.timer.expires = expires = 0;
787 if (expires) {
788 if (timr->it_requeue_pending & REQUEUE_PENDING ||
789 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
790 posix_bump_timer(timr, now);
791 expires = timr->it.real.timer.expires;
792 }
793 else
794 if (!timer_pending(&timr->it.real.timer))
795 expires = 0;
796 if (expires)
797 expires -= now.jiffies;
798 }
799 jiffies_to_timespec(expires, &cur_setting->it_value);
800 jiffies_to_timespec(timr->it.real.incr, &cur_setting->it_interval);
801
802 if (cur_setting->it_value.tv_sec < 0) {
803 cur_setting->it_value.tv_nsec = 1;
804 cur_setting->it_value.tv_sec = 0;
805 }
806}
807
808/* Get the time remaining on a POSIX.1b interval timer. */
809asmlinkage long
810sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
811{
812 struct k_itimer *timr;
813 struct itimerspec cur_setting;
814 unsigned long flags;
815
816 timr = lock_timer(timer_id, &flags);
817 if (!timr)
818 return -EINVAL;
819
820 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
821
822 unlock_timer(timr, flags);
823
824 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
825 return -EFAULT;
826
827 return 0;
828}
829/*
830 * Get the number of overruns of a POSIX.1b interval timer. This is to
831 * be the overrun of the timer last delivered. At the same time we are
832 * accumulating overruns on the next timer. The overrun is frozen when
833 * the signal is delivered, either at the notify time (if the info block
834 * is not queued) or at the actual delivery time (as we are informed by
835 * the call back to do_schedule_next_timer(). So all we need to do is
836 * to pick up the frozen overrun.
837 */
838
839asmlinkage long
840sys_timer_getoverrun(timer_t timer_id)
841{
842 struct k_itimer *timr;
843 int overrun;
844 long flags;
845
846 timr = lock_timer(timer_id, &flags);
847 if (!timr)
848 return -EINVAL;
849
850 overrun = timr->it_overrun_last;
851 unlock_timer(timr, flags);
852
853 return overrun;
854}
855/*
856 * Adjust for absolute time
857 *
858 * If absolute time is given and it is not CLOCK_MONOTONIC, we need to
859 * adjust for the offset between the timer clock (CLOCK_MONOTONIC) and
860 * what ever clock he is using.
861 *
862 * If it is relative time, we need to add the current (CLOCK_MONOTONIC)
863 * time to it to get the proper time for the timer.
864 */
865static int adjust_abs_time(struct k_clock *clock, struct timespec *tp,
866 int abs, u64 *exp, struct timespec *wall_to)
867{
868 struct timespec now;
869 struct timespec oc = *tp;
870 u64 jiffies_64_f;
871 int rtn =0;
872
873 if (abs) {
874 /*
875 * The mask pick up the 4 basic clocks
876 */
877 if (!((clock - &posix_clocks[0]) & ~CLOCKS_MASK)) {
878 jiffies_64_f = do_posix_clock_monotonic_gettime_parts(
879 &now, wall_to);
880 /*
881 * If we are doing a MONOTONIC clock
882 */
883 if((clock - &posix_clocks[0]) & CLOCKS_MONO){
884 now.tv_sec += wall_to->tv_sec;
885 now.tv_nsec += wall_to->tv_nsec;
886 }
887 } else {
888 /*
889 * Not one of the basic clocks
890 */
891 clock->clock_get(clock - posix_clocks, &now);
892 jiffies_64_f = get_jiffies_64();
893 }
894 /*
78fa74a2 895 * Take away now to get delta and normalize
1da177e4 896 */
78fa74a2
GA
897 set_normalized_timespec(&oc, oc.tv_sec - now.tv_sec,
898 oc.tv_nsec - now.tv_nsec);
1da177e4
LT
899 }else{
900 jiffies_64_f = get_jiffies_64();
901 }
902 /*
903 * Check if the requested time is prior to now (if so set now)
904 */
905 if (oc.tv_sec < 0)
906 oc.tv_sec = oc.tv_nsec = 0;
907
908 if (oc.tv_sec | oc.tv_nsec)
909 set_normalized_timespec(&oc, oc.tv_sec,
910 oc.tv_nsec + clock->res);
911 tstojiffie(&oc, clock->res, exp);
912
913 /*
914 * Check if the requested time is more than the timer code
915 * can handle (if so we error out but return the value too).
916 */
917 if (*exp > ((u64)MAX_JIFFY_OFFSET))
918 /*
919 * This is a considered response, not exactly in
920 * line with the standard (in fact it is silent on
921 * possible overflows). We assume such a large
922 * value is ALMOST always a programming error and
923 * try not to compound it by setting a really dumb
924 * value.
925 */
926 rtn = -EINVAL;
927 /*
928 * return the actual jiffies expire time, full 64 bits
929 */
930 *exp += jiffies_64_f;
931 return rtn;
932}
933
934/* Set a POSIX.1b interval timer. */
935/* timr->it_lock is taken. */
936static inline int
937common_timer_set(struct k_itimer *timr, int flags,
938 struct itimerspec *new_setting, struct itimerspec *old_setting)
939{
940 struct k_clock *clock = &posix_clocks[timr->it_clock];
941 u64 expire_64;
942
943 if (old_setting)
944 common_timer_get(timr, old_setting);
945
946 /* disable the timer */
947 timr->it.real.incr = 0;
948 /*
949 * careful here. If smp we could be in the "fire" routine which will
950 * be spinning as we hold the lock. But this is ONLY an SMP issue.
951 */
f972be33 952 if (try_to_del_timer_sync(&timr->it.real.timer) < 0) {
1da177e4 953#ifdef CONFIG_SMP
1da177e4
LT
954 /*
955 * It can only be active if on an other cpu. Since
956 * we have cleared the interval stuff above, it should
957 * clear once we release the spin lock. Of course once
958 * we do that anything could happen, including the
959 * complete melt down of the timer. So return with
960 * a "retry" exit status.
961 */
962 return TIMER_RETRY;
1da177e4 963#endif
f972be33
ON
964 }
965
1da177e4
LT
966 remove_from_abslist(timr);
967
968 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
969 ~REQUEUE_PENDING;
970 timr->it_overrun_last = 0;
971 timr->it_overrun = -1;
972 /*
973 *switch off the timer when it_value is zero
974 */
975 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) {
976 timr->it.real.timer.expires = 0;
977 return 0;
978 }
979
980 if (adjust_abs_time(clock,
981 &new_setting->it_value, flags & TIMER_ABSTIME,
982 &expire_64, &(timr->it.real.wall_to_prev))) {
983 return -EINVAL;
984 }
985 timr->it.real.timer.expires = (unsigned long)expire_64;
986 tstojiffie(&new_setting->it_interval, clock->res, &expire_64);
987 timr->it.real.incr = (unsigned long)expire_64;
988
989 /*
990 * We do not even queue SIGEV_NONE timers! But we do put them
991 * in the abs list so we can do that right.
992 */
993 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE))
994 add_timer(&timr->it.real.timer);
995
996 if (flags & TIMER_ABSTIME && clock->abs_struct) {
997 spin_lock(&clock->abs_struct->lock);
998 list_add_tail(&(timr->it.real.abs_timer_entry),
999 &(clock->abs_struct->list));
1000 spin_unlock(&clock->abs_struct->lock);
1001 }
1002 return 0;
1003}
1004
1005/* Set a POSIX.1b interval timer */
1006asmlinkage long
1007sys_timer_settime(timer_t timer_id, int flags,
1008 const struct itimerspec __user *new_setting,
1009 struct itimerspec __user *old_setting)
1010{
1011 struct k_itimer *timr;
1012 struct itimerspec new_spec, old_spec;
1013 int error = 0;
1014 long flag;
1015 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
1016
1017 if (!new_setting)
1018 return -EINVAL;
1019
1020 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
1021 return -EFAULT;
1022
1023 if ((!good_timespec(&new_spec.it_interval)) ||
1024 (!good_timespec(&new_spec.it_value)))
1025 return -EINVAL;
1026retry:
1027 timr = lock_timer(timer_id, &flag);
1028 if (!timr)
1029 return -EINVAL;
1030
1031 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
1032 (timr, flags, &new_spec, rtn));
1033
1034 unlock_timer(timr, flag);
1035 if (error == TIMER_RETRY) {
1036 rtn = NULL; // We already got the old time...
1037 goto retry;
1038 }
1039
1040 if (old_setting && !error && copy_to_user(old_setting,
1041 &old_spec, sizeof (old_spec)))
1042 error = -EFAULT;
1043
1044 return error;
1045}
1046
1047static inline int common_timer_del(struct k_itimer *timer)
1048{
1049 timer->it.real.incr = 0;
f972be33
ON
1050
1051 if (try_to_del_timer_sync(&timer->it.real.timer) < 0) {
1da177e4 1052#ifdef CONFIG_SMP
1da177e4
LT
1053 /*
1054 * It can only be active if on an other cpu. Since
1055 * we have cleared the interval stuff above, it should
1056 * clear once we release the spin lock. Of course once
1057 * we do that anything could happen, including the
1058 * complete melt down of the timer. So return with
1059 * a "retry" exit status.
1060 */
1061 return TIMER_RETRY;
1da177e4 1062#endif
f972be33
ON
1063 }
1064
1da177e4
LT
1065 remove_from_abslist(timer);
1066
1067 return 0;
1068}
1069
1070static inline int timer_delete_hook(struct k_itimer *timer)
1071{
1072 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
1073}
1074
1075/* Delete a POSIX.1b interval timer. */
1076asmlinkage long
1077sys_timer_delete(timer_t timer_id)
1078{
1079 struct k_itimer *timer;
1080 long flags;
1081
1082#ifdef CONFIG_SMP
1083 int error;
1084retry_delete:
1085#endif
1086 timer = lock_timer(timer_id, &flags);
1087 if (!timer)
1088 return -EINVAL;
1089
1090#ifdef CONFIG_SMP
1091 error = timer_delete_hook(timer);
1092
1093 if (error == TIMER_RETRY) {
1094 unlock_timer(timer, flags);
1095 goto retry_delete;
1096 }
1097#else
1098 timer_delete_hook(timer);
1099#endif
1100 spin_lock(&current->sighand->siglock);
1101 list_del(&timer->list);
1102 spin_unlock(&current->sighand->siglock);
1103 /*
1104 * This keeps any tasks waiting on the spin lock from thinking
1105 * they got something (see the lock code above).
1106 */
1107 if (timer->it_process) {
1108 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
1109 put_task_struct(timer->it_process);
1110 timer->it_process = NULL;
1111 }
1112 unlock_timer(timer, flags);
1113 release_posix_timer(timer, IT_ID_SET);
1114 return 0;
1115}
1116/*
1117 * return timer owned by the process, used by exit_itimers
1118 */
1119static inline void itimer_delete(struct k_itimer *timer)
1120{
1121 unsigned long flags;
1122
1123#ifdef CONFIG_SMP
1124 int error;
1125retry_delete:
1126#endif
1127 spin_lock_irqsave(&timer->it_lock, flags);
1128
1129#ifdef CONFIG_SMP
1130 error = timer_delete_hook(timer);
1131
1132 if (error == TIMER_RETRY) {
1133 unlock_timer(timer, flags);
1134 goto retry_delete;
1135 }
1136#else
1137 timer_delete_hook(timer);
1138#endif
1139 list_del(&timer->list);
1140 /*
1141 * This keeps any tasks waiting on the spin lock from thinking
1142 * they got something (see the lock code above).
1143 */
1144 if (timer->it_process) {
1145 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
1146 put_task_struct(timer->it_process);
1147 timer->it_process = NULL;
1148 }
1149 unlock_timer(timer, flags);
1150 release_posix_timer(timer, IT_ID_SET);
1151}
1152
1153/*
25f407f0 1154 * This is called by do_exit or de_thread, only when there are no more
1da177e4
LT
1155 * references to the shared signal_struct.
1156 */
1157void exit_itimers(struct signal_struct *sig)
1158{
1159 struct k_itimer *tmr;
1160
1161 while (!list_empty(&sig->posix_timers)) {
1162 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1163 itimer_delete(tmr);
1164 }
1165}
1166
1167/*
1168 * And now for the "clock" calls
1169 *
1170 * These functions are called both from timer functions (with the timer
1171 * spin_lock_irq() held and from clock calls with no locking. They must
1172 * use the save flags versions of locks.
1173 */
1174
1175/*
1176 * We do ticks here to avoid the irq lock ( they take sooo long).
1177 * The seqlock is great here. Since we a reader, we don't really care
1178 * if we are interrupted since we don't take lock that will stall us or
1179 * any other cpu. Voila, no irq lock is needed.
1180 *
1181 */
1182
1183static u64 do_posix_clock_monotonic_gettime_parts(
1184 struct timespec *tp, struct timespec *mo)
1185{
1186 u64 jiff;
1187 unsigned int seq;
1188
1189 do {
1190 seq = read_seqbegin(&xtime_lock);
1191 getnstimeofday(tp);
1192 *mo = wall_to_monotonic;
1193 jiff = jiffies_64;
1194
1195 } while(read_seqretry(&xtime_lock, seq));
1196
1197 return jiff;
1198}
1199
a924b04d
TG
1200static int do_posix_clock_monotonic_get(const clockid_t clock,
1201 struct timespec *tp)
1da177e4
LT
1202{
1203 struct timespec wall_to_mono;
1204
1205 do_posix_clock_monotonic_gettime_parts(tp, &wall_to_mono);
1206
3f39894d
GA
1207 set_normalized_timespec(tp, tp->tv_sec + wall_to_mono.tv_sec,
1208 tp->tv_nsec + wall_to_mono.tv_nsec);
1da177e4 1209
1da177e4
LT
1210 return 0;
1211}
1212
1213int do_posix_clock_monotonic_gettime(struct timespec *tp)
1214{
1215 return do_posix_clock_monotonic_get(CLOCK_MONOTONIC, tp);
1216}
1217
a924b04d 1218int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
1da177e4
LT
1219{
1220 return -EINVAL;
1221}
1222EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
1223
1224int do_posix_clock_notimer_create(struct k_itimer *timer)
1225{
1226 return -EINVAL;
1227}
1228EXPORT_SYMBOL_GPL(do_posix_clock_notimer_create);
1229
a924b04d
TG
1230int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
1231 struct timespec *t)
1da177e4
LT
1232{
1233#ifndef ENOTSUP
1234 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
1235#else /* parisc does define it separately. */
1236 return -ENOTSUP;
1237#endif
1238}
1239EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
1240
a924b04d
TG
1241asmlinkage long sys_clock_settime(const clockid_t which_clock,
1242 const struct timespec __user *tp)
1da177e4
LT
1243{
1244 struct timespec new_tp;
1245
1246 if (invalid_clockid(which_clock))
1247 return -EINVAL;
1248 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
1249 return -EFAULT;
1250
1251 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
1252}
1253
1254asmlinkage long
a924b04d 1255sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
1da177e4
LT
1256{
1257 struct timespec kernel_tp;
1258 int error;
1259
1260 if (invalid_clockid(which_clock))
1261 return -EINVAL;
1262 error = CLOCK_DISPATCH(which_clock, clock_get,
1263 (which_clock, &kernel_tp));
1264 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
1265 error = -EFAULT;
1266
1267 return error;
1268
1269}
1270
1271asmlinkage long
a924b04d 1272sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
1da177e4
LT
1273{
1274 struct timespec rtn_tp;
1275 int error;
1276
1277 if (invalid_clockid(which_clock))
1278 return -EINVAL;
1279
1280 error = CLOCK_DISPATCH(which_clock, clock_getres,
1281 (which_clock, &rtn_tp));
1282
1283 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
1284 error = -EFAULT;
1285 }
1286
1287 return error;
1288}
1289
1da177e4
LT
1290/*
1291 * The standard says that an absolute nanosleep call MUST wake up at
1292 * the requested time in spite of clock settings. Here is what we do:
1293 * For each nanosleep call that needs it (only absolute and not on
1294 * CLOCK_MONOTONIC* (as it can not be set)) we thread a little structure
1295 * into the "nanosleep_abs_list". All we need is the task_struct pointer.
1296 * When ever the clock is set we just wake up all those tasks. The rest
1297 * is done by the while loop in clock_nanosleep().
1298 *
1299 * On locking, clock_was_set() is called from update_wall_clock which
1300 * holds (or has held for it) a write_lock_irq( xtime_lock) and is
1301 * called from the timer bh code. Thus we need the irq save locks.
1302 *
1303 * Also, on the call from update_wall_clock, that is done as part of a
1304 * softirq thing. We don't want to delay the system that much (possibly
1305 * long list of timers to fix), so we defer that work to keventd.
1306 */
1307
1308static DECLARE_WAIT_QUEUE_HEAD(nanosleep_abs_wqueue);
1309static DECLARE_WORK(clock_was_set_work, (void(*)(void*))clock_was_set, NULL);
1310
1311static DECLARE_MUTEX(clock_was_set_lock);
1312
1313void clock_was_set(void)
1314{
1315 struct k_itimer *timr;
1316 struct timespec new_wall_to;
1317 LIST_HEAD(cws_list);
1318 unsigned long seq;
1319
1320
1321 if (unlikely(in_interrupt())) {
1322 schedule_work(&clock_was_set_work);
1323 return;
1324 }
1325 wake_up_all(&nanosleep_abs_wqueue);
1326
1327 /*
1328 * Check if there exist TIMER_ABSTIME timers to correct.
1329 *
1330 * Notes on locking: This code is run in task context with irq
1331 * on. We CAN be interrupted! All other usage of the abs list
1332 * lock is under the timer lock which holds the irq lock as
1333 * well. We REALLY don't want to scan the whole list with the
1334 * interrupt system off, AND we would like a sequence lock on
1335 * this code as well. Since we assume that the clock will not
1336 * be set often, it seems ok to take and release the irq lock
1337 * for each timer. In fact add_timer will do this, so this is
1338 * not an issue. So we know when we are done, we will move the
1339 * whole list to a new location. Then as we process each entry,
1340 * we will move it to the actual list again. This way, when our
1341 * copy is empty, we are done. We are not all that concerned
1342 * about preemption so we will use a semaphore lock to protect
1343 * aginst reentry. This way we will not stall another
1344 * processor. It is possible that this may delay some timers
1345 * that should have expired, given the new clock, but even this
1346 * will be minimal as we will always update to the current time,
1347 * even if it was set by a task that is waiting for entry to
1348 * this code. Timers that expire too early will be caught by
1349 * the expire code and restarted.
1350
1351 * Absolute timers that repeat are left in the abs list while
1352 * waiting for the task to pick up the signal. This means we
1353 * may find timers that are not in the "add_timer" list, but are
1354 * in the abs list. We do the same thing for these, save
1355 * putting them back in the "add_timer" list. (Note, these are
1356 * left in the abs list mainly to indicate that they are
1357 * ABSOLUTE timers, a fact that is used by the re-arm code, and
1358 * for which we have no other flag.)
1359
1360 */
1361
1362 down(&clock_was_set_lock);
1363 spin_lock_irq(&abs_list.lock);
1364 list_splice_init(&abs_list.list, &cws_list);
1365 spin_unlock_irq(&abs_list.lock);
1366 do {
1367 do {
1368 seq = read_seqbegin(&xtime_lock);
1369 new_wall_to = wall_to_monotonic;
1370 } while (read_seqretry(&xtime_lock, seq));
1371
1372 spin_lock_irq(&abs_list.lock);
1373 if (list_empty(&cws_list)) {
1374 spin_unlock_irq(&abs_list.lock);
1375 break;
1376 }
1377 timr = list_entry(cws_list.next, struct k_itimer,
1378 it.real.abs_timer_entry);
1379
1380 list_del_init(&timr->it.real.abs_timer_entry);
1381 if (add_clockset_delta(timr, &new_wall_to) &&
1382 del_timer(&timr->it.real.timer)) /* timer run yet? */
1383 add_timer(&timr->it.real.timer);
1384 list_add(&timr->it.real.abs_timer_entry, &abs_list.list);
1385 spin_unlock_irq(&abs_list.lock);
1386 } while (1);
1387
1388 up(&clock_was_set_lock);
1389}
1390
1391long clock_nanosleep_restart(struct restart_block *restart_block);
1392
1393asmlinkage long
a924b04d 1394sys_clock_nanosleep(const clockid_t which_clock, int flags,
1da177e4
LT
1395 const struct timespec __user *rqtp,
1396 struct timespec __user *rmtp)
1397{
1398 struct timespec t;
1399 struct restart_block *restart_block =
1400 &(current_thread_info()->restart_block);
1401 int ret;
1402
1403 if (invalid_clockid(which_clock))
1404 return -EINVAL;
1405
1406 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1407 return -EFAULT;
1408
1409 if ((unsigned) t.tv_nsec >= NSEC_PER_SEC || t.tv_sec < 0)
1410 return -EINVAL;
1411
1412 /*
1413 * Do this here as nsleep function does not have the real address.
1414 */
1415 restart_block->arg1 = (unsigned long)rmtp;
1416
1417 ret = CLOCK_DISPATCH(which_clock, nsleep, (which_clock, flags, &t));
1418
1419 if ((ret == -ERESTART_RESTARTBLOCK) && rmtp &&
1420 copy_to_user(rmtp, &t, sizeof (t)))
1421 return -EFAULT;
1422 return ret;
1423}
1424
1425
a924b04d 1426static int common_nsleep(const clockid_t which_clock,
1da177e4
LT
1427 int flags, struct timespec *tsave)
1428{
1429 struct timespec t, dum;
1da177e4
LT
1430 DECLARE_WAITQUEUE(abs_wqueue, current);
1431 u64 rq_time = (u64)0;
1432 s64 left;
1433 int abs;
1434 struct restart_block *restart_block =
1435 &current_thread_info()->restart_block;
1436
1437 abs_wqueue.flags = 0;
1da177e4
LT
1438 abs = flags & TIMER_ABSTIME;
1439
1440 if (restart_block->fn == clock_nanosleep_restart) {
1441 /*
1442 * Interrupted by a non-delivered signal, pick up remaining
1443 * time and continue. Remaining time is in arg2 & 3.
1444 */
1445 restart_block->fn = do_no_restart_syscall;
1446
1447 rq_time = restart_block->arg3;
1448 rq_time = (rq_time << 32) + restart_block->arg2;
1449 if (!rq_time)
1450 return -EINTR;
1451 left = rq_time - get_jiffies_64();
1452 if (left <= (s64)0)
1453 return 0; /* Already passed */
1454 }
1455
1456 if (abs && (posix_clocks[which_clock].clock_get !=
1457 posix_clocks[CLOCK_MONOTONIC].clock_get))
1458 add_wait_queue(&nanosleep_abs_wqueue, &abs_wqueue);
1459
1460 do {
1461 t = *tsave;
1462 if (abs || !rq_time) {
1463 adjust_abs_time(&posix_clocks[which_clock], &t, abs,
1464 &rq_time, &dum);
1465 }
1466
1467 left = rq_time - get_jiffies_64();
1468 if (left >= (s64)MAX_JIFFY_OFFSET)
1469 left = (s64)MAX_JIFFY_OFFSET;
1470 if (left < (s64)0)
1471 break;
1472
4eb9af2a 1473 schedule_timeout_interruptible(left);
1da177e4 1474
1da177e4
LT
1475 left = rq_time - get_jiffies_64();
1476 } while (left > (s64)0 && !test_thread_flag(TIF_SIGPENDING));
1477
1478 if (abs_wqueue.task_list.next)
1479 finish_wait(&nanosleep_abs_wqueue, &abs_wqueue);
1480
1481 if (left > (s64)0) {
1482
1483 /*
1484 * Always restart abs calls from scratch to pick up any
1485 * clock shifting that happened while we are away.
1486 */
1487 if (abs)
1488 return -ERESTARTNOHAND;
1489
1490 left *= TICK_NSEC;
1491 tsave->tv_sec = div_long_long_rem(left,
1492 NSEC_PER_SEC,
1493 &tsave->tv_nsec);
1494 /*
1495 * Restart works by saving the time remaing in
1496 * arg2 & 3 (it is 64-bits of jiffies). The other
1497 * info we need is the clock_id (saved in arg0).
1498 * The sys_call interface needs the users
1499 * timespec return address which _it_ saves in arg1.
1500 * Since we have cast the nanosleep call to a clock_nanosleep
1501 * both can be restarted with the same code.
1502 */
1503 restart_block->fn = clock_nanosleep_restart;
1504 restart_block->arg0 = which_clock;
1505 /*
1506 * Caller sets arg1
1507 */
1508 restart_block->arg2 = rq_time & 0xffffffffLL;
1509 restart_block->arg3 = rq_time >> 32;
1510
1511 return -ERESTART_RESTARTBLOCK;
1512 }
1513
1514 return 0;
1515}
1516/*
1517 * This will restart clock_nanosleep.
1518 */
1519long
1520clock_nanosleep_restart(struct restart_block *restart_block)
1521{
1522 struct timespec t;
1523 int ret = common_nsleep(restart_block->arg0, 0, &t);
1524
1525 if ((ret == -ERESTART_RESTARTBLOCK) && restart_block->arg1 &&
1526 copy_to_user((struct timespec __user *)(restart_block->arg1), &t,
1527 sizeof (t)))
1528 return -EFAULT;
1529 return ret;
1530}