]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/posix-timers.c
Revert "radeonfb: accelerate imageblit and other improvements"
[net-next-2.6.git] / kernel / posix-timers.c
CommitLineData
1da177e4 1/*
f30c2269 2 * linux/kernel/posix-timers.c
1da177e4
LT
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30/* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33#include <linux/mm.h>
1da177e4
LT
34#include <linux/interrupt.h>
35#include <linux/slab.h>
36#include <linux/time.h>
97d1f15b 37#include <linux/mutex.h>
1da177e4
LT
38
39#include <asm/uaccess.h>
1da177e4
LT
40#include <linux/list.h>
41#include <linux/init.h>
42#include <linux/compiler.h>
43#include <linux/idr.h>
44#include <linux/posix-timers.h>
45#include <linux/syscalls.h>
46#include <linux/wait.h>
47#include <linux/workqueue.h>
48#include <linux/module.h>
49
1da177e4
LT
50/*
51 * Management arrays for POSIX timers. Timers are kept in slab memory
52 * Timer ids are allocated by an external routine that keeps track of the
53 * id and the timer. The external interface is:
54 *
55 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
56 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
57 * related it to <ptr>
58 * void idr_remove(struct idr *idp, int id); to release <id>
59 * void idr_init(struct idr *idp); to initialize <idp>
60 * which we supply.
61 * The idr_get_new *may* call slab for more memory so it must not be
62 * called under a spin lock. Likewise idr_remore may release memory
63 * (but it may be ok to do this under a lock...).
64 * idr_find is just a memory look up and is quite fast. A -1 return
65 * indicates that the requested id does not exist.
66 */
67
68/*
69 * Lets keep our timers in a slab cache :-)
70 */
e18b890b 71static struct kmem_cache *posix_timers_cache;
1da177e4
LT
72static struct idr posix_timers_id;
73static DEFINE_SPINLOCK(idr_lock);
74
1da177e4
LT
75/*
76 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
77 * SIGEV values. Here we put out an error if this assumption fails.
78 */
79#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
80 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
81#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
82#endif
83
84
85/*
86 * The timer ID is turned into a timer address by idr_find().
87 * Verifying a valid ID consists of:
88 *
89 * a) checking that idr_find() returns other than -1.
90 * b) checking that the timer id matches the one in the timer itself.
91 * c) that the timer owner is in the callers thread group.
92 */
93
94/*
95 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
96 * to implement others. This structure defines the various
97 * clocks and allows the possibility of adding others. We
98 * provide an interface to add clocks to the table and expect
99 * the "arch" code to add at least one clock that is high
100 * resolution. Here we define the standard CLOCK_REALTIME as a
101 * 1/HZ resolution clock.
102 *
103 * RESOLUTION: Clock resolution is used to round up timer and interval
104 * times, NOT to report clock times, which are reported with as
105 * much resolution as the system can muster. In some cases this
106 * resolution may depend on the underlying clock hardware and
107 * may not be quantifiable until run time, and only then is the
108 * necessary code is written. The standard says we should say
109 * something about this issue in the documentation...
110 *
111 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
112 * various clock functions. For clocks that use the standard
113 * system timer code these entries should be NULL. This will
114 * allow dispatch without the overhead of indirect function
115 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
116 * must supply functions here, even if the function just returns
117 * ENOSYS. The standard POSIX timer management code assumes the
118 * following: 1.) The k_itimer struct (sched.h) is used for the
119 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
120 * fields are not modified by timer code.
121 *
122 * At this time all functions EXCEPT clock_nanosleep can be
123 * redirected by the CLOCKS structure. Clock_nanosleep is in
124 * there, but the code ignores it.
125 *
126 * Permissions: It is assumed that the clock_settime() function defined
127 * for each clock will take care of permission checks. Some
128 * clocks may be set able by any user (i.e. local process
129 * clocks) others not. Currently the only set able clock we
130 * have is CLOCK_REALTIME and its high res counter part, both of
131 * which we beg off on and pass to do_sys_settimeofday().
132 */
133
134static struct k_clock posix_clocks[MAX_CLOCKS];
becf8b5d 135
1da177e4 136/*
becf8b5d 137 * These ones are defined below.
1da177e4 138 */
becf8b5d
TG
139static int common_nsleep(const clockid_t, int flags, struct timespec *t,
140 struct timespec __user *rmtp);
141static void common_timer_get(struct k_itimer *, struct itimerspec *);
142static int common_timer_set(struct k_itimer *, int,
143 struct itimerspec *, struct itimerspec *);
144static int common_timer_del(struct k_itimer *timer);
1da177e4 145
c9cb2e3d 146static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
1da177e4
LT
147
148static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
149
150static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
151{
152 spin_unlock_irqrestore(&timr->it_lock, flags);
153}
154
155/*
156 * Call the k_clock hook function if non-null, or the default function.
157 */
158#define CLOCK_DISPATCH(clock, call, arglist) \
159 ((clock) < 0 ? posix_cpu_##call arglist : \
160 (posix_clocks[clock].call != NULL \
161 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
162
163/*
164 * Default clock hook functions when the struct k_clock passed
165 * to register_posix_clock leaves a function pointer null.
166 *
167 * The function common_CALL is the default implementation for
168 * the function pointer CALL in struct k_clock.
169 */
170
a924b04d 171static inline int common_clock_getres(const clockid_t which_clock,
1da177e4
LT
172 struct timespec *tp)
173{
174 tp->tv_sec = 0;
175 tp->tv_nsec = posix_clocks[which_clock].res;
176 return 0;
177}
178
becf8b5d
TG
179/*
180 * Get real time for posix timers
181 */
182static int common_clock_get(clockid_t which_clock, struct timespec *tp)
1da177e4 183{
becf8b5d 184 ktime_get_real_ts(tp);
1da177e4
LT
185 return 0;
186}
187
a924b04d
TG
188static inline int common_clock_set(const clockid_t which_clock,
189 struct timespec *tp)
1da177e4
LT
190{
191 return do_sys_settimeofday(tp, NULL);
192}
193
858119e1 194static int common_timer_create(struct k_itimer *new_timer)
1da177e4 195{
7978672c 196 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
1da177e4
LT
197 return 0;
198}
199
200/*
becf8b5d 201 * Return nonzero if we know a priori this clockid_t value is bogus.
1da177e4 202 */
a924b04d 203static inline int invalid_clockid(const clockid_t which_clock)
1da177e4
LT
204{
205 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
206 return 0;
207 if ((unsigned) which_clock >= MAX_CLOCKS)
208 return 1;
209 if (posix_clocks[which_clock].clock_getres != NULL)
210 return 0;
1da177e4
LT
211 if (posix_clocks[which_clock].res != 0)
212 return 0;
1da177e4
LT
213 return 1;
214}
215
becf8b5d
TG
216/*
217 * Get monotonic time for posix timers
218 */
219static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
220{
221 ktime_get_ts(tp);
222 return 0;
223}
1da177e4 224
2d42244a
JS
225/*
226 * Get monotonic time for posix timers
227 */
228static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
229{
230 getrawmonotonic(tp);
231 return 0;
232}
233
1da177e4
LT
234/*
235 * Initialize everything, well, just everything in Posix clocks/timers ;)
236 */
237static __init int init_posix_timers(void)
238{
becf8b5d
TG
239 struct k_clock clock_realtime = {
240 .clock_getres = hrtimer_get_res,
1da177e4 241 };
becf8b5d
TG
242 struct k_clock clock_monotonic = {
243 .clock_getres = hrtimer_get_res,
244 .clock_get = posix_ktime_get_ts,
245 .clock_set = do_posix_clock_nosettime,
1da177e4 246 };
2d42244a
JS
247 struct k_clock clock_monotonic_raw = {
248 .clock_getres = hrtimer_get_res,
249 .clock_get = posix_get_monotonic_raw,
250 .clock_set = do_posix_clock_nosettime,
251 };
1da177e4
LT
252
253 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
254 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
2d42244a 255 register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
1da177e4
LT
256
257 posix_timers_cache = kmem_cache_create("posix_timers_cache",
040b5c6f
AD
258 sizeof (struct k_itimer), 0, SLAB_PANIC,
259 NULL);
1da177e4
LT
260 idr_init(&posix_timers_id);
261 return 0;
262}
263
264__initcall(init_posix_timers);
265
1da177e4
LT
266static void schedule_next_timer(struct k_itimer *timr)
267{
44f21475
RZ
268 struct hrtimer *timer = &timr->it.real.timer;
269
becf8b5d 270 if (timr->it.real.interval.tv64 == 0)
1da177e4
LT
271 return;
272
4d672e7a
DL
273 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
274 timer->base->get_time(),
275 timr->it.real.interval);
44f21475 276
1da177e4
LT
277 timr->it_overrun_last = timr->it_overrun;
278 timr->it_overrun = -1;
279 ++timr->it_requeue_pending;
44f21475 280 hrtimer_restart(timer);
1da177e4
LT
281}
282
283/*
284 * This function is exported for use by the signal deliver code. It is
285 * called just prior to the info block being released and passes that
286 * block to us. It's function is to update the overrun entry AND to
287 * restart the timer. It should only be called if the timer is to be
288 * restarted (i.e. we have flagged this in the sys_private entry of the
289 * info block).
290 *
291 * To protect aginst the timer going away while the interrupt is queued,
292 * we require that the it_requeue_pending flag be set.
293 */
294void do_schedule_next_timer(struct siginfo *info)
295{
296 struct k_itimer *timr;
297 unsigned long flags;
298
299 timr = lock_timer(info->si_tid, &flags);
300
becf8b5d
TG
301 if (timr && timr->it_requeue_pending == info->si_sys_private) {
302 if (timr->it_clock < 0)
303 posix_cpu_timer_schedule(timr);
304 else
305 schedule_next_timer(timr);
1da177e4 306
54da1174 307 info->si_overrun += timr->it_overrun_last;
becf8b5d
TG
308 }
309
b6557fbc
TG
310 if (timr)
311 unlock_timer(timr, flags);
1da177e4
LT
312}
313
ba661292 314int posix_timer_event(struct k_itimer *timr, int si_private)
1da177e4 315{
4aa73611 316 int shared, ret;
ba661292
ON
317 /*
318 * FIXME: if ->sigq is queued we can race with
319 * dequeue_signal()->do_schedule_next_timer().
320 *
321 * If dequeue_signal() sees the "right" value of
322 * si_sys_private it calls do_schedule_next_timer().
323 * We re-queue ->sigq and drop ->it_lock().
324 * do_schedule_next_timer() locks the timer
325 * and re-schedules it while ->sigq is pending.
326 * Not really bad, but not that we want.
327 */
1da177e4 328 timr->sigq->info.si_sys_private = si_private;
1da177e4 329
4aa73611
ON
330 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
331 ret = send_sigqueue(timr->sigq, timr->it_process, shared);
332 /* If we failed to send the signal the timer stops. */
333 return ret > 0;
1da177e4
LT
334}
335EXPORT_SYMBOL_GPL(posix_timer_event);
336
337/*
338 * This function gets called when a POSIX.1b interval timer expires. It
339 * is used as a callback from the kernel internal timer. The
340 * run_timer_list code ALWAYS calls with interrupts on.
341
342 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
343 */
c9cb2e3d 344static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
1da177e4 345{
05cfb614 346 struct k_itimer *timr;
1da177e4 347 unsigned long flags;
becf8b5d 348 int si_private = 0;
c9cb2e3d 349 enum hrtimer_restart ret = HRTIMER_NORESTART;
1da177e4 350
05cfb614 351 timr = container_of(timer, struct k_itimer, it.real.timer);
1da177e4 352 spin_lock_irqsave(&timr->it_lock, flags);
1da177e4 353
becf8b5d
TG
354 if (timr->it.real.interval.tv64 != 0)
355 si_private = ++timr->it_requeue_pending;
1da177e4 356
becf8b5d
TG
357 if (posix_timer_event(timr, si_private)) {
358 /*
359 * signal was not sent because of sig_ignor
360 * we will not get a call back to restart it AND
361 * it should be restarted.
362 */
363 if (timr->it.real.interval.tv64 != 0) {
58229a18
TG
364 ktime_t now = hrtimer_cb_get_time(timer);
365
366 /*
367 * FIXME: What we really want, is to stop this
368 * timer completely and restart it in case the
369 * SIG_IGN is removed. This is a non trivial
370 * change which involves sighand locking
371 * (sigh !), which we don't want to do late in
372 * the release cycle.
373 *
374 * For now we just let timers with an interval
375 * less than a jiffie expire every jiffie to
376 * avoid softirq starvation in case of SIG_IGN
377 * and a very small interval, which would put
378 * the timer right back on the softirq pending
379 * list. By moving now ahead of time we trick
380 * hrtimer_forward() to expire the timer
381 * later, while we still maintain the overrun
382 * accuracy, but have some inconsistency in
383 * the timer_gettime() case. This is at least
384 * better than a starved softirq. A more
385 * complex fix which solves also another related
386 * inconsistency is already in the pipeline.
387 */
388#ifdef CONFIG_HIGH_RES_TIMERS
389 {
390 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
391
392 if (timr->it.real.interval.tv64 < kj.tv64)
393 now = ktime_add(now, kj);
394 }
395#endif
4d672e7a 396 timr->it_overrun += (unsigned int)
58229a18 397 hrtimer_forward(timer, now,
becf8b5d
TG
398 timr->it.real.interval);
399 ret = HRTIMER_RESTART;
a0a0c28c 400 ++timr->it_requeue_pending;
1da177e4 401 }
1da177e4 402 }
1da177e4 403
becf8b5d
TG
404 unlock_timer(timr, flags);
405 return ret;
406}
1da177e4 407
858119e1 408static struct task_struct * good_sigevent(sigevent_t * event)
1da177e4
LT
409{
410 struct task_struct *rtn = current->group_leader;
411
412 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
8dc86af0 413 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
bac0abd6 414 !same_thread_group(rtn, current) ||
1da177e4
LT
415 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
416 return NULL;
417
418 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
419 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
420 return NULL;
421
422 return rtn;
423}
424
a924b04d 425void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
1da177e4
LT
426{
427 if ((unsigned) clock_id >= MAX_CLOCKS) {
428 printk("POSIX clock register failed for clock_id %d\n",
429 clock_id);
430 return;
431 }
432
433 posix_clocks[clock_id] = *new_clock;
434}
435EXPORT_SYMBOL_GPL(register_posix_clock);
436
437static struct k_itimer * alloc_posix_timer(void)
438{
439 struct k_itimer *tmr;
c3762229 440 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
1da177e4
LT
441 if (!tmr)
442 return tmr;
1da177e4
LT
443 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
444 kmem_cache_free(posix_timers_cache, tmr);
aa94fbd5 445 return NULL;
1da177e4 446 }
ba661292 447 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
1da177e4
LT
448 return tmr;
449}
450
451#define IT_ID_SET 1
452#define IT_ID_NOT_SET 0
453static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
454{
455 if (it_id_set) {
456 unsigned long flags;
457 spin_lock_irqsave(&idr_lock, flags);
458 idr_remove(&posix_timers_id, tmr->it_id);
459 spin_unlock_irqrestore(&idr_lock, flags);
460 }
461 sigqueue_free(tmr->sigq);
1da177e4
LT
462 kmem_cache_free(posix_timers_cache, tmr);
463}
464
465/* Create a POSIX.1b interval timer. */
466
467asmlinkage long
a924b04d 468sys_timer_create(const clockid_t which_clock,
1da177e4
LT
469 struct sigevent __user *timer_event_spec,
470 timer_t __user * created_timer_id)
471{
2cd499e3 472 struct k_itimer *new_timer;
ef864c95 473 int error, new_timer_id;
2cd499e3 474 struct task_struct *process;
1da177e4
LT
475 sigevent_t event;
476 int it_id_set = IT_ID_NOT_SET;
477
478 if (invalid_clockid(which_clock))
479 return -EINVAL;
480
481 new_timer = alloc_posix_timer();
482 if (unlikely(!new_timer))
483 return -EAGAIN;
484
485 spin_lock_init(&new_timer->it_lock);
486 retry:
487 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
488 error = -EAGAIN;
489 goto out;
490 }
491 spin_lock_irq(&idr_lock);
5a51b713 492 error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id);
1da177e4 493 spin_unlock_irq(&idr_lock);
ef864c95
ON
494 if (error) {
495 if (error == -EAGAIN)
496 goto retry;
1da177e4 497 /*
0b0a3e7b 498 * Weird looking, but we return EAGAIN if the IDR is
1da177e4
LT
499 * full (proper POSIX return value for this)
500 */
501 error = -EAGAIN;
502 goto out;
503 }
504
505 it_id_set = IT_ID_SET;
506 new_timer->it_id = (timer_t) new_timer_id;
507 new_timer->it_clock = which_clock;
508 new_timer->it_overrun = -1;
509 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
510 if (error)
511 goto out;
512
513 /*
514 * return the timer_id now. The next step is hard to
515 * back out if there is an error.
516 */
517 if (copy_to_user(created_timer_id,
518 &new_timer_id, sizeof (new_timer_id))) {
519 error = -EFAULT;
520 goto out;
521 }
522 if (timer_event_spec) {
523 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
524 error = -EFAULT;
525 goto out;
526 }
36b2f046
ON
527 rcu_read_lock();
528 process = good_sigevent(&event);
529 if (process)
2cd499e3 530 get_task_struct(process);
36b2f046 531 rcu_read_unlock();
1da177e4
LT
532 if (!process) {
533 error = -EINVAL;
534 goto out;
535 }
536 } else {
5a9fa730
ON
537 event.sigev_notify = SIGEV_SIGNAL;
538 event.sigev_signo = SIGALRM;
539 event.sigev_value.sival_int = new_timer->it_id;
1da177e4 540 process = current->group_leader;
918fc037 541 get_task_struct(process);
1da177e4
LT
542 }
543
5a9fa730
ON
544 new_timer->it_sigev_notify = event.sigev_notify;
545 new_timer->sigq->info.si_signo = event.sigev_signo;
546 new_timer->sigq->info.si_value = event.sigev_value;
717835d9 547 new_timer->sigq->info.si_tid = new_timer->it_id;
5a9fa730 548 new_timer->sigq->info.si_code = SI_TIMER;
717835d9 549
36b2f046
ON
550 spin_lock_irq(&current->sighand->siglock);
551 new_timer->it_process = process;
552 list_add(&new_timer->list, &current->signal->posix_timers);
553 spin_unlock_irq(&current->sighand->siglock);
ef864c95
ON
554
555 return 0;
1da177e4
LT
556 /*
557 * In the case of the timer belonging to another task, after
558 * the task is unlocked, the timer is owned by the other task
559 * and may cease to exist at any time. Don't use or modify
560 * new_timer after the unlock call.
561 */
1da177e4 562out:
ef864c95 563 release_posix_timer(new_timer, it_id_set);
1da177e4
LT
564 return error;
565}
566
1da177e4
LT
567/*
568 * Locking issues: We need to protect the result of the id look up until
569 * we get the timer locked down so it is not deleted under us. The
570 * removal is done under the idr spinlock so we use that here to bridge
571 * the find to the timer lock. To avoid a dead lock, the timer id MUST
572 * be release with out holding the timer lock.
573 */
31d92845 574static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags)
1da177e4
LT
575{
576 struct k_itimer *timr;
577 /*
578 * Watch out here. We do a irqsave on the idr_lock and pass the
579 * flags part over to the timer lock. Must not let interrupts in
580 * while we are moving the lock.
581 */
1da177e4 582 spin_lock_irqsave(&idr_lock, *flags);
31d92845 583 timr = idr_find(&posix_timers_id, (int)timer_id);
1da177e4
LT
584 if (timr) {
585 spin_lock(&timr->it_lock);
31d92845
ON
586 if (timr->it_process &&
587 same_thread_group(timr->it_process, current)) {
179394af 588 spin_unlock(&idr_lock);
31d92845
ON
589 return timr;
590 }
591 spin_unlock(&timr->it_lock);
592 }
593 spin_unlock_irqrestore(&idr_lock, *flags);
1da177e4 594
31d92845 595 return NULL;
1da177e4
LT
596}
597
598/*
599 * Get the time remaining on a POSIX.1b interval timer. This function
600 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
601 * mess with irq.
602 *
603 * We have a couple of messes to clean up here. First there is the case
604 * of a timer that has a requeue pending. These timers should appear to
605 * be in the timer list with an expiry as if we were to requeue them
606 * now.
607 *
608 * The second issue is the SIGEV_NONE timer which may be active but is
609 * not really ever put in the timer list (to save system resources).
610 * This timer may be expired, and if so, we will do it here. Otherwise
611 * it is the same as a requeue pending timer WRT to what we should
612 * report.
613 */
614static void
615common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
616{
3b98a532 617 ktime_t now, remaining, iv;
becf8b5d 618 struct hrtimer *timer = &timr->it.real.timer;
1da177e4 619
becf8b5d 620 memset(cur_setting, 0, sizeof(struct itimerspec));
becf8b5d 621
3b98a532
RZ
622 iv = timr->it.real.interval;
623
becf8b5d 624 /* interval timer ? */
3b98a532
RZ
625 if (iv.tv64)
626 cur_setting->it_interval = ktime_to_timespec(iv);
627 else if (!hrtimer_active(timer) &&
628 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
becf8b5d 629 return;
3b98a532
RZ
630
631 now = timer->base->get_time();
632
becf8b5d 633 /*
3b98a532
RZ
634 * When a requeue is pending or this is a SIGEV_NONE
635 * timer move the expiry time forward by intervals, so
636 * expiry is > now.
becf8b5d 637 */
3b98a532
RZ
638 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
639 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
4d672e7a 640 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
3b98a532 641
cc584b21 642 remaining = ktime_sub(hrtimer_get_expires(timer), now);
becf8b5d 643 /* Return 0 only, when the timer is expired and not pending */
3b98a532
RZ
644 if (remaining.tv64 <= 0) {
645 /*
646 * A single shot SIGEV_NONE timer must return 0, when
647 * it is expired !
648 */
649 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
650 cur_setting->it_value.tv_nsec = 1;
651 } else
becf8b5d 652 cur_setting->it_value = ktime_to_timespec(remaining);
1da177e4
LT
653}
654
655/* Get the time remaining on a POSIX.1b interval timer. */
656asmlinkage long
657sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
658{
659 struct k_itimer *timr;
660 struct itimerspec cur_setting;
661 unsigned long flags;
662
663 timr = lock_timer(timer_id, &flags);
664 if (!timr)
665 return -EINVAL;
666
667 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
668
669 unlock_timer(timr, flags);
670
671 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
672 return -EFAULT;
673
674 return 0;
675}
becf8b5d 676
1da177e4
LT
677/*
678 * Get the number of overruns of a POSIX.1b interval timer. This is to
679 * be the overrun of the timer last delivered. At the same time we are
680 * accumulating overruns on the next timer. The overrun is frozen when
681 * the signal is delivered, either at the notify time (if the info block
682 * is not queued) or at the actual delivery time (as we are informed by
683 * the call back to do_schedule_next_timer(). So all we need to do is
684 * to pick up the frozen overrun.
685 */
1da177e4
LT
686asmlinkage long
687sys_timer_getoverrun(timer_t timer_id)
688{
689 struct k_itimer *timr;
690 int overrun;
5ba25331 691 unsigned long flags;
1da177e4
LT
692
693 timr = lock_timer(timer_id, &flags);
694 if (!timr)
695 return -EINVAL;
696
697 overrun = timr->it_overrun_last;
698 unlock_timer(timr, flags);
699
700 return overrun;
701}
1da177e4
LT
702
703/* Set a POSIX.1b interval timer. */
704/* timr->it_lock is taken. */
858119e1 705static int
1da177e4
LT
706common_timer_set(struct k_itimer *timr, int flags,
707 struct itimerspec *new_setting, struct itimerspec *old_setting)
708{
becf8b5d 709 struct hrtimer *timer = &timr->it.real.timer;
7978672c 710 enum hrtimer_mode mode;
1da177e4
LT
711
712 if (old_setting)
713 common_timer_get(timr, old_setting);
714
715 /* disable the timer */
becf8b5d 716 timr->it.real.interval.tv64 = 0;
1da177e4
LT
717 /*
718 * careful here. If smp we could be in the "fire" routine which will
719 * be spinning as we hold the lock. But this is ONLY an SMP issue.
720 */
becf8b5d 721 if (hrtimer_try_to_cancel(timer) < 0)
1da177e4 722 return TIMER_RETRY;
1da177e4
LT
723
724 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
725 ~REQUEUE_PENDING;
726 timr->it_overrun_last = 0;
1da177e4 727
becf8b5d
TG
728 /* switch off the timer when it_value is zero */
729 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
730 return 0;
1da177e4 731
c9cb2e3d 732 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
7978672c 733 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
7978672c 734 timr->it.real.timer.function = posix_timer_fn;
becf8b5d 735
cc584b21 736 hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
becf8b5d
TG
737
738 /* Convert interval */
739 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
740
741 /* SIGEV_NONE timers are not queued ! See common_timer_get */
952bbc87
TG
742 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
743 /* Setup correct expiry time for relative timers */
5a7780e7 744 if (mode == HRTIMER_MODE_REL) {
cc584b21 745 hrtimer_add_expires(timer, timer->base->get_time());
5a7780e7 746 }
becf8b5d 747 return 0;
952bbc87 748 }
becf8b5d 749
cc584b21 750 hrtimer_start_expires(timer, mode);
1da177e4
LT
751 return 0;
752}
753
754/* Set a POSIX.1b interval timer */
755asmlinkage long
756sys_timer_settime(timer_t timer_id, int flags,
757 const struct itimerspec __user *new_setting,
758 struct itimerspec __user *old_setting)
759{
760 struct k_itimer *timr;
761 struct itimerspec new_spec, old_spec;
762 int error = 0;
5ba25331 763 unsigned long flag;
1da177e4
LT
764 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
765
766 if (!new_setting)
767 return -EINVAL;
768
769 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
770 return -EFAULT;
771
becf8b5d
TG
772 if (!timespec_valid(&new_spec.it_interval) ||
773 !timespec_valid(&new_spec.it_value))
1da177e4
LT
774 return -EINVAL;
775retry:
776 timr = lock_timer(timer_id, &flag);
777 if (!timr)
778 return -EINVAL;
779
780 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
781 (timr, flags, &new_spec, rtn));
782
783 unlock_timer(timr, flag);
784 if (error == TIMER_RETRY) {
785 rtn = NULL; // We already got the old time...
786 goto retry;
787 }
788
becf8b5d
TG
789 if (old_setting && !error &&
790 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
1da177e4
LT
791 error = -EFAULT;
792
793 return error;
794}
795
796static inline int common_timer_del(struct k_itimer *timer)
797{
becf8b5d 798 timer->it.real.interval.tv64 = 0;
f972be33 799
becf8b5d 800 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
1da177e4 801 return TIMER_RETRY;
1da177e4
LT
802 return 0;
803}
804
805static inline int timer_delete_hook(struct k_itimer *timer)
806{
807 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
808}
809
810/* Delete a POSIX.1b interval timer. */
811asmlinkage long
812sys_timer_delete(timer_t timer_id)
813{
814 struct k_itimer *timer;
5ba25331 815 unsigned long flags;
1da177e4 816
1da177e4 817retry_delete:
1da177e4
LT
818 timer = lock_timer(timer_id, &flags);
819 if (!timer)
820 return -EINVAL;
821
becf8b5d 822 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
823 unlock_timer(timer, flags);
824 goto retry_delete;
825 }
becf8b5d 826
1da177e4
LT
827 spin_lock(&current->sighand->siglock);
828 list_del(&timer->list);
829 spin_unlock(&current->sighand->siglock);
830 /*
831 * This keeps any tasks waiting on the spin lock from thinking
832 * they got something (see the lock code above).
833 */
918fc037 834 put_task_struct(timer->it_process);
4b7a1304
ON
835 timer->it_process = NULL;
836
1da177e4
LT
837 unlock_timer(timer, flags);
838 release_posix_timer(timer, IT_ID_SET);
839 return 0;
840}
becf8b5d 841
1da177e4
LT
842/*
843 * return timer owned by the process, used by exit_itimers
844 */
858119e1 845static void itimer_delete(struct k_itimer *timer)
1da177e4
LT
846{
847 unsigned long flags;
848
1da177e4 849retry_delete:
1da177e4
LT
850 spin_lock_irqsave(&timer->it_lock, flags);
851
becf8b5d 852 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
853 unlock_timer(timer, flags);
854 goto retry_delete;
855 }
1da177e4
LT
856 list_del(&timer->list);
857 /*
858 * This keeps any tasks waiting on the spin lock from thinking
859 * they got something (see the lock code above).
860 */
918fc037 861 put_task_struct(timer->it_process);
4b7a1304
ON
862 timer->it_process = NULL;
863
1da177e4
LT
864 unlock_timer(timer, flags);
865 release_posix_timer(timer, IT_ID_SET);
866}
867
868/*
25f407f0 869 * This is called by do_exit or de_thread, only when there are no more
1da177e4
LT
870 * references to the shared signal_struct.
871 */
872void exit_itimers(struct signal_struct *sig)
873{
874 struct k_itimer *tmr;
875
876 while (!list_empty(&sig->posix_timers)) {
877 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
878 itimer_delete(tmr);
879 }
880}
881
becf8b5d 882/* Not available / possible... functions */
a924b04d 883int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
1da177e4
LT
884{
885 return -EINVAL;
886}
887EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
888
a924b04d 889int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
97735f25 890 struct timespec *t, struct timespec __user *r)
1da177e4
LT
891{
892#ifndef ENOTSUP
893 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
894#else /* parisc does define it separately. */
895 return -ENOTSUP;
896#endif
897}
898EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
899
a924b04d
TG
900asmlinkage long sys_clock_settime(const clockid_t which_clock,
901 const struct timespec __user *tp)
1da177e4
LT
902{
903 struct timespec new_tp;
904
905 if (invalid_clockid(which_clock))
906 return -EINVAL;
907 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
908 return -EFAULT;
909
910 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
911}
912
913asmlinkage long
a924b04d 914sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
1da177e4
LT
915{
916 struct timespec kernel_tp;
917 int error;
918
919 if (invalid_clockid(which_clock))
920 return -EINVAL;
921 error = CLOCK_DISPATCH(which_clock, clock_get,
922 (which_clock, &kernel_tp));
923 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
924 error = -EFAULT;
925
926 return error;
927
928}
929
930asmlinkage long
a924b04d 931sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
1da177e4
LT
932{
933 struct timespec rtn_tp;
934 int error;
935
936 if (invalid_clockid(which_clock))
937 return -EINVAL;
938
939 error = CLOCK_DISPATCH(which_clock, clock_getres,
940 (which_clock, &rtn_tp));
941
942 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
943 error = -EFAULT;
944 }
945
946 return error;
947}
948
97735f25
TG
949/*
950 * nanosleep for monotonic and realtime clocks
951 */
952static int common_nsleep(const clockid_t which_clock, int flags,
953 struct timespec *tsave, struct timespec __user *rmtp)
954{
080344b9
ON
955 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
956 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
957 which_clock);
97735f25 958}
1da177e4
LT
959
960asmlinkage long
a924b04d 961sys_clock_nanosleep(const clockid_t which_clock, int flags,
1da177e4
LT
962 const struct timespec __user *rqtp,
963 struct timespec __user *rmtp)
964{
965 struct timespec t;
1da177e4
LT
966
967 if (invalid_clockid(which_clock))
968 return -EINVAL;
969
970 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
971 return -EFAULT;
972
5f82b2b7 973 if (!timespec_valid(&t))
1da177e4
LT
974 return -EINVAL;
975
97735f25
TG
976 return CLOCK_DISPATCH(which_clock, nsleep,
977 (which_clock, flags, &t, rmtp));
1da177e4 978}
1711ef38
TA
979
980/*
981 * nanosleep_restart for monotonic and realtime clocks
982 */
983static int common_nsleep_restart(struct restart_block *restart_block)
984{
985 return hrtimer_nanosleep_restart(restart_block);
986}
987
988/*
989 * This will restart clock_nanosleep. This is required only by
990 * compat_clock_nanosleep_restart for now.
991 */
992long
993clock_nanosleep_restart(struct restart_block *restart_block)
994{
995 clockid_t which_clock = restart_block->arg0;
996
997 return CLOCK_DISPATCH(which_clock, nsleep_restart,
998 (restart_block));
999}