]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/hrtimer.c
ip: update the description of rp_filter in ip-sysctl.txt
[net-next-2.6.git] / kernel / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
35#include <linux/module.h>
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
eea08f32
AB
46#include <linux/sched.h>
47#include <linux/timer.h>
c0a31329
TG
48
49#include <asm/uaccess.h>
50
c6a2a177
XG
51#include <trace/events/timer.h>
52
c0a31329
TG
53/*
54 * The timer bases:
7978672c
GA
55 *
56 * Note: If we want to add new timer bases, we have to skip the two
57 * clock ids captured by the cpu-timers. We do this by holding empty
58 * entries rather than doing math adjustment of the clock ids.
59 * This ensures that we capture erroneous accesses to these clock ids
60 * rather than moving them into the range of valid clock id's.
c0a31329 61 */
54cdfdb4 62DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 63{
3c8aa39d
TG
64
65 .clock_base =
c0a31329 66 {
3c8aa39d
TG
67 {
68 .index = CLOCK_REALTIME,
69 .get_time = &ktime_get_real,
54cdfdb4 70 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
71 },
72 {
73 .index = CLOCK_MONOTONIC,
74 .get_time = &ktime_get,
54cdfdb4 75 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
76 },
77 }
c0a31329
TG
78};
79
92127c7a
TG
80/*
81 * Get the coarse grained time at the softirq based on xtime and
82 * wall_to_monotonic.
83 */
3c8aa39d 84static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92127c7a
TG
85{
86 ktime_t xtim, tomono;
ad28d94a 87 struct timespec xts, tom;
92127c7a
TG
88 unsigned long seq;
89
90 do {
91 seq = read_seqbegin(&xtime_lock);
2c6b47de 92 xts = current_kernel_time();
ad28d94a 93 tom = wall_to_monotonic;
92127c7a
TG
94 } while (read_seqretry(&xtime_lock, seq));
95
f4304ab2 96 xtim = timespec_to_ktime(xts);
ad28d94a 97 tomono = timespec_to_ktime(tom);
3c8aa39d
TG
98 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
99 base->clock_base[CLOCK_MONOTONIC].softirq_time =
100 ktime_add(xtim, tomono);
92127c7a
TG
101}
102
c0a31329
TG
103/*
104 * Functions and macros which are different for UP/SMP systems are kept in a
105 * single place
106 */
107#ifdef CONFIG_SMP
108
c0a31329
TG
109/*
110 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
111 * means that all timers which are tied to this base via timer->base are
112 * locked, and the base itself is locked too.
113 *
114 * So __run_timers/migrate_timers can safely modify all timers which could
115 * be found on the lists/queues.
116 *
117 * When the timer's base is locked, and the timer removed from list, it is
118 * possible to set timer->base = NULL and drop the lock: the timer remains
119 * locked.
120 */
3c8aa39d
TG
121static
122struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
123 unsigned long *flags)
c0a31329 124{
3c8aa39d 125 struct hrtimer_clock_base *base;
c0a31329
TG
126
127 for (;;) {
128 base = timer->base;
129 if (likely(base != NULL)) {
3c8aa39d 130 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
131 if (likely(base == timer->base))
132 return base;
133 /* The timer has migrated to another CPU: */
3c8aa39d 134 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
135 }
136 cpu_relax();
137 }
138}
139
6ff7041d
TG
140
141/*
142 * Get the preferred target CPU for NOHZ
143 */
144static int hrtimer_get_target(int this_cpu, int pinned)
145{
146#ifdef CONFIG_NO_HZ
147 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu)) {
148 int preferred_cpu = get_nohz_load_balancer();
149
150 if (preferred_cpu >= 0)
151 return preferred_cpu;
152 }
153#endif
154 return this_cpu;
155}
156
157/*
158 * With HIGHRES=y we do not migrate the timer when it is expiring
159 * before the next event on the target cpu because we cannot reprogram
160 * the target cpu hardware and we would cause it to fire late.
161 *
162 * Called with cpu_base->lock of target cpu held.
163 */
164static int
165hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
166{
167#ifdef CONFIG_HIGH_RES_TIMERS
168 ktime_t expires;
169
170 if (!new_base->cpu_base->hres_active)
171 return 0;
172
173 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
174 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
175#else
176 return 0;
177#endif
178}
179
c0a31329
TG
180/*
181 * Switch the timer base to the current CPU when possible.
182 */
3c8aa39d 183static inline struct hrtimer_clock_base *
597d0275
AB
184switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
185 int pinned)
c0a31329 186{
3c8aa39d
TG
187 struct hrtimer_clock_base *new_base;
188 struct hrtimer_cpu_base *new_cpu_base;
6ff7041d
TG
189 int this_cpu = smp_processor_id();
190 int cpu = hrtimer_get_target(this_cpu, pinned);
c0a31329 191
eea08f32
AB
192again:
193 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
3c8aa39d 194 new_base = &new_cpu_base->clock_base[base->index];
c0a31329
TG
195
196 if (base != new_base) {
197 /*
6ff7041d 198 * We are trying to move timer to new_base.
c0a31329
TG
199 * However we can't change timer's base while it is running,
200 * so we keep it on the same CPU. No hassle vs. reprogramming
201 * the event source in the high resolution case. The softirq
202 * code will take care of this when the timer function has
203 * completed. There is no conflict as we hold the lock until
204 * the timer is enqueued.
205 */
54cdfdb4 206 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
207 return base;
208
209 /* See the comment in lock_timer_base() */
210 timer->base = NULL;
3c8aa39d
TG
211 spin_unlock(&base->cpu_base->lock);
212 spin_lock(&new_base->cpu_base->lock);
eea08f32 213
6ff7041d
TG
214 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
215 cpu = this_cpu;
216 spin_unlock(&new_base->cpu_base->lock);
217 spin_lock(&base->cpu_base->lock);
218 timer->base = base;
219 goto again;
eea08f32 220 }
c0a31329
TG
221 timer->base = new_base;
222 }
223 return new_base;
224}
225
226#else /* CONFIG_SMP */
227
3c8aa39d 228static inline struct hrtimer_clock_base *
c0a31329
TG
229lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
230{
3c8aa39d 231 struct hrtimer_clock_base *base = timer->base;
c0a31329 232
3c8aa39d 233 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
234
235 return base;
236}
237
eea08f32 238# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
239
240#endif /* !CONFIG_SMP */
241
242/*
243 * Functions for the union type storage format of ktime_t which are
244 * too large for inlining:
245 */
246#if BITS_PER_LONG < 64
247# ifndef CONFIG_KTIME_SCALAR
248/**
249 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
c0a31329
TG
250 * @kt: addend
251 * @nsec: the scalar nsec value to add
252 *
253 * Returns the sum of kt and nsec in ktime_t format
254 */
255ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
256{
257 ktime_t tmp;
258
259 if (likely(nsec < NSEC_PER_SEC)) {
260 tmp.tv64 = nsec;
261 } else {
262 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
263
264 tmp = ktime_set((long)nsec, rem);
265 }
266
267 return ktime_add(kt, tmp);
268}
b8b8fd2d
DH
269
270EXPORT_SYMBOL_GPL(ktime_add_ns);
a272378d
ACM
271
272/**
273 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
274 * @kt: minuend
275 * @nsec: the scalar nsec value to subtract
276 *
277 * Returns the subtraction of @nsec from @kt in ktime_t format
278 */
279ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
280{
281 ktime_t tmp;
282
283 if (likely(nsec < NSEC_PER_SEC)) {
284 tmp.tv64 = nsec;
285 } else {
286 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
287
288 tmp = ktime_set((long)nsec, rem);
289 }
290
291 return ktime_sub(kt, tmp);
292}
293
294EXPORT_SYMBOL_GPL(ktime_sub_ns);
c0a31329
TG
295# endif /* !CONFIG_KTIME_SCALAR */
296
297/*
298 * Divide a ktime value by a nanosecond value
299 */
4d672e7a 300u64 ktime_divns(const ktime_t kt, s64 div)
c0a31329 301{
900cfa46 302 u64 dclc;
c0a31329
TG
303 int sft = 0;
304
900cfa46 305 dclc = ktime_to_ns(kt);
c0a31329
TG
306 /* Make sure the divisor is less than 2^32: */
307 while (div >> 32) {
308 sft++;
309 div >>= 1;
310 }
311 dclc >>= sft;
312 do_div(dclc, (unsigned long) div);
313
4d672e7a 314 return dclc;
c0a31329 315}
c0a31329
TG
316#endif /* BITS_PER_LONG >= 64 */
317
5a7780e7
TG
318/*
319 * Add two ktime values and do a safety check for overflow:
320 */
321ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
322{
323 ktime_t res = ktime_add(lhs, rhs);
324
325 /*
326 * We use KTIME_SEC_MAX here, the maximum timeout which we can
327 * return to user space in a timespec:
328 */
329 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
330 res = ktime_set(KTIME_SEC_MAX, 0);
331
332 return res;
333}
334
8daa21e6
AB
335EXPORT_SYMBOL_GPL(ktime_add_safe);
336
237fc6e7
TG
337#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
338
339static struct debug_obj_descr hrtimer_debug_descr;
340
341/*
342 * fixup_init is called when:
343 * - an active object is initialized
344 */
345static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
346{
347 struct hrtimer *timer = addr;
348
349 switch (state) {
350 case ODEBUG_STATE_ACTIVE:
351 hrtimer_cancel(timer);
352 debug_object_init(timer, &hrtimer_debug_descr);
353 return 1;
354 default:
355 return 0;
356 }
357}
358
359/*
360 * fixup_activate is called when:
361 * - an active object is activated
362 * - an unknown object is activated (might be a statically initialized object)
363 */
364static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
365{
366 switch (state) {
367
368 case ODEBUG_STATE_NOTAVAILABLE:
369 WARN_ON_ONCE(1);
370 return 0;
371
372 case ODEBUG_STATE_ACTIVE:
373 WARN_ON(1);
374
375 default:
376 return 0;
377 }
378}
379
380/*
381 * fixup_free is called when:
382 * - an active object is freed
383 */
384static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
385{
386 struct hrtimer *timer = addr;
387
388 switch (state) {
389 case ODEBUG_STATE_ACTIVE:
390 hrtimer_cancel(timer);
391 debug_object_free(timer, &hrtimer_debug_descr);
392 return 1;
393 default:
394 return 0;
395 }
396}
397
398static struct debug_obj_descr hrtimer_debug_descr = {
399 .name = "hrtimer",
400 .fixup_init = hrtimer_fixup_init,
401 .fixup_activate = hrtimer_fixup_activate,
402 .fixup_free = hrtimer_fixup_free,
403};
404
405static inline void debug_hrtimer_init(struct hrtimer *timer)
406{
407 debug_object_init(timer, &hrtimer_debug_descr);
408}
409
410static inline void debug_hrtimer_activate(struct hrtimer *timer)
411{
412 debug_object_activate(timer, &hrtimer_debug_descr);
413}
414
415static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
416{
417 debug_object_deactivate(timer, &hrtimer_debug_descr);
418}
419
420static inline void debug_hrtimer_free(struct hrtimer *timer)
421{
422 debug_object_free(timer, &hrtimer_debug_descr);
423}
424
425static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
426 enum hrtimer_mode mode);
427
428void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
429 enum hrtimer_mode mode)
430{
431 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
432 __hrtimer_init(timer, clock_id, mode);
433}
2bc481cf 434EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
435
436void destroy_hrtimer_on_stack(struct hrtimer *timer)
437{
438 debug_object_free(timer, &hrtimer_debug_descr);
439}
440
441#else
442static inline void debug_hrtimer_init(struct hrtimer *timer) { }
443static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
444static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
445#endif
446
c6a2a177
XG
447static inline void
448debug_init(struct hrtimer *timer, clockid_t clockid,
449 enum hrtimer_mode mode)
450{
451 debug_hrtimer_init(timer);
452 trace_hrtimer_init(timer, clockid, mode);
453}
454
455static inline void debug_activate(struct hrtimer *timer)
456{
457 debug_hrtimer_activate(timer);
458 trace_hrtimer_start(timer);
459}
460
461static inline void debug_deactivate(struct hrtimer *timer)
462{
463 debug_hrtimer_deactivate(timer);
464 trace_hrtimer_cancel(timer);
465}
466
54cdfdb4
TG
467/* High resolution timer related functions */
468#ifdef CONFIG_HIGH_RES_TIMERS
469
470/*
471 * High resolution timer enabled ?
472 */
473static int hrtimer_hres_enabled __read_mostly = 1;
474
475/*
476 * Enable / Disable high resolution mode
477 */
478static int __init setup_hrtimer_hres(char *str)
479{
480 if (!strcmp(str, "off"))
481 hrtimer_hres_enabled = 0;
482 else if (!strcmp(str, "on"))
483 hrtimer_hres_enabled = 1;
484 else
485 return 0;
486 return 1;
487}
488
489__setup("highres=", setup_hrtimer_hres);
490
491/*
492 * hrtimer_high_res_enabled - query, if the highres mode is enabled
493 */
494static inline int hrtimer_is_hres_enabled(void)
495{
496 return hrtimer_hres_enabled;
497}
498
499/*
500 * Is the high resolution mode active ?
501 */
502static inline int hrtimer_hres_active(void)
503{
504 return __get_cpu_var(hrtimer_bases).hres_active;
505}
506
507/*
508 * Reprogram the event source with checking both queues for the
509 * next event
510 * Called with interrupts disabled and base->lock held
511 */
7403f41f
AC
512static void
513hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4
TG
514{
515 int i;
516 struct hrtimer_clock_base *base = cpu_base->clock_base;
7403f41f 517 ktime_t expires, expires_next;
54cdfdb4 518
7403f41f 519 expires_next.tv64 = KTIME_MAX;
54cdfdb4
TG
520
521 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
522 struct hrtimer *timer;
523
524 if (!base->first)
525 continue;
526 timer = rb_entry(base->first, struct hrtimer, node);
cc584b21 527 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
b0a9b511
TG
528 /*
529 * clock_was_set() has changed base->offset so the
530 * result might be negative. Fix it up to prevent a
531 * false positive in clockevents_program_event()
532 */
533 if (expires.tv64 < 0)
534 expires.tv64 = 0;
7403f41f
AC
535 if (expires.tv64 < expires_next.tv64)
536 expires_next = expires;
54cdfdb4
TG
537 }
538
7403f41f
AC
539 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
540 return;
541
542 cpu_base->expires_next.tv64 = expires_next.tv64;
543
54cdfdb4
TG
544 if (cpu_base->expires_next.tv64 != KTIME_MAX)
545 tick_program_event(cpu_base->expires_next, 1);
546}
547
548/*
549 * Shared reprogramming for clock_realtime and clock_monotonic
550 *
551 * When a timer is enqueued and expires earlier than the already enqueued
552 * timers, we have to check, whether it expires earlier than the timer for
553 * which the clock event device was armed.
554 *
555 * Called with interrupts disabled and base->cpu_base.lock held
556 */
557static int hrtimer_reprogram(struct hrtimer *timer,
558 struct hrtimer_clock_base *base)
559{
560 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
cc584b21 561 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
54cdfdb4
TG
562 int res;
563
cc584b21 564 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
63070a79 565
54cdfdb4
TG
566 /*
567 * When the callback is running, we do not reprogram the clock event
568 * device. The timer callback is either running on a different CPU or
3a4fa0a2 569 * the callback is executed in the hrtimer_interrupt context. The
54cdfdb4
TG
570 * reprogramming is handled either by the softirq, which called the
571 * callback or at the end of the hrtimer_interrupt.
572 */
573 if (hrtimer_callback_running(timer))
574 return 0;
575
63070a79
TG
576 /*
577 * CLOCK_REALTIME timer might be requested with an absolute
578 * expiry time which is less than base->offset. Nothing wrong
579 * about that, just avoid to call into the tick code, which
580 * has now objections against negative expiry values.
581 */
582 if (expires.tv64 < 0)
583 return -ETIME;
584
54cdfdb4
TG
585 if (expires.tv64 >= expires_next->tv64)
586 return 0;
587
588 /*
589 * Clockevents returns -ETIME, when the event was in the past.
590 */
591 res = tick_program_event(expires, 0);
592 if (!IS_ERR_VALUE(res))
593 *expires_next = expires;
594 return res;
595}
596
597
598/*
599 * Retrigger next event is called after clock was set
600 *
601 * Called with interrupts disabled via on_each_cpu()
602 */
603static void retrigger_next_event(void *arg)
604{
605 struct hrtimer_cpu_base *base;
606 struct timespec realtime_offset;
607 unsigned long seq;
608
609 if (!hrtimer_hres_active())
610 return;
611
612 do {
613 seq = read_seqbegin(&xtime_lock);
614 set_normalized_timespec(&realtime_offset,
615 -wall_to_monotonic.tv_sec,
616 -wall_to_monotonic.tv_nsec);
617 } while (read_seqretry(&xtime_lock, seq));
618
619 base = &__get_cpu_var(hrtimer_bases);
620
621 /* Adjust CLOCK_REALTIME offset */
622 spin_lock(&base->lock);
623 base->clock_base[CLOCK_REALTIME].offset =
624 timespec_to_ktime(realtime_offset);
625
7403f41f 626 hrtimer_force_reprogram(base, 0);
54cdfdb4
TG
627 spin_unlock(&base->lock);
628}
629
630/*
631 * Clock realtime was set
632 *
633 * Change the offset of the realtime clock vs. the monotonic
634 * clock.
635 *
636 * We might have to reprogram the high resolution timer interrupt. On
637 * SMP we call the architecture specific code to retrigger _all_ high
638 * resolution timer interrupts. On UP we just disable interrupts and
639 * call the high resolution interrupt code.
640 */
641void clock_was_set(void)
642{
643 /* Retrigger the CPU local events everywhere */
15c8b6c1 644 on_each_cpu(retrigger_next_event, NULL, 1);
54cdfdb4
TG
645}
646
995f054f
IM
647/*
648 * During resume we might have to reprogram the high resolution timer
649 * interrupt (on the local CPU):
650 */
651void hres_timers_resume(void)
652{
1d4a7f1c
PZ
653 WARN_ONCE(!irqs_disabled(),
654 KERN_INFO "hres_timers_resume() called with IRQs enabled!");
655
995f054f
IM
656 retrigger_next_event(NULL);
657}
658
54cdfdb4
TG
659/*
660 * Initialize the high resolution related parts of cpu_base
661 */
662static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
663{
664 base->expires_next.tv64 = KTIME_MAX;
665 base->hres_active = 0;
54cdfdb4
TG
666}
667
668/*
669 * Initialize the high resolution related parts of a hrtimer
670 */
671static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
672{
54cdfdb4
TG
673}
674
ca109491 675
54cdfdb4
TG
676/*
677 * When High resolution timers are active, try to reprogram. Note, that in case
678 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
679 * check happens. The timer gets enqueued into the rbtree. The reprogramming
680 * and expiry check is done in the hrtimer_interrupt or in the softirq.
681 */
682static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
7f1e2ca9
PZ
683 struct hrtimer_clock_base *base,
684 int wakeup)
54cdfdb4
TG
685{
686 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
7f1e2ca9
PZ
687 if (wakeup) {
688 spin_unlock(&base->cpu_base->lock);
689 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
690 spin_lock(&base->cpu_base->lock);
691 } else
692 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
693
ca109491 694 return 1;
54cdfdb4 695 }
7f1e2ca9 696
54cdfdb4
TG
697 return 0;
698}
699
700/*
701 * Switch to high resolution mode
702 */
f8953856 703static int hrtimer_switch_to_hres(void)
54cdfdb4 704{
820de5c3
IM
705 int cpu = smp_processor_id();
706 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
54cdfdb4
TG
707 unsigned long flags;
708
709 if (base->hres_active)
f8953856 710 return 1;
54cdfdb4
TG
711
712 local_irq_save(flags);
713
714 if (tick_init_highres()) {
715 local_irq_restore(flags);
820de5c3
IM
716 printk(KERN_WARNING "Could not switch to high resolution "
717 "mode on CPU %d\n", cpu);
f8953856 718 return 0;
54cdfdb4
TG
719 }
720 base->hres_active = 1;
721 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
722 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
723
724 tick_setup_sched_timer();
725
726 /* "Retrigger" the interrupt to get things going */
727 retrigger_next_event(NULL);
728 local_irq_restore(flags);
f8953856 729 return 1;
54cdfdb4
TG
730}
731
732#else
733
734static inline int hrtimer_hres_active(void) { return 0; }
735static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 736static inline int hrtimer_switch_to_hres(void) { return 0; }
7403f41f
AC
737static inline void
738hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
54cdfdb4 739static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
7f1e2ca9
PZ
740 struct hrtimer_clock_base *base,
741 int wakeup)
54cdfdb4
TG
742{
743 return 0;
744}
54cdfdb4
TG
745static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
746static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
747
748#endif /* CONFIG_HIGH_RES_TIMERS */
749
82f67cd9
IM
750#ifdef CONFIG_TIMER_STATS
751void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
752{
753 if (timer->start_site)
754 return;
755
756 timer->start_site = addr;
757 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
758 timer->start_pid = current->pid;
759}
760#endif
761
c0a31329 762/*
6506f2aa 763 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
764 */
765static inline
766void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
767{
3c8aa39d 768 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
769}
770
771/**
772 * hrtimer_forward - forward the timer expiry
c0a31329 773 * @timer: hrtimer to forward
44f21475 774 * @now: forward past this time
c0a31329
TG
775 * @interval: the interval to forward
776 *
777 * Forward the timer expiry so it will expire in the future.
8dca6f33 778 * Returns the number of overruns.
c0a31329 779 */
4d672e7a 780u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 781{
4d672e7a 782 u64 orun = 1;
44f21475 783 ktime_t delta;
c0a31329 784
cc584b21 785 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329
TG
786
787 if (delta.tv64 < 0)
788 return 0;
789
c9db4fa1
TG
790 if (interval.tv64 < timer->base->resolution.tv64)
791 interval.tv64 = timer->base->resolution.tv64;
792
c0a31329 793 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 794 s64 incr = ktime_to_ns(interval);
c0a31329
TG
795
796 orun = ktime_divns(delta, incr);
cc584b21
AV
797 hrtimer_add_expires_ns(timer, incr * orun);
798 if (hrtimer_get_expires_tv64(timer) > now.tv64)
c0a31329
TG
799 return orun;
800 /*
801 * This (and the ktime_add() below) is the
802 * correction for exact:
803 */
804 orun++;
805 }
cc584b21 806 hrtimer_add_expires(timer, interval);
c0a31329
TG
807
808 return orun;
809}
6bdb6b62 810EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
811
812/*
813 * enqueue_hrtimer - internal function to (re)start a timer
814 *
815 * The timer is inserted in expiry order. Insertion into the
816 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
817 *
818 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 819 */
a6037b61
PZ
820static int enqueue_hrtimer(struct hrtimer *timer,
821 struct hrtimer_clock_base *base)
c0a31329
TG
822{
823 struct rb_node **link = &base->active.rb_node;
c0a31329
TG
824 struct rb_node *parent = NULL;
825 struct hrtimer *entry;
99bc2fcb 826 int leftmost = 1;
c0a31329 827
c6a2a177 828 debug_activate(timer);
237fc6e7 829
c0a31329
TG
830 /*
831 * Find the right place in the rbtree:
832 */
833 while (*link) {
834 parent = *link;
835 entry = rb_entry(parent, struct hrtimer, node);
836 /*
837 * We dont care about collisions. Nodes with
838 * the same expiry time stay together.
839 */
cc584b21
AV
840 if (hrtimer_get_expires_tv64(timer) <
841 hrtimer_get_expires_tv64(entry)) {
c0a31329 842 link = &(*link)->rb_left;
99bc2fcb 843 } else {
c0a31329 844 link = &(*link)->rb_right;
99bc2fcb
IM
845 leftmost = 0;
846 }
c0a31329
TG
847 }
848
849 /*
288867ec
TG
850 * Insert the timer to the rbtree and check whether it
851 * replaces the first pending timer
c0a31329 852 */
a6037b61 853 if (leftmost)
54cdfdb4 854 base->first = &timer->node;
54cdfdb4 855
c0a31329
TG
856 rb_link_node(&timer->node, parent, link);
857 rb_insert_color(&timer->node, &base->active);
303e967f
TG
858 /*
859 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
860 * state of a possibly running callback.
861 */
862 timer->state |= HRTIMER_STATE_ENQUEUED;
a6037b61
PZ
863
864 return leftmost;
288867ec 865}
c0a31329
TG
866
867/*
868 * __remove_hrtimer - internal function to remove a timer
869 *
870 * Caller must hold the base lock.
54cdfdb4
TG
871 *
872 * High resolution timer mode reprograms the clock event device when the
873 * timer is the one which expires next. The caller can disable this by setting
874 * reprogram to zero. This is useful, when the context does a reprogramming
875 * anyway (e.g. timer interrupt)
c0a31329 876 */
3c8aa39d 877static void __remove_hrtimer(struct hrtimer *timer,
303e967f 878 struct hrtimer_clock_base *base,
54cdfdb4 879 unsigned long newstate, int reprogram)
c0a31329 880{
7403f41f
AC
881 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
882 goto out;
883
884 /*
885 * Remove the timer from the rbtree and replace the first
886 * entry pointer if necessary.
887 */
888 if (base->first == &timer->node) {
889 base->first = rb_next(&timer->node);
890#ifdef CONFIG_HIGH_RES_TIMERS
891 /* Reprogram the clock event device. if enabled */
892 if (reprogram && hrtimer_hres_active()) {
893 ktime_t expires;
894
895 expires = ktime_sub(hrtimer_get_expires(timer),
896 base->offset);
897 if (base->cpu_base->expires_next.tv64 == expires.tv64)
898 hrtimer_force_reprogram(base->cpu_base, 1);
54cdfdb4 899 }
7403f41f 900#endif
54cdfdb4 901 }
7403f41f
AC
902 rb_erase(&timer->node, &base->active);
903out:
303e967f 904 timer->state = newstate;
c0a31329
TG
905}
906
907/*
908 * remove hrtimer, called with base lock held
909 */
910static inline int
3c8aa39d 911remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 912{
303e967f 913 if (hrtimer_is_queued(timer)) {
54cdfdb4
TG
914 int reprogram;
915
916 /*
917 * Remove the timer and force reprogramming when high
918 * resolution mode is active and the timer is on the current
919 * CPU. If we remove a timer on another CPU, reprogramming is
920 * skipped. The interrupt event on this CPU is fired and
921 * reprogramming happens in the interrupt handler. This is a
922 * rare case and less expensive than a smp call.
923 */
c6a2a177 924 debug_deactivate(timer);
82f67cd9 925 timer_stats_hrtimer_clear_start_info(timer);
54cdfdb4
TG
926 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
927 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
928 reprogram);
c0a31329
TG
929 return 1;
930 }
931 return 0;
932}
933
7f1e2ca9
PZ
934int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
935 unsigned long delta_ns, const enum hrtimer_mode mode,
936 int wakeup)
c0a31329 937{
3c8aa39d 938 struct hrtimer_clock_base *base, *new_base;
c0a31329 939 unsigned long flags;
a6037b61 940 int ret, leftmost;
c0a31329
TG
941
942 base = lock_hrtimer_base(timer, &flags);
943
944 /* Remove an active timer from the queue: */
945 ret = remove_hrtimer(timer, base);
946
947 /* Switch the timer base, if necessary: */
597d0275 948 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
c0a31329 949
597d0275 950 if (mode & HRTIMER_MODE_REL) {
5a7780e7 951 tim = ktime_add_safe(tim, new_base->get_time());
06027bdd
IM
952 /*
953 * CONFIG_TIME_LOW_RES is a temporary way for architectures
954 * to signal that they simply return xtime in
955 * do_gettimeoffset(). In this case we want to round up by
956 * resolution when starting a relative timer, to avoid short
957 * timeouts. This will go away with the GTOD framework.
958 */
959#ifdef CONFIG_TIME_LOW_RES
5a7780e7 960 tim = ktime_add_safe(tim, base->resolution);
06027bdd
IM
961#endif
962 }
237fc6e7 963
da8f2e17 964 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 965
82f67cd9
IM
966 timer_stats_hrtimer_set_start_info(timer);
967
a6037b61
PZ
968 leftmost = enqueue_hrtimer(timer, new_base);
969
935c631d
IM
970 /*
971 * Only allow reprogramming if the new base is on this CPU.
972 * (it might still be on another CPU if the timer was pending)
a6037b61
PZ
973 *
974 * XXX send_remote_softirq() ?
935c631d 975 */
a6037b61 976 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
7f1e2ca9 977 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
c0a31329
TG
978
979 unlock_hrtimer_base(timer, &flags);
980
981 return ret;
982}
7f1e2ca9
PZ
983
984/**
985 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
986 * @timer: the timer to be added
987 * @tim: expiry time
988 * @delta_ns: "slack" range for the timer
989 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
990 *
991 * Returns:
992 * 0 on success
993 * 1 when the timer was active
994 */
995int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
996 unsigned long delta_ns, const enum hrtimer_mode mode)
997{
998 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
999}
da8f2e17
AV
1000EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1001
1002/**
e1dd7bc5 1003 * hrtimer_start - (re)start an hrtimer on the current CPU
da8f2e17
AV
1004 * @timer: the timer to be added
1005 * @tim: expiry time
1006 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1007 *
1008 * Returns:
1009 * 0 on success
1010 * 1 when the timer was active
1011 */
1012int
1013hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1014{
7f1e2ca9 1015 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
da8f2e17 1016}
8d16b764 1017EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329 1018
da8f2e17 1019
c0a31329
TG
1020/**
1021 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1022 * @timer: hrtimer to stop
1023 *
1024 * Returns:
1025 * 0 when the timer was not active
1026 * 1 when the timer was active
1027 * -1 when the timer is currently excuting the callback function and
fa9799e3 1028 * cannot be stopped
c0a31329
TG
1029 */
1030int hrtimer_try_to_cancel(struct hrtimer *timer)
1031{
3c8aa39d 1032 struct hrtimer_clock_base *base;
c0a31329
TG
1033 unsigned long flags;
1034 int ret = -1;
1035
1036 base = lock_hrtimer_base(timer, &flags);
1037
303e967f 1038 if (!hrtimer_callback_running(timer))
c0a31329
TG
1039 ret = remove_hrtimer(timer, base);
1040
1041 unlock_hrtimer_base(timer, &flags);
1042
1043 return ret;
1044
1045}
8d16b764 1046EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1047
1048/**
1049 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1050 * @timer: the timer to be cancelled
1051 *
1052 * Returns:
1053 * 0 when the timer was not active
1054 * 1 when the timer was active
1055 */
1056int hrtimer_cancel(struct hrtimer *timer)
1057{
1058 for (;;) {
1059 int ret = hrtimer_try_to_cancel(timer);
1060
1061 if (ret >= 0)
1062 return ret;
5ef37b19 1063 cpu_relax();
c0a31329
TG
1064 }
1065}
8d16b764 1066EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1067
1068/**
1069 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
1070 * @timer: the timer to read
1071 */
1072ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1073{
3c8aa39d 1074 struct hrtimer_clock_base *base;
c0a31329
TG
1075 unsigned long flags;
1076 ktime_t rem;
1077
1078 base = lock_hrtimer_base(timer, &flags);
cc584b21 1079 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1080 unlock_hrtimer_base(timer, &flags);
1081
1082 return rem;
1083}
8d16b764 1084EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 1085
ee9c5785 1086#ifdef CONFIG_NO_HZ
69239749
TL
1087/**
1088 * hrtimer_get_next_event - get the time until next expiry event
1089 *
1090 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1091 * is pending.
1092 */
1093ktime_t hrtimer_get_next_event(void)
1094{
3c8aa39d
TG
1095 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1096 struct hrtimer_clock_base *base = cpu_base->clock_base;
69239749
TL
1097 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1098 unsigned long flags;
1099 int i;
1100
3c8aa39d
TG
1101 spin_lock_irqsave(&cpu_base->lock, flags);
1102
54cdfdb4
TG
1103 if (!hrtimer_hres_active()) {
1104 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1105 struct hrtimer *timer;
69239749 1106
54cdfdb4
TG
1107 if (!base->first)
1108 continue;
3c8aa39d 1109
54cdfdb4 1110 timer = rb_entry(base->first, struct hrtimer, node);
cc584b21 1111 delta.tv64 = hrtimer_get_expires_tv64(timer);
54cdfdb4
TG
1112 delta = ktime_sub(delta, base->get_time());
1113 if (delta.tv64 < mindelta.tv64)
1114 mindelta.tv64 = delta.tv64;
1115 }
69239749 1116 }
3c8aa39d
TG
1117
1118 spin_unlock_irqrestore(&cpu_base->lock, flags);
1119
69239749
TL
1120 if (mindelta.tv64 < 0)
1121 mindelta.tv64 = 0;
1122 return mindelta;
1123}
1124#endif
1125
237fc6e7
TG
1126static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1127 enum hrtimer_mode mode)
c0a31329 1128{
3c8aa39d 1129 struct hrtimer_cpu_base *cpu_base;
c0a31329 1130
7978672c
GA
1131 memset(timer, 0, sizeof(struct hrtimer));
1132
3c8aa39d 1133 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
c0a31329 1134
c9cb2e3d 1135 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1136 clock_id = CLOCK_MONOTONIC;
1137
3c8aa39d 1138 timer->base = &cpu_base->clock_base[clock_id];
54cdfdb4 1139 hrtimer_init_timer_hres(timer);
82f67cd9
IM
1140
1141#ifdef CONFIG_TIMER_STATS
1142 timer->start_site = NULL;
1143 timer->start_pid = -1;
1144 memset(timer->start_comm, 0, TASK_COMM_LEN);
1145#endif
c0a31329 1146}
237fc6e7
TG
1147
1148/**
1149 * hrtimer_init - initialize a timer to the given clock
1150 * @timer: the timer to be initialized
1151 * @clock_id: the clock to be used
1152 * @mode: timer mode abs/rel
1153 */
1154void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1155 enum hrtimer_mode mode)
1156{
c6a2a177 1157 debug_init(timer, clock_id, mode);
237fc6e7
TG
1158 __hrtimer_init(timer, clock_id, mode);
1159}
8d16b764 1160EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329
TG
1161
1162/**
1163 * hrtimer_get_res - get the timer resolution for a clock
c0a31329
TG
1164 * @which_clock: which clock to query
1165 * @tp: pointer to timespec variable to store the resolution
1166 *
72fd4a35
RD
1167 * Store the resolution of the clock selected by @which_clock in the
1168 * variable pointed to by @tp.
c0a31329
TG
1169 */
1170int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1171{
3c8aa39d 1172 struct hrtimer_cpu_base *cpu_base;
c0a31329 1173
3c8aa39d
TG
1174 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1175 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
c0a31329
TG
1176
1177 return 0;
1178}
8d16b764 1179EXPORT_SYMBOL_GPL(hrtimer_get_res);
c0a31329 1180
c6a2a177 1181static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
d3d74453
PZ
1182{
1183 struct hrtimer_clock_base *base = timer->base;
1184 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1185 enum hrtimer_restart (*fn)(struct hrtimer *);
1186 int restart;
1187
ca109491
PZ
1188 WARN_ON(!irqs_disabled());
1189
c6a2a177 1190 debug_deactivate(timer);
d3d74453
PZ
1191 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1192 timer_stats_account_hrtimer(timer);
d3d74453 1193 fn = timer->function;
ca109491
PZ
1194
1195 /*
1196 * Because we run timers from hardirq context, there is no chance
1197 * they get migrated to another cpu, therefore its safe to unlock
1198 * the timer base.
1199 */
1200 spin_unlock(&cpu_base->lock);
c6a2a177 1201 trace_hrtimer_expire_entry(timer, now);
ca109491 1202 restart = fn(timer);
c6a2a177 1203 trace_hrtimer_expire_exit(timer);
ca109491 1204 spin_lock(&cpu_base->lock);
d3d74453
PZ
1205
1206 /*
e3f1d883
TG
1207 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1208 * we do not reprogramm the event hardware. Happens either in
1209 * hrtimer_start_range_ns() or in hrtimer_interrupt()
d3d74453
PZ
1210 */
1211 if (restart != HRTIMER_NORESTART) {
1212 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
a6037b61 1213 enqueue_hrtimer(timer, base);
d3d74453
PZ
1214 }
1215 timer->state &= ~HRTIMER_STATE_CALLBACK;
1216}
1217
54cdfdb4
TG
1218#ifdef CONFIG_HIGH_RES_TIMERS
1219
7f22391c
FW
1220static int force_clock_reprogram;
1221
1222/*
1223 * After 5 iteration's attempts, we consider that hrtimer_interrupt()
1224 * is hanging, which could happen with something that slows the interrupt
1225 * such as the tracing. Then we force the clock reprogramming for each future
1226 * hrtimer interrupts to avoid infinite loops and use the min_delta_ns
1227 * threshold that we will overwrite.
1228 * The next tick event will be scheduled to 3 times we currently spend on
1229 * hrtimer_interrupt(). This gives a good compromise, the cpus will spend
1230 * 1/4 of their time to process the hrtimer interrupts. This is enough to
1231 * let it running without serious starvation.
1232 */
1233
1234static inline void
1235hrtimer_interrupt_hanging(struct clock_event_device *dev,
1236 ktime_t try_time)
1237{
1238 force_clock_reprogram = 1;
1239 dev->min_delta_ns = (unsigned long)try_time.tv64 * 3;
1240 printk(KERN_WARNING "hrtimer: interrupt too slow, "
1241 "forcing clock min delta to %lu ns\n", dev->min_delta_ns);
1242}
54cdfdb4
TG
1243/*
1244 * High resolution timer interrupt
1245 * Called with interrupts disabled
1246 */
1247void hrtimer_interrupt(struct clock_event_device *dev)
1248{
1249 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1250 struct hrtimer_clock_base *base;
1251 ktime_t expires_next, now;
7f22391c 1252 int nr_retries = 0;
ca109491 1253 int i;
54cdfdb4
TG
1254
1255 BUG_ON(!cpu_base->hres_active);
1256 cpu_base->nr_events++;
1257 dev->next_event.tv64 = KTIME_MAX;
1258
1259 retry:
7f22391c
FW
1260 /* 5 retries is enough to notice a hang */
1261 if (!(++nr_retries % 5))
1262 hrtimer_interrupt_hanging(dev, ktime_sub(ktime_get(), now));
1263
54cdfdb4
TG
1264 now = ktime_get();
1265
1266 expires_next.tv64 = KTIME_MAX;
1267
6ff7041d
TG
1268 spin_lock(&cpu_base->lock);
1269 /*
1270 * We set expires_next to KTIME_MAX here with cpu_base->lock
1271 * held to prevent that a timer is enqueued in our queue via
1272 * the migration code. This does not affect enqueueing of
1273 * timers which run their callback and need to be requeued on
1274 * this CPU.
1275 */
1276 cpu_base->expires_next.tv64 = KTIME_MAX;
1277
54cdfdb4
TG
1278 base = cpu_base->clock_base;
1279
1280 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1281 ktime_t basenow;
1282 struct rb_node *node;
1283
54cdfdb4
TG
1284 basenow = ktime_add(now, base->offset);
1285
1286 while ((node = base->first)) {
1287 struct hrtimer *timer;
1288
1289 timer = rb_entry(node, struct hrtimer, node);
1290
654c8e0b
AV
1291 /*
1292 * The immediate goal for using the softexpires is
1293 * minimizing wakeups, not running timers at the
1294 * earliest interrupt after their soft expiration.
1295 * This allows us to avoid using a Priority Search
1296 * Tree, which can answer a stabbing querry for
1297 * overlapping intervals and instead use the simple
1298 * BST we already have.
1299 * We don't add extra wakeups by delaying timers that
1300 * are right-of a not yet expired timer, because that
1301 * timer will have to trigger a wakeup anyway.
1302 */
1303
1304 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
54cdfdb4
TG
1305 ktime_t expires;
1306
cc584b21 1307 expires = ktime_sub(hrtimer_get_expires(timer),
54cdfdb4
TG
1308 base->offset);
1309 if (expires.tv64 < expires_next.tv64)
1310 expires_next = expires;
1311 break;
1312 }
1313
c6a2a177 1314 __run_hrtimer(timer, &basenow);
54cdfdb4 1315 }
54cdfdb4
TG
1316 base++;
1317 }
1318
6ff7041d
TG
1319 /*
1320 * Store the new expiry value so the migration code can verify
1321 * against it.
1322 */
54cdfdb4 1323 cpu_base->expires_next = expires_next;
6ff7041d 1324 spin_unlock(&cpu_base->lock);
54cdfdb4
TG
1325
1326 /* Reprogramming necessary ? */
1327 if (expires_next.tv64 != KTIME_MAX) {
7f22391c 1328 if (tick_program_event(expires_next, force_clock_reprogram))
54cdfdb4
TG
1329 goto retry;
1330 }
54cdfdb4
TG
1331}
1332
8bdec955
TG
1333/*
1334 * local version of hrtimer_peek_ahead_timers() called with interrupts
1335 * disabled.
1336 */
1337static void __hrtimer_peek_ahead_timers(void)
1338{
1339 struct tick_device *td;
1340
1341 if (!hrtimer_hres_active())
1342 return;
1343
1344 td = &__get_cpu_var(tick_cpu_device);
1345 if (td && td->evtdev)
1346 hrtimer_interrupt(td->evtdev);
1347}
1348
2e94d1f7
AV
1349/**
1350 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1351 *
1352 * hrtimer_peek_ahead_timers will peek at the timer queue of
1353 * the current cpu and check if there are any timers for which
1354 * the soft expires time has passed. If any such timers exist,
1355 * they are run immediately and then removed from the timer queue.
1356 *
1357 */
1358void hrtimer_peek_ahead_timers(void)
1359{
643bdf68 1360 unsigned long flags;
dc4304f7 1361
2e94d1f7 1362 local_irq_save(flags);
8bdec955 1363 __hrtimer_peek_ahead_timers();
2e94d1f7
AV
1364 local_irq_restore(flags);
1365}
1366
a6037b61
PZ
1367static void run_hrtimer_softirq(struct softirq_action *h)
1368{
1369 hrtimer_peek_ahead_timers();
1370}
1371
82c5b7b5
IM
1372#else /* CONFIG_HIGH_RES_TIMERS */
1373
1374static inline void __hrtimer_peek_ahead_timers(void) { }
1375
1376#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1377
d3d74453
PZ
1378/*
1379 * Called from timer softirq every jiffy, expire hrtimers:
1380 *
1381 * For HRT its the fall back code to run the softirq in the timer
1382 * softirq context in case the hrtimer initialization failed or has
1383 * not been done yet.
1384 */
1385void hrtimer_run_pending(void)
1386{
d3d74453
PZ
1387 if (hrtimer_hres_active())
1388 return;
54cdfdb4 1389
d3d74453
PZ
1390 /*
1391 * This _is_ ugly: We have to check in the softirq context,
1392 * whether we can switch to highres and / or nohz mode. The
1393 * clocksource switch happens in the timer interrupt with
1394 * xtime_lock held. Notification from there only sets the
1395 * check bit in the tick_oneshot code, otherwise we might
1396 * deadlock vs. xtime_lock.
1397 */
1398 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1399 hrtimer_switch_to_hres();
54cdfdb4
TG
1400}
1401
c0a31329 1402/*
d3d74453 1403 * Called from hardirq context every jiffy
c0a31329 1404 */
833883d9 1405void hrtimer_run_queues(void)
c0a31329 1406{
288867ec 1407 struct rb_node *node;
833883d9
DS
1408 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1409 struct hrtimer_clock_base *base;
1410 int index, gettime = 1;
c0a31329 1411
833883d9 1412 if (hrtimer_hres_active())
3055adda
DS
1413 return;
1414
833883d9
DS
1415 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1416 base = &cpu_base->clock_base[index];
c0a31329 1417
833883d9 1418 if (!base->first)
d3d74453 1419 continue;
833883d9 1420
d7cfb60c 1421 if (gettime) {
833883d9
DS
1422 hrtimer_get_softirq_time(cpu_base);
1423 gettime = 0;
b75f7a51 1424 }
d3d74453 1425
833883d9 1426 spin_lock(&cpu_base->lock);
c0a31329 1427
833883d9
DS
1428 while ((node = base->first)) {
1429 struct hrtimer *timer;
54cdfdb4 1430
833883d9 1431 timer = rb_entry(node, struct hrtimer, node);
cc584b21
AV
1432 if (base->softirq_time.tv64 <=
1433 hrtimer_get_expires_tv64(timer))
833883d9
DS
1434 break;
1435
c6a2a177 1436 __run_hrtimer(timer, &base->softirq_time);
833883d9
DS
1437 }
1438 spin_unlock(&cpu_base->lock);
1439 }
c0a31329
TG
1440}
1441
10c94ec1
TG
1442/*
1443 * Sleep related functions:
1444 */
c9cb2e3d 1445static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1446{
1447 struct hrtimer_sleeper *t =
1448 container_of(timer, struct hrtimer_sleeper, timer);
1449 struct task_struct *task = t->task;
1450
1451 t->task = NULL;
1452 if (task)
1453 wake_up_process(task);
1454
1455 return HRTIMER_NORESTART;
1456}
1457
36c8b586 1458void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1459{
1460 sl->timer.function = hrtimer_wakeup;
1461 sl->task = task;
1462}
2bc481cf 1463EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1464
669d7868 1465static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1466{
669d7868 1467 hrtimer_init_sleeper(t, current);
10c94ec1 1468
432569bb
RZ
1469 do {
1470 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1471 hrtimer_start_expires(&t->timer, mode);
37bb6cb4
PZ
1472 if (!hrtimer_active(&t->timer))
1473 t->task = NULL;
432569bb 1474
54cdfdb4
TG
1475 if (likely(t->task))
1476 schedule();
432569bb 1477
669d7868 1478 hrtimer_cancel(&t->timer);
c9cb2e3d 1479 mode = HRTIMER_MODE_ABS;
669d7868
TG
1480
1481 } while (t->task && !signal_pending(current));
432569bb 1482
3588a085
PZ
1483 __set_current_state(TASK_RUNNING);
1484
669d7868 1485 return t->task == NULL;
10c94ec1
TG
1486}
1487
080344b9
ON
1488static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1489{
1490 struct timespec rmt;
1491 ktime_t rem;
1492
cc584b21 1493 rem = hrtimer_expires_remaining(timer);
080344b9
ON
1494 if (rem.tv64 <= 0)
1495 return 0;
1496 rmt = ktime_to_timespec(rem);
1497
1498 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1499 return -EFAULT;
1500
1501 return 1;
1502}
1503
1711ef38 1504long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1505{
669d7868 1506 struct hrtimer_sleeper t;
080344b9 1507 struct timespec __user *rmtp;
237fc6e7 1508 int ret = 0;
10c94ec1 1509
237fc6e7
TG
1510 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1511 HRTIMER_MODE_ABS);
cc584b21 1512 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1513
c9cb2e3d 1514 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
237fc6e7 1515 goto out;
10c94ec1 1516
029a07e0 1517 rmtp = restart->nanosleep.rmtp;
432569bb 1518 if (rmtp) {
237fc6e7 1519 ret = update_rmtp(&t.timer, rmtp);
080344b9 1520 if (ret <= 0)
237fc6e7 1521 goto out;
432569bb 1522 }
10c94ec1 1523
10c94ec1 1524 /* The other values in restart are already filled in */
237fc6e7
TG
1525 ret = -ERESTART_RESTARTBLOCK;
1526out:
1527 destroy_hrtimer_on_stack(&t.timer);
1528 return ret;
10c94ec1
TG
1529}
1530
080344b9 1531long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1532 const enum hrtimer_mode mode, const clockid_t clockid)
1533{
1534 struct restart_block *restart;
669d7868 1535 struct hrtimer_sleeper t;
237fc6e7 1536 int ret = 0;
3bd01206
AV
1537 unsigned long slack;
1538
1539 slack = current->timer_slack_ns;
1540 if (rt_task(current))
1541 slack = 0;
10c94ec1 1542
237fc6e7 1543 hrtimer_init_on_stack(&t.timer, clockid, mode);
3bd01206 1544 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
432569bb 1545 if (do_nanosleep(&t, mode))
237fc6e7 1546 goto out;
10c94ec1 1547
7978672c 1548 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1549 if (mode == HRTIMER_MODE_ABS) {
1550 ret = -ERESTARTNOHAND;
1551 goto out;
1552 }
10c94ec1 1553
432569bb 1554 if (rmtp) {
237fc6e7 1555 ret = update_rmtp(&t.timer, rmtp);
080344b9 1556 if (ret <= 0)
237fc6e7 1557 goto out;
432569bb 1558 }
10c94ec1
TG
1559
1560 restart = &current_thread_info()->restart_block;
1711ef38 1561 restart->fn = hrtimer_nanosleep_restart;
029a07e0
TG
1562 restart->nanosleep.index = t.timer.base->index;
1563 restart->nanosleep.rmtp = rmtp;
cc584b21 1564 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
10c94ec1 1565
237fc6e7
TG
1566 ret = -ERESTART_RESTARTBLOCK;
1567out:
1568 destroy_hrtimer_on_stack(&t.timer);
1569 return ret;
10c94ec1
TG
1570}
1571
58fd3aa2
HC
1572SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1573 struct timespec __user *, rmtp)
6ba1b912 1574{
080344b9 1575 struct timespec tu;
6ba1b912
TG
1576
1577 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1578 return -EFAULT;
1579
1580 if (!timespec_valid(&tu))
1581 return -EINVAL;
1582
080344b9 1583 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1584}
1585
c0a31329
TG
1586/*
1587 * Functions related to boot-time initialization:
1588 */
0ec160dd 1589static void __cpuinit init_hrtimers_cpu(int cpu)
c0a31329 1590{
3c8aa39d 1591 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1592 int i;
1593
3c8aa39d 1594 spin_lock_init(&cpu_base->lock);
3c8aa39d
TG
1595
1596 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1597 cpu_base->clock_base[i].cpu_base = cpu_base;
1598
54cdfdb4 1599 hrtimer_init_hres(cpu_base);
c0a31329
TG
1600}
1601
1602#ifdef CONFIG_HOTPLUG_CPU
1603
ca109491 1604static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1605 struct hrtimer_clock_base *new_base)
c0a31329
TG
1606{
1607 struct hrtimer *timer;
1608 struct rb_node *node;
1609
1610 while ((node = rb_first(&old_base->active))) {
1611 timer = rb_entry(node, struct hrtimer, node);
54cdfdb4 1612 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1613 debug_deactivate(timer);
b00c1a99
TG
1614
1615 /*
1616 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1617 * timer could be seen as !active and just vanish away
1618 * under us on another CPU
1619 */
1620 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
c0a31329 1621 timer->base = new_base;
54cdfdb4 1622 /*
e3f1d883
TG
1623 * Enqueue the timers on the new cpu. This does not
1624 * reprogram the event device in case the timer
1625 * expires before the earliest on this CPU, but we run
1626 * hrtimer_interrupt after we migrated everything to
1627 * sort out already expired timers and reprogram the
1628 * event device.
54cdfdb4 1629 */
a6037b61 1630 enqueue_hrtimer(timer, new_base);
41e1022e 1631
b00c1a99
TG
1632 /* Clear the migration state bit */
1633 timer->state &= ~HRTIMER_STATE_MIGRATE;
c0a31329
TG
1634 }
1635}
1636
d5fd43c4 1637static void migrate_hrtimers(int scpu)
c0a31329 1638{
3c8aa39d 1639 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1640 int i;
c0a31329 1641
37810659 1642 BUG_ON(cpu_online(scpu));
37810659 1643 tick_cancel_sched_timer(scpu);
731a55ba
TG
1644
1645 local_irq_disable();
1646 old_base = &per_cpu(hrtimer_bases, scpu);
1647 new_base = &__get_cpu_var(hrtimer_bases);
d82f0b0f
ON
1648 /*
1649 * The caller is globally serialized and nobody else
1650 * takes two locks at once, deadlock is not possible.
1651 */
731a55ba 1652 spin_lock(&new_base->lock);
8e60e05f 1653 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1654
3c8aa39d 1655 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1656 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1657 &new_base->clock_base[i]);
c0a31329
TG
1658 }
1659
8e60e05f 1660 spin_unlock(&old_base->lock);
731a55ba 1661 spin_unlock(&new_base->lock);
37810659 1662
731a55ba
TG
1663 /* Check, if we got expired work to do */
1664 __hrtimer_peek_ahead_timers();
1665 local_irq_enable();
c0a31329 1666}
37810659 1667
c0a31329
TG
1668#endif /* CONFIG_HOTPLUG_CPU */
1669
8c78f307 1670static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1671 unsigned long action, void *hcpu)
1672{
b2e3c0ad 1673 int scpu = (long)hcpu;
c0a31329
TG
1674
1675 switch (action) {
1676
1677 case CPU_UP_PREPARE:
8bb78442 1678 case CPU_UP_PREPARE_FROZEN:
37810659 1679 init_hrtimers_cpu(scpu);
c0a31329
TG
1680 break;
1681
1682#ifdef CONFIG_HOTPLUG_CPU
94df7de0
SD
1683 case CPU_DYING:
1684 case CPU_DYING_FROZEN:
1685 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1686 break;
c0a31329 1687 case CPU_DEAD:
8bb78442 1688 case CPU_DEAD_FROZEN:
b2e3c0ad 1689 {
37810659 1690 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
d5fd43c4 1691 migrate_hrtimers(scpu);
c0a31329 1692 break;
b2e3c0ad 1693 }
c0a31329
TG
1694#endif
1695
1696 default:
1697 break;
1698 }
1699
1700 return NOTIFY_OK;
1701}
1702
8c78f307 1703static struct notifier_block __cpuinitdata hrtimers_nb = {
c0a31329
TG
1704 .notifier_call = hrtimer_cpu_notify,
1705};
1706
1707void __init hrtimers_init(void)
1708{
1709 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1710 (void *)(long)smp_processor_id());
1711 register_cpu_notifier(&hrtimers_nb);
a6037b61
PZ
1712#ifdef CONFIG_HIGH_RES_TIMERS
1713 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1714#endif
c0a31329
TG
1715}
1716
7bb67439 1717/**
654c8e0b 1718 * schedule_hrtimeout_range - sleep until timeout
7bb67439 1719 * @expires: timeout value (ktime_t)
654c8e0b 1720 * @delta: slack in expires timeout (ktime_t)
7bb67439
AV
1721 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1722 *
1723 * Make the current task sleep until the given expiry time has
1724 * elapsed. The routine will return immediately unless
1725 * the current task state has been set (see set_current_state()).
1726 *
654c8e0b
AV
1727 * The @delta argument gives the kernel the freedom to schedule the
1728 * actual wakeup to a time that is both power and performance friendly.
1729 * The kernel give the normal best effort behavior for "@expires+@delta",
1730 * but may decide to fire the timer earlier, but no earlier than @expires.
1731 *
7bb67439
AV
1732 * You can set the task state as follows -
1733 *
1734 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1735 * pass before the routine returns.
1736 *
1737 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1738 * delivered to the current task.
1739 *
1740 * The current task state is guaranteed to be TASK_RUNNING when this
1741 * routine returns.
1742 *
1743 * Returns 0 when the timer has expired otherwise -EINTR
1744 */
654c8e0b 1745int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
7bb67439
AV
1746 const enum hrtimer_mode mode)
1747{
1748 struct hrtimer_sleeper t;
1749
1750 /*
1751 * Optimize when a zero timeout value is given. It does not
1752 * matter whether this is an absolute or a relative time.
1753 */
1754 if (expires && !expires->tv64) {
1755 __set_current_state(TASK_RUNNING);
1756 return 0;
1757 }
1758
1759 /*
1760 * A NULL parameter means "inifinte"
1761 */
1762 if (!expires) {
1763 schedule();
1764 __set_current_state(TASK_RUNNING);
1765 return -EINTR;
1766 }
1767
1768 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
654c8e0b 1769 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1770
1771 hrtimer_init_sleeper(&t, current);
1772
cc584b21 1773 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1774 if (!hrtimer_active(&t.timer))
1775 t.task = NULL;
1776
1777 if (likely(t.task))
1778 schedule();
1779
1780 hrtimer_cancel(&t.timer);
1781 destroy_hrtimer_on_stack(&t.timer);
1782
1783 __set_current_state(TASK_RUNNING);
1784
1785 return !t.task ? 0 : -EINTR;
1786}
654c8e0b
AV
1787EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1788
1789/**
1790 * schedule_hrtimeout - sleep until timeout
1791 * @expires: timeout value (ktime_t)
1792 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1793 *
1794 * Make the current task sleep until the given expiry time has
1795 * elapsed. The routine will return immediately unless
1796 * the current task state has been set (see set_current_state()).
1797 *
1798 * You can set the task state as follows -
1799 *
1800 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1801 * pass before the routine returns.
1802 *
1803 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1804 * delivered to the current task.
1805 *
1806 * The current task state is guaranteed to be TASK_RUNNING when this
1807 * routine returns.
1808 *
1809 * Returns 0 when the timer has expired otherwise -EINTR
1810 */
1811int __sched schedule_hrtimeout(ktime_t *expires,
1812 const enum hrtimer_mode mode)
1813{
1814 return schedule_hrtimeout_range(expires, 0, mode);
1815}
7bb67439 1816EXPORT_SYMBOL_GPL(schedule_hrtimeout);