]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/posix-timers.c
posix-timers: don't switch to ->group_leader if ->it_process dies
[net-next-2.6.git] / kernel / posix-timers.c
CommitLineData
1da177e4 1/*
f30c2269 2 * linux/kernel/posix-timers.c
1da177e4
LT
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30/* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33#include <linux/mm.h>
1da177e4
LT
34#include <linux/interrupt.h>
35#include <linux/slab.h>
36#include <linux/time.h>
97d1f15b 37#include <linux/mutex.h>
1da177e4
LT
38
39#include <asm/uaccess.h>
1da177e4
LT
40#include <linux/list.h>
41#include <linux/init.h>
42#include <linux/compiler.h>
43#include <linux/idr.h>
44#include <linux/posix-timers.h>
45#include <linux/syscalls.h>
46#include <linux/wait.h>
47#include <linux/workqueue.h>
48#include <linux/module.h>
49
1da177e4
LT
50/*
51 * Management arrays for POSIX timers. Timers are kept in slab memory
52 * Timer ids are allocated by an external routine that keeps track of the
53 * id and the timer. The external interface is:
54 *
55 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
56 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
57 * related it to <ptr>
58 * void idr_remove(struct idr *idp, int id); to release <id>
59 * void idr_init(struct idr *idp); to initialize <idp>
60 * which we supply.
61 * The idr_get_new *may* call slab for more memory so it must not be
62 * called under a spin lock. Likewise idr_remore may release memory
63 * (but it may be ok to do this under a lock...).
64 * idr_find is just a memory look up and is quite fast. A -1 return
65 * indicates that the requested id does not exist.
66 */
67
68/*
69 * Lets keep our timers in a slab cache :-)
70 */
e18b890b 71static struct kmem_cache *posix_timers_cache;
1da177e4
LT
72static struct idr posix_timers_id;
73static DEFINE_SPINLOCK(idr_lock);
74
1da177e4
LT
75/*
76 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
77 * SIGEV values. Here we put out an error if this assumption fails.
78 */
79#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
80 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
81#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
82#endif
83
84
85/*
86 * The timer ID is turned into a timer address by idr_find().
87 * Verifying a valid ID consists of:
88 *
89 * a) checking that idr_find() returns other than -1.
90 * b) checking that the timer id matches the one in the timer itself.
91 * c) that the timer owner is in the callers thread group.
92 */
93
94/*
95 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
96 * to implement others. This structure defines the various
97 * clocks and allows the possibility of adding others. We
98 * provide an interface to add clocks to the table and expect
99 * the "arch" code to add at least one clock that is high
100 * resolution. Here we define the standard CLOCK_REALTIME as a
101 * 1/HZ resolution clock.
102 *
103 * RESOLUTION: Clock resolution is used to round up timer and interval
104 * times, NOT to report clock times, which are reported with as
105 * much resolution as the system can muster. In some cases this
106 * resolution may depend on the underlying clock hardware and
107 * may not be quantifiable until run time, and only then is the
108 * necessary code is written. The standard says we should say
109 * something about this issue in the documentation...
110 *
111 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
112 * various clock functions. For clocks that use the standard
113 * system timer code these entries should be NULL. This will
114 * allow dispatch without the overhead of indirect function
115 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
116 * must supply functions here, even if the function just returns
117 * ENOSYS. The standard POSIX timer management code assumes the
118 * following: 1.) The k_itimer struct (sched.h) is used for the
119 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
120 * fields are not modified by timer code.
121 *
122 * At this time all functions EXCEPT clock_nanosleep can be
123 * redirected by the CLOCKS structure. Clock_nanosleep is in
124 * there, but the code ignores it.
125 *
126 * Permissions: It is assumed that the clock_settime() function defined
127 * for each clock will take care of permission checks. Some
128 * clocks may be set able by any user (i.e. local process
129 * clocks) others not. Currently the only set able clock we
130 * have is CLOCK_REALTIME and its high res counter part, both of
131 * which we beg off on and pass to do_sys_settimeofday().
132 */
133
134static struct k_clock posix_clocks[MAX_CLOCKS];
becf8b5d 135
1da177e4 136/*
becf8b5d 137 * These ones are defined below.
1da177e4 138 */
becf8b5d
TG
139static int common_nsleep(const clockid_t, int flags, struct timespec *t,
140 struct timespec __user *rmtp);
141static void common_timer_get(struct k_itimer *, struct itimerspec *);
142static int common_timer_set(struct k_itimer *, int,
143 struct itimerspec *, struct itimerspec *);
144static int common_timer_del(struct k_itimer *timer);
1da177e4 145
c9cb2e3d 146static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
1da177e4
LT
147
148static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
149
150static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
151{
152 spin_unlock_irqrestore(&timr->it_lock, flags);
153}
154
155/*
156 * Call the k_clock hook function if non-null, or the default function.
157 */
158#define CLOCK_DISPATCH(clock, call, arglist) \
159 ((clock) < 0 ? posix_cpu_##call arglist : \
160 (posix_clocks[clock].call != NULL \
161 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
162
163/*
164 * Default clock hook functions when the struct k_clock passed
165 * to register_posix_clock leaves a function pointer null.
166 *
167 * The function common_CALL is the default implementation for
168 * the function pointer CALL in struct k_clock.
169 */
170
a924b04d 171static inline int common_clock_getres(const clockid_t which_clock,
1da177e4
LT
172 struct timespec *tp)
173{
174 tp->tv_sec = 0;
175 tp->tv_nsec = posix_clocks[which_clock].res;
176 return 0;
177}
178
becf8b5d
TG
179/*
180 * Get real time for posix timers
181 */
182static int common_clock_get(clockid_t which_clock, struct timespec *tp)
1da177e4 183{
becf8b5d 184 ktime_get_real_ts(tp);
1da177e4
LT
185 return 0;
186}
187
a924b04d
TG
188static inline int common_clock_set(const clockid_t which_clock,
189 struct timespec *tp)
1da177e4
LT
190{
191 return do_sys_settimeofday(tp, NULL);
192}
193
858119e1 194static int common_timer_create(struct k_itimer *new_timer)
1da177e4 195{
7978672c 196 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
1da177e4
LT
197 return 0;
198}
199
200/*
becf8b5d 201 * Return nonzero if we know a priori this clockid_t value is bogus.
1da177e4 202 */
a924b04d 203static inline int invalid_clockid(const clockid_t which_clock)
1da177e4
LT
204{
205 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
206 return 0;
207 if ((unsigned) which_clock >= MAX_CLOCKS)
208 return 1;
209 if (posix_clocks[which_clock].clock_getres != NULL)
210 return 0;
1da177e4
LT
211 if (posix_clocks[which_clock].res != 0)
212 return 0;
1da177e4
LT
213 return 1;
214}
215
becf8b5d
TG
216/*
217 * Get monotonic time for posix timers
218 */
219static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
220{
221 ktime_get_ts(tp);
222 return 0;
223}
1da177e4
LT
224
225/*
226 * Initialize everything, well, just everything in Posix clocks/timers ;)
227 */
228static __init int init_posix_timers(void)
229{
becf8b5d
TG
230 struct k_clock clock_realtime = {
231 .clock_getres = hrtimer_get_res,
1da177e4 232 };
becf8b5d
TG
233 struct k_clock clock_monotonic = {
234 .clock_getres = hrtimer_get_res,
235 .clock_get = posix_ktime_get_ts,
236 .clock_set = do_posix_clock_nosettime,
1da177e4
LT
237 };
238
239 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
240 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
241
242 posix_timers_cache = kmem_cache_create("posix_timers_cache",
040b5c6f
AD
243 sizeof (struct k_itimer), 0, SLAB_PANIC,
244 NULL);
1da177e4
LT
245 idr_init(&posix_timers_id);
246 return 0;
247}
248
249__initcall(init_posix_timers);
250
1da177e4
LT
251static void schedule_next_timer(struct k_itimer *timr)
252{
44f21475
RZ
253 struct hrtimer *timer = &timr->it.real.timer;
254
becf8b5d 255 if (timr->it.real.interval.tv64 == 0)
1da177e4
LT
256 return;
257
4d672e7a
DL
258 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
259 timer->base->get_time(),
260 timr->it.real.interval);
44f21475 261
1da177e4
LT
262 timr->it_overrun_last = timr->it_overrun;
263 timr->it_overrun = -1;
264 ++timr->it_requeue_pending;
44f21475 265 hrtimer_restart(timer);
1da177e4
LT
266}
267
268/*
269 * This function is exported for use by the signal deliver code. It is
270 * called just prior to the info block being released and passes that
271 * block to us. It's function is to update the overrun entry AND to
272 * restart the timer. It should only be called if the timer is to be
273 * restarted (i.e. we have flagged this in the sys_private entry of the
274 * info block).
275 *
276 * To protect aginst the timer going away while the interrupt is queued,
277 * we require that the it_requeue_pending flag be set.
278 */
279void do_schedule_next_timer(struct siginfo *info)
280{
281 struct k_itimer *timr;
282 unsigned long flags;
283
284 timr = lock_timer(info->si_tid, &flags);
285
becf8b5d
TG
286 if (timr && timr->it_requeue_pending == info->si_sys_private) {
287 if (timr->it_clock < 0)
288 posix_cpu_timer_schedule(timr);
289 else
290 schedule_next_timer(timr);
1da177e4 291
54da1174 292 info->si_overrun += timr->it_overrun_last;
becf8b5d
TG
293 }
294
b6557fbc
TG
295 if (timr)
296 unlock_timer(timr, flags);
1da177e4
LT
297}
298
ba661292 299int posix_timer_event(struct k_itimer *timr, int si_private)
1da177e4 300{
4aa73611 301 int shared, ret;
ba661292
ON
302 /*
303 * FIXME: if ->sigq is queued we can race with
304 * dequeue_signal()->do_schedule_next_timer().
305 *
306 * If dequeue_signal() sees the "right" value of
307 * si_sys_private it calls do_schedule_next_timer().
308 * We re-queue ->sigq and drop ->it_lock().
309 * do_schedule_next_timer() locks the timer
310 * and re-schedules it while ->sigq is pending.
311 * Not really bad, but not that we want.
312 */
1da177e4 313 timr->sigq->info.si_sys_private = si_private;
1da177e4
LT
314
315 timr->sigq->info.si_signo = timr->it_sigev_signo;
1da177e4
LT
316 timr->sigq->info.si_code = SI_TIMER;
317 timr->sigq->info.si_tid = timr->it_id;
318 timr->sigq->info.si_value = timr->it_sigev_value;
e752dd6c 319
4aa73611
ON
320 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
321 ret = send_sigqueue(timr->sigq, timr->it_process, shared);
322 /* If we failed to send the signal the timer stops. */
323 return ret > 0;
1da177e4
LT
324}
325EXPORT_SYMBOL_GPL(posix_timer_event);
326
327/*
328 * This function gets called when a POSIX.1b interval timer expires. It
329 * is used as a callback from the kernel internal timer. The
330 * run_timer_list code ALWAYS calls with interrupts on.
331
332 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
333 */
c9cb2e3d 334static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
1da177e4 335{
05cfb614 336 struct k_itimer *timr;
1da177e4 337 unsigned long flags;
becf8b5d 338 int si_private = 0;
c9cb2e3d 339 enum hrtimer_restart ret = HRTIMER_NORESTART;
1da177e4 340
05cfb614 341 timr = container_of(timer, struct k_itimer, it.real.timer);
1da177e4 342 spin_lock_irqsave(&timr->it_lock, flags);
1da177e4 343
becf8b5d
TG
344 if (timr->it.real.interval.tv64 != 0)
345 si_private = ++timr->it_requeue_pending;
1da177e4 346
becf8b5d
TG
347 if (posix_timer_event(timr, si_private)) {
348 /*
349 * signal was not sent because of sig_ignor
350 * we will not get a call back to restart it AND
351 * it should be restarted.
352 */
353 if (timr->it.real.interval.tv64 != 0) {
58229a18
TG
354 ktime_t now = hrtimer_cb_get_time(timer);
355
356 /*
357 * FIXME: What we really want, is to stop this
358 * timer completely and restart it in case the
359 * SIG_IGN is removed. This is a non trivial
360 * change which involves sighand locking
361 * (sigh !), which we don't want to do late in
362 * the release cycle.
363 *
364 * For now we just let timers with an interval
365 * less than a jiffie expire every jiffie to
366 * avoid softirq starvation in case of SIG_IGN
367 * and a very small interval, which would put
368 * the timer right back on the softirq pending
369 * list. By moving now ahead of time we trick
370 * hrtimer_forward() to expire the timer
371 * later, while we still maintain the overrun
372 * accuracy, but have some inconsistency in
373 * the timer_gettime() case. This is at least
374 * better than a starved softirq. A more
375 * complex fix which solves also another related
376 * inconsistency is already in the pipeline.
377 */
378#ifdef CONFIG_HIGH_RES_TIMERS
379 {
380 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
381
382 if (timr->it.real.interval.tv64 < kj.tv64)
383 now = ktime_add(now, kj);
384 }
385#endif
4d672e7a 386 timr->it_overrun += (unsigned int)
58229a18 387 hrtimer_forward(timer, now,
becf8b5d
TG
388 timr->it.real.interval);
389 ret = HRTIMER_RESTART;
a0a0c28c 390 ++timr->it_requeue_pending;
1da177e4 391 }
1da177e4 392 }
1da177e4 393
becf8b5d
TG
394 unlock_timer(timr, flags);
395 return ret;
396}
1da177e4 397
858119e1 398static struct task_struct * good_sigevent(sigevent_t * event)
1da177e4
LT
399{
400 struct task_struct *rtn = current->group_leader;
401
402 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
8dc86af0 403 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
bac0abd6 404 !same_thread_group(rtn, current) ||
1da177e4
LT
405 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
406 return NULL;
407
408 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
409 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
410 return NULL;
411
412 return rtn;
413}
414
a924b04d 415void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
1da177e4
LT
416{
417 if ((unsigned) clock_id >= MAX_CLOCKS) {
418 printk("POSIX clock register failed for clock_id %d\n",
419 clock_id);
420 return;
421 }
422
423 posix_clocks[clock_id] = *new_clock;
424}
425EXPORT_SYMBOL_GPL(register_posix_clock);
426
427static struct k_itimer * alloc_posix_timer(void)
428{
429 struct k_itimer *tmr;
c3762229 430 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
1da177e4
LT
431 if (!tmr)
432 return tmr;
1da177e4
LT
433 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
434 kmem_cache_free(posix_timers_cache, tmr);
435 tmr = NULL;
436 }
ba661292 437 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
1da177e4
LT
438 return tmr;
439}
440
441#define IT_ID_SET 1
442#define IT_ID_NOT_SET 0
443static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
444{
445 if (it_id_set) {
446 unsigned long flags;
447 spin_lock_irqsave(&idr_lock, flags);
448 idr_remove(&posix_timers_id, tmr->it_id);
449 spin_unlock_irqrestore(&idr_lock, flags);
450 }
451 sigqueue_free(tmr->sigq);
1da177e4
LT
452 kmem_cache_free(posix_timers_cache, tmr);
453}
454
455/* Create a POSIX.1b interval timer. */
456
457asmlinkage long
a924b04d 458sys_timer_create(const clockid_t which_clock,
1da177e4
LT
459 struct sigevent __user *timer_event_spec,
460 timer_t __user * created_timer_id)
461{
462 int error = 0;
463 struct k_itimer *new_timer = NULL;
464 int new_timer_id;
465 struct task_struct *process = NULL;
466 unsigned long flags;
467 sigevent_t event;
468 int it_id_set = IT_ID_NOT_SET;
469
470 if (invalid_clockid(which_clock))
471 return -EINVAL;
472
473 new_timer = alloc_posix_timer();
474 if (unlikely(!new_timer))
475 return -EAGAIN;
476
477 spin_lock_init(&new_timer->it_lock);
478 retry:
479 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
480 error = -EAGAIN;
481 goto out;
482 }
483 spin_lock_irq(&idr_lock);
becf8b5d 484 error = idr_get_new(&posix_timers_id, (void *) new_timer,
1da177e4
LT
485 &new_timer_id);
486 spin_unlock_irq(&idr_lock);
487 if (error == -EAGAIN)
488 goto retry;
489 else if (error) {
490 /*
0b0a3e7b 491 * Weird looking, but we return EAGAIN if the IDR is
1da177e4
LT
492 * full (proper POSIX return value for this)
493 */
494 error = -EAGAIN;
495 goto out;
496 }
497
498 it_id_set = IT_ID_SET;
499 new_timer->it_id = (timer_t) new_timer_id;
500 new_timer->it_clock = which_clock;
501 new_timer->it_overrun = -1;
502 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
503 if (error)
504 goto out;
505
506 /*
507 * return the timer_id now. The next step is hard to
508 * back out if there is an error.
509 */
510 if (copy_to_user(created_timer_id,
511 &new_timer_id, sizeof (new_timer_id))) {
512 error = -EFAULT;
513 goto out;
514 }
515 if (timer_event_spec) {
516 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
517 error = -EFAULT;
518 goto out;
519 }
520 new_timer->it_sigev_notify = event.sigev_notify;
521 new_timer->it_sigev_signo = event.sigev_signo;
522 new_timer->it_sigev_value = event.sigev_value;
523
524 read_lock(&tasklist_lock);
525 if ((process = good_sigevent(&event))) {
526 /*
527 * We may be setting up this process for another
528 * thread. It may be exiting. To catch this
529 * case the we check the PF_EXITING flag. If
530 * the flag is not set, the siglock will catch
531 * him before it is too late (in exit_itimers).
532 *
533 * The exec case is a bit more invloved but easy
534 * to code. If the process is in our thread
535 * group (and it must be or we would not allow
536 * it here) and is doing an exec, it will cause
537 * us to be killed. In this case it will wait
538 * for us to die which means we can finish this
539 * linkage with our last gasp. I.e. no code :)
540 */
541 spin_lock_irqsave(&process->sighand->siglock, flags);
542 if (!(process->flags & PF_EXITING)) {
543 new_timer->it_process = process;
544 list_add(&new_timer->list,
545 &process->signal->posix_timers);
1da177e4
LT
546 if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
547 get_task_struct(process);
d02479bd 548 spin_unlock_irqrestore(&process->sighand->siglock, flags);
1da177e4
LT
549 } else {
550 spin_unlock_irqrestore(&process->sighand->siglock, flags);
551 process = NULL;
552 }
553 }
554 read_unlock(&tasklist_lock);
555 if (!process) {
556 error = -EINVAL;
557 goto out;
558 }
559 } else {
560 new_timer->it_sigev_notify = SIGEV_SIGNAL;
561 new_timer->it_sigev_signo = SIGALRM;
562 new_timer->it_sigev_value.sival_int = new_timer->it_id;
563 process = current->group_leader;
564 spin_lock_irqsave(&process->sighand->siglock, flags);
565 new_timer->it_process = process;
566 list_add(&new_timer->list, &process->signal->posix_timers);
567 spin_unlock_irqrestore(&process->sighand->siglock, flags);
568 }
569
570 /*
571 * In the case of the timer belonging to another task, after
572 * the task is unlocked, the timer is owned by the other task
573 * and may cease to exist at any time. Don't use or modify
574 * new_timer after the unlock call.
575 */
576
577out:
578 if (error)
579 release_posix_timer(new_timer, it_id_set);
580
581 return error;
582}
583
1da177e4
LT
584/*
585 * Locking issues: We need to protect the result of the id look up until
586 * we get the timer locked down so it is not deleted under us. The
587 * removal is done under the idr spinlock so we use that here to bridge
588 * the find to the timer lock. To avoid a dead lock, the timer id MUST
589 * be release with out holding the timer lock.
590 */
591static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
592{
593 struct k_itimer *timr;
594 /*
595 * Watch out here. We do a irqsave on the idr_lock and pass the
596 * flags part over to the timer lock. Must not let interrupts in
597 * while we are moving the lock.
598 */
599
600 spin_lock_irqsave(&idr_lock, *flags);
601 timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
602 if (timr) {
603 spin_lock(&timr->it_lock);
1da177e4
LT
604
605 if ((timr->it_id != timer_id) || !(timr->it_process) ||
bac0abd6 606 !same_thread_group(timr->it_process, current)) {
179394af
TG
607 spin_unlock(&timr->it_lock);
608 spin_unlock_irqrestore(&idr_lock, *flags);
1da177e4 609 timr = NULL;
179394af
TG
610 } else
611 spin_unlock(&idr_lock);
1da177e4
LT
612 } else
613 spin_unlock_irqrestore(&idr_lock, *flags);
614
615 return timr;
616}
617
618/*
619 * Get the time remaining on a POSIX.1b interval timer. This function
620 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
621 * mess with irq.
622 *
623 * We have a couple of messes to clean up here. First there is the case
624 * of a timer that has a requeue pending. These timers should appear to
625 * be in the timer list with an expiry as if we were to requeue them
626 * now.
627 *
628 * The second issue is the SIGEV_NONE timer which may be active but is
629 * not really ever put in the timer list (to save system resources).
630 * This timer may be expired, and if so, we will do it here. Otherwise
631 * it is the same as a requeue pending timer WRT to what we should
632 * report.
633 */
634static void
635common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
636{
3b98a532 637 ktime_t now, remaining, iv;
becf8b5d 638 struct hrtimer *timer = &timr->it.real.timer;
1da177e4 639
becf8b5d 640 memset(cur_setting, 0, sizeof(struct itimerspec));
becf8b5d 641
3b98a532
RZ
642 iv = timr->it.real.interval;
643
becf8b5d 644 /* interval timer ? */
3b98a532
RZ
645 if (iv.tv64)
646 cur_setting->it_interval = ktime_to_timespec(iv);
647 else if (!hrtimer_active(timer) &&
648 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
becf8b5d 649 return;
3b98a532
RZ
650
651 now = timer->base->get_time();
652
becf8b5d 653 /*
3b98a532
RZ
654 * When a requeue is pending or this is a SIGEV_NONE
655 * timer move the expiry time forward by intervals, so
656 * expiry is > now.
becf8b5d 657 */
3b98a532
RZ
658 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
659 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
4d672e7a 660 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
3b98a532
RZ
661
662 remaining = ktime_sub(timer->expires, now);
becf8b5d 663 /* Return 0 only, when the timer is expired and not pending */
3b98a532
RZ
664 if (remaining.tv64 <= 0) {
665 /*
666 * A single shot SIGEV_NONE timer must return 0, when
667 * it is expired !
668 */
669 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
670 cur_setting->it_value.tv_nsec = 1;
671 } else
becf8b5d 672 cur_setting->it_value = ktime_to_timespec(remaining);
1da177e4
LT
673}
674
675/* Get the time remaining on a POSIX.1b interval timer. */
676asmlinkage long
677sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
678{
679 struct k_itimer *timr;
680 struct itimerspec cur_setting;
681 unsigned long flags;
682
683 timr = lock_timer(timer_id, &flags);
684 if (!timr)
685 return -EINVAL;
686
687 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
688
689 unlock_timer(timr, flags);
690
691 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
692 return -EFAULT;
693
694 return 0;
695}
becf8b5d 696
1da177e4
LT
697/*
698 * Get the number of overruns of a POSIX.1b interval timer. This is to
699 * be the overrun of the timer last delivered. At the same time we are
700 * accumulating overruns on the next timer. The overrun is frozen when
701 * the signal is delivered, either at the notify time (if the info block
702 * is not queued) or at the actual delivery time (as we are informed by
703 * the call back to do_schedule_next_timer(). So all we need to do is
704 * to pick up the frozen overrun.
705 */
1da177e4
LT
706asmlinkage long
707sys_timer_getoverrun(timer_t timer_id)
708{
709 struct k_itimer *timr;
710 int overrun;
5ba25331 711 unsigned long flags;
1da177e4
LT
712
713 timr = lock_timer(timer_id, &flags);
714 if (!timr)
715 return -EINVAL;
716
717 overrun = timr->it_overrun_last;
718 unlock_timer(timr, flags);
719
720 return overrun;
721}
1da177e4
LT
722
723/* Set a POSIX.1b interval timer. */
724/* timr->it_lock is taken. */
858119e1 725static int
1da177e4
LT
726common_timer_set(struct k_itimer *timr, int flags,
727 struct itimerspec *new_setting, struct itimerspec *old_setting)
728{
becf8b5d 729 struct hrtimer *timer = &timr->it.real.timer;
7978672c 730 enum hrtimer_mode mode;
1da177e4
LT
731
732 if (old_setting)
733 common_timer_get(timr, old_setting);
734
735 /* disable the timer */
becf8b5d 736 timr->it.real.interval.tv64 = 0;
1da177e4
LT
737 /*
738 * careful here. If smp we could be in the "fire" routine which will
739 * be spinning as we hold the lock. But this is ONLY an SMP issue.
740 */
becf8b5d 741 if (hrtimer_try_to_cancel(timer) < 0)
1da177e4 742 return TIMER_RETRY;
1da177e4
LT
743
744 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
745 ~REQUEUE_PENDING;
746 timr->it_overrun_last = 0;
1da177e4 747
becf8b5d
TG
748 /* switch off the timer when it_value is zero */
749 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
750 return 0;
1da177e4 751
c9cb2e3d 752 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
7978672c 753 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
7978672c 754 timr->it.real.timer.function = posix_timer_fn;
becf8b5d
TG
755
756 timer->expires = timespec_to_ktime(new_setting->it_value);
757
758 /* Convert interval */
759 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
760
761 /* SIGEV_NONE timers are not queued ! See common_timer_get */
952bbc87
TG
762 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
763 /* Setup correct expiry time for relative timers */
5a7780e7
TG
764 if (mode == HRTIMER_MODE_REL) {
765 timer->expires =
766 ktime_add_safe(timer->expires,
767 timer->base->get_time());
768 }
becf8b5d 769 return 0;
952bbc87 770 }
becf8b5d 771
7978672c 772 hrtimer_start(timer, timer->expires, mode);
1da177e4
LT
773 return 0;
774}
775
776/* Set a POSIX.1b interval timer */
777asmlinkage long
778sys_timer_settime(timer_t timer_id, int flags,
779 const struct itimerspec __user *new_setting,
780 struct itimerspec __user *old_setting)
781{
782 struct k_itimer *timr;
783 struct itimerspec new_spec, old_spec;
784 int error = 0;
5ba25331 785 unsigned long flag;
1da177e4
LT
786 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
787
788 if (!new_setting)
789 return -EINVAL;
790
791 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
792 return -EFAULT;
793
becf8b5d
TG
794 if (!timespec_valid(&new_spec.it_interval) ||
795 !timespec_valid(&new_spec.it_value))
1da177e4
LT
796 return -EINVAL;
797retry:
798 timr = lock_timer(timer_id, &flag);
799 if (!timr)
800 return -EINVAL;
801
802 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
803 (timr, flags, &new_spec, rtn));
804
805 unlock_timer(timr, flag);
806 if (error == TIMER_RETRY) {
807 rtn = NULL; // We already got the old time...
808 goto retry;
809 }
810
becf8b5d
TG
811 if (old_setting && !error &&
812 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
1da177e4
LT
813 error = -EFAULT;
814
815 return error;
816}
817
818static inline int common_timer_del(struct k_itimer *timer)
819{
becf8b5d 820 timer->it.real.interval.tv64 = 0;
f972be33 821
becf8b5d 822 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
1da177e4 823 return TIMER_RETRY;
1da177e4
LT
824 return 0;
825}
826
827static inline int timer_delete_hook(struct k_itimer *timer)
828{
829 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
830}
831
832/* Delete a POSIX.1b interval timer. */
833asmlinkage long
834sys_timer_delete(timer_t timer_id)
835{
836 struct k_itimer *timer;
5ba25331 837 unsigned long flags;
1da177e4 838
1da177e4 839retry_delete:
1da177e4
LT
840 timer = lock_timer(timer_id, &flags);
841 if (!timer)
842 return -EINVAL;
843
becf8b5d 844 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
845 unlock_timer(timer, flags);
846 goto retry_delete;
847 }
becf8b5d 848
1da177e4
LT
849 spin_lock(&current->sighand->siglock);
850 list_del(&timer->list);
851 spin_unlock(&current->sighand->siglock);
852 /*
853 * This keeps any tasks waiting on the spin lock from thinking
854 * they got something (see the lock code above).
855 */
4b7a1304
ON
856 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
857 put_task_struct(timer->it_process);
858 timer->it_process = NULL;
859
1da177e4
LT
860 unlock_timer(timer, flags);
861 release_posix_timer(timer, IT_ID_SET);
862 return 0;
863}
becf8b5d 864
1da177e4
LT
865/*
866 * return timer owned by the process, used by exit_itimers
867 */
858119e1 868static void itimer_delete(struct k_itimer *timer)
1da177e4
LT
869{
870 unsigned long flags;
871
1da177e4 872retry_delete:
1da177e4
LT
873 spin_lock_irqsave(&timer->it_lock, flags);
874
becf8b5d 875 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
876 unlock_timer(timer, flags);
877 goto retry_delete;
878 }
1da177e4
LT
879 list_del(&timer->list);
880 /*
881 * This keeps any tasks waiting on the spin lock from thinking
882 * they got something (see the lock code above).
883 */
4b7a1304
ON
884 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
885 put_task_struct(timer->it_process);
886 timer->it_process = NULL;
887
1da177e4
LT
888 unlock_timer(timer, flags);
889 release_posix_timer(timer, IT_ID_SET);
890}
891
892/*
25f407f0 893 * This is called by do_exit or de_thread, only when there are no more
1da177e4
LT
894 * references to the shared signal_struct.
895 */
896void exit_itimers(struct signal_struct *sig)
897{
898 struct k_itimer *tmr;
899
900 while (!list_empty(&sig->posix_timers)) {
901 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
902 itimer_delete(tmr);
903 }
904}
905
becf8b5d 906/* Not available / possible... functions */
a924b04d 907int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
1da177e4
LT
908{
909 return -EINVAL;
910}
911EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
912
a924b04d 913int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
97735f25 914 struct timespec *t, struct timespec __user *r)
1da177e4
LT
915{
916#ifndef ENOTSUP
917 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
918#else /* parisc does define it separately. */
919 return -ENOTSUP;
920#endif
921}
922EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
923
a924b04d
TG
924asmlinkage long sys_clock_settime(const clockid_t which_clock,
925 const struct timespec __user *tp)
1da177e4
LT
926{
927 struct timespec new_tp;
928
929 if (invalid_clockid(which_clock))
930 return -EINVAL;
931 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
932 return -EFAULT;
933
934 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
935}
936
937asmlinkage long
a924b04d 938sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
1da177e4
LT
939{
940 struct timespec kernel_tp;
941 int error;
942
943 if (invalid_clockid(which_clock))
944 return -EINVAL;
945 error = CLOCK_DISPATCH(which_clock, clock_get,
946 (which_clock, &kernel_tp));
947 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
948 error = -EFAULT;
949
950 return error;
951
952}
953
954asmlinkage long
a924b04d 955sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
1da177e4
LT
956{
957 struct timespec rtn_tp;
958 int error;
959
960 if (invalid_clockid(which_clock))
961 return -EINVAL;
962
963 error = CLOCK_DISPATCH(which_clock, clock_getres,
964 (which_clock, &rtn_tp));
965
966 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
967 error = -EFAULT;
968 }
969
970 return error;
971}
972
97735f25
TG
973/*
974 * nanosleep for monotonic and realtime clocks
975 */
976static int common_nsleep(const clockid_t which_clock, int flags,
977 struct timespec *tsave, struct timespec __user *rmtp)
978{
080344b9
ON
979 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
980 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
981 which_clock);
97735f25 982}
1da177e4
LT
983
984asmlinkage long
a924b04d 985sys_clock_nanosleep(const clockid_t which_clock, int flags,
1da177e4
LT
986 const struct timespec __user *rqtp,
987 struct timespec __user *rmtp)
988{
989 struct timespec t;
1da177e4
LT
990
991 if (invalid_clockid(which_clock))
992 return -EINVAL;
993
994 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
995 return -EFAULT;
996
5f82b2b7 997 if (!timespec_valid(&t))
1da177e4
LT
998 return -EINVAL;
999
97735f25
TG
1000 return CLOCK_DISPATCH(which_clock, nsleep,
1001 (which_clock, flags, &t, rmtp));
1da177e4 1002}
1711ef38
TA
1003
1004/*
1005 * nanosleep_restart for monotonic and realtime clocks
1006 */
1007static int common_nsleep_restart(struct restart_block *restart_block)
1008{
1009 return hrtimer_nanosleep_restart(restart_block);
1010}
1011
1012/*
1013 * This will restart clock_nanosleep. This is required only by
1014 * compat_clock_nanosleep_restart for now.
1015 */
1016long
1017clock_nanosleep_restart(struct restart_block *restart_block)
1018{
1019 clockid_t which_clock = restart_block->arg0;
1020
1021 return CLOCK_DISPATCH(which_clock, nsleep_restart,
1022 (restart_block));
1023}