]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/mutex.c
Staging: comedi: comedi_open: Fix null pointer dereference.
[net-next-2.6.git] / kernel / mutex.c
CommitLineData
6053ee3b
IM
1/*
2 * kernel/mutex.c
3 *
4 * Mutexes: blocking mutual exclusion locks
5 *
6 * Started by Ingo Molnar:
7 *
8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9 *
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
12 *
0d66bf6d
PZ
13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14 * from the -rt tree, where it was originally implemented for rtmutexes
15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16 * and Sven Dietrich.
17 *
6053ee3b
IM
18 * Also see Documentation/mutex-design.txt.
19 */
20#include <linux/mutex.h>
21#include <linux/sched.h>
22#include <linux/module.h>
23#include <linux/spinlock.h>
24#include <linux/interrupt.h>
9a11b49a 25#include <linux/debug_locks.h>
6053ee3b
IM
26
27/*
28 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
29 * which forces all calls into the slowpath:
30 */
31#ifdef CONFIG_DEBUG_MUTEXES
32# include "mutex-debug.h"
33# include <asm-generic/mutex-null.h>
34#else
35# include "mutex.h"
36# include <asm/mutex.h>
37#endif
38
39/***
40 * mutex_init - initialize the mutex
41 * @lock: the mutex to be initialized
0e241ffd 42 * @key: the lock_class_key for the class; used by mutex lock debugging
6053ee3b
IM
43 *
44 * Initialize the mutex to unlocked state.
45 *
46 * It is not allowed to initialize an already locked mutex.
47 */
ef5d4707
IM
48void
49__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
6053ee3b
IM
50{
51 atomic_set(&lock->count, 1);
52 spin_lock_init(&lock->wait_lock);
53 INIT_LIST_HEAD(&lock->wait_list);
0d66bf6d 54 mutex_clear_owner(lock);
6053ee3b 55
ef5d4707 56 debug_mutex_init(lock, name, key);
6053ee3b
IM
57}
58
59EXPORT_SYMBOL(__mutex_init);
60
e4564f79 61#ifndef CONFIG_DEBUG_LOCK_ALLOC
6053ee3b
IM
62/*
63 * We split the mutex lock/unlock logic into separate fastpath and
64 * slowpath functions, to reduce the register pressure on the fastpath.
65 * We also put the fastpath first in the kernel image, to make sure the
66 * branch is predicted by the CPU as default-untaken.
67 */
7918baa5 68static __used noinline void __sched
9a11b49a 69__mutex_lock_slowpath(atomic_t *lock_count);
6053ee3b
IM
70
71/***
72 * mutex_lock - acquire the mutex
73 * @lock: the mutex to be acquired
74 *
75 * Lock the mutex exclusively for this task. If the mutex is not
76 * available right now, it will sleep until it can get it.
77 *
78 * The mutex must later on be released by the same task that
79 * acquired it. Recursive locking is not allowed. The task
80 * may not exit without first unlocking the mutex. Also, kernel
81 * memory where the mutex resides mutex must not be freed with
82 * the mutex still locked. The mutex must first be initialized
83 * (or statically defined) before it can be locked. memset()-ing
84 * the mutex to 0 is not allowed.
85 *
86 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
87 * checks that will enforce the restrictions and will also do
88 * deadlock debugging. )
89 *
90 * This function is similar to (but not equivalent to) down().
91 */
7ad5b3a5 92void inline __sched mutex_lock(struct mutex *lock)
6053ee3b 93{
c544bdb1 94 might_sleep();
6053ee3b
IM
95 /*
96 * The locking fastpath is the 1->0 transition from
97 * 'unlocked' into 'locked' state.
6053ee3b
IM
98 */
99 __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
0d66bf6d 100 mutex_set_owner(lock);
6053ee3b
IM
101}
102
103EXPORT_SYMBOL(mutex_lock);
e4564f79 104#endif
6053ee3b 105
7918baa5 106static __used noinline void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
6053ee3b
IM
107
108/***
109 * mutex_unlock - release the mutex
110 * @lock: the mutex to be released
111 *
112 * Unlock a mutex that has been locked by this task previously.
113 *
114 * This function must not be used in interrupt context. Unlocking
115 * of a not locked mutex is not allowed.
116 *
117 * This function is similar to (but not equivalent to) up().
118 */
7ad5b3a5 119void __sched mutex_unlock(struct mutex *lock)
6053ee3b
IM
120{
121 /*
122 * The unlocking fastpath is the 0->1 transition from 'locked'
123 * into 'unlocked' state:
6053ee3b 124 */
0d66bf6d
PZ
125#ifndef CONFIG_DEBUG_MUTEXES
126 /*
127 * When debugging is enabled we must not clear the owner before time,
128 * the slow path will always be taken, and that clears the owner field
129 * after verifying that it was indeed current.
130 */
131 mutex_clear_owner(lock);
132#endif
6053ee3b
IM
133 __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
134}
135
136EXPORT_SYMBOL(mutex_unlock);
137
138/*
139 * Lock a mutex (possibly interruptible), slowpath:
140 */
141static inline int __sched
e4564f79
PZ
142__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
143 unsigned long ip)
6053ee3b
IM
144{
145 struct task_struct *task = current;
146 struct mutex_waiter waiter;
1fb00c6c 147 unsigned long flags;
6053ee3b 148
41719b03 149 preempt_disable();
0d66bf6d
PZ
150 mutex_acquire(&lock->dep_map, subclass, 0, ip);
151#if defined(CONFIG_SMP) && !defined(CONFIG_DEBUG_MUTEXES)
152 /*
153 * Optimistic spinning.
154 *
155 * We try to spin for acquisition when we find that there are no
156 * pending waiters and the lock owner is currently running on a
157 * (different) CPU.
158 *
159 * The rationale is that if the lock owner is running, it is likely to
160 * release the lock soon.
161 *
162 * Since this needs the lock owner, and this mutex implementation
163 * doesn't track the owner atomically in the lock field, we need to
164 * track it non-atomically.
165 *
166 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
167 * to serialize everything.
168 */
169
170 for (;;) {
171 struct thread_info *owner;
172
0d66bf6d
PZ
173 /*
174 * If there's an owner, wait for it to either
175 * release the lock or go to sleep.
176 */
177 owner = ACCESS_ONCE(lock->owner);
178 if (owner && !mutex_spin_on_owner(lock, owner))
179 break;
180
ac6e60ee
CM
181 if (atomic_cmpxchg(&lock->count, 1, 0) == 1) {
182 lock_acquired(&lock->dep_map, ip);
183 mutex_set_owner(lock);
184 preempt_enable();
185 return 0;
186 }
187
0d66bf6d
PZ
188 /*
189 * When there's no owner, we might have preempted between the
190 * owner acquiring the lock and setting the owner field. If
191 * we're an RT task that will live-lock because we won't let
192 * the owner complete.
193 */
194 if (!owner && (need_resched() || rt_task(task)))
195 break;
196
0d66bf6d
PZ
197 /*
198 * The cpu_relax() call is a compiler barrier which forces
199 * everything in this loop to be re-loaded. We don't need
200 * memory barriers as we'll eventually observe the right
201 * values at the cost of a few extra spins.
202 */
203 cpu_relax();
204 }
205#endif
1fb00c6c 206 spin_lock_mutex(&lock->wait_lock, flags);
6053ee3b 207
9a11b49a 208 debug_mutex_lock_common(lock, &waiter);
c9f4f06d 209 debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
6053ee3b
IM
210
211 /* add waiting tasks to the end of the waitqueue (FIFO): */
212 list_add_tail(&waiter.list, &lock->wait_list);
213 waiter.task = task;
214
93d81d1a 215 if (atomic_xchg(&lock->count, -1) == 1)
4fe87745
PZ
216 goto done;
217
e4564f79 218 lock_contended(&lock->dep_map, ip);
4fe87745 219
6053ee3b
IM
220 for (;;) {
221 /*
222 * Lets try to take the lock again - this is needed even if
223 * we get here for the first time (shortly after failing to
224 * acquire the lock), to make sure that we get a wakeup once
225 * it's unlocked. Later on, if we sleep, this is the
226 * operation that gives us the lock. We xchg it to -1, so
227 * that when we release the lock, we properly wake up the
228 * other waiters:
229 */
93d81d1a 230 if (atomic_xchg(&lock->count, -1) == 1)
6053ee3b
IM
231 break;
232
233 /*
234 * got a signal? (This code gets eliminated in the
235 * TASK_UNINTERRUPTIBLE case.)
236 */
6ad36762 237 if (unlikely(signal_pending_state(state, task))) {
ad776537
LH
238 mutex_remove_waiter(lock, &waiter,
239 task_thread_info(task));
e4564f79 240 mutex_release(&lock->dep_map, 1, ip);
1fb00c6c 241 spin_unlock_mutex(&lock->wait_lock, flags);
6053ee3b
IM
242
243 debug_mutex_free_waiter(&waiter);
41719b03 244 preempt_enable();
6053ee3b
IM
245 return -EINTR;
246 }
247 __set_task_state(task, state);
248
249 /* didnt get the lock, go to sleep: */
1fb00c6c 250 spin_unlock_mutex(&lock->wait_lock, flags);
41719b03 251 __schedule();
1fb00c6c 252 spin_lock_mutex(&lock->wait_lock, flags);
6053ee3b
IM
253 }
254
4fe87745 255done:
c7e78cff 256 lock_acquired(&lock->dep_map, ip);
6053ee3b 257 /* got the lock - rejoice! */
0d66bf6d
PZ
258 mutex_remove_waiter(lock, &waiter, current_thread_info());
259 mutex_set_owner(lock);
6053ee3b
IM
260
261 /* set it to 0 if there are no waiters left: */
262 if (likely(list_empty(&lock->wait_list)))
263 atomic_set(&lock->count, 0);
264
1fb00c6c 265 spin_unlock_mutex(&lock->wait_lock, flags);
6053ee3b
IM
266
267 debug_mutex_free_waiter(&waiter);
41719b03 268 preempt_enable();
6053ee3b 269
6053ee3b
IM
270 return 0;
271}
272
ef5d4707
IM
273#ifdef CONFIG_DEBUG_LOCK_ALLOC
274void __sched
275mutex_lock_nested(struct mutex *lock, unsigned int subclass)
276{
277 might_sleep();
e4564f79 278 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, _RET_IP_);
ef5d4707
IM
279}
280
281EXPORT_SYMBOL_GPL(mutex_lock_nested);
d63a5a74 282
ad776537
LH
283int __sched
284mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
285{
286 might_sleep();
287 return __mutex_lock_common(lock, TASK_KILLABLE, subclass, _RET_IP_);
288}
289EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
290
d63a5a74
N
291int __sched
292mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
293{
294 might_sleep();
0d66bf6d
PZ
295 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
296 subclass, _RET_IP_);
d63a5a74
N
297}
298
299EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
ef5d4707
IM
300#endif
301
6053ee3b
IM
302/*
303 * Release the lock, slowpath:
304 */
7ad5b3a5 305static inline void
ef5d4707 306__mutex_unlock_common_slowpath(atomic_t *lock_count, int nested)
6053ee3b 307{
02706647 308 struct mutex *lock = container_of(lock_count, struct mutex, count);
1fb00c6c 309 unsigned long flags;
6053ee3b 310
1fb00c6c 311 spin_lock_mutex(&lock->wait_lock, flags);
ef5d4707 312 mutex_release(&lock->dep_map, nested, _RET_IP_);
9a11b49a 313 debug_mutex_unlock(lock);
6053ee3b
IM
314
315 /*
316 * some architectures leave the lock unlocked in the fastpath failure
317 * case, others need to leave it locked. In the later case we have to
318 * unlock it here
319 */
320 if (__mutex_slowpath_needs_to_unlock())
321 atomic_set(&lock->count, 1);
322
6053ee3b
IM
323 if (!list_empty(&lock->wait_list)) {
324 /* get the first entry from the wait-list: */
325 struct mutex_waiter *waiter =
326 list_entry(lock->wait_list.next,
327 struct mutex_waiter, list);
328
329 debug_mutex_wake_waiter(lock, waiter);
330
331 wake_up_process(waiter->task);
332 }
333
1fb00c6c 334 spin_unlock_mutex(&lock->wait_lock, flags);
6053ee3b
IM
335}
336
9a11b49a
IM
337/*
338 * Release the lock, slowpath:
339 */
7918baa5 340static __used noinline void
9a11b49a
IM
341__mutex_unlock_slowpath(atomic_t *lock_count)
342{
ef5d4707 343 __mutex_unlock_common_slowpath(lock_count, 1);
9a11b49a
IM
344}
345
e4564f79 346#ifndef CONFIG_DEBUG_LOCK_ALLOC
6053ee3b
IM
347/*
348 * Here come the less common (and hence less performance-critical) APIs:
349 * mutex_lock_interruptible() and mutex_trylock().
350 */
7ad5b3a5 351static noinline int __sched
ad776537
LH
352__mutex_lock_killable_slowpath(atomic_t *lock_count);
353
7ad5b3a5 354static noinline int __sched
9a11b49a 355__mutex_lock_interruptible_slowpath(atomic_t *lock_count);
6053ee3b
IM
356
357/***
358 * mutex_lock_interruptible - acquire the mutex, interruptable
359 * @lock: the mutex to be acquired
360 *
361 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
362 * been acquired or sleep until the mutex becomes available. If a
363 * signal arrives while waiting for the lock then this function
364 * returns -EINTR.
365 *
366 * This function is similar to (but not equivalent to) down_interruptible().
367 */
7ad5b3a5 368int __sched mutex_lock_interruptible(struct mutex *lock)
6053ee3b 369{
0d66bf6d
PZ
370 int ret;
371
c544bdb1 372 might_sleep();
0d66bf6d 373 ret = __mutex_fastpath_lock_retval
6053ee3b 374 (&lock->count, __mutex_lock_interruptible_slowpath);
0d66bf6d
PZ
375 if (!ret)
376 mutex_set_owner(lock);
377
378 return ret;
6053ee3b
IM
379}
380
381EXPORT_SYMBOL(mutex_lock_interruptible);
382
7ad5b3a5 383int __sched mutex_lock_killable(struct mutex *lock)
ad776537 384{
0d66bf6d
PZ
385 int ret;
386
ad776537 387 might_sleep();
0d66bf6d 388 ret = __mutex_fastpath_lock_retval
ad776537 389 (&lock->count, __mutex_lock_killable_slowpath);
0d66bf6d
PZ
390 if (!ret)
391 mutex_set_owner(lock);
392
393 return ret;
ad776537
LH
394}
395EXPORT_SYMBOL(mutex_lock_killable);
396
7918baa5 397static __used noinline void __sched
e4564f79
PZ
398__mutex_lock_slowpath(atomic_t *lock_count)
399{
400 struct mutex *lock = container_of(lock_count, struct mutex, count);
401
402 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, _RET_IP_);
403}
404
7ad5b3a5 405static noinline int __sched
ad776537
LH
406__mutex_lock_killable_slowpath(atomic_t *lock_count)
407{
408 struct mutex *lock = container_of(lock_count, struct mutex, count);
409
410 return __mutex_lock_common(lock, TASK_KILLABLE, 0, _RET_IP_);
411}
412
7ad5b3a5 413static noinline int __sched
9a11b49a 414__mutex_lock_interruptible_slowpath(atomic_t *lock_count)
6053ee3b
IM
415{
416 struct mutex *lock = container_of(lock_count, struct mutex, count);
417
e4564f79 418 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, _RET_IP_);
6053ee3b 419}
e4564f79 420#endif
6053ee3b
IM
421
422/*
423 * Spinlock based trylock, we take the spinlock and check whether we
424 * can get the lock:
425 */
426static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
427{
428 struct mutex *lock = container_of(lock_count, struct mutex, count);
1fb00c6c 429 unsigned long flags;
6053ee3b
IM
430 int prev;
431
1fb00c6c 432 spin_lock_mutex(&lock->wait_lock, flags);
6053ee3b
IM
433
434 prev = atomic_xchg(&lock->count, -1);
ef5d4707 435 if (likely(prev == 1)) {
0d66bf6d 436 mutex_set_owner(lock);
ef5d4707
IM
437 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
438 }
0d66bf6d 439
6053ee3b
IM
440 /* Set it back to 0 if there are no waiters: */
441 if (likely(list_empty(&lock->wait_list)))
442 atomic_set(&lock->count, 0);
443
1fb00c6c 444 spin_unlock_mutex(&lock->wait_lock, flags);
6053ee3b
IM
445
446 return prev == 1;
447}
448
449/***
450 * mutex_trylock - try acquire the mutex, without waiting
451 * @lock: the mutex to be acquired
452 *
453 * Try to acquire the mutex atomically. Returns 1 if the mutex
454 * has been acquired successfully, and 0 on contention.
455 *
456 * NOTE: this function follows the spin_trylock() convention, so
457 * it is negated to the down_trylock() return values! Be careful
458 * about this when converting semaphore users to mutexes.
459 *
460 * This function must not be used in interrupt context. The
461 * mutex must be released by the same task that acquired it.
462 */
7ad5b3a5 463int __sched mutex_trylock(struct mutex *lock)
6053ee3b 464{
0d66bf6d
PZ
465 int ret;
466
467 ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
468 if (ret)
469 mutex_set_owner(lock);
470
471 return ret;
6053ee3b
IM
472}
473
474EXPORT_SYMBOL(mutex_trylock);