]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/posix-timers.c
staging: hv: Fix race condition on vmbus channel initialization
[net-next-2.6.git] / kernel / posix-timers.c
CommitLineData
1da177e4 1/*
f30c2269 2 * linux/kernel/posix-timers.c
1da177e4
LT
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30/* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33#include <linux/mm.h>
1da177e4
LT
34#include <linux/interrupt.h>
35#include <linux/slab.h>
36#include <linux/time.h>
97d1f15b 37#include <linux/mutex.h>
1da177e4
LT
38
39#include <asm/uaccess.h>
1da177e4
LT
40#include <linux/list.h>
41#include <linux/init.h>
42#include <linux/compiler.h>
43#include <linux/idr.h>
44#include <linux/posix-timers.h>
45#include <linux/syscalls.h>
46#include <linux/wait.h>
47#include <linux/workqueue.h>
48#include <linux/module.h>
49
1da177e4
LT
50/*
51 * Management arrays for POSIX timers. Timers are kept in slab memory
52 * Timer ids are allocated by an external routine that keeps track of the
53 * id and the timer. The external interface is:
54 *
55 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
56 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
57 * related it to <ptr>
58 * void idr_remove(struct idr *idp, int id); to release <id>
59 * void idr_init(struct idr *idp); to initialize <idp>
60 * which we supply.
61 * The idr_get_new *may* call slab for more memory so it must not be
62 * called under a spin lock. Likewise idr_remore may release memory
63 * (but it may be ok to do this under a lock...).
64 * idr_find is just a memory look up and is quite fast. A -1 return
65 * indicates that the requested id does not exist.
66 */
67
68/*
69 * Lets keep our timers in a slab cache :-)
70 */
e18b890b 71static struct kmem_cache *posix_timers_cache;
1da177e4
LT
72static struct idr posix_timers_id;
73static DEFINE_SPINLOCK(idr_lock);
74
1da177e4
LT
75/*
76 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
77 * SIGEV values. Here we put out an error if this assumption fails.
78 */
79#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
80 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
81#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
82#endif
83
84
85/*
86 * The timer ID is turned into a timer address by idr_find().
87 * Verifying a valid ID consists of:
88 *
89 * a) checking that idr_find() returns other than -1.
90 * b) checking that the timer id matches the one in the timer itself.
91 * c) that the timer owner is in the callers thread group.
92 */
93
94/*
95 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
96 * to implement others. This structure defines the various
97 * clocks and allows the possibility of adding others. We
98 * provide an interface to add clocks to the table and expect
99 * the "arch" code to add at least one clock that is high
100 * resolution. Here we define the standard CLOCK_REALTIME as a
101 * 1/HZ resolution clock.
102 *
103 * RESOLUTION: Clock resolution is used to round up timer and interval
104 * times, NOT to report clock times, which are reported with as
105 * much resolution as the system can muster. In some cases this
106 * resolution may depend on the underlying clock hardware and
107 * may not be quantifiable until run time, and only then is the
108 * necessary code is written. The standard says we should say
109 * something about this issue in the documentation...
110 *
111 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
112 * various clock functions. For clocks that use the standard
113 * system timer code these entries should be NULL. This will
114 * allow dispatch without the overhead of indirect function
115 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
116 * must supply functions here, even if the function just returns
117 * ENOSYS. The standard POSIX timer management code assumes the
118 * following: 1.) The k_itimer struct (sched.h) is used for the
27af4245 119 * timer. 2.) The list, it_lock, it_clock, it_id and it_pid
1da177e4
LT
120 * fields are not modified by timer code.
121 *
122 * At this time all functions EXCEPT clock_nanosleep can be
123 * redirected by the CLOCKS structure. Clock_nanosleep is in
124 * there, but the code ignores it.
125 *
126 * Permissions: It is assumed that the clock_settime() function defined
127 * for each clock will take care of permission checks. Some
128 * clocks may be set able by any user (i.e. local process
129 * clocks) others not. Currently the only set able clock we
130 * have is CLOCK_REALTIME and its high res counter part, both of
131 * which we beg off on and pass to do_sys_settimeofday().
132 */
133
134static struct k_clock posix_clocks[MAX_CLOCKS];
becf8b5d 135
1da177e4 136/*
becf8b5d 137 * These ones are defined below.
1da177e4 138 */
becf8b5d
TG
139static int common_nsleep(const clockid_t, int flags, struct timespec *t,
140 struct timespec __user *rmtp);
141static void common_timer_get(struct k_itimer *, struct itimerspec *);
142static int common_timer_set(struct k_itimer *, int,
143 struct itimerspec *, struct itimerspec *);
144static int common_timer_del(struct k_itimer *timer);
1da177e4 145
c9cb2e3d 146static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
1da177e4
LT
147
148static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
149
150static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
151{
152 spin_unlock_irqrestore(&timr->it_lock, flags);
153}
154
155/*
156 * Call the k_clock hook function if non-null, or the default function.
157 */
158#define CLOCK_DISPATCH(clock, call, arglist) \
159 ((clock) < 0 ? posix_cpu_##call arglist : \
160 (posix_clocks[clock].call != NULL \
161 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
162
163/*
164 * Default clock hook functions when the struct k_clock passed
165 * to register_posix_clock leaves a function pointer null.
166 *
167 * The function common_CALL is the default implementation for
168 * the function pointer CALL in struct k_clock.
169 */
170
a924b04d 171static inline int common_clock_getres(const clockid_t which_clock,
1da177e4
LT
172 struct timespec *tp)
173{
174 tp->tv_sec = 0;
175 tp->tv_nsec = posix_clocks[which_clock].res;
176 return 0;
177}
178
becf8b5d
TG
179/*
180 * Get real time for posix timers
181 */
182static int common_clock_get(clockid_t which_clock, struct timespec *tp)
1da177e4 183{
becf8b5d 184 ktime_get_real_ts(tp);
1da177e4
LT
185 return 0;
186}
187
a924b04d
TG
188static inline int common_clock_set(const clockid_t which_clock,
189 struct timespec *tp)
1da177e4
LT
190{
191 return do_sys_settimeofday(tp, NULL);
192}
193
858119e1 194static int common_timer_create(struct k_itimer *new_timer)
1da177e4 195{
7978672c 196 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
1da177e4
LT
197 return 0;
198}
199
3d44cc3e
TG
200static int no_timer_create(struct k_itimer *new_timer)
201{
202 return -EOPNOTSUPP;
203}
204
70d715fd
HS
205static int no_nsleep(const clockid_t which_clock, int flags,
206 struct timespec *tsave, struct timespec __user *rmtp)
207{
208 return -EOPNOTSUPP;
209}
210
1da177e4 211/*
becf8b5d 212 * Return nonzero if we know a priori this clockid_t value is bogus.
1da177e4 213 */
a924b04d 214static inline int invalid_clockid(const clockid_t which_clock)
1da177e4
LT
215{
216 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
217 return 0;
218 if ((unsigned) which_clock >= MAX_CLOCKS)
219 return 1;
220 if (posix_clocks[which_clock].clock_getres != NULL)
221 return 0;
1da177e4
LT
222 if (posix_clocks[which_clock].res != 0)
223 return 0;
1da177e4
LT
224 return 1;
225}
226
becf8b5d
TG
227/*
228 * Get monotonic time for posix timers
229 */
230static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
231{
232 ktime_get_ts(tp);
233 return 0;
234}
1da177e4 235
2d42244a
JS
236/*
237 * Get monotonic time for posix timers
238 */
239static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
240{
241 getrawmonotonic(tp);
242 return 0;
243}
244
da15cfda
JS
245
246static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
247{
248 *tp = current_kernel_time();
249 return 0;
250}
251
252static int posix_get_monotonic_coarse(clockid_t which_clock,
253 struct timespec *tp)
254{
255 *tp = get_monotonic_coarse();
256 return 0;
257}
258
6622e670 259static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
da15cfda
JS
260{
261 *tp = ktime_to_timespec(KTIME_LOW_RES);
262 return 0;
263}
1da177e4
LT
264/*
265 * Initialize everything, well, just everything in Posix clocks/timers ;)
266 */
267static __init int init_posix_timers(void)
268{
becf8b5d
TG
269 struct k_clock clock_realtime = {
270 .clock_getres = hrtimer_get_res,
1da177e4 271 };
becf8b5d
TG
272 struct k_clock clock_monotonic = {
273 .clock_getres = hrtimer_get_res,
274 .clock_get = posix_ktime_get_ts,
275 .clock_set = do_posix_clock_nosettime,
1da177e4 276 };
2d42244a
JS
277 struct k_clock clock_monotonic_raw = {
278 .clock_getres = hrtimer_get_res,
279 .clock_get = posix_get_monotonic_raw,
280 .clock_set = do_posix_clock_nosettime,
3d44cc3e 281 .timer_create = no_timer_create,
70d715fd 282 .nsleep = no_nsleep,
2d42244a 283 };
da15cfda
JS
284 struct k_clock clock_realtime_coarse = {
285 .clock_getres = posix_get_coarse_res,
286 .clock_get = posix_get_realtime_coarse,
287 .clock_set = do_posix_clock_nosettime,
288 .timer_create = no_timer_create,
289 .nsleep = no_nsleep,
290 };
291 struct k_clock clock_monotonic_coarse = {
292 .clock_getres = posix_get_coarse_res,
293 .clock_get = posix_get_monotonic_coarse,
294 .clock_set = do_posix_clock_nosettime,
295 .timer_create = no_timer_create,
296 .nsleep = no_nsleep,
297 };
1da177e4
LT
298
299 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
300 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
2d42244a 301 register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
da15cfda
JS
302 register_posix_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
303 register_posix_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
1da177e4
LT
304
305 posix_timers_cache = kmem_cache_create("posix_timers_cache",
040b5c6f
AD
306 sizeof (struct k_itimer), 0, SLAB_PANIC,
307 NULL);
1da177e4
LT
308 idr_init(&posix_timers_id);
309 return 0;
310}
311
312__initcall(init_posix_timers);
313
1da177e4
LT
314static void schedule_next_timer(struct k_itimer *timr)
315{
44f21475
RZ
316 struct hrtimer *timer = &timr->it.real.timer;
317
becf8b5d 318 if (timr->it.real.interval.tv64 == 0)
1da177e4
LT
319 return;
320
4d672e7a
DL
321 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
322 timer->base->get_time(),
323 timr->it.real.interval);
44f21475 324
1da177e4
LT
325 timr->it_overrun_last = timr->it_overrun;
326 timr->it_overrun = -1;
327 ++timr->it_requeue_pending;
44f21475 328 hrtimer_restart(timer);
1da177e4
LT
329}
330
331/*
332 * This function is exported for use by the signal deliver code. It is
333 * called just prior to the info block being released and passes that
334 * block to us. It's function is to update the overrun entry AND to
335 * restart the timer. It should only be called if the timer is to be
336 * restarted (i.e. we have flagged this in the sys_private entry of the
337 * info block).
338 *
339 * To protect aginst the timer going away while the interrupt is queued,
340 * we require that the it_requeue_pending flag be set.
341 */
342void do_schedule_next_timer(struct siginfo *info)
343{
344 struct k_itimer *timr;
345 unsigned long flags;
346
347 timr = lock_timer(info->si_tid, &flags);
348
becf8b5d
TG
349 if (timr && timr->it_requeue_pending == info->si_sys_private) {
350 if (timr->it_clock < 0)
351 posix_cpu_timer_schedule(timr);
352 else
353 schedule_next_timer(timr);
1da177e4 354
54da1174 355 info->si_overrun += timr->it_overrun_last;
becf8b5d
TG
356 }
357
b6557fbc
TG
358 if (timr)
359 unlock_timer(timr, flags);
1da177e4
LT
360}
361
ba661292 362int posix_timer_event(struct k_itimer *timr, int si_private)
1da177e4 363{
27af4245
ON
364 struct task_struct *task;
365 int shared, ret = -1;
ba661292
ON
366 /*
367 * FIXME: if ->sigq is queued we can race with
368 * dequeue_signal()->do_schedule_next_timer().
369 *
370 * If dequeue_signal() sees the "right" value of
371 * si_sys_private it calls do_schedule_next_timer().
372 * We re-queue ->sigq and drop ->it_lock().
373 * do_schedule_next_timer() locks the timer
374 * and re-schedules it while ->sigq is pending.
375 * Not really bad, but not that we want.
376 */
1da177e4 377 timr->sigq->info.si_sys_private = si_private;
1da177e4 378
27af4245
ON
379 rcu_read_lock();
380 task = pid_task(timr->it_pid, PIDTYPE_PID);
381 if (task) {
382 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
383 ret = send_sigqueue(timr->sigq, task, shared);
384 }
385 rcu_read_unlock();
4aa73611
ON
386 /* If we failed to send the signal the timer stops. */
387 return ret > 0;
1da177e4
LT
388}
389EXPORT_SYMBOL_GPL(posix_timer_event);
390
391/*
392 * This function gets called when a POSIX.1b interval timer expires. It
393 * is used as a callback from the kernel internal timer. The
394 * run_timer_list code ALWAYS calls with interrupts on.
395
396 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
397 */
c9cb2e3d 398static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
1da177e4 399{
05cfb614 400 struct k_itimer *timr;
1da177e4 401 unsigned long flags;
becf8b5d 402 int si_private = 0;
c9cb2e3d 403 enum hrtimer_restart ret = HRTIMER_NORESTART;
1da177e4 404
05cfb614 405 timr = container_of(timer, struct k_itimer, it.real.timer);
1da177e4 406 spin_lock_irqsave(&timr->it_lock, flags);
1da177e4 407
becf8b5d
TG
408 if (timr->it.real.interval.tv64 != 0)
409 si_private = ++timr->it_requeue_pending;
1da177e4 410
becf8b5d
TG
411 if (posix_timer_event(timr, si_private)) {
412 /*
413 * signal was not sent because of sig_ignor
414 * we will not get a call back to restart it AND
415 * it should be restarted.
416 */
417 if (timr->it.real.interval.tv64 != 0) {
58229a18
TG
418 ktime_t now = hrtimer_cb_get_time(timer);
419
420 /*
421 * FIXME: What we really want, is to stop this
422 * timer completely and restart it in case the
423 * SIG_IGN is removed. This is a non trivial
424 * change which involves sighand locking
425 * (sigh !), which we don't want to do late in
426 * the release cycle.
427 *
428 * For now we just let timers with an interval
429 * less than a jiffie expire every jiffie to
430 * avoid softirq starvation in case of SIG_IGN
431 * and a very small interval, which would put
432 * the timer right back on the softirq pending
433 * list. By moving now ahead of time we trick
434 * hrtimer_forward() to expire the timer
435 * later, while we still maintain the overrun
436 * accuracy, but have some inconsistency in
437 * the timer_gettime() case. This is at least
438 * better than a starved softirq. A more
439 * complex fix which solves also another related
440 * inconsistency is already in the pipeline.
441 */
442#ifdef CONFIG_HIGH_RES_TIMERS
443 {
444 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
445
446 if (timr->it.real.interval.tv64 < kj.tv64)
447 now = ktime_add(now, kj);
448 }
449#endif
4d672e7a 450 timr->it_overrun += (unsigned int)
58229a18 451 hrtimer_forward(timer, now,
becf8b5d
TG
452 timr->it.real.interval);
453 ret = HRTIMER_RESTART;
a0a0c28c 454 ++timr->it_requeue_pending;
1da177e4 455 }
1da177e4 456 }
1da177e4 457
becf8b5d
TG
458 unlock_timer(timr, flags);
459 return ret;
460}
1da177e4 461
27af4245 462static struct pid *good_sigevent(sigevent_t * event)
1da177e4
LT
463{
464 struct task_struct *rtn = current->group_leader;
465
466 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
8dc86af0 467 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
bac0abd6 468 !same_thread_group(rtn, current) ||
1da177e4
LT
469 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
470 return NULL;
471
472 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
473 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
474 return NULL;
475
27af4245 476 return task_pid(rtn);
1da177e4
LT
477}
478
a924b04d 479void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
1da177e4
LT
480{
481 if ((unsigned) clock_id >= MAX_CLOCKS) {
482 printk("POSIX clock register failed for clock_id %d\n",
483 clock_id);
484 return;
485 }
486
487 posix_clocks[clock_id] = *new_clock;
488}
489EXPORT_SYMBOL_GPL(register_posix_clock);
490
491static struct k_itimer * alloc_posix_timer(void)
492{
493 struct k_itimer *tmr;
c3762229 494 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
1da177e4
LT
495 if (!tmr)
496 return tmr;
1da177e4
LT
497 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
498 kmem_cache_free(posix_timers_cache, tmr);
aa94fbd5 499 return NULL;
1da177e4 500 }
ba661292 501 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
1da177e4
LT
502 return tmr;
503}
504
505#define IT_ID_SET 1
506#define IT_ID_NOT_SET 0
507static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
508{
509 if (it_id_set) {
510 unsigned long flags;
511 spin_lock_irqsave(&idr_lock, flags);
512 idr_remove(&posix_timers_id, tmr->it_id);
513 spin_unlock_irqrestore(&idr_lock, flags);
514 }
89992102 515 put_pid(tmr->it_pid);
1da177e4 516 sigqueue_free(tmr->sigq);
1da177e4
LT
517 kmem_cache_free(posix_timers_cache, tmr);
518}
519
520/* Create a POSIX.1b interval timer. */
521
362e9c07
HC
522SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
523 struct sigevent __user *, timer_event_spec,
524 timer_t __user *, created_timer_id)
1da177e4 525{
2cd499e3 526 struct k_itimer *new_timer;
ef864c95 527 int error, new_timer_id;
1da177e4
LT
528 sigevent_t event;
529 int it_id_set = IT_ID_NOT_SET;
530
531 if (invalid_clockid(which_clock))
532 return -EINVAL;
533
534 new_timer = alloc_posix_timer();
535 if (unlikely(!new_timer))
536 return -EAGAIN;
537
538 spin_lock_init(&new_timer->it_lock);
539 retry:
540 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
541 error = -EAGAIN;
542 goto out;
543 }
544 spin_lock_irq(&idr_lock);
5a51b713 545 error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id);
1da177e4 546 spin_unlock_irq(&idr_lock);
ef864c95
ON
547 if (error) {
548 if (error == -EAGAIN)
549 goto retry;
1da177e4 550 /*
0b0a3e7b 551 * Weird looking, but we return EAGAIN if the IDR is
1da177e4
LT
552 * full (proper POSIX return value for this)
553 */
554 error = -EAGAIN;
555 goto out;
556 }
557
558 it_id_set = IT_ID_SET;
559 new_timer->it_id = (timer_t) new_timer_id;
560 new_timer->it_clock = which_clock;
561 new_timer->it_overrun = -1;
1da177e4 562
1da177e4
LT
563 if (copy_to_user(created_timer_id,
564 &new_timer_id, sizeof (new_timer_id))) {
565 error = -EFAULT;
566 goto out;
567 }
568 if (timer_event_spec) {
569 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
570 error = -EFAULT;
571 goto out;
572 }
36b2f046 573 rcu_read_lock();
89992102 574 new_timer->it_pid = get_pid(good_sigevent(&event));
36b2f046 575 rcu_read_unlock();
89992102 576 if (!new_timer->it_pid) {
1da177e4
LT
577 error = -EINVAL;
578 goto out;
579 }
580 } else {
5a9fa730
ON
581 event.sigev_notify = SIGEV_SIGNAL;
582 event.sigev_signo = SIGALRM;
583 event.sigev_value.sival_int = new_timer->it_id;
89992102 584 new_timer->it_pid = get_pid(task_tgid(current));
1da177e4
LT
585 }
586
5a9fa730
ON
587 new_timer->it_sigev_notify = event.sigev_notify;
588 new_timer->sigq->info.si_signo = event.sigev_signo;
589 new_timer->sigq->info.si_value = event.sigev_value;
717835d9 590 new_timer->sigq->info.si_tid = new_timer->it_id;
5a9fa730 591 new_timer->sigq->info.si_code = SI_TIMER;
717835d9 592
45e0fffc
AV
593 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
594 if (error)
595 goto out;
596
36b2f046 597 spin_lock_irq(&current->sighand->siglock);
27af4245 598 new_timer->it_signal = current->signal;
36b2f046
ON
599 list_add(&new_timer->list, &current->signal->posix_timers);
600 spin_unlock_irq(&current->sighand->siglock);
ef864c95
ON
601
602 return 0;
1da177e4
LT
603 /*
604 * In the case of the timer belonging to another task, after
605 * the task is unlocked, the timer is owned by the other task
606 * and may cease to exist at any time. Don't use or modify
607 * new_timer after the unlock call.
608 */
1da177e4 609out:
ef864c95 610 release_posix_timer(new_timer, it_id_set);
1da177e4
LT
611 return error;
612}
613
1da177e4
LT
614/*
615 * Locking issues: We need to protect the result of the id look up until
616 * we get the timer locked down so it is not deleted under us. The
617 * removal is done under the idr spinlock so we use that here to bridge
618 * the find to the timer lock. To avoid a dead lock, the timer id MUST
619 * be release with out holding the timer lock.
620 */
31d92845 621static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags)
1da177e4
LT
622{
623 struct k_itimer *timr;
624 /*
625 * Watch out here. We do a irqsave on the idr_lock and pass the
626 * flags part over to the timer lock. Must not let interrupts in
627 * while we are moving the lock.
628 */
1da177e4 629 spin_lock_irqsave(&idr_lock, *flags);
31d92845 630 timr = idr_find(&posix_timers_id, (int)timer_id);
1da177e4
LT
631 if (timr) {
632 spin_lock(&timr->it_lock);
89992102 633 if (timr->it_signal == current->signal) {
179394af 634 spin_unlock(&idr_lock);
31d92845
ON
635 return timr;
636 }
637 spin_unlock(&timr->it_lock);
638 }
639 spin_unlock_irqrestore(&idr_lock, *flags);
1da177e4 640
31d92845 641 return NULL;
1da177e4
LT
642}
643
644/*
645 * Get the time remaining on a POSIX.1b interval timer. This function
646 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
647 * mess with irq.
648 *
649 * We have a couple of messes to clean up here. First there is the case
650 * of a timer that has a requeue pending. These timers should appear to
651 * be in the timer list with an expiry as if we were to requeue them
652 * now.
653 *
654 * The second issue is the SIGEV_NONE timer which may be active but is
655 * not really ever put in the timer list (to save system resources).
656 * This timer may be expired, and if so, we will do it here. Otherwise
657 * it is the same as a requeue pending timer WRT to what we should
658 * report.
659 */
660static void
661common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
662{
3b98a532 663 ktime_t now, remaining, iv;
becf8b5d 664 struct hrtimer *timer = &timr->it.real.timer;
1da177e4 665
becf8b5d 666 memset(cur_setting, 0, sizeof(struct itimerspec));
becf8b5d 667
3b98a532
RZ
668 iv = timr->it.real.interval;
669
becf8b5d 670 /* interval timer ? */
3b98a532
RZ
671 if (iv.tv64)
672 cur_setting->it_interval = ktime_to_timespec(iv);
673 else if (!hrtimer_active(timer) &&
674 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
becf8b5d 675 return;
3b98a532
RZ
676
677 now = timer->base->get_time();
678
becf8b5d 679 /*
3b98a532
RZ
680 * When a requeue is pending or this is a SIGEV_NONE
681 * timer move the expiry time forward by intervals, so
682 * expiry is > now.
becf8b5d 683 */
3b98a532
RZ
684 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
685 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
4d672e7a 686 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
3b98a532 687
cc584b21 688 remaining = ktime_sub(hrtimer_get_expires(timer), now);
becf8b5d 689 /* Return 0 only, when the timer is expired and not pending */
3b98a532
RZ
690 if (remaining.tv64 <= 0) {
691 /*
692 * A single shot SIGEV_NONE timer must return 0, when
693 * it is expired !
694 */
695 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
696 cur_setting->it_value.tv_nsec = 1;
697 } else
becf8b5d 698 cur_setting->it_value = ktime_to_timespec(remaining);
1da177e4
LT
699}
700
701/* Get the time remaining on a POSIX.1b interval timer. */
362e9c07
HC
702SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
703 struct itimerspec __user *, setting)
1da177e4
LT
704{
705 struct k_itimer *timr;
706 struct itimerspec cur_setting;
707 unsigned long flags;
708
709 timr = lock_timer(timer_id, &flags);
710 if (!timr)
711 return -EINVAL;
712
713 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
714
715 unlock_timer(timr, flags);
716
717 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
718 return -EFAULT;
719
720 return 0;
721}
becf8b5d 722
1da177e4
LT
723/*
724 * Get the number of overruns of a POSIX.1b interval timer. This is to
725 * be the overrun of the timer last delivered. At the same time we are
726 * accumulating overruns on the next timer. The overrun is frozen when
727 * the signal is delivered, either at the notify time (if the info block
728 * is not queued) or at the actual delivery time (as we are informed by
729 * the call back to do_schedule_next_timer(). So all we need to do is
730 * to pick up the frozen overrun.
731 */
362e9c07 732SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
1da177e4
LT
733{
734 struct k_itimer *timr;
735 int overrun;
5ba25331 736 unsigned long flags;
1da177e4
LT
737
738 timr = lock_timer(timer_id, &flags);
739 if (!timr)
740 return -EINVAL;
741
742 overrun = timr->it_overrun_last;
743 unlock_timer(timr, flags);
744
745 return overrun;
746}
1da177e4
LT
747
748/* Set a POSIX.1b interval timer. */
749/* timr->it_lock is taken. */
858119e1 750static int
1da177e4
LT
751common_timer_set(struct k_itimer *timr, int flags,
752 struct itimerspec *new_setting, struct itimerspec *old_setting)
753{
becf8b5d 754 struct hrtimer *timer = &timr->it.real.timer;
7978672c 755 enum hrtimer_mode mode;
1da177e4
LT
756
757 if (old_setting)
758 common_timer_get(timr, old_setting);
759
760 /* disable the timer */
becf8b5d 761 timr->it.real.interval.tv64 = 0;
1da177e4
LT
762 /*
763 * careful here. If smp we could be in the "fire" routine which will
764 * be spinning as we hold the lock. But this is ONLY an SMP issue.
765 */
becf8b5d 766 if (hrtimer_try_to_cancel(timer) < 0)
1da177e4 767 return TIMER_RETRY;
1da177e4
LT
768
769 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
770 ~REQUEUE_PENDING;
771 timr->it_overrun_last = 0;
1da177e4 772
becf8b5d
TG
773 /* switch off the timer when it_value is zero */
774 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
775 return 0;
1da177e4 776
c9cb2e3d 777 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
7978672c 778 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
7978672c 779 timr->it.real.timer.function = posix_timer_fn;
becf8b5d 780
cc584b21 781 hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
becf8b5d
TG
782
783 /* Convert interval */
784 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
785
786 /* SIGEV_NONE timers are not queued ! See common_timer_get */
952bbc87
TG
787 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
788 /* Setup correct expiry time for relative timers */
5a7780e7 789 if (mode == HRTIMER_MODE_REL) {
cc584b21 790 hrtimer_add_expires(timer, timer->base->get_time());
5a7780e7 791 }
becf8b5d 792 return 0;
952bbc87 793 }
becf8b5d 794
cc584b21 795 hrtimer_start_expires(timer, mode);
1da177e4
LT
796 return 0;
797}
798
799/* Set a POSIX.1b interval timer */
362e9c07
HC
800SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
801 const struct itimerspec __user *, new_setting,
802 struct itimerspec __user *, old_setting)
1da177e4
LT
803{
804 struct k_itimer *timr;
805 struct itimerspec new_spec, old_spec;
806 int error = 0;
5ba25331 807 unsigned long flag;
1da177e4
LT
808 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
809
810 if (!new_setting)
811 return -EINVAL;
812
813 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
814 return -EFAULT;
815
becf8b5d
TG
816 if (!timespec_valid(&new_spec.it_interval) ||
817 !timespec_valid(&new_spec.it_value))
1da177e4
LT
818 return -EINVAL;
819retry:
820 timr = lock_timer(timer_id, &flag);
821 if (!timr)
822 return -EINVAL;
823
824 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
825 (timr, flags, &new_spec, rtn));
826
827 unlock_timer(timr, flag);
828 if (error == TIMER_RETRY) {
829 rtn = NULL; // We already got the old time...
830 goto retry;
831 }
832
becf8b5d
TG
833 if (old_setting && !error &&
834 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
1da177e4
LT
835 error = -EFAULT;
836
837 return error;
838}
839
840static inline int common_timer_del(struct k_itimer *timer)
841{
becf8b5d 842 timer->it.real.interval.tv64 = 0;
f972be33 843
becf8b5d 844 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
1da177e4 845 return TIMER_RETRY;
1da177e4
LT
846 return 0;
847}
848
849static inline int timer_delete_hook(struct k_itimer *timer)
850{
851 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
852}
853
854/* Delete a POSIX.1b interval timer. */
362e9c07 855SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
1da177e4
LT
856{
857 struct k_itimer *timer;
5ba25331 858 unsigned long flags;
1da177e4 859
1da177e4 860retry_delete:
1da177e4
LT
861 timer = lock_timer(timer_id, &flags);
862 if (!timer)
863 return -EINVAL;
864
becf8b5d 865 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
866 unlock_timer(timer, flags);
867 goto retry_delete;
868 }
becf8b5d 869
1da177e4
LT
870 spin_lock(&current->sighand->siglock);
871 list_del(&timer->list);
872 spin_unlock(&current->sighand->siglock);
873 /*
874 * This keeps any tasks waiting on the spin lock from thinking
875 * they got something (see the lock code above).
876 */
89992102 877 timer->it_signal = NULL;
4b7a1304 878
1da177e4
LT
879 unlock_timer(timer, flags);
880 release_posix_timer(timer, IT_ID_SET);
881 return 0;
882}
becf8b5d 883
1da177e4
LT
884/*
885 * return timer owned by the process, used by exit_itimers
886 */
858119e1 887static void itimer_delete(struct k_itimer *timer)
1da177e4
LT
888{
889 unsigned long flags;
890
1da177e4 891retry_delete:
1da177e4
LT
892 spin_lock_irqsave(&timer->it_lock, flags);
893
becf8b5d 894 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
895 unlock_timer(timer, flags);
896 goto retry_delete;
897 }
1da177e4
LT
898 list_del(&timer->list);
899 /*
900 * This keeps any tasks waiting on the spin lock from thinking
901 * they got something (see the lock code above).
902 */
89992102 903 timer->it_signal = NULL;
4b7a1304 904
1da177e4
LT
905 unlock_timer(timer, flags);
906 release_posix_timer(timer, IT_ID_SET);
907}
908
909/*
25f407f0 910 * This is called by do_exit or de_thread, only when there are no more
1da177e4
LT
911 * references to the shared signal_struct.
912 */
913void exit_itimers(struct signal_struct *sig)
914{
915 struct k_itimer *tmr;
916
917 while (!list_empty(&sig->posix_timers)) {
918 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
919 itimer_delete(tmr);
920 }
921}
922
becf8b5d 923/* Not available / possible... functions */
a924b04d 924int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
1da177e4
LT
925{
926 return -EINVAL;
927}
928EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
929
a924b04d 930int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
97735f25 931 struct timespec *t, struct timespec __user *r)
1da177e4
LT
932{
933#ifndef ENOTSUP
934 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
935#else /* parisc does define it separately. */
936 return -ENOTSUP;
937#endif
938}
939EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
940
362e9c07
HC
941SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
942 const struct timespec __user *, tp)
1da177e4
LT
943{
944 struct timespec new_tp;
945
946 if (invalid_clockid(which_clock))
947 return -EINVAL;
948 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
949 return -EFAULT;
950
951 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
952}
953
362e9c07
HC
954SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
955 struct timespec __user *,tp)
1da177e4
LT
956{
957 struct timespec kernel_tp;
958 int error;
959
960 if (invalid_clockid(which_clock))
961 return -EINVAL;
962 error = CLOCK_DISPATCH(which_clock, clock_get,
963 (which_clock, &kernel_tp));
964 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
965 error = -EFAULT;
966
967 return error;
968
969}
970
362e9c07
HC
971SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
972 struct timespec __user *, tp)
1da177e4
LT
973{
974 struct timespec rtn_tp;
975 int error;
976
977 if (invalid_clockid(which_clock))
978 return -EINVAL;
979
980 error = CLOCK_DISPATCH(which_clock, clock_getres,
981 (which_clock, &rtn_tp));
982
983 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
984 error = -EFAULT;
985 }
986
987 return error;
988}
989
97735f25
TG
990/*
991 * nanosleep for monotonic and realtime clocks
992 */
993static int common_nsleep(const clockid_t which_clock, int flags,
994 struct timespec *tsave, struct timespec __user *rmtp)
995{
080344b9
ON
996 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
997 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
998 which_clock);
97735f25 999}
1da177e4 1000
362e9c07
HC
1001SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1002 const struct timespec __user *, rqtp,
1003 struct timespec __user *, rmtp)
1da177e4
LT
1004{
1005 struct timespec t;
1da177e4
LT
1006
1007 if (invalid_clockid(which_clock))
1008 return -EINVAL;
1009
1010 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1011 return -EFAULT;
1012
5f82b2b7 1013 if (!timespec_valid(&t))
1da177e4
LT
1014 return -EINVAL;
1015
97735f25
TG
1016 return CLOCK_DISPATCH(which_clock, nsleep,
1017 (which_clock, flags, &t, rmtp));
1da177e4 1018}
1711ef38
TA
1019
1020/*
1021 * nanosleep_restart for monotonic and realtime clocks
1022 */
1023static int common_nsleep_restart(struct restart_block *restart_block)
1024{
1025 return hrtimer_nanosleep_restart(restart_block);
1026}
1027
1028/*
1029 * This will restart clock_nanosleep. This is required only by
1030 * compat_clock_nanosleep_restart for now.
1031 */
1032long
1033clock_nanosleep_restart(struct restart_block *restart_block)
1034{
1035 clockid_t which_clock = restart_block->arg0;
1036
1037 return CLOCK_DISPATCH(which_clock, nsleep_restart,
1038 (restart_block));
1039}