]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/hrtimer.c
net/can/mscan: drop assignment in while-construct
[net-next-2.6.git] / kernel / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
35#include <linux/module.h>
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
eea08f32
AB
46#include <linux/sched.h>
47#include <linux/timer.h>
c0a31329
TG
48
49#include <asm/uaccess.h>
50
c6a2a177
XG
51#include <trace/events/timer.h>
52
c0a31329
TG
53/*
54 * The timer bases:
7978672c
GA
55 *
56 * Note: If we want to add new timer bases, we have to skip the two
57 * clock ids captured by the cpu-timers. We do this by holding empty
58 * entries rather than doing math adjustment of the clock ids.
59 * This ensures that we capture erroneous accesses to these clock ids
60 * rather than moving them into the range of valid clock id's.
c0a31329 61 */
54cdfdb4 62DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 63{
3c8aa39d
TG
64
65 .clock_base =
c0a31329 66 {
3c8aa39d
TG
67 {
68 .index = CLOCK_REALTIME,
69 .get_time = &ktime_get_real,
54cdfdb4 70 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
71 },
72 {
73 .index = CLOCK_MONOTONIC,
74 .get_time = &ktime_get,
54cdfdb4 75 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
76 },
77 }
c0a31329
TG
78};
79
92127c7a
TG
80/*
81 * Get the coarse grained time at the softirq based on xtime and
82 * wall_to_monotonic.
83 */
3c8aa39d 84static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92127c7a
TG
85{
86 ktime_t xtim, tomono;
ad28d94a 87 struct timespec xts, tom;
92127c7a
TG
88 unsigned long seq;
89
90 do {
91 seq = read_seqbegin(&xtime_lock);
2c6b47de 92 xts = current_kernel_time();
ad28d94a 93 tom = wall_to_monotonic;
92127c7a
TG
94 } while (read_seqretry(&xtime_lock, seq));
95
f4304ab2 96 xtim = timespec_to_ktime(xts);
ad28d94a 97 tomono = timespec_to_ktime(tom);
3c8aa39d
TG
98 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
99 base->clock_base[CLOCK_MONOTONIC].softirq_time =
100 ktime_add(xtim, tomono);
92127c7a
TG
101}
102
c0a31329
TG
103/*
104 * Functions and macros which are different for UP/SMP systems are kept in a
105 * single place
106 */
107#ifdef CONFIG_SMP
108
c0a31329
TG
109/*
110 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
111 * means that all timers which are tied to this base via timer->base are
112 * locked, and the base itself is locked too.
113 *
114 * So __run_timers/migrate_timers can safely modify all timers which could
115 * be found on the lists/queues.
116 *
117 * When the timer's base is locked, and the timer removed from list, it is
118 * possible to set timer->base = NULL and drop the lock: the timer remains
119 * locked.
120 */
3c8aa39d
TG
121static
122struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
123 unsigned long *flags)
c0a31329 124{
3c8aa39d 125 struct hrtimer_clock_base *base;
c0a31329
TG
126
127 for (;;) {
128 base = timer->base;
129 if (likely(base != NULL)) {
3c8aa39d 130 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
131 if (likely(base == timer->base))
132 return base;
133 /* The timer has migrated to another CPU: */
3c8aa39d 134 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
135 }
136 cpu_relax();
137 }
138}
139
6ff7041d
TG
140
141/*
142 * Get the preferred target CPU for NOHZ
143 */
144static int hrtimer_get_target(int this_cpu, int pinned)
145{
146#ifdef CONFIG_NO_HZ
147 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu)) {
148 int preferred_cpu = get_nohz_load_balancer();
149
150 if (preferred_cpu >= 0)
151 return preferred_cpu;
152 }
153#endif
154 return this_cpu;
155}
156
157/*
158 * With HIGHRES=y we do not migrate the timer when it is expiring
159 * before the next event on the target cpu because we cannot reprogram
160 * the target cpu hardware and we would cause it to fire late.
161 *
162 * Called with cpu_base->lock of target cpu held.
163 */
164static int
165hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
166{
167#ifdef CONFIG_HIGH_RES_TIMERS
168 ktime_t expires;
169
170 if (!new_base->cpu_base->hres_active)
171 return 0;
172
173 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
174 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
175#else
176 return 0;
177#endif
178}
179
c0a31329
TG
180/*
181 * Switch the timer base to the current CPU when possible.
182 */
3c8aa39d 183static inline struct hrtimer_clock_base *
597d0275
AB
184switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
185 int pinned)
c0a31329 186{
3c8aa39d
TG
187 struct hrtimer_clock_base *new_base;
188 struct hrtimer_cpu_base *new_cpu_base;
6ff7041d
TG
189 int this_cpu = smp_processor_id();
190 int cpu = hrtimer_get_target(this_cpu, pinned);
c0a31329 191
eea08f32
AB
192again:
193 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
3c8aa39d 194 new_base = &new_cpu_base->clock_base[base->index];
c0a31329
TG
195
196 if (base != new_base) {
197 /*
6ff7041d 198 * We are trying to move timer to new_base.
c0a31329
TG
199 * However we can't change timer's base while it is running,
200 * so we keep it on the same CPU. No hassle vs. reprogramming
201 * the event source in the high resolution case. The softirq
202 * code will take care of this when the timer function has
203 * completed. There is no conflict as we hold the lock until
204 * the timer is enqueued.
205 */
54cdfdb4 206 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
207 return base;
208
209 /* See the comment in lock_timer_base() */
210 timer->base = NULL;
3c8aa39d
TG
211 spin_unlock(&base->cpu_base->lock);
212 spin_lock(&new_base->cpu_base->lock);
eea08f32 213
6ff7041d
TG
214 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
215 cpu = this_cpu;
216 spin_unlock(&new_base->cpu_base->lock);
217 spin_lock(&base->cpu_base->lock);
218 timer->base = base;
219 goto again;
eea08f32 220 }
c0a31329
TG
221 timer->base = new_base;
222 }
223 return new_base;
224}
225
226#else /* CONFIG_SMP */
227
3c8aa39d 228static inline struct hrtimer_clock_base *
c0a31329
TG
229lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
230{
3c8aa39d 231 struct hrtimer_clock_base *base = timer->base;
c0a31329 232
3c8aa39d 233 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
234
235 return base;
236}
237
eea08f32 238# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
239
240#endif /* !CONFIG_SMP */
241
242/*
243 * Functions for the union type storage format of ktime_t which are
244 * too large for inlining:
245 */
246#if BITS_PER_LONG < 64
247# ifndef CONFIG_KTIME_SCALAR
248/**
249 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
c0a31329
TG
250 * @kt: addend
251 * @nsec: the scalar nsec value to add
252 *
253 * Returns the sum of kt and nsec in ktime_t format
254 */
255ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
256{
257 ktime_t tmp;
258
259 if (likely(nsec < NSEC_PER_SEC)) {
260 tmp.tv64 = nsec;
261 } else {
262 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
263
264 tmp = ktime_set((long)nsec, rem);
265 }
266
267 return ktime_add(kt, tmp);
268}
b8b8fd2d
DH
269
270EXPORT_SYMBOL_GPL(ktime_add_ns);
a272378d
ACM
271
272/**
273 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
274 * @kt: minuend
275 * @nsec: the scalar nsec value to subtract
276 *
277 * Returns the subtraction of @nsec from @kt in ktime_t format
278 */
279ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
280{
281 ktime_t tmp;
282
283 if (likely(nsec < NSEC_PER_SEC)) {
284 tmp.tv64 = nsec;
285 } else {
286 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
287
288 tmp = ktime_set((long)nsec, rem);
289 }
290
291 return ktime_sub(kt, tmp);
292}
293
294EXPORT_SYMBOL_GPL(ktime_sub_ns);
c0a31329
TG
295# endif /* !CONFIG_KTIME_SCALAR */
296
297/*
298 * Divide a ktime value by a nanosecond value
299 */
4d672e7a 300u64 ktime_divns(const ktime_t kt, s64 div)
c0a31329 301{
900cfa46 302 u64 dclc;
c0a31329
TG
303 int sft = 0;
304
900cfa46 305 dclc = ktime_to_ns(kt);
c0a31329
TG
306 /* Make sure the divisor is less than 2^32: */
307 while (div >> 32) {
308 sft++;
309 div >>= 1;
310 }
311 dclc >>= sft;
312 do_div(dclc, (unsigned long) div);
313
4d672e7a 314 return dclc;
c0a31329 315}
c0a31329
TG
316#endif /* BITS_PER_LONG >= 64 */
317
5a7780e7
TG
318/*
319 * Add two ktime values and do a safety check for overflow:
320 */
321ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
322{
323 ktime_t res = ktime_add(lhs, rhs);
324
325 /*
326 * We use KTIME_SEC_MAX here, the maximum timeout which we can
327 * return to user space in a timespec:
328 */
329 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
330 res = ktime_set(KTIME_SEC_MAX, 0);
331
332 return res;
333}
334
8daa21e6
AB
335EXPORT_SYMBOL_GPL(ktime_add_safe);
336
237fc6e7
TG
337#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
338
339static struct debug_obj_descr hrtimer_debug_descr;
340
341/*
342 * fixup_init is called when:
343 * - an active object is initialized
344 */
345static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
346{
347 struct hrtimer *timer = addr;
348
349 switch (state) {
350 case ODEBUG_STATE_ACTIVE:
351 hrtimer_cancel(timer);
352 debug_object_init(timer, &hrtimer_debug_descr);
353 return 1;
354 default:
355 return 0;
356 }
357}
358
359/*
360 * fixup_activate is called when:
361 * - an active object is activated
362 * - an unknown object is activated (might be a statically initialized object)
363 */
364static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
365{
366 switch (state) {
367
368 case ODEBUG_STATE_NOTAVAILABLE:
369 WARN_ON_ONCE(1);
370 return 0;
371
372 case ODEBUG_STATE_ACTIVE:
373 WARN_ON(1);
374
375 default:
376 return 0;
377 }
378}
379
380/*
381 * fixup_free is called when:
382 * - an active object is freed
383 */
384static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
385{
386 struct hrtimer *timer = addr;
387
388 switch (state) {
389 case ODEBUG_STATE_ACTIVE:
390 hrtimer_cancel(timer);
391 debug_object_free(timer, &hrtimer_debug_descr);
392 return 1;
393 default:
394 return 0;
395 }
396}
397
398static struct debug_obj_descr hrtimer_debug_descr = {
399 .name = "hrtimer",
400 .fixup_init = hrtimer_fixup_init,
401 .fixup_activate = hrtimer_fixup_activate,
402 .fixup_free = hrtimer_fixup_free,
403};
404
405static inline void debug_hrtimer_init(struct hrtimer *timer)
406{
407 debug_object_init(timer, &hrtimer_debug_descr);
408}
409
410static inline void debug_hrtimer_activate(struct hrtimer *timer)
411{
412 debug_object_activate(timer, &hrtimer_debug_descr);
413}
414
415static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
416{
417 debug_object_deactivate(timer, &hrtimer_debug_descr);
418}
419
420static inline void debug_hrtimer_free(struct hrtimer *timer)
421{
422 debug_object_free(timer, &hrtimer_debug_descr);
423}
424
425static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
426 enum hrtimer_mode mode);
427
428void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
429 enum hrtimer_mode mode)
430{
431 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
432 __hrtimer_init(timer, clock_id, mode);
433}
2bc481cf 434EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
435
436void destroy_hrtimer_on_stack(struct hrtimer *timer)
437{
438 debug_object_free(timer, &hrtimer_debug_descr);
439}
440
441#else
442static inline void debug_hrtimer_init(struct hrtimer *timer) { }
443static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
444static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
445#endif
446
c6a2a177
XG
447static inline void
448debug_init(struct hrtimer *timer, clockid_t clockid,
449 enum hrtimer_mode mode)
450{
451 debug_hrtimer_init(timer);
452 trace_hrtimer_init(timer, clockid, mode);
453}
454
455static inline void debug_activate(struct hrtimer *timer)
456{
457 debug_hrtimer_activate(timer);
458 trace_hrtimer_start(timer);
459}
460
461static inline void debug_deactivate(struct hrtimer *timer)
462{
463 debug_hrtimer_deactivate(timer);
464 trace_hrtimer_cancel(timer);
465}
466
54cdfdb4
TG
467/* High resolution timer related functions */
468#ifdef CONFIG_HIGH_RES_TIMERS
469
470/*
471 * High resolution timer enabled ?
472 */
473static int hrtimer_hres_enabled __read_mostly = 1;
474
475/*
476 * Enable / Disable high resolution mode
477 */
478static int __init setup_hrtimer_hres(char *str)
479{
480 if (!strcmp(str, "off"))
481 hrtimer_hres_enabled = 0;
482 else if (!strcmp(str, "on"))
483 hrtimer_hres_enabled = 1;
484 else
485 return 0;
486 return 1;
487}
488
489__setup("highres=", setup_hrtimer_hres);
490
491/*
492 * hrtimer_high_res_enabled - query, if the highres mode is enabled
493 */
494static inline int hrtimer_is_hres_enabled(void)
495{
496 return hrtimer_hres_enabled;
497}
498
499/*
500 * Is the high resolution mode active ?
501 */
502static inline int hrtimer_hres_active(void)
503{
504 return __get_cpu_var(hrtimer_bases).hres_active;
505}
506
507/*
508 * Reprogram the event source with checking both queues for the
509 * next event
510 * Called with interrupts disabled and base->lock held
511 */
7403f41f
AC
512static void
513hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4
TG
514{
515 int i;
516 struct hrtimer_clock_base *base = cpu_base->clock_base;
7403f41f 517 ktime_t expires, expires_next;
54cdfdb4 518
7403f41f 519 expires_next.tv64 = KTIME_MAX;
54cdfdb4
TG
520
521 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
522 struct hrtimer *timer;
523
524 if (!base->first)
525 continue;
526 timer = rb_entry(base->first, struct hrtimer, node);
cc584b21 527 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
b0a9b511
TG
528 /*
529 * clock_was_set() has changed base->offset so the
530 * result might be negative. Fix it up to prevent a
531 * false positive in clockevents_program_event()
532 */
533 if (expires.tv64 < 0)
534 expires.tv64 = 0;
7403f41f
AC
535 if (expires.tv64 < expires_next.tv64)
536 expires_next = expires;
54cdfdb4
TG
537 }
538
7403f41f
AC
539 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
540 return;
541
542 cpu_base->expires_next.tv64 = expires_next.tv64;
543
54cdfdb4
TG
544 if (cpu_base->expires_next.tv64 != KTIME_MAX)
545 tick_program_event(cpu_base->expires_next, 1);
546}
547
548/*
549 * Shared reprogramming for clock_realtime and clock_monotonic
550 *
551 * When a timer is enqueued and expires earlier than the already enqueued
552 * timers, we have to check, whether it expires earlier than the timer for
553 * which the clock event device was armed.
554 *
555 * Called with interrupts disabled and base->cpu_base.lock held
556 */
557static int hrtimer_reprogram(struct hrtimer *timer,
558 struct hrtimer_clock_base *base)
559{
560 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
cc584b21 561 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
54cdfdb4
TG
562 int res;
563
cc584b21 564 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
63070a79 565
54cdfdb4
TG
566 /*
567 * When the callback is running, we do not reprogram the clock event
568 * device. The timer callback is either running on a different CPU or
3a4fa0a2 569 * the callback is executed in the hrtimer_interrupt context. The
54cdfdb4
TG
570 * reprogramming is handled either by the softirq, which called the
571 * callback or at the end of the hrtimer_interrupt.
572 */
573 if (hrtimer_callback_running(timer))
574 return 0;
575
63070a79
TG
576 /*
577 * CLOCK_REALTIME timer might be requested with an absolute
578 * expiry time which is less than base->offset. Nothing wrong
579 * about that, just avoid to call into the tick code, which
580 * has now objections against negative expiry values.
581 */
582 if (expires.tv64 < 0)
583 return -ETIME;
584
54cdfdb4
TG
585 if (expires.tv64 >= expires_next->tv64)
586 return 0;
587
588 /*
589 * Clockevents returns -ETIME, when the event was in the past.
590 */
591 res = tick_program_event(expires, 0);
592 if (!IS_ERR_VALUE(res))
593 *expires_next = expires;
594 return res;
595}
596
597
598/*
599 * Retrigger next event is called after clock was set
600 *
601 * Called with interrupts disabled via on_each_cpu()
602 */
603static void retrigger_next_event(void *arg)
604{
605 struct hrtimer_cpu_base *base;
606 struct timespec realtime_offset;
607 unsigned long seq;
608
609 if (!hrtimer_hres_active())
610 return;
611
612 do {
613 seq = read_seqbegin(&xtime_lock);
614 set_normalized_timespec(&realtime_offset,
615 -wall_to_monotonic.tv_sec,
616 -wall_to_monotonic.tv_nsec);
617 } while (read_seqretry(&xtime_lock, seq));
618
619 base = &__get_cpu_var(hrtimer_bases);
620
621 /* Adjust CLOCK_REALTIME offset */
622 spin_lock(&base->lock);
623 base->clock_base[CLOCK_REALTIME].offset =
624 timespec_to_ktime(realtime_offset);
625
7403f41f 626 hrtimer_force_reprogram(base, 0);
54cdfdb4
TG
627 spin_unlock(&base->lock);
628}
629
630/*
631 * Clock realtime was set
632 *
633 * Change the offset of the realtime clock vs. the monotonic
634 * clock.
635 *
636 * We might have to reprogram the high resolution timer interrupt. On
637 * SMP we call the architecture specific code to retrigger _all_ high
638 * resolution timer interrupts. On UP we just disable interrupts and
639 * call the high resolution interrupt code.
640 */
641void clock_was_set(void)
642{
643 /* Retrigger the CPU local events everywhere */
15c8b6c1 644 on_each_cpu(retrigger_next_event, NULL, 1);
54cdfdb4
TG
645}
646
995f054f
IM
647/*
648 * During resume we might have to reprogram the high resolution timer
649 * interrupt (on the local CPU):
650 */
651void hres_timers_resume(void)
652{
1d4a7f1c
PZ
653 WARN_ONCE(!irqs_disabled(),
654 KERN_INFO "hres_timers_resume() called with IRQs enabled!");
655
995f054f
IM
656 retrigger_next_event(NULL);
657}
658
54cdfdb4
TG
659/*
660 * Initialize the high resolution related parts of cpu_base
661 */
662static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
663{
664 base->expires_next.tv64 = KTIME_MAX;
665 base->hres_active = 0;
54cdfdb4
TG
666}
667
668/*
669 * Initialize the high resolution related parts of a hrtimer
670 */
671static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
672{
54cdfdb4
TG
673}
674
ca109491 675
54cdfdb4
TG
676/*
677 * When High resolution timers are active, try to reprogram. Note, that in case
678 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
679 * check happens. The timer gets enqueued into the rbtree. The reprogramming
680 * and expiry check is done in the hrtimer_interrupt or in the softirq.
681 */
682static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
7f1e2ca9
PZ
683 struct hrtimer_clock_base *base,
684 int wakeup)
54cdfdb4
TG
685{
686 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
7f1e2ca9
PZ
687 if (wakeup) {
688 spin_unlock(&base->cpu_base->lock);
689 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
690 spin_lock(&base->cpu_base->lock);
691 } else
692 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
693
ca109491 694 return 1;
54cdfdb4 695 }
7f1e2ca9 696
54cdfdb4
TG
697 return 0;
698}
699
700/*
701 * Switch to high resolution mode
702 */
f8953856 703static int hrtimer_switch_to_hres(void)
54cdfdb4 704{
820de5c3
IM
705 int cpu = smp_processor_id();
706 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
54cdfdb4
TG
707 unsigned long flags;
708
709 if (base->hres_active)
f8953856 710 return 1;
54cdfdb4
TG
711
712 local_irq_save(flags);
713
714 if (tick_init_highres()) {
715 local_irq_restore(flags);
820de5c3
IM
716 printk(KERN_WARNING "Could not switch to high resolution "
717 "mode on CPU %d\n", cpu);
f8953856 718 return 0;
54cdfdb4
TG
719 }
720 base->hres_active = 1;
721 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
722 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
723
724 tick_setup_sched_timer();
725
726 /* "Retrigger" the interrupt to get things going */
727 retrigger_next_event(NULL);
728 local_irq_restore(flags);
edfed66e 729 printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
54cdfdb4 730 smp_processor_id());
f8953856 731 return 1;
54cdfdb4
TG
732}
733
734#else
735
736static inline int hrtimer_hres_active(void) { return 0; }
737static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 738static inline int hrtimer_switch_to_hres(void) { return 0; }
7403f41f
AC
739static inline void
740hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
54cdfdb4 741static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
7f1e2ca9
PZ
742 struct hrtimer_clock_base *base,
743 int wakeup)
54cdfdb4
TG
744{
745 return 0;
746}
54cdfdb4
TG
747static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
748static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
749
750#endif /* CONFIG_HIGH_RES_TIMERS */
751
82f67cd9
IM
752#ifdef CONFIG_TIMER_STATS
753void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
754{
755 if (timer->start_site)
756 return;
757
758 timer->start_site = addr;
759 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
760 timer->start_pid = current->pid;
761}
762#endif
763
c0a31329 764/*
6506f2aa 765 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
766 */
767static inline
768void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
769{
3c8aa39d 770 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
771}
772
773/**
774 * hrtimer_forward - forward the timer expiry
c0a31329 775 * @timer: hrtimer to forward
44f21475 776 * @now: forward past this time
c0a31329
TG
777 * @interval: the interval to forward
778 *
779 * Forward the timer expiry so it will expire in the future.
8dca6f33 780 * Returns the number of overruns.
c0a31329 781 */
4d672e7a 782u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 783{
4d672e7a 784 u64 orun = 1;
44f21475 785 ktime_t delta;
c0a31329 786
cc584b21 787 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329
TG
788
789 if (delta.tv64 < 0)
790 return 0;
791
c9db4fa1
TG
792 if (interval.tv64 < timer->base->resolution.tv64)
793 interval.tv64 = timer->base->resolution.tv64;
794
c0a31329 795 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 796 s64 incr = ktime_to_ns(interval);
c0a31329
TG
797
798 orun = ktime_divns(delta, incr);
cc584b21
AV
799 hrtimer_add_expires_ns(timer, incr * orun);
800 if (hrtimer_get_expires_tv64(timer) > now.tv64)
c0a31329
TG
801 return orun;
802 /*
803 * This (and the ktime_add() below) is the
804 * correction for exact:
805 */
806 orun++;
807 }
cc584b21 808 hrtimer_add_expires(timer, interval);
c0a31329
TG
809
810 return orun;
811}
6bdb6b62 812EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
813
814/*
815 * enqueue_hrtimer - internal function to (re)start a timer
816 *
817 * The timer is inserted in expiry order. Insertion into the
818 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
819 *
820 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 821 */
a6037b61
PZ
822static int enqueue_hrtimer(struct hrtimer *timer,
823 struct hrtimer_clock_base *base)
c0a31329
TG
824{
825 struct rb_node **link = &base->active.rb_node;
c0a31329
TG
826 struct rb_node *parent = NULL;
827 struct hrtimer *entry;
99bc2fcb 828 int leftmost = 1;
c0a31329 829
c6a2a177 830 debug_activate(timer);
237fc6e7 831
c0a31329
TG
832 /*
833 * Find the right place in the rbtree:
834 */
835 while (*link) {
836 parent = *link;
837 entry = rb_entry(parent, struct hrtimer, node);
838 /*
839 * We dont care about collisions. Nodes with
840 * the same expiry time stay together.
841 */
cc584b21
AV
842 if (hrtimer_get_expires_tv64(timer) <
843 hrtimer_get_expires_tv64(entry)) {
c0a31329 844 link = &(*link)->rb_left;
99bc2fcb 845 } else {
c0a31329 846 link = &(*link)->rb_right;
99bc2fcb
IM
847 leftmost = 0;
848 }
c0a31329
TG
849 }
850
851 /*
288867ec
TG
852 * Insert the timer to the rbtree and check whether it
853 * replaces the first pending timer
c0a31329 854 */
a6037b61 855 if (leftmost)
54cdfdb4 856 base->first = &timer->node;
54cdfdb4 857
c0a31329
TG
858 rb_link_node(&timer->node, parent, link);
859 rb_insert_color(&timer->node, &base->active);
303e967f
TG
860 /*
861 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
862 * state of a possibly running callback.
863 */
864 timer->state |= HRTIMER_STATE_ENQUEUED;
a6037b61
PZ
865
866 return leftmost;
288867ec 867}
c0a31329
TG
868
869/*
870 * __remove_hrtimer - internal function to remove a timer
871 *
872 * Caller must hold the base lock.
54cdfdb4
TG
873 *
874 * High resolution timer mode reprograms the clock event device when the
875 * timer is the one which expires next. The caller can disable this by setting
876 * reprogram to zero. This is useful, when the context does a reprogramming
877 * anyway (e.g. timer interrupt)
c0a31329 878 */
3c8aa39d 879static void __remove_hrtimer(struct hrtimer *timer,
303e967f 880 struct hrtimer_clock_base *base,
54cdfdb4 881 unsigned long newstate, int reprogram)
c0a31329 882{
7403f41f
AC
883 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
884 goto out;
885
886 /*
887 * Remove the timer from the rbtree and replace the first
888 * entry pointer if necessary.
889 */
890 if (base->first == &timer->node) {
891 base->first = rb_next(&timer->node);
892#ifdef CONFIG_HIGH_RES_TIMERS
893 /* Reprogram the clock event device. if enabled */
894 if (reprogram && hrtimer_hres_active()) {
895 ktime_t expires;
896
897 expires = ktime_sub(hrtimer_get_expires(timer),
898 base->offset);
899 if (base->cpu_base->expires_next.tv64 == expires.tv64)
900 hrtimer_force_reprogram(base->cpu_base, 1);
54cdfdb4 901 }
7403f41f 902#endif
54cdfdb4 903 }
7403f41f
AC
904 rb_erase(&timer->node, &base->active);
905out:
303e967f 906 timer->state = newstate;
c0a31329
TG
907}
908
909/*
910 * remove hrtimer, called with base lock held
911 */
912static inline int
3c8aa39d 913remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 914{
303e967f 915 if (hrtimer_is_queued(timer)) {
54cdfdb4
TG
916 int reprogram;
917
918 /*
919 * Remove the timer and force reprogramming when high
920 * resolution mode is active and the timer is on the current
921 * CPU. If we remove a timer on another CPU, reprogramming is
922 * skipped. The interrupt event on this CPU is fired and
923 * reprogramming happens in the interrupt handler. This is a
924 * rare case and less expensive than a smp call.
925 */
c6a2a177 926 debug_deactivate(timer);
82f67cd9 927 timer_stats_hrtimer_clear_start_info(timer);
54cdfdb4
TG
928 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
929 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
930 reprogram);
c0a31329
TG
931 return 1;
932 }
933 return 0;
934}
935
7f1e2ca9
PZ
936int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
937 unsigned long delta_ns, const enum hrtimer_mode mode,
938 int wakeup)
c0a31329 939{
3c8aa39d 940 struct hrtimer_clock_base *base, *new_base;
c0a31329 941 unsigned long flags;
a6037b61 942 int ret, leftmost;
c0a31329
TG
943
944 base = lock_hrtimer_base(timer, &flags);
945
946 /* Remove an active timer from the queue: */
947 ret = remove_hrtimer(timer, base);
948
949 /* Switch the timer base, if necessary: */
597d0275 950 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
c0a31329 951
597d0275 952 if (mode & HRTIMER_MODE_REL) {
5a7780e7 953 tim = ktime_add_safe(tim, new_base->get_time());
06027bdd
IM
954 /*
955 * CONFIG_TIME_LOW_RES is a temporary way for architectures
956 * to signal that they simply return xtime in
957 * do_gettimeoffset(). In this case we want to round up by
958 * resolution when starting a relative timer, to avoid short
959 * timeouts. This will go away with the GTOD framework.
960 */
961#ifdef CONFIG_TIME_LOW_RES
5a7780e7 962 tim = ktime_add_safe(tim, base->resolution);
06027bdd
IM
963#endif
964 }
237fc6e7 965
da8f2e17 966 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 967
82f67cd9
IM
968 timer_stats_hrtimer_set_start_info(timer);
969
a6037b61
PZ
970 leftmost = enqueue_hrtimer(timer, new_base);
971
935c631d
IM
972 /*
973 * Only allow reprogramming if the new base is on this CPU.
974 * (it might still be on another CPU if the timer was pending)
a6037b61
PZ
975 *
976 * XXX send_remote_softirq() ?
935c631d 977 */
a6037b61 978 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
7f1e2ca9 979 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
c0a31329
TG
980
981 unlock_hrtimer_base(timer, &flags);
982
983 return ret;
984}
7f1e2ca9
PZ
985
986/**
987 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
988 * @timer: the timer to be added
989 * @tim: expiry time
990 * @delta_ns: "slack" range for the timer
991 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
992 *
993 * Returns:
994 * 0 on success
995 * 1 when the timer was active
996 */
997int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
998 unsigned long delta_ns, const enum hrtimer_mode mode)
999{
1000 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1001}
da8f2e17
AV
1002EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1003
1004/**
e1dd7bc5 1005 * hrtimer_start - (re)start an hrtimer on the current CPU
da8f2e17
AV
1006 * @timer: the timer to be added
1007 * @tim: expiry time
1008 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1009 *
1010 * Returns:
1011 * 0 on success
1012 * 1 when the timer was active
1013 */
1014int
1015hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1016{
7f1e2ca9 1017 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
da8f2e17 1018}
8d16b764 1019EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329 1020
da8f2e17 1021
c0a31329
TG
1022/**
1023 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1024 * @timer: hrtimer to stop
1025 *
1026 * Returns:
1027 * 0 when the timer was not active
1028 * 1 when the timer was active
1029 * -1 when the timer is currently excuting the callback function and
fa9799e3 1030 * cannot be stopped
c0a31329
TG
1031 */
1032int hrtimer_try_to_cancel(struct hrtimer *timer)
1033{
3c8aa39d 1034 struct hrtimer_clock_base *base;
c0a31329
TG
1035 unsigned long flags;
1036 int ret = -1;
1037
1038 base = lock_hrtimer_base(timer, &flags);
1039
303e967f 1040 if (!hrtimer_callback_running(timer))
c0a31329
TG
1041 ret = remove_hrtimer(timer, base);
1042
1043 unlock_hrtimer_base(timer, &flags);
1044
1045 return ret;
1046
1047}
8d16b764 1048EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1049
1050/**
1051 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1052 * @timer: the timer to be cancelled
1053 *
1054 * Returns:
1055 * 0 when the timer was not active
1056 * 1 when the timer was active
1057 */
1058int hrtimer_cancel(struct hrtimer *timer)
1059{
1060 for (;;) {
1061 int ret = hrtimer_try_to_cancel(timer);
1062
1063 if (ret >= 0)
1064 return ret;
5ef37b19 1065 cpu_relax();
c0a31329
TG
1066 }
1067}
8d16b764 1068EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1069
1070/**
1071 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
1072 * @timer: the timer to read
1073 */
1074ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1075{
3c8aa39d 1076 struct hrtimer_clock_base *base;
c0a31329
TG
1077 unsigned long flags;
1078 ktime_t rem;
1079
1080 base = lock_hrtimer_base(timer, &flags);
cc584b21 1081 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1082 unlock_hrtimer_base(timer, &flags);
1083
1084 return rem;
1085}
8d16b764 1086EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 1087
ee9c5785 1088#ifdef CONFIG_NO_HZ
69239749
TL
1089/**
1090 * hrtimer_get_next_event - get the time until next expiry event
1091 *
1092 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1093 * is pending.
1094 */
1095ktime_t hrtimer_get_next_event(void)
1096{
3c8aa39d
TG
1097 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1098 struct hrtimer_clock_base *base = cpu_base->clock_base;
69239749
TL
1099 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1100 unsigned long flags;
1101 int i;
1102
3c8aa39d
TG
1103 spin_lock_irqsave(&cpu_base->lock, flags);
1104
54cdfdb4
TG
1105 if (!hrtimer_hres_active()) {
1106 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1107 struct hrtimer *timer;
69239749 1108
54cdfdb4
TG
1109 if (!base->first)
1110 continue;
3c8aa39d 1111
54cdfdb4 1112 timer = rb_entry(base->first, struct hrtimer, node);
cc584b21 1113 delta.tv64 = hrtimer_get_expires_tv64(timer);
54cdfdb4
TG
1114 delta = ktime_sub(delta, base->get_time());
1115 if (delta.tv64 < mindelta.tv64)
1116 mindelta.tv64 = delta.tv64;
1117 }
69239749 1118 }
3c8aa39d
TG
1119
1120 spin_unlock_irqrestore(&cpu_base->lock, flags);
1121
69239749
TL
1122 if (mindelta.tv64 < 0)
1123 mindelta.tv64 = 0;
1124 return mindelta;
1125}
1126#endif
1127
237fc6e7
TG
1128static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1129 enum hrtimer_mode mode)
c0a31329 1130{
3c8aa39d 1131 struct hrtimer_cpu_base *cpu_base;
c0a31329 1132
7978672c
GA
1133 memset(timer, 0, sizeof(struct hrtimer));
1134
3c8aa39d 1135 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
c0a31329 1136
c9cb2e3d 1137 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1138 clock_id = CLOCK_MONOTONIC;
1139
3c8aa39d 1140 timer->base = &cpu_base->clock_base[clock_id];
54cdfdb4 1141 hrtimer_init_timer_hres(timer);
82f67cd9
IM
1142
1143#ifdef CONFIG_TIMER_STATS
1144 timer->start_site = NULL;
1145 timer->start_pid = -1;
1146 memset(timer->start_comm, 0, TASK_COMM_LEN);
1147#endif
c0a31329 1148}
237fc6e7
TG
1149
1150/**
1151 * hrtimer_init - initialize a timer to the given clock
1152 * @timer: the timer to be initialized
1153 * @clock_id: the clock to be used
1154 * @mode: timer mode abs/rel
1155 */
1156void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1157 enum hrtimer_mode mode)
1158{
c6a2a177 1159 debug_init(timer, clock_id, mode);
237fc6e7
TG
1160 __hrtimer_init(timer, clock_id, mode);
1161}
8d16b764 1162EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329
TG
1163
1164/**
1165 * hrtimer_get_res - get the timer resolution for a clock
c0a31329
TG
1166 * @which_clock: which clock to query
1167 * @tp: pointer to timespec variable to store the resolution
1168 *
72fd4a35
RD
1169 * Store the resolution of the clock selected by @which_clock in the
1170 * variable pointed to by @tp.
c0a31329
TG
1171 */
1172int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1173{
3c8aa39d 1174 struct hrtimer_cpu_base *cpu_base;
c0a31329 1175
3c8aa39d
TG
1176 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1177 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
c0a31329
TG
1178
1179 return 0;
1180}
8d16b764 1181EXPORT_SYMBOL_GPL(hrtimer_get_res);
c0a31329 1182
c6a2a177 1183static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
d3d74453
PZ
1184{
1185 struct hrtimer_clock_base *base = timer->base;
1186 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1187 enum hrtimer_restart (*fn)(struct hrtimer *);
1188 int restart;
1189
ca109491
PZ
1190 WARN_ON(!irqs_disabled());
1191
c6a2a177 1192 debug_deactivate(timer);
d3d74453
PZ
1193 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1194 timer_stats_account_hrtimer(timer);
d3d74453 1195 fn = timer->function;
ca109491
PZ
1196
1197 /*
1198 * Because we run timers from hardirq context, there is no chance
1199 * they get migrated to another cpu, therefore its safe to unlock
1200 * the timer base.
1201 */
1202 spin_unlock(&cpu_base->lock);
c6a2a177 1203 trace_hrtimer_expire_entry(timer, now);
ca109491 1204 restart = fn(timer);
c6a2a177 1205 trace_hrtimer_expire_exit(timer);
ca109491 1206 spin_lock(&cpu_base->lock);
d3d74453
PZ
1207
1208 /*
e3f1d883
TG
1209 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1210 * we do not reprogramm the event hardware. Happens either in
1211 * hrtimer_start_range_ns() or in hrtimer_interrupt()
d3d74453
PZ
1212 */
1213 if (restart != HRTIMER_NORESTART) {
1214 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
a6037b61 1215 enqueue_hrtimer(timer, base);
d3d74453
PZ
1216 }
1217 timer->state &= ~HRTIMER_STATE_CALLBACK;
1218}
1219
54cdfdb4
TG
1220#ifdef CONFIG_HIGH_RES_TIMERS
1221
7f22391c
FW
1222static int force_clock_reprogram;
1223
1224/*
1225 * After 5 iteration's attempts, we consider that hrtimer_interrupt()
1226 * is hanging, which could happen with something that slows the interrupt
1227 * such as the tracing. Then we force the clock reprogramming for each future
1228 * hrtimer interrupts to avoid infinite loops and use the min_delta_ns
1229 * threshold that we will overwrite.
1230 * The next tick event will be scheduled to 3 times we currently spend on
1231 * hrtimer_interrupt(). This gives a good compromise, the cpus will spend
1232 * 1/4 of their time to process the hrtimer interrupts. This is enough to
1233 * let it running without serious starvation.
1234 */
1235
1236static inline void
1237hrtimer_interrupt_hanging(struct clock_event_device *dev,
1238 ktime_t try_time)
1239{
1240 force_clock_reprogram = 1;
1241 dev->min_delta_ns = (unsigned long)try_time.tv64 * 3;
1242 printk(KERN_WARNING "hrtimer: interrupt too slow, "
1243 "forcing clock min delta to %lu ns\n", dev->min_delta_ns);
1244}
54cdfdb4
TG
1245/*
1246 * High resolution timer interrupt
1247 * Called with interrupts disabled
1248 */
1249void hrtimer_interrupt(struct clock_event_device *dev)
1250{
1251 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1252 struct hrtimer_clock_base *base;
1253 ktime_t expires_next, now;
7f22391c 1254 int nr_retries = 0;
ca109491 1255 int i;
54cdfdb4
TG
1256
1257 BUG_ON(!cpu_base->hres_active);
1258 cpu_base->nr_events++;
1259 dev->next_event.tv64 = KTIME_MAX;
1260
1261 retry:
7f22391c
FW
1262 /* 5 retries is enough to notice a hang */
1263 if (!(++nr_retries % 5))
1264 hrtimer_interrupt_hanging(dev, ktime_sub(ktime_get(), now));
1265
54cdfdb4
TG
1266 now = ktime_get();
1267
1268 expires_next.tv64 = KTIME_MAX;
1269
6ff7041d
TG
1270 spin_lock(&cpu_base->lock);
1271 /*
1272 * We set expires_next to KTIME_MAX here with cpu_base->lock
1273 * held to prevent that a timer is enqueued in our queue via
1274 * the migration code. This does not affect enqueueing of
1275 * timers which run their callback and need to be requeued on
1276 * this CPU.
1277 */
1278 cpu_base->expires_next.tv64 = KTIME_MAX;
1279
54cdfdb4
TG
1280 base = cpu_base->clock_base;
1281
1282 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1283 ktime_t basenow;
1284 struct rb_node *node;
1285
54cdfdb4
TG
1286 basenow = ktime_add(now, base->offset);
1287
1288 while ((node = base->first)) {
1289 struct hrtimer *timer;
1290
1291 timer = rb_entry(node, struct hrtimer, node);
1292
654c8e0b
AV
1293 /*
1294 * The immediate goal for using the softexpires is
1295 * minimizing wakeups, not running timers at the
1296 * earliest interrupt after their soft expiration.
1297 * This allows us to avoid using a Priority Search
1298 * Tree, which can answer a stabbing querry for
1299 * overlapping intervals and instead use the simple
1300 * BST we already have.
1301 * We don't add extra wakeups by delaying timers that
1302 * are right-of a not yet expired timer, because that
1303 * timer will have to trigger a wakeup anyway.
1304 */
1305
1306 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
54cdfdb4
TG
1307 ktime_t expires;
1308
cc584b21 1309 expires = ktime_sub(hrtimer_get_expires(timer),
54cdfdb4
TG
1310 base->offset);
1311 if (expires.tv64 < expires_next.tv64)
1312 expires_next = expires;
1313 break;
1314 }
1315
c6a2a177 1316 __run_hrtimer(timer, &basenow);
54cdfdb4 1317 }
54cdfdb4
TG
1318 base++;
1319 }
1320
6ff7041d
TG
1321 /*
1322 * Store the new expiry value so the migration code can verify
1323 * against it.
1324 */
54cdfdb4 1325 cpu_base->expires_next = expires_next;
6ff7041d 1326 spin_unlock(&cpu_base->lock);
54cdfdb4
TG
1327
1328 /* Reprogramming necessary ? */
1329 if (expires_next.tv64 != KTIME_MAX) {
7f22391c 1330 if (tick_program_event(expires_next, force_clock_reprogram))
54cdfdb4
TG
1331 goto retry;
1332 }
54cdfdb4
TG
1333}
1334
8bdec955
TG
1335/*
1336 * local version of hrtimer_peek_ahead_timers() called with interrupts
1337 * disabled.
1338 */
1339static void __hrtimer_peek_ahead_timers(void)
1340{
1341 struct tick_device *td;
1342
1343 if (!hrtimer_hres_active())
1344 return;
1345
1346 td = &__get_cpu_var(tick_cpu_device);
1347 if (td && td->evtdev)
1348 hrtimer_interrupt(td->evtdev);
1349}
1350
2e94d1f7
AV
1351/**
1352 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1353 *
1354 * hrtimer_peek_ahead_timers will peek at the timer queue of
1355 * the current cpu and check if there are any timers for which
1356 * the soft expires time has passed. If any such timers exist,
1357 * they are run immediately and then removed from the timer queue.
1358 *
1359 */
1360void hrtimer_peek_ahead_timers(void)
1361{
643bdf68 1362 unsigned long flags;
dc4304f7 1363
2e94d1f7 1364 local_irq_save(flags);
8bdec955 1365 __hrtimer_peek_ahead_timers();
2e94d1f7
AV
1366 local_irq_restore(flags);
1367}
1368
a6037b61
PZ
1369static void run_hrtimer_softirq(struct softirq_action *h)
1370{
1371 hrtimer_peek_ahead_timers();
1372}
1373
82c5b7b5
IM
1374#else /* CONFIG_HIGH_RES_TIMERS */
1375
1376static inline void __hrtimer_peek_ahead_timers(void) { }
1377
1378#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1379
d3d74453
PZ
1380/*
1381 * Called from timer softirq every jiffy, expire hrtimers:
1382 *
1383 * For HRT its the fall back code to run the softirq in the timer
1384 * softirq context in case the hrtimer initialization failed or has
1385 * not been done yet.
1386 */
1387void hrtimer_run_pending(void)
1388{
d3d74453
PZ
1389 if (hrtimer_hres_active())
1390 return;
54cdfdb4 1391
d3d74453
PZ
1392 /*
1393 * This _is_ ugly: We have to check in the softirq context,
1394 * whether we can switch to highres and / or nohz mode. The
1395 * clocksource switch happens in the timer interrupt with
1396 * xtime_lock held. Notification from there only sets the
1397 * check bit in the tick_oneshot code, otherwise we might
1398 * deadlock vs. xtime_lock.
1399 */
1400 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1401 hrtimer_switch_to_hres();
54cdfdb4
TG
1402}
1403
c0a31329 1404/*
d3d74453 1405 * Called from hardirq context every jiffy
c0a31329 1406 */
833883d9 1407void hrtimer_run_queues(void)
c0a31329 1408{
288867ec 1409 struct rb_node *node;
833883d9
DS
1410 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1411 struct hrtimer_clock_base *base;
1412 int index, gettime = 1;
c0a31329 1413
833883d9 1414 if (hrtimer_hres_active())
3055adda
DS
1415 return;
1416
833883d9
DS
1417 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1418 base = &cpu_base->clock_base[index];
c0a31329 1419
833883d9 1420 if (!base->first)
d3d74453 1421 continue;
833883d9 1422
d7cfb60c 1423 if (gettime) {
833883d9
DS
1424 hrtimer_get_softirq_time(cpu_base);
1425 gettime = 0;
b75f7a51 1426 }
d3d74453 1427
833883d9 1428 spin_lock(&cpu_base->lock);
c0a31329 1429
833883d9
DS
1430 while ((node = base->first)) {
1431 struct hrtimer *timer;
54cdfdb4 1432
833883d9 1433 timer = rb_entry(node, struct hrtimer, node);
cc584b21
AV
1434 if (base->softirq_time.tv64 <=
1435 hrtimer_get_expires_tv64(timer))
833883d9
DS
1436 break;
1437
c6a2a177 1438 __run_hrtimer(timer, &base->softirq_time);
833883d9
DS
1439 }
1440 spin_unlock(&cpu_base->lock);
1441 }
c0a31329
TG
1442}
1443
10c94ec1
TG
1444/*
1445 * Sleep related functions:
1446 */
c9cb2e3d 1447static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1448{
1449 struct hrtimer_sleeper *t =
1450 container_of(timer, struct hrtimer_sleeper, timer);
1451 struct task_struct *task = t->task;
1452
1453 t->task = NULL;
1454 if (task)
1455 wake_up_process(task);
1456
1457 return HRTIMER_NORESTART;
1458}
1459
36c8b586 1460void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1461{
1462 sl->timer.function = hrtimer_wakeup;
1463 sl->task = task;
1464}
2bc481cf 1465EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1466
669d7868 1467static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1468{
669d7868 1469 hrtimer_init_sleeper(t, current);
10c94ec1 1470
432569bb
RZ
1471 do {
1472 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1473 hrtimer_start_expires(&t->timer, mode);
37bb6cb4
PZ
1474 if (!hrtimer_active(&t->timer))
1475 t->task = NULL;
432569bb 1476
54cdfdb4
TG
1477 if (likely(t->task))
1478 schedule();
432569bb 1479
669d7868 1480 hrtimer_cancel(&t->timer);
c9cb2e3d 1481 mode = HRTIMER_MODE_ABS;
669d7868
TG
1482
1483 } while (t->task && !signal_pending(current));
432569bb 1484
3588a085
PZ
1485 __set_current_state(TASK_RUNNING);
1486
669d7868 1487 return t->task == NULL;
10c94ec1
TG
1488}
1489
080344b9
ON
1490static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1491{
1492 struct timespec rmt;
1493 ktime_t rem;
1494
cc584b21 1495 rem = hrtimer_expires_remaining(timer);
080344b9
ON
1496 if (rem.tv64 <= 0)
1497 return 0;
1498 rmt = ktime_to_timespec(rem);
1499
1500 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1501 return -EFAULT;
1502
1503 return 1;
1504}
1505
1711ef38 1506long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1507{
669d7868 1508 struct hrtimer_sleeper t;
080344b9 1509 struct timespec __user *rmtp;
237fc6e7 1510 int ret = 0;
10c94ec1 1511
237fc6e7
TG
1512 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1513 HRTIMER_MODE_ABS);
cc584b21 1514 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1515
c9cb2e3d 1516 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
237fc6e7 1517 goto out;
10c94ec1 1518
029a07e0 1519 rmtp = restart->nanosleep.rmtp;
432569bb 1520 if (rmtp) {
237fc6e7 1521 ret = update_rmtp(&t.timer, rmtp);
080344b9 1522 if (ret <= 0)
237fc6e7 1523 goto out;
432569bb 1524 }
10c94ec1 1525
10c94ec1 1526 /* The other values in restart are already filled in */
237fc6e7
TG
1527 ret = -ERESTART_RESTARTBLOCK;
1528out:
1529 destroy_hrtimer_on_stack(&t.timer);
1530 return ret;
10c94ec1
TG
1531}
1532
080344b9 1533long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1534 const enum hrtimer_mode mode, const clockid_t clockid)
1535{
1536 struct restart_block *restart;
669d7868 1537 struct hrtimer_sleeper t;
237fc6e7 1538 int ret = 0;
3bd01206
AV
1539 unsigned long slack;
1540
1541 slack = current->timer_slack_ns;
1542 if (rt_task(current))
1543 slack = 0;
10c94ec1 1544
237fc6e7 1545 hrtimer_init_on_stack(&t.timer, clockid, mode);
3bd01206 1546 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
432569bb 1547 if (do_nanosleep(&t, mode))
237fc6e7 1548 goto out;
10c94ec1 1549
7978672c 1550 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1551 if (mode == HRTIMER_MODE_ABS) {
1552 ret = -ERESTARTNOHAND;
1553 goto out;
1554 }
10c94ec1 1555
432569bb 1556 if (rmtp) {
237fc6e7 1557 ret = update_rmtp(&t.timer, rmtp);
080344b9 1558 if (ret <= 0)
237fc6e7 1559 goto out;
432569bb 1560 }
10c94ec1
TG
1561
1562 restart = &current_thread_info()->restart_block;
1711ef38 1563 restart->fn = hrtimer_nanosleep_restart;
029a07e0
TG
1564 restart->nanosleep.index = t.timer.base->index;
1565 restart->nanosleep.rmtp = rmtp;
cc584b21 1566 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
10c94ec1 1567
237fc6e7
TG
1568 ret = -ERESTART_RESTARTBLOCK;
1569out:
1570 destroy_hrtimer_on_stack(&t.timer);
1571 return ret;
10c94ec1
TG
1572}
1573
58fd3aa2
HC
1574SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1575 struct timespec __user *, rmtp)
6ba1b912 1576{
080344b9 1577 struct timespec tu;
6ba1b912
TG
1578
1579 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1580 return -EFAULT;
1581
1582 if (!timespec_valid(&tu))
1583 return -EINVAL;
1584
080344b9 1585 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1586}
1587
c0a31329
TG
1588/*
1589 * Functions related to boot-time initialization:
1590 */
0ec160dd 1591static void __cpuinit init_hrtimers_cpu(int cpu)
c0a31329 1592{
3c8aa39d 1593 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1594 int i;
1595
3c8aa39d 1596 spin_lock_init(&cpu_base->lock);
3c8aa39d
TG
1597
1598 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1599 cpu_base->clock_base[i].cpu_base = cpu_base;
1600
54cdfdb4 1601 hrtimer_init_hres(cpu_base);
c0a31329
TG
1602}
1603
1604#ifdef CONFIG_HOTPLUG_CPU
1605
ca109491 1606static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1607 struct hrtimer_clock_base *new_base)
c0a31329
TG
1608{
1609 struct hrtimer *timer;
1610 struct rb_node *node;
1611
1612 while ((node = rb_first(&old_base->active))) {
1613 timer = rb_entry(node, struct hrtimer, node);
54cdfdb4 1614 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1615 debug_deactivate(timer);
b00c1a99
TG
1616
1617 /*
1618 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1619 * timer could be seen as !active and just vanish away
1620 * under us on another CPU
1621 */
1622 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
c0a31329 1623 timer->base = new_base;
54cdfdb4 1624 /*
e3f1d883
TG
1625 * Enqueue the timers on the new cpu. This does not
1626 * reprogram the event device in case the timer
1627 * expires before the earliest on this CPU, but we run
1628 * hrtimer_interrupt after we migrated everything to
1629 * sort out already expired timers and reprogram the
1630 * event device.
54cdfdb4 1631 */
a6037b61 1632 enqueue_hrtimer(timer, new_base);
41e1022e 1633
b00c1a99
TG
1634 /* Clear the migration state bit */
1635 timer->state &= ~HRTIMER_STATE_MIGRATE;
c0a31329
TG
1636 }
1637}
1638
d5fd43c4 1639static void migrate_hrtimers(int scpu)
c0a31329 1640{
3c8aa39d 1641 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1642 int i;
c0a31329 1643
37810659 1644 BUG_ON(cpu_online(scpu));
37810659 1645 tick_cancel_sched_timer(scpu);
731a55ba
TG
1646
1647 local_irq_disable();
1648 old_base = &per_cpu(hrtimer_bases, scpu);
1649 new_base = &__get_cpu_var(hrtimer_bases);
d82f0b0f
ON
1650 /*
1651 * The caller is globally serialized and nobody else
1652 * takes two locks at once, deadlock is not possible.
1653 */
731a55ba 1654 spin_lock(&new_base->lock);
8e60e05f 1655 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1656
3c8aa39d 1657 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1658 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1659 &new_base->clock_base[i]);
c0a31329
TG
1660 }
1661
8e60e05f 1662 spin_unlock(&old_base->lock);
731a55ba 1663 spin_unlock(&new_base->lock);
37810659 1664
731a55ba
TG
1665 /* Check, if we got expired work to do */
1666 __hrtimer_peek_ahead_timers();
1667 local_irq_enable();
c0a31329 1668}
37810659 1669
c0a31329
TG
1670#endif /* CONFIG_HOTPLUG_CPU */
1671
8c78f307 1672static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1673 unsigned long action, void *hcpu)
1674{
b2e3c0ad 1675 int scpu = (long)hcpu;
c0a31329
TG
1676
1677 switch (action) {
1678
1679 case CPU_UP_PREPARE:
8bb78442 1680 case CPU_UP_PREPARE_FROZEN:
37810659 1681 init_hrtimers_cpu(scpu);
c0a31329
TG
1682 break;
1683
1684#ifdef CONFIG_HOTPLUG_CPU
94df7de0
SD
1685 case CPU_DYING:
1686 case CPU_DYING_FROZEN:
1687 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1688 break;
c0a31329 1689 case CPU_DEAD:
8bb78442 1690 case CPU_DEAD_FROZEN:
b2e3c0ad 1691 {
37810659 1692 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
d5fd43c4 1693 migrate_hrtimers(scpu);
c0a31329 1694 break;
b2e3c0ad 1695 }
c0a31329
TG
1696#endif
1697
1698 default:
1699 break;
1700 }
1701
1702 return NOTIFY_OK;
1703}
1704
8c78f307 1705static struct notifier_block __cpuinitdata hrtimers_nb = {
c0a31329
TG
1706 .notifier_call = hrtimer_cpu_notify,
1707};
1708
1709void __init hrtimers_init(void)
1710{
1711 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1712 (void *)(long)smp_processor_id());
1713 register_cpu_notifier(&hrtimers_nb);
a6037b61
PZ
1714#ifdef CONFIG_HIGH_RES_TIMERS
1715 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1716#endif
c0a31329
TG
1717}
1718
7bb67439 1719/**
654c8e0b 1720 * schedule_hrtimeout_range - sleep until timeout
7bb67439 1721 * @expires: timeout value (ktime_t)
654c8e0b 1722 * @delta: slack in expires timeout (ktime_t)
7bb67439
AV
1723 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1724 *
1725 * Make the current task sleep until the given expiry time has
1726 * elapsed. The routine will return immediately unless
1727 * the current task state has been set (see set_current_state()).
1728 *
654c8e0b
AV
1729 * The @delta argument gives the kernel the freedom to schedule the
1730 * actual wakeup to a time that is both power and performance friendly.
1731 * The kernel give the normal best effort behavior for "@expires+@delta",
1732 * but may decide to fire the timer earlier, but no earlier than @expires.
1733 *
7bb67439
AV
1734 * You can set the task state as follows -
1735 *
1736 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1737 * pass before the routine returns.
1738 *
1739 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1740 * delivered to the current task.
1741 *
1742 * The current task state is guaranteed to be TASK_RUNNING when this
1743 * routine returns.
1744 *
1745 * Returns 0 when the timer has expired otherwise -EINTR
1746 */
654c8e0b 1747int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
7bb67439
AV
1748 const enum hrtimer_mode mode)
1749{
1750 struct hrtimer_sleeper t;
1751
1752 /*
1753 * Optimize when a zero timeout value is given. It does not
1754 * matter whether this is an absolute or a relative time.
1755 */
1756 if (expires && !expires->tv64) {
1757 __set_current_state(TASK_RUNNING);
1758 return 0;
1759 }
1760
1761 /*
1762 * A NULL parameter means "inifinte"
1763 */
1764 if (!expires) {
1765 schedule();
1766 __set_current_state(TASK_RUNNING);
1767 return -EINTR;
1768 }
1769
1770 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
654c8e0b 1771 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1772
1773 hrtimer_init_sleeper(&t, current);
1774
cc584b21 1775 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1776 if (!hrtimer_active(&t.timer))
1777 t.task = NULL;
1778
1779 if (likely(t.task))
1780 schedule();
1781
1782 hrtimer_cancel(&t.timer);
1783 destroy_hrtimer_on_stack(&t.timer);
1784
1785 __set_current_state(TASK_RUNNING);
1786
1787 return !t.task ? 0 : -EINTR;
1788}
654c8e0b
AV
1789EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1790
1791/**
1792 * schedule_hrtimeout - sleep until timeout
1793 * @expires: timeout value (ktime_t)
1794 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1795 *
1796 * Make the current task sleep until the given expiry time has
1797 * elapsed. The routine will return immediately unless
1798 * the current task state has been set (see set_current_state()).
1799 *
1800 * You can set the task state as follows -
1801 *
1802 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1803 * pass before the routine returns.
1804 *
1805 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1806 * delivered to the current task.
1807 *
1808 * The current task state is guaranteed to be TASK_RUNNING when this
1809 * routine returns.
1810 *
1811 * Returns 0 when the timer has expired otherwise -EINTR
1812 */
1813int __sched schedule_hrtimeout(ktime_t *expires,
1814 const enum hrtimer_mode mode)
1815{
1816 return schedule_hrtimeout_range(expires, 0, mode);
1817}
7bb67439 1818EXPORT_SYMBOL_GPL(schedule_hrtimeout);