]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/cpuset.c
eCryptfs: Allocate up to two scatterlists for crypto ops on keys
[net-next-2.6.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4
LT
38#include <linux/mm.h>
39#include <linux/module.h>
40#include <linux/mount.h>
41#include <linux/namei.h>
42#include <linux/pagemap.h>
43#include <linux/proc_fs.h>
6b9c2603 44#include <linux/rcupdate.h>
1da177e4
LT
45#include <linux/sched.h>
46#include <linux/seq_file.h>
22fb52dd 47#include <linux/security.h>
1da177e4 48#include <linux/slab.h>
1da177e4
LT
49#include <linux/spinlock.h>
50#include <linux/stat.h>
51#include <linux/string.h>
52#include <linux/time.h>
53#include <linux/backing-dev.h>
54#include <linux/sort.h>
55
56#include <asm/uaccess.h>
57#include <asm/atomic.h>
3d3f26a7 58#include <linux/mutex.h>
956db3ca
CW
59#include <linux/workqueue.h>
60#include <linux/cgroup.h>
1da177e4 61
202f72d5
PJ
62/*
63 * Tracks how many cpusets are currently defined in system.
64 * When there is only one cpuset (the root cpuset) we can
65 * short circuit some hooks.
66 */
7edc5962 67int number_of_cpusets __read_mostly;
202f72d5 68
2df167a3 69/* Forward declare cgroup structures */
8793d854
PM
70struct cgroup_subsys cpuset_subsys;
71struct cpuset;
72
3e0d98b9
PJ
73/* See "Frequency meter" comments, below. */
74
75struct fmeter {
76 int cnt; /* unprocessed events count */
77 int val; /* most recent output value */
78 time_t time; /* clock (secs) when val computed */
79 spinlock_t lock; /* guards read or write of above */
80};
81
1da177e4 82struct cpuset {
8793d854
PM
83 struct cgroup_subsys_state css;
84
1da177e4
LT
85 unsigned long flags; /* "unsigned long" so bitops work */
86 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
87 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
88
1da177e4 89 struct cpuset *parent; /* my parent */
1da177e4
LT
90
91 /*
92 * Copy of global cpuset_mems_generation as of the most
93 * recent time this cpuset changed its mems_allowed.
94 */
3e0d98b9
PJ
95 int mems_generation;
96
97 struct fmeter fmeter; /* memory_pressure filter */
029190c5
PJ
98
99 /* partition number for rebuild_sched_domains() */
100 int pn;
956db3ca 101
1d3504fc
HS
102 /* for custom sched domain */
103 int relax_domain_level;
104
956db3ca
CW
105 /* used for walking a cpuset heirarchy */
106 struct list_head stack_list;
1da177e4
LT
107};
108
8793d854
PM
109/* Retrieve the cpuset for a cgroup */
110static inline struct cpuset *cgroup_cs(struct cgroup *cont)
111{
112 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
113 struct cpuset, css);
114}
115
116/* Retrieve the cpuset for a task */
117static inline struct cpuset *task_cs(struct task_struct *task)
118{
119 return container_of(task_subsys_state(task, cpuset_subsys_id),
120 struct cpuset, css);
121}
956db3ca
CW
122struct cpuset_hotplug_scanner {
123 struct cgroup_scanner scan;
124 struct cgroup *to;
125};
8793d854 126
1da177e4
LT
127/* bits in struct cpuset flags field */
128typedef enum {
129 CS_CPU_EXCLUSIVE,
130 CS_MEM_EXCLUSIVE,
78608366 131 CS_MEM_HARDWALL,
45b07ef3 132 CS_MEMORY_MIGRATE,
029190c5 133 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
134 CS_SPREAD_PAGE,
135 CS_SPREAD_SLAB,
1da177e4
LT
136} cpuset_flagbits_t;
137
138/* convenient tests for these bits */
139static inline int is_cpu_exclusive(const struct cpuset *cs)
140{
7b5b9ef0 141 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
142}
143
144static inline int is_mem_exclusive(const struct cpuset *cs)
145{
7b5b9ef0 146 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
147}
148
78608366
PM
149static inline int is_mem_hardwall(const struct cpuset *cs)
150{
151 return test_bit(CS_MEM_HARDWALL, &cs->flags);
152}
153
029190c5
PJ
154static inline int is_sched_load_balance(const struct cpuset *cs)
155{
156 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
157}
158
45b07ef3
PJ
159static inline int is_memory_migrate(const struct cpuset *cs)
160{
7b5b9ef0 161 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
162}
163
825a46af
PJ
164static inline int is_spread_page(const struct cpuset *cs)
165{
166 return test_bit(CS_SPREAD_PAGE, &cs->flags);
167}
168
169static inline int is_spread_slab(const struct cpuset *cs)
170{
171 return test_bit(CS_SPREAD_SLAB, &cs->flags);
172}
173
1da177e4 174/*
151a4420 175 * Increment this integer everytime any cpuset changes its
1da177e4
LT
176 * mems_allowed value. Users of cpusets can track this generation
177 * number, and avoid having to lock and reload mems_allowed unless
178 * the cpuset they're using changes generation.
179 *
2df167a3 180 * A single, global generation is needed because cpuset_attach_task() could
1da177e4
LT
181 * reattach a task to a different cpuset, which must not have its
182 * generation numbers aliased with those of that tasks previous cpuset.
183 *
184 * Generations are needed for mems_allowed because one task cannot
2df167a3 185 * modify another's memory placement. So we must enable every task,
1da177e4
LT
186 * on every visit to __alloc_pages(), to efficiently check whether
187 * its current->cpuset->mems_allowed has changed, requiring an update
188 * of its current->mems_allowed.
151a4420 189 *
2df167a3 190 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
151a4420 191 * there is no need to mark it atomic.
1da177e4 192 */
151a4420 193static int cpuset_mems_generation;
1da177e4
LT
194
195static struct cpuset top_cpuset = {
196 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
197 .cpus_allowed = CPU_MASK_ALL,
198 .mems_allowed = NODE_MASK_ALL,
1da177e4
LT
199};
200
1da177e4 201/*
2df167a3
PM
202 * There are two global mutexes guarding cpuset structures. The first
203 * is the main control groups cgroup_mutex, accessed via
204 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
205 * callback_mutex, below. They can nest. It is ok to first take
206 * cgroup_mutex, then nest callback_mutex. We also require taking
207 * task_lock() when dereferencing a task's cpuset pointer. See "The
208 * task_lock() exception", at the end of this comment.
053199ed 209 *
3d3f26a7 210 * A task must hold both mutexes to modify cpusets. If a task
2df167a3 211 * holds cgroup_mutex, then it blocks others wanting that mutex,
3d3f26a7 212 * ensuring that it is the only task able to also acquire callback_mutex
053199ed
PJ
213 * and be able to modify cpusets. It can perform various checks on
214 * the cpuset structure first, knowing nothing will change. It can
2df167a3 215 * also allocate memory while just holding cgroup_mutex. While it is
053199ed 216 * performing these checks, various callback routines can briefly
3d3f26a7
IM
217 * acquire callback_mutex to query cpusets. Once it is ready to make
218 * the changes, it takes callback_mutex, blocking everyone else.
053199ed
PJ
219 *
220 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 221 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
222 * from one of the callbacks into the cpuset code from within
223 * __alloc_pages().
224 *
3d3f26a7 225 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
226 * access to cpusets.
227 *
228 * The task_struct fields mems_allowed and mems_generation may only
229 * be accessed in the context of that task, so require no locks.
230 *
3d3f26a7 231 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
232 * small pieces of code, such as when reading out possibly multi-word
233 * cpumasks and nodemasks.
234 *
2df167a3
PM
235 * Accessing a task's cpuset should be done in accordance with the
236 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
237 */
238
3d3f26a7 239static DEFINE_MUTEX(callback_mutex);
4247bdc6 240
cf417141
MK
241/*
242 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 243 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
244 * silently switch it to mount "cgroup" instead
245 */
454e2398
DH
246static int cpuset_get_sb(struct file_system_type *fs_type,
247 int flags, const char *unused_dev_name,
248 void *data, struct vfsmount *mnt)
1da177e4 249{
8793d854
PM
250 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
251 int ret = -ENODEV;
252 if (cgroup_fs) {
253 char mountopts[] =
254 "cpuset,noprefix,"
255 "release_agent=/sbin/cpuset_release_agent";
256 ret = cgroup_fs->get_sb(cgroup_fs, flags,
257 unused_dev_name, mountopts, mnt);
258 put_filesystem(cgroup_fs);
259 }
260 return ret;
1da177e4
LT
261}
262
263static struct file_system_type cpuset_fs_type = {
264 .name = "cpuset",
265 .get_sb = cpuset_get_sb,
1da177e4
LT
266};
267
1da177e4
LT
268/*
269 * Return in *pmask the portion of a cpusets's cpus_allowed that
270 * are online. If none are online, walk up the cpuset hierarchy
271 * until we find one that does have some online cpus. If we get
272 * all the way to the top and still haven't found any online cpus,
273 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
274 * task, return cpu_online_map.
275 *
276 * One way or another, we guarantee to return some non-empty subset
277 * of cpu_online_map.
278 *
3d3f26a7 279 * Call with callback_mutex held.
1da177e4
LT
280 */
281
282static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
283{
284 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
285 cs = cs->parent;
286 if (cs)
287 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
288 else
289 *pmask = cpu_online_map;
290 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
291}
292
293/*
294 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
295 * are online, with memory. If none are online with memory, walk
296 * up the cpuset hierarchy until we find one that does have some
297 * online mems. If we get all the way to the top and still haven't
298 * found any online mems, return node_states[N_HIGH_MEMORY].
1da177e4
LT
299 *
300 * One way or another, we guarantee to return some non-empty subset
0e1e7c7a 301 * of node_states[N_HIGH_MEMORY].
1da177e4 302 *
3d3f26a7 303 * Call with callback_mutex held.
1da177e4
LT
304 */
305
306static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
307{
0e1e7c7a
CL
308 while (cs && !nodes_intersects(cs->mems_allowed,
309 node_states[N_HIGH_MEMORY]))
1da177e4
LT
310 cs = cs->parent;
311 if (cs)
0e1e7c7a
CL
312 nodes_and(*pmask, cs->mems_allowed,
313 node_states[N_HIGH_MEMORY]);
1da177e4 314 else
0e1e7c7a
CL
315 *pmask = node_states[N_HIGH_MEMORY];
316 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
1da177e4
LT
317}
318
cf2a473c
PJ
319/**
320 * cpuset_update_task_memory_state - update task memory placement
321 *
322 * If the current tasks cpusets mems_allowed changed behind our
323 * backs, update current->mems_allowed, mems_generation and task NUMA
324 * mempolicy to the new value.
053199ed 325 *
cf2a473c
PJ
326 * Task mempolicy is updated by rebinding it relative to the
327 * current->cpuset if a task has its memory placement changed.
328 * Do not call this routine if in_interrupt().
329 *
4a01c8d5 330 * Call without callback_mutex or task_lock() held. May be
2df167a3
PM
331 * called with or without cgroup_mutex held. Thanks in part to
332 * 'the_top_cpuset_hack', the task's cpuset pointer will never
41f7f60d
DR
333 * be NULL. This routine also might acquire callback_mutex during
334 * call.
053199ed 335 *
6b9c2603
PJ
336 * Reading current->cpuset->mems_generation doesn't need task_lock
337 * to guard the current->cpuset derefence, because it is guarded
2df167a3 338 * from concurrent freeing of current->cpuset using RCU.
6b9c2603
PJ
339 *
340 * The rcu_dereference() is technically probably not needed,
341 * as I don't actually mind if I see a new cpuset pointer but
342 * an old value of mems_generation. However this really only
343 * matters on alpha systems using cpusets heavily. If I dropped
344 * that rcu_dereference(), it would save them a memory barrier.
345 * For all other arch's, rcu_dereference is a no-op anyway, and for
346 * alpha systems not using cpusets, another planned optimization,
347 * avoiding the rcu critical section for tasks in the root cpuset
348 * which is statically allocated, so can't vanish, will make this
349 * irrelevant. Better to use RCU as intended, than to engage in
350 * some cute trick to save a memory barrier that is impossible to
351 * test, for alpha systems using cpusets heavily, which might not
352 * even exist.
053199ed
PJ
353 *
354 * This routine is needed to update the per-task mems_allowed data,
355 * within the tasks context, when it is trying to allocate memory
356 * (in various mm/mempolicy.c routines) and notices that some other
357 * task has been modifying its cpuset.
1da177e4
LT
358 */
359
fe85a998 360void cpuset_update_task_memory_state(void)
1da177e4 361{
053199ed 362 int my_cpusets_mem_gen;
cf2a473c 363 struct task_struct *tsk = current;
6b9c2603 364 struct cpuset *cs;
053199ed 365
8793d854 366 if (task_cs(tsk) == &top_cpuset) {
03a285f5
PJ
367 /* Don't need rcu for top_cpuset. It's never freed. */
368 my_cpusets_mem_gen = top_cpuset.mems_generation;
369 } else {
370 rcu_read_lock();
da5ef6bb 371 my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
03a285f5
PJ
372 rcu_read_unlock();
373 }
1da177e4 374
cf2a473c 375 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
3d3f26a7 376 mutex_lock(&callback_mutex);
cf2a473c 377 task_lock(tsk);
8793d854 378 cs = task_cs(tsk); /* Maybe changed when task not locked */
cf2a473c
PJ
379 guarantee_online_mems(cs, &tsk->mems_allowed);
380 tsk->cpuset_mems_generation = cs->mems_generation;
825a46af
PJ
381 if (is_spread_page(cs))
382 tsk->flags |= PF_SPREAD_PAGE;
383 else
384 tsk->flags &= ~PF_SPREAD_PAGE;
385 if (is_spread_slab(cs))
386 tsk->flags |= PF_SPREAD_SLAB;
387 else
388 tsk->flags &= ~PF_SPREAD_SLAB;
cf2a473c 389 task_unlock(tsk);
3d3f26a7 390 mutex_unlock(&callback_mutex);
74cb2155 391 mpol_rebind_task(tsk, &tsk->mems_allowed);
1da177e4
LT
392 }
393}
394
395/*
396 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
397 *
398 * One cpuset is a subset of another if all its allowed CPUs and
399 * Memory Nodes are a subset of the other, and its exclusive flags
2df167a3 400 * are only set if the other's are set. Call holding cgroup_mutex.
1da177e4
LT
401 */
402
403static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
404{
405 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
406 nodes_subset(p->mems_allowed, q->mems_allowed) &&
407 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
408 is_mem_exclusive(p) <= is_mem_exclusive(q);
409}
410
411/*
412 * validate_change() - Used to validate that any proposed cpuset change
413 * follows the structural rules for cpusets.
414 *
415 * If we replaced the flag and mask values of the current cpuset
416 * (cur) with those values in the trial cpuset (trial), would
417 * our various subset and exclusive rules still be valid? Presumes
2df167a3 418 * cgroup_mutex held.
1da177e4
LT
419 *
420 * 'cur' is the address of an actual, in-use cpuset. Operations
421 * such as list traversal that depend on the actual address of the
422 * cpuset in the list must use cur below, not trial.
423 *
424 * 'trial' is the address of bulk structure copy of cur, with
425 * perhaps one or more of the fields cpus_allowed, mems_allowed,
426 * or flags changed to new, trial values.
427 *
428 * Return 0 if valid, -errno if not.
429 */
430
431static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
432{
8793d854 433 struct cgroup *cont;
1da177e4
LT
434 struct cpuset *c, *par;
435
436 /* Each of our child cpusets must be a subset of us */
8793d854
PM
437 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
438 if (!is_cpuset_subset(cgroup_cs(cont), trial))
1da177e4
LT
439 return -EBUSY;
440 }
441
442 /* Remaining checks don't apply to root cpuset */
69604067 443 if (cur == &top_cpuset)
1da177e4
LT
444 return 0;
445
69604067
PJ
446 par = cur->parent;
447
1da177e4
LT
448 /* We must be a subset of our parent cpuset */
449 if (!is_cpuset_subset(trial, par))
450 return -EACCES;
451
2df167a3
PM
452 /*
453 * If either I or some sibling (!= me) is exclusive, we can't
454 * overlap
455 */
8793d854
PM
456 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
457 c = cgroup_cs(cont);
1da177e4
LT
458 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
459 c != cur &&
460 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
461 return -EINVAL;
462 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
463 c != cur &&
464 nodes_intersects(trial->mems_allowed, c->mems_allowed))
465 return -EINVAL;
466 }
467
020958b6
PJ
468 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
469 if (cgroup_task_count(cur->css.cgroup)) {
470 if (cpus_empty(trial->cpus_allowed) ||
471 nodes_empty(trial->mems_allowed)) {
472 return -ENOSPC;
473 }
474 }
475
1da177e4
LT
476 return 0;
477}
478
029190c5 479/*
cf417141 480 * Helper routine for generate_sched_domains().
029190c5
PJ
481 * Do cpusets a, b have overlapping cpus_allowed masks?
482 */
029190c5
PJ
483static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
484{
485 return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
486}
487
1d3504fc
HS
488static void
489update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
490{
1d3504fc
HS
491 if (dattr->relax_domain_level < c->relax_domain_level)
492 dattr->relax_domain_level = c->relax_domain_level;
493 return;
494}
495
f5393693
LJ
496static void
497update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
498{
499 LIST_HEAD(q);
500
501 list_add(&c->stack_list, &q);
502 while (!list_empty(&q)) {
503 struct cpuset *cp;
504 struct cgroup *cont;
505 struct cpuset *child;
506
507 cp = list_first_entry(&q, struct cpuset, stack_list);
508 list_del(q.next);
509
510 if (cpus_empty(cp->cpus_allowed))
511 continue;
512
513 if (is_sched_load_balance(cp))
514 update_domain_attr(dattr, cp);
515
516 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
517 child = cgroup_cs(cont);
518 list_add_tail(&child->stack_list, &q);
519 }
520 }
521}
522
029190c5 523/*
cf417141
MK
524 * generate_sched_domains()
525 *
526 * This function builds a partial partition of the systems CPUs
527 * A 'partial partition' is a set of non-overlapping subsets whose
528 * union is a subset of that set.
529 * The output of this function needs to be passed to kernel/sched.c
530 * partition_sched_domains() routine, which will rebuild the scheduler's
531 * load balancing domains (sched domains) as specified by that partial
532 * partition.
029190c5
PJ
533 *
534 * See "What is sched_load_balance" in Documentation/cpusets.txt
535 * for a background explanation of this.
536 *
537 * Does not return errors, on the theory that the callers of this
538 * routine would rather not worry about failures to rebuild sched
539 * domains when operating in the severe memory shortage situations
540 * that could cause allocation failures below.
541 *
cf417141 542 * Must be called with cgroup_lock held.
029190c5
PJ
543 *
544 * The three key local variables below are:
aeed6824 545 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
546 * top-down scan of all cpusets. This scan loads a pointer
547 * to each cpuset marked is_sched_load_balance into the
548 * array 'csa'. For our purposes, rebuilding the schedulers
549 * sched domains, we can ignore !is_sched_load_balance cpusets.
550 * csa - (for CpuSet Array) Array of pointers to all the cpusets
551 * that need to be load balanced, for convenient iterative
552 * access by the subsequent code that finds the best partition,
553 * i.e the set of domains (subsets) of CPUs such that the
554 * cpus_allowed of every cpuset marked is_sched_load_balance
555 * is a subset of one of these domains, while there are as
556 * many such domains as possible, each as small as possible.
557 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
558 * the kernel/sched.c routine partition_sched_domains() in a
559 * convenient format, that can be easily compared to the prior
560 * value to determine what partition elements (sched domains)
561 * were changed (added or removed.)
562 *
563 * Finding the best partition (set of domains):
564 * The triple nested loops below over i, j, k scan over the
565 * load balanced cpusets (using the array of cpuset pointers in
566 * csa[]) looking for pairs of cpusets that have overlapping
567 * cpus_allowed, but which don't have the same 'pn' partition
568 * number and gives them in the same partition number. It keeps
569 * looping on the 'restart' label until it can no longer find
570 * any such pairs.
571 *
572 * The union of the cpus_allowed masks from the set of
573 * all cpusets having the same 'pn' value then form the one
574 * element of the partition (one sched domain) to be passed to
575 * partition_sched_domains().
576 */
cf417141
MK
577static int generate_sched_domains(cpumask_t **domains,
578 struct sched_domain_attr **attributes)
029190c5 579{
cf417141 580 LIST_HEAD(q); /* queue of cpusets to be scanned */
029190c5
PJ
581 struct cpuset *cp; /* scans q */
582 struct cpuset **csa; /* array of all cpuset ptrs */
583 int csn; /* how many cpuset ptrs in csa so far */
584 int i, j, k; /* indices for partition finding loops */
585 cpumask_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 586 struct sched_domain_attr *dattr; /* attributes for custom domains */
029190c5
PJ
587 int ndoms; /* number of sched domains in result */
588 int nslot; /* next empty doms[] cpumask_t slot */
589
029190c5 590 doms = NULL;
1d3504fc 591 dattr = NULL;
cf417141 592 csa = NULL;
029190c5
PJ
593
594 /* Special case for the 99% of systems with one, full, sched domain */
595 if (is_sched_load_balance(&top_cpuset)) {
029190c5
PJ
596 doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
597 if (!doms)
cf417141
MK
598 goto done;
599
1d3504fc
HS
600 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
601 if (dattr) {
602 *dattr = SD_ATTR_INIT;
93a65575 603 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 604 }
029190c5 605 *doms = top_cpuset.cpus_allowed;
cf417141
MK
606
607 ndoms = 1;
608 goto done;
029190c5
PJ
609 }
610
029190c5
PJ
611 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
612 if (!csa)
613 goto done;
614 csn = 0;
615
aeed6824
LZ
616 list_add(&top_cpuset.stack_list, &q);
617 while (!list_empty(&q)) {
029190c5
PJ
618 struct cgroup *cont;
619 struct cpuset *child; /* scans child cpusets of cp */
489a5393 620
aeed6824
LZ
621 cp = list_first_entry(&q, struct cpuset, stack_list);
622 list_del(q.next);
623
489a5393
LJ
624 if (cpus_empty(cp->cpus_allowed))
625 continue;
626
f5393693
LJ
627 /*
628 * All child cpusets contain a subset of the parent's cpus, so
629 * just skip them, and then we call update_domain_attr_tree()
630 * to calc relax_domain_level of the corresponding sched
631 * domain.
632 */
633 if (is_sched_load_balance(cp)) {
029190c5 634 csa[csn++] = cp;
f5393693
LJ
635 continue;
636 }
489a5393 637
029190c5
PJ
638 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
639 child = cgroup_cs(cont);
aeed6824 640 list_add_tail(&child->stack_list, &q);
029190c5
PJ
641 }
642 }
643
644 for (i = 0; i < csn; i++)
645 csa[i]->pn = i;
646 ndoms = csn;
647
648restart:
649 /* Find the best partition (set of sched domains) */
650 for (i = 0; i < csn; i++) {
651 struct cpuset *a = csa[i];
652 int apn = a->pn;
653
654 for (j = 0; j < csn; j++) {
655 struct cpuset *b = csa[j];
656 int bpn = b->pn;
657
658 if (apn != bpn && cpusets_overlap(a, b)) {
659 for (k = 0; k < csn; k++) {
660 struct cpuset *c = csa[k];
661
662 if (c->pn == bpn)
663 c->pn = apn;
664 }
665 ndoms--; /* one less element */
666 goto restart;
667 }
668 }
669 }
670
cf417141
MK
671 /*
672 * Now we know how many domains to create.
673 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
674 */
029190c5 675 doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
700018e0 676 if (!doms)
cf417141 677 goto done;
cf417141
MK
678
679 /*
680 * The rest of the code, including the scheduler, can deal with
681 * dattr==NULL case. No need to abort if alloc fails.
682 */
1d3504fc 683 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
684
685 for (nslot = 0, i = 0; i < csn; i++) {
686 struct cpuset *a = csa[i];
cf417141 687 cpumask_t *dp;
029190c5
PJ
688 int apn = a->pn;
689
cf417141
MK
690 if (apn < 0) {
691 /* Skip completed partitions */
692 continue;
693 }
694
695 dp = doms + nslot;
696
697 if (nslot == ndoms) {
698 static int warnings = 10;
699 if (warnings) {
700 printk(KERN_WARNING
701 "rebuild_sched_domains confused:"
702 " nslot %d, ndoms %d, csn %d, i %d,"
703 " apn %d\n",
704 nslot, ndoms, csn, i, apn);
705 warnings--;
029190c5 706 }
cf417141
MK
707 continue;
708 }
029190c5 709
cf417141
MK
710 cpus_clear(*dp);
711 if (dattr)
712 *(dattr + nslot) = SD_ATTR_INIT;
713 for (j = i; j < csn; j++) {
714 struct cpuset *b = csa[j];
715
716 if (apn == b->pn) {
717 cpus_or(*dp, *dp, b->cpus_allowed);
718 if (dattr)
719 update_domain_attr_tree(dattr + nslot, b);
720
721 /* Done with this partition */
722 b->pn = -1;
029190c5 723 }
029190c5 724 }
cf417141 725 nslot++;
029190c5
PJ
726 }
727 BUG_ON(nslot != ndoms);
728
cf417141
MK
729done:
730 kfree(csa);
731
700018e0
LZ
732 /*
733 * Fallback to the default domain if kmalloc() failed.
734 * See comments in partition_sched_domains().
735 */
736 if (doms == NULL)
737 ndoms = 1;
738
cf417141
MK
739 *domains = doms;
740 *attributes = dattr;
741 return ndoms;
742}
743
744/*
745 * Rebuild scheduler domains.
746 *
747 * Call with neither cgroup_mutex held nor within get_online_cpus().
748 * Takes both cgroup_mutex and get_online_cpus().
749 *
750 * Cannot be directly called from cpuset code handling changes
751 * to the cpuset pseudo-filesystem, because it cannot be called
752 * from code that already holds cgroup_mutex.
753 */
754static void do_rebuild_sched_domains(struct work_struct *unused)
755{
756 struct sched_domain_attr *attr;
757 cpumask_t *doms;
758 int ndoms;
759
86ef5c9a 760 get_online_cpus();
cf417141
MK
761
762 /* Generate domain masks and attrs */
763 cgroup_lock();
764 ndoms = generate_sched_domains(&doms, &attr);
765 cgroup_unlock();
766
767 /* Have scheduler rebuild the domains */
768 partition_sched_domains(ndoms, doms, attr);
769
86ef5c9a 770 put_online_cpus();
cf417141 771}
029190c5 772
cf417141
MK
773static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
774
775/*
776 * Rebuild scheduler domains, asynchronously via workqueue.
777 *
778 * If the flag 'sched_load_balance' of any cpuset with non-empty
779 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
780 * which has that flag enabled, or if any cpuset with a non-empty
781 * 'cpus' is removed, then call this routine to rebuild the
782 * scheduler's dynamic sched domains.
783 *
784 * The rebuild_sched_domains() and partition_sched_domains()
785 * routines must nest cgroup_lock() inside get_online_cpus(),
786 * but such cpuset changes as these must nest that locking the
787 * other way, holding cgroup_lock() for much of the code.
788 *
789 * So in order to avoid an ABBA deadlock, the cpuset code handling
790 * these user changes delegates the actual sched domain rebuilding
791 * to a separate workqueue thread, which ends up processing the
792 * above do_rebuild_sched_domains() function.
793 */
794static void async_rebuild_sched_domains(void)
795{
796 schedule_work(&rebuild_sched_domains_work);
797}
798
799/*
800 * Accomplishes the same scheduler domain rebuild as the above
801 * async_rebuild_sched_domains(), however it directly calls the
802 * rebuild routine synchronously rather than calling it via an
803 * asynchronous work thread.
804 *
805 * This can only be called from code that is not holding
806 * cgroup_mutex (not nested in a cgroup_lock() call.)
807 */
808void rebuild_sched_domains(void)
809{
810 do_rebuild_sched_domains(NULL);
029190c5
PJ
811}
812
58f4790b
CW
813/**
814 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
815 * @tsk: task to test
816 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
817 *
2df167a3 818 * Call with cgroup_mutex held. May take callback_mutex during call.
58f4790b
CW
819 * Called for each task in a cgroup by cgroup_scan_tasks().
820 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
821 * words, if its mask is not equal to its cpuset's mask).
053199ed 822 */
9e0c914c
AB
823static int cpuset_test_cpumask(struct task_struct *tsk,
824 struct cgroup_scanner *scan)
58f4790b
CW
825{
826 return !cpus_equal(tsk->cpus_allowed,
827 (cgroup_cs(scan->cg))->cpus_allowed);
828}
053199ed 829
58f4790b
CW
830/**
831 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
832 * @tsk: task to test
833 * @scan: struct cgroup_scanner containing the cgroup of the task
834 *
835 * Called by cgroup_scan_tasks() for each task in a cgroup whose
836 * cpus_allowed mask needs to be changed.
837 *
838 * We don't need to re-check for the cgroup/cpuset membership, since we're
839 * holding cgroup_lock() at this point.
840 */
9e0c914c
AB
841static void cpuset_change_cpumask(struct task_struct *tsk,
842 struct cgroup_scanner *scan)
58f4790b 843{
f9a86fcb 844 set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed));
58f4790b
CW
845}
846
0b2f630a
MX
847/**
848 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
849 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
4e74339a 850 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a
MX
851 *
852 * Called with cgroup_mutex held
853 *
854 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
855 * calling callback functions for each.
856 *
4e74339a
LZ
857 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
858 * if @heap != NULL.
0b2f630a 859 */
4e74339a 860static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
0b2f630a
MX
861{
862 struct cgroup_scanner scan;
0b2f630a
MX
863
864 scan.cg = cs->css.cgroup;
865 scan.test_task = cpuset_test_cpumask;
866 scan.process_task = cpuset_change_cpumask;
4e74339a
LZ
867 scan.heap = heap;
868 cgroup_scan_tasks(&scan);
0b2f630a
MX
869}
870
58f4790b
CW
871/**
872 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
873 * @cs: the cpuset to consider
874 * @buf: buffer of cpu numbers written to this cpuset
875 */
e3712395 876static int update_cpumask(struct cpuset *cs, const char *buf)
1da177e4 877{
4e74339a 878 struct ptr_heap heap;
1da177e4 879 struct cpuset trialcs;
58f4790b
CW
880 int retval;
881 int is_load_balanced;
1da177e4 882
4c4d50f7
PJ
883 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
884 if (cs == &top_cpuset)
885 return -EACCES;
886
1da177e4 887 trialcs = *cs;
6f7f02e7
DR
888
889 /*
c8d9c90c 890 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
891 * Since cpulist_parse() fails on an empty mask, we special case
892 * that parsing. The validate_change() call ensures that cpusets
893 * with tasks have cpus.
6f7f02e7 894 */
020958b6 895 if (!*buf) {
6f7f02e7
DR
896 cpus_clear(trialcs.cpus_allowed);
897 } else {
898 retval = cpulist_parse(buf, trialcs.cpus_allowed);
899 if (retval < 0)
900 return retval;
37340746
LJ
901
902 if (!cpus_subset(trialcs.cpus_allowed, cpu_online_map))
903 return -EINVAL;
6f7f02e7 904 }
1da177e4 905 retval = validate_change(cs, &trialcs);
85d7b949
DG
906 if (retval < 0)
907 return retval;
029190c5 908
8707d8b8
PM
909 /* Nothing to do if the cpus didn't change */
910 if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
911 return 0;
58f4790b 912
4e74339a
LZ
913 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
914 if (retval)
915 return retval;
916
029190c5
PJ
917 is_load_balanced = is_sched_load_balance(&trialcs);
918
3d3f26a7 919 mutex_lock(&callback_mutex);
85d7b949 920 cs->cpus_allowed = trialcs.cpus_allowed;
3d3f26a7 921 mutex_unlock(&callback_mutex);
029190c5 922
8707d8b8
PM
923 /*
924 * Scan tasks in the cpuset, and update the cpumasks of any
58f4790b 925 * that need an update.
8707d8b8 926 */
4e74339a
LZ
927 update_tasks_cpumask(cs, &heap);
928
929 heap_free(&heap);
58f4790b 930
8707d8b8 931 if (is_load_balanced)
cf417141 932 async_rebuild_sched_domains();
85d7b949 933 return 0;
1da177e4
LT
934}
935
e4e364e8
PJ
936/*
937 * cpuset_migrate_mm
938 *
939 * Migrate memory region from one set of nodes to another.
940 *
941 * Temporarilly set tasks mems_allowed to target nodes of migration,
942 * so that the migration code can allocate pages on these nodes.
943 *
2df167a3 944 * Call holding cgroup_mutex, so current's cpuset won't change
c8d9c90c 945 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
946 * calls. Therefore we don't need to take task_lock around the
947 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 948 * our task's cpuset.
e4e364e8
PJ
949 *
950 * Hold callback_mutex around the two modifications of our tasks
951 * mems_allowed to synchronize with cpuset_mems_allowed().
952 *
953 * While the mm_struct we are migrating is typically from some
954 * other task, the task_struct mems_allowed that we are hacking
955 * is for our current task, which must allocate new pages for that
956 * migrating memory region.
957 *
958 * We call cpuset_update_task_memory_state() before hacking
959 * our tasks mems_allowed, so that we are assured of being in
960 * sync with our tasks cpuset, and in particular, callbacks to
961 * cpuset_update_task_memory_state() from nested page allocations
962 * won't see any mismatch of our cpuset and task mems_generation
963 * values, so won't overwrite our hacked tasks mems_allowed
964 * nodemask.
965 */
966
967static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
968 const nodemask_t *to)
969{
970 struct task_struct *tsk = current;
971
972 cpuset_update_task_memory_state();
973
974 mutex_lock(&callback_mutex);
975 tsk->mems_allowed = *to;
976 mutex_unlock(&callback_mutex);
977
978 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
979
980 mutex_lock(&callback_mutex);
8793d854 981 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
e4e364e8
PJ
982 mutex_unlock(&callback_mutex);
983}
984
8793d854
PM
985static void *cpuset_being_rebound;
986
0b2f630a
MX
987/**
988 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
989 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
990 * @oldmem: old mems_allowed of cpuset cs
991 *
992 * Called with cgroup_mutex held
993 * Return 0 if successful, -errno if not.
994 */
995static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem)
1da177e4 996{
8793d854 997 struct task_struct *p;
4225399a
PJ
998 struct mm_struct **mmarray;
999 int i, n, ntasks;
04c19fa6 1000 int migrate;
4225399a 1001 int fudge;
8793d854 1002 struct cgroup_iter it;
0b2f630a 1003 int retval;
59dac16f 1004
846a16bf 1005 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a
PJ
1006
1007 fudge = 10; /* spare mmarray[] slots */
1008 fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
1009 retval = -ENOMEM;
1010
1011 /*
1012 * Allocate mmarray[] to hold mm reference for each task
1013 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
1014 * tasklist_lock. We could use GFP_ATOMIC, but with a
1015 * few more lines of code, we can retry until we get a big
1016 * enough mmarray[] w/o using GFP_ATOMIC.
1017 */
1018 while (1) {
8793d854 1019 ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
4225399a
PJ
1020 ntasks += fudge;
1021 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
1022 if (!mmarray)
1023 goto done;
c2aef333 1024 read_lock(&tasklist_lock); /* block fork */
8793d854 1025 if (cgroup_task_count(cs->css.cgroup) <= ntasks)
4225399a 1026 break; /* got enough */
c2aef333 1027 read_unlock(&tasklist_lock); /* try again */
4225399a
PJ
1028 kfree(mmarray);
1029 }
1030
1031 n = 0;
1032
1033 /* Load up mmarray[] with mm reference for each task in cpuset. */
8793d854
PM
1034 cgroup_iter_start(cs->css.cgroup, &it);
1035 while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
4225399a
PJ
1036 struct mm_struct *mm;
1037
1038 if (n >= ntasks) {
1039 printk(KERN_WARNING
1040 "Cpuset mempolicy rebind incomplete.\n");
8793d854 1041 break;
4225399a 1042 }
4225399a
PJ
1043 mm = get_task_mm(p);
1044 if (!mm)
1045 continue;
1046 mmarray[n++] = mm;
8793d854
PM
1047 }
1048 cgroup_iter_end(cs->css.cgroup, &it);
c2aef333 1049 read_unlock(&tasklist_lock);
4225399a
PJ
1050
1051 /*
1052 * Now that we've dropped the tasklist spinlock, we can
1053 * rebind the vma mempolicies of each mm in mmarray[] to their
1054 * new cpuset, and release that mm. The mpol_rebind_mm()
1055 * call takes mmap_sem, which we couldn't take while holding
846a16bf 1056 * tasklist_lock. Forks can happen again now - the mpol_dup()
4225399a
PJ
1057 * cpuset_being_rebound check will catch such forks, and rebind
1058 * their vma mempolicies too. Because we still hold the global
2df167a3 1059 * cgroup_mutex, we know that no other rebind effort will
4225399a
PJ
1060 * be contending for the global variable cpuset_being_rebound.
1061 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1062 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1063 */
04c19fa6 1064 migrate = is_memory_migrate(cs);
4225399a
PJ
1065 for (i = 0; i < n; i++) {
1066 struct mm_struct *mm = mmarray[i];
1067
1068 mpol_rebind_mm(mm, &cs->mems_allowed);
e4e364e8 1069 if (migrate)
0b2f630a 1070 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
4225399a
PJ
1071 mmput(mm);
1072 }
1073
2df167a3 1074 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
4225399a 1075 kfree(mmarray);
8793d854 1076 cpuset_being_rebound = NULL;
4225399a 1077 retval = 0;
59dac16f 1078done:
1da177e4
LT
1079 return retval;
1080}
1081
0b2f630a
MX
1082/*
1083 * Handle user request to change the 'mems' memory placement
1084 * of a cpuset. Needs to validate the request, update the
1085 * cpusets mems_allowed and mems_generation, and for each
1086 * task in the cpuset, rebind any vma mempolicies and if
1087 * the cpuset is marked 'memory_migrate', migrate the tasks
1088 * pages to the new memory.
1089 *
1090 * Call with cgroup_mutex held. May take callback_mutex during call.
1091 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1092 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1093 * their mempolicies to the cpusets new mems_allowed.
1094 */
1095static int update_nodemask(struct cpuset *cs, const char *buf)
1096{
1097 struct cpuset trialcs;
1098 nodemask_t oldmem;
1099 int retval;
1100
1101 /*
1102 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1103 * it's read-only
1104 */
1105 if (cs == &top_cpuset)
1106 return -EACCES;
1107
1108 trialcs = *cs;
1109
1110 /*
1111 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1112 * Since nodelist_parse() fails on an empty mask, we special case
1113 * that parsing. The validate_change() call ensures that cpusets
1114 * with tasks have memory.
1115 */
1116 if (!*buf) {
1117 nodes_clear(trialcs.mems_allowed);
1118 } else {
1119 retval = nodelist_parse(buf, trialcs.mems_allowed);
1120 if (retval < 0)
1121 goto done;
1122
1123 if (!nodes_subset(trialcs.mems_allowed,
1124 node_states[N_HIGH_MEMORY]))
1125 return -EINVAL;
1126 }
1127 oldmem = cs->mems_allowed;
1128 if (nodes_equal(oldmem, trialcs.mems_allowed)) {
1129 retval = 0; /* Too easy - nothing to do */
1130 goto done;
1131 }
1132 retval = validate_change(cs, &trialcs);
1133 if (retval < 0)
1134 goto done;
1135
1136 mutex_lock(&callback_mutex);
1137 cs->mems_allowed = trialcs.mems_allowed;
1138 cs->mems_generation = cpuset_mems_generation++;
1139 mutex_unlock(&callback_mutex);
1140
1141 retval = update_tasks_nodemask(cs, &oldmem);
1142done:
1143 return retval;
1144}
1145
8793d854
PM
1146int current_cpuset_is_being_rebound(void)
1147{
1148 return task_cs(current) == cpuset_being_rebound;
1149}
1150
5be7a479 1151static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1152{
30e0e178
LZ
1153 if (val < -1 || val >= SD_LV_MAX)
1154 return -EINVAL;
1d3504fc
HS
1155
1156 if (val != cs->relax_domain_level) {
1157 cs->relax_domain_level = val;
c372e817 1158 if (!cpus_empty(cs->cpus_allowed) && is_sched_load_balance(cs))
cf417141 1159 async_rebuild_sched_domains();
1d3504fc
HS
1160 }
1161
1162 return 0;
1163}
1164
1da177e4
LT
1165/*
1166 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1167 * bit: the bit to update (see cpuset_flagbits_t)
1168 * cs: the cpuset to update
1169 * turning_on: whether the flag is being set or cleared
053199ed 1170 *
2df167a3 1171 * Call with cgroup_mutex held.
1da177e4
LT
1172 */
1173
700fe1ab
PM
1174static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1175 int turning_on)
1da177e4 1176{
1da177e4 1177 struct cpuset trialcs;
607717a6 1178 int err;
40b6a762 1179 int balance_flag_changed;
1da177e4 1180
1da177e4
LT
1181 trialcs = *cs;
1182 if (turning_on)
1183 set_bit(bit, &trialcs.flags);
1184 else
1185 clear_bit(bit, &trialcs.flags);
1186
1187 err = validate_change(cs, &trialcs);
85d7b949
DG
1188 if (err < 0)
1189 return err;
029190c5 1190
029190c5
PJ
1191 balance_flag_changed = (is_sched_load_balance(cs) !=
1192 is_sched_load_balance(&trialcs));
1193
3d3f26a7 1194 mutex_lock(&callback_mutex);
69604067 1195 cs->flags = trialcs.flags;
3d3f26a7 1196 mutex_unlock(&callback_mutex);
85d7b949 1197
40b6a762 1198 if (!cpus_empty(trialcs.cpus_allowed) && balance_flag_changed)
cf417141 1199 async_rebuild_sched_domains();
029190c5 1200
85d7b949 1201 return 0;
1da177e4
LT
1202}
1203
3e0d98b9 1204/*
80f7228b 1205 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1206 *
1207 * These routines manage a digitally filtered, constant time based,
1208 * event frequency meter. There are four routines:
1209 * fmeter_init() - initialize a frequency meter.
1210 * fmeter_markevent() - called each time the event happens.
1211 * fmeter_getrate() - returns the recent rate of such events.
1212 * fmeter_update() - internal routine used to update fmeter.
1213 *
1214 * A common data structure is passed to each of these routines,
1215 * which is used to keep track of the state required to manage the
1216 * frequency meter and its digital filter.
1217 *
1218 * The filter works on the number of events marked per unit time.
1219 * The filter is single-pole low-pass recursive (IIR). The time unit
1220 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1221 * simulate 3 decimal digits of precision (multiplied by 1000).
1222 *
1223 * With an FM_COEF of 933, and a time base of 1 second, the filter
1224 * has a half-life of 10 seconds, meaning that if the events quit
1225 * happening, then the rate returned from the fmeter_getrate()
1226 * will be cut in half each 10 seconds, until it converges to zero.
1227 *
1228 * It is not worth doing a real infinitely recursive filter. If more
1229 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1230 * just compute FM_MAXTICKS ticks worth, by which point the level
1231 * will be stable.
1232 *
1233 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1234 * arithmetic overflow in the fmeter_update() routine.
1235 *
1236 * Given the simple 32 bit integer arithmetic used, this meter works
1237 * best for reporting rates between one per millisecond (msec) and
1238 * one per 32 (approx) seconds. At constant rates faster than one
1239 * per msec it maxes out at values just under 1,000,000. At constant
1240 * rates between one per msec, and one per second it will stabilize
1241 * to a value N*1000, where N is the rate of events per second.
1242 * At constant rates between one per second and one per 32 seconds,
1243 * it will be choppy, moving up on the seconds that have an event,
1244 * and then decaying until the next event. At rates slower than
1245 * about one in 32 seconds, it decays all the way back to zero between
1246 * each event.
1247 */
1248
1249#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1250#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1251#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1252#define FM_SCALE 1000 /* faux fixed point scale */
1253
1254/* Initialize a frequency meter */
1255static void fmeter_init(struct fmeter *fmp)
1256{
1257 fmp->cnt = 0;
1258 fmp->val = 0;
1259 fmp->time = 0;
1260 spin_lock_init(&fmp->lock);
1261}
1262
1263/* Internal meter update - process cnt events and update value */
1264static void fmeter_update(struct fmeter *fmp)
1265{
1266 time_t now = get_seconds();
1267 time_t ticks = now - fmp->time;
1268
1269 if (ticks == 0)
1270 return;
1271
1272 ticks = min(FM_MAXTICKS, ticks);
1273 while (ticks-- > 0)
1274 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1275 fmp->time = now;
1276
1277 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1278 fmp->cnt = 0;
1279}
1280
1281/* Process any previous ticks, then bump cnt by one (times scale). */
1282static void fmeter_markevent(struct fmeter *fmp)
1283{
1284 spin_lock(&fmp->lock);
1285 fmeter_update(fmp);
1286 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1287 spin_unlock(&fmp->lock);
1288}
1289
1290/* Process any previous ticks, then return current value. */
1291static int fmeter_getrate(struct fmeter *fmp)
1292{
1293 int val;
1294
1295 spin_lock(&fmp->lock);
1296 fmeter_update(fmp);
1297 val = fmp->val;
1298 spin_unlock(&fmp->lock);
1299 return val;
1300}
1301
2df167a3 1302/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
8793d854
PM
1303static int cpuset_can_attach(struct cgroup_subsys *ss,
1304 struct cgroup *cont, struct task_struct *tsk)
1da177e4 1305{
8793d854 1306 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1307
1da177e4
LT
1308 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1309 return -ENOSPC;
9985b0ba
DR
1310 if (tsk->flags & PF_THREAD_BOUND) {
1311 cpumask_t mask;
1312
1313 mutex_lock(&callback_mutex);
1314 mask = cs->cpus_allowed;
1315 mutex_unlock(&callback_mutex);
1316 if (!cpus_equal(tsk->cpus_allowed, mask))
1317 return -EINVAL;
1318 }
1da177e4 1319
8793d854
PM
1320 return security_task_setscheduler(tsk, 0, NULL);
1321}
1da177e4 1322
8793d854
PM
1323static void cpuset_attach(struct cgroup_subsys *ss,
1324 struct cgroup *cont, struct cgroup *oldcont,
1325 struct task_struct *tsk)
1326{
1327 cpumask_t cpus;
1328 nodemask_t from, to;
1329 struct mm_struct *mm;
1330 struct cpuset *cs = cgroup_cs(cont);
1331 struct cpuset *oldcs = cgroup_cs(oldcont);
9985b0ba 1332 int err;
22fb52dd 1333
3d3f26a7 1334 mutex_lock(&callback_mutex);
1da177e4 1335 guarantee_online_cpus(cs, &cpus);
9985b0ba 1336 err = set_cpus_allowed_ptr(tsk, &cpus);
8793d854 1337 mutex_unlock(&callback_mutex);
9985b0ba
DR
1338 if (err)
1339 return;
1da177e4 1340
45b07ef3
PJ
1341 from = oldcs->mems_allowed;
1342 to = cs->mems_allowed;
4225399a
PJ
1343 mm = get_task_mm(tsk);
1344 if (mm) {
1345 mpol_rebind_mm(mm, &to);
2741a559 1346 if (is_memory_migrate(cs))
e4e364e8 1347 cpuset_migrate_mm(mm, &from, &to);
4225399a
PJ
1348 mmput(mm);
1349 }
1350
1da177e4
LT
1351}
1352
1353/* The various types of files and directories in a cpuset file system */
1354
1355typedef enum {
45b07ef3 1356 FILE_MEMORY_MIGRATE,
1da177e4
LT
1357 FILE_CPULIST,
1358 FILE_MEMLIST,
1359 FILE_CPU_EXCLUSIVE,
1360 FILE_MEM_EXCLUSIVE,
78608366 1361 FILE_MEM_HARDWALL,
029190c5 1362 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1363 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1364 FILE_MEMORY_PRESSURE_ENABLED,
1365 FILE_MEMORY_PRESSURE,
825a46af
PJ
1366 FILE_SPREAD_PAGE,
1367 FILE_SPREAD_SLAB,
1da177e4
LT
1368} cpuset_filetype_t;
1369
700fe1ab
PM
1370static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1371{
1372 int retval = 0;
1373 struct cpuset *cs = cgroup_cs(cgrp);
1374 cpuset_filetype_t type = cft->private;
1375
e3712395 1376 if (!cgroup_lock_live_group(cgrp))
700fe1ab 1377 return -ENODEV;
700fe1ab
PM
1378
1379 switch (type) {
1da177e4 1380 case FILE_CPU_EXCLUSIVE:
700fe1ab 1381 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1382 break;
1383 case FILE_MEM_EXCLUSIVE:
700fe1ab 1384 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1385 break;
78608366
PM
1386 case FILE_MEM_HARDWALL:
1387 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1388 break;
029190c5 1389 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1390 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1391 break;
45b07ef3 1392 case FILE_MEMORY_MIGRATE:
700fe1ab 1393 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1394 break;
3e0d98b9 1395 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1396 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1397 break;
1398 case FILE_MEMORY_PRESSURE:
1399 retval = -EACCES;
1400 break;
825a46af 1401 case FILE_SPREAD_PAGE:
700fe1ab 1402 retval = update_flag(CS_SPREAD_PAGE, cs, val);
151a4420 1403 cs->mems_generation = cpuset_mems_generation++;
825a46af
PJ
1404 break;
1405 case FILE_SPREAD_SLAB:
700fe1ab 1406 retval = update_flag(CS_SPREAD_SLAB, cs, val);
151a4420 1407 cs->mems_generation = cpuset_mems_generation++;
825a46af 1408 break;
1da177e4
LT
1409 default:
1410 retval = -EINVAL;
700fe1ab 1411 break;
1da177e4 1412 }
8793d854 1413 cgroup_unlock();
1da177e4
LT
1414 return retval;
1415}
1416
5be7a479
PM
1417static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1418{
1419 int retval = 0;
1420 struct cpuset *cs = cgroup_cs(cgrp);
1421 cpuset_filetype_t type = cft->private;
1422
e3712395 1423 if (!cgroup_lock_live_group(cgrp))
5be7a479 1424 return -ENODEV;
e3712395 1425
5be7a479
PM
1426 switch (type) {
1427 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1428 retval = update_relax_domain_level(cs, val);
1429 break;
1430 default:
1431 retval = -EINVAL;
1432 break;
1433 }
1434 cgroup_unlock();
1435 return retval;
1436}
1437
e3712395
PM
1438/*
1439 * Common handling for a write to a "cpus" or "mems" file.
1440 */
1441static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1442 const char *buf)
1443{
1444 int retval = 0;
1445
1446 if (!cgroup_lock_live_group(cgrp))
1447 return -ENODEV;
1448
1449 switch (cft->private) {
1450 case FILE_CPULIST:
1451 retval = update_cpumask(cgroup_cs(cgrp), buf);
1452 break;
1453 case FILE_MEMLIST:
1454 retval = update_nodemask(cgroup_cs(cgrp), buf);
1455 break;
1456 default:
1457 retval = -EINVAL;
1458 break;
1459 }
1460 cgroup_unlock();
1461 return retval;
1462}
1463
1da177e4
LT
1464/*
1465 * These ascii lists should be read in a single call, by using a user
1466 * buffer large enough to hold the entire map. If read in smaller
1467 * chunks, there is no guarantee of atomicity. Since the display format
1468 * used, list of ranges of sequential numbers, is variable length,
1469 * and since these maps can change value dynamically, one could read
1470 * gibberish by doing partial reads while a list was changing.
1471 * A single large read to a buffer that crosses a page boundary is
1472 * ok, because the result being copied to user land is not recomputed
1473 * across a page fault.
1474 */
1475
1476static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1477{
1478 cpumask_t mask;
1479
3d3f26a7 1480 mutex_lock(&callback_mutex);
1da177e4 1481 mask = cs->cpus_allowed;
3d3f26a7 1482 mutex_unlock(&callback_mutex);
1da177e4
LT
1483
1484 return cpulist_scnprintf(page, PAGE_SIZE, mask);
1485}
1486
1487static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1488{
1489 nodemask_t mask;
1490
3d3f26a7 1491 mutex_lock(&callback_mutex);
1da177e4 1492 mask = cs->mems_allowed;
3d3f26a7 1493 mutex_unlock(&callback_mutex);
1da177e4
LT
1494
1495 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1496}
1497
8793d854
PM
1498static ssize_t cpuset_common_file_read(struct cgroup *cont,
1499 struct cftype *cft,
1500 struct file *file,
1501 char __user *buf,
1502 size_t nbytes, loff_t *ppos)
1da177e4 1503{
8793d854 1504 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1505 cpuset_filetype_t type = cft->private;
1506 char *page;
1507 ssize_t retval = 0;
1508 char *s;
1da177e4 1509
e12ba74d 1510 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1511 return -ENOMEM;
1512
1513 s = page;
1514
1515 switch (type) {
1516 case FILE_CPULIST:
1517 s += cpuset_sprintf_cpulist(s, cs);
1518 break;
1519 case FILE_MEMLIST:
1520 s += cpuset_sprintf_memlist(s, cs);
1521 break;
1da177e4
LT
1522 default:
1523 retval = -EINVAL;
1524 goto out;
1525 }
1526 *s++ = '\n';
1da177e4 1527
eacaa1f5 1528 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1529out:
1530 free_page((unsigned long)page);
1531 return retval;
1532}
1533
700fe1ab
PM
1534static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1535{
1536 struct cpuset *cs = cgroup_cs(cont);
1537 cpuset_filetype_t type = cft->private;
1538 switch (type) {
1539 case FILE_CPU_EXCLUSIVE:
1540 return is_cpu_exclusive(cs);
1541 case FILE_MEM_EXCLUSIVE:
1542 return is_mem_exclusive(cs);
78608366
PM
1543 case FILE_MEM_HARDWALL:
1544 return is_mem_hardwall(cs);
700fe1ab
PM
1545 case FILE_SCHED_LOAD_BALANCE:
1546 return is_sched_load_balance(cs);
1547 case FILE_MEMORY_MIGRATE:
1548 return is_memory_migrate(cs);
1549 case FILE_MEMORY_PRESSURE_ENABLED:
1550 return cpuset_memory_pressure_enabled;
1551 case FILE_MEMORY_PRESSURE:
1552 return fmeter_getrate(&cs->fmeter);
1553 case FILE_SPREAD_PAGE:
1554 return is_spread_page(cs);
1555 case FILE_SPREAD_SLAB:
1556 return is_spread_slab(cs);
1557 default:
1558 BUG();
1559 }
cf417141
MK
1560
1561 /* Unreachable but makes gcc happy */
1562 return 0;
700fe1ab 1563}
1da177e4 1564
5be7a479
PM
1565static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1566{
1567 struct cpuset *cs = cgroup_cs(cont);
1568 cpuset_filetype_t type = cft->private;
1569 switch (type) {
1570 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1571 return cs->relax_domain_level;
1572 default:
1573 BUG();
1574 }
cf417141
MK
1575
1576 /* Unrechable but makes gcc happy */
1577 return 0;
5be7a479
PM
1578}
1579
1da177e4
LT
1580
1581/*
1582 * for the common functions, 'private' gives the type of file
1583 */
1584
addf2c73
PM
1585static struct cftype files[] = {
1586 {
1587 .name = "cpus",
1588 .read = cpuset_common_file_read,
e3712395
PM
1589 .write_string = cpuset_write_resmask,
1590 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1591 .private = FILE_CPULIST,
1592 },
1593
1594 {
1595 .name = "mems",
1596 .read = cpuset_common_file_read,
e3712395
PM
1597 .write_string = cpuset_write_resmask,
1598 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1599 .private = FILE_MEMLIST,
1600 },
1601
1602 {
1603 .name = "cpu_exclusive",
1604 .read_u64 = cpuset_read_u64,
1605 .write_u64 = cpuset_write_u64,
1606 .private = FILE_CPU_EXCLUSIVE,
1607 },
1608
1609 {
1610 .name = "mem_exclusive",
1611 .read_u64 = cpuset_read_u64,
1612 .write_u64 = cpuset_write_u64,
1613 .private = FILE_MEM_EXCLUSIVE,
1614 },
1615
78608366
PM
1616 {
1617 .name = "mem_hardwall",
1618 .read_u64 = cpuset_read_u64,
1619 .write_u64 = cpuset_write_u64,
1620 .private = FILE_MEM_HARDWALL,
1621 },
1622
addf2c73
PM
1623 {
1624 .name = "sched_load_balance",
1625 .read_u64 = cpuset_read_u64,
1626 .write_u64 = cpuset_write_u64,
1627 .private = FILE_SCHED_LOAD_BALANCE,
1628 },
1629
1630 {
1631 .name = "sched_relax_domain_level",
5be7a479
PM
1632 .read_s64 = cpuset_read_s64,
1633 .write_s64 = cpuset_write_s64,
addf2c73
PM
1634 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1635 },
1636
1637 {
1638 .name = "memory_migrate",
1639 .read_u64 = cpuset_read_u64,
1640 .write_u64 = cpuset_write_u64,
1641 .private = FILE_MEMORY_MIGRATE,
1642 },
1643
1644 {
1645 .name = "memory_pressure",
1646 .read_u64 = cpuset_read_u64,
1647 .write_u64 = cpuset_write_u64,
1648 .private = FILE_MEMORY_PRESSURE,
1649 },
1650
1651 {
1652 .name = "memory_spread_page",
1653 .read_u64 = cpuset_read_u64,
1654 .write_u64 = cpuset_write_u64,
1655 .private = FILE_SPREAD_PAGE,
1656 },
1657
1658 {
1659 .name = "memory_spread_slab",
1660 .read_u64 = cpuset_read_u64,
1661 .write_u64 = cpuset_write_u64,
1662 .private = FILE_SPREAD_SLAB,
1663 },
45b07ef3
PJ
1664};
1665
3e0d98b9
PJ
1666static struct cftype cft_memory_pressure_enabled = {
1667 .name = "memory_pressure_enabled",
700fe1ab
PM
1668 .read_u64 = cpuset_read_u64,
1669 .write_u64 = cpuset_write_u64,
3e0d98b9
PJ
1670 .private = FILE_MEMORY_PRESSURE_ENABLED,
1671};
1672
8793d854 1673static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4
LT
1674{
1675 int err;
1676
addf2c73
PM
1677 err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1678 if (err)
1da177e4 1679 return err;
8793d854 1680 /* memory_pressure_enabled is in root cpuset only */
addf2c73 1681 if (!cont->parent)
8793d854 1682 err = cgroup_add_file(cont, ss,
addf2c73
PM
1683 &cft_memory_pressure_enabled);
1684 return err;
1da177e4
LT
1685}
1686
8793d854
PM
1687/*
1688 * post_clone() is called at the end of cgroup_clone().
1689 * 'cgroup' was just created automatically as a result of
1690 * a cgroup_clone(), and the current task is about to
1691 * be moved into 'cgroup'.
1692 *
1693 * Currently we refuse to set up the cgroup - thereby
1694 * refusing the task to be entered, and as a result refusing
1695 * the sys_unshare() or clone() which initiated it - if any
1696 * sibling cpusets have exclusive cpus or mem.
1697 *
1698 * If this becomes a problem for some users who wish to
1699 * allow that scenario, then cpuset_post_clone() could be
1700 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2df167a3
PM
1701 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1702 * held.
8793d854
PM
1703 */
1704static void cpuset_post_clone(struct cgroup_subsys *ss,
1705 struct cgroup *cgroup)
1706{
1707 struct cgroup *parent, *child;
1708 struct cpuset *cs, *parent_cs;
1709
1710 parent = cgroup->parent;
1711 list_for_each_entry(child, &parent->children, sibling) {
1712 cs = cgroup_cs(child);
1713 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1714 return;
1715 }
1716 cs = cgroup_cs(cgroup);
1717 parent_cs = cgroup_cs(parent);
1718
1719 cs->mems_allowed = parent_cs->mems_allowed;
1720 cs->cpus_allowed = parent_cs->cpus_allowed;
1721 return;
1722}
1723
1da177e4
LT
1724/*
1725 * cpuset_create - create a cpuset
2df167a3
PM
1726 * ss: cpuset cgroup subsystem
1727 * cont: control group that the new cpuset will be part of
1da177e4
LT
1728 */
1729
8793d854
PM
1730static struct cgroup_subsys_state *cpuset_create(
1731 struct cgroup_subsys *ss,
1732 struct cgroup *cont)
1da177e4
LT
1733{
1734 struct cpuset *cs;
8793d854 1735 struct cpuset *parent;
1da177e4 1736
8793d854
PM
1737 if (!cont->parent) {
1738 /* This is early initialization for the top cgroup */
1739 top_cpuset.mems_generation = cpuset_mems_generation++;
1740 return &top_cpuset.css;
1741 }
1742 parent = cgroup_cs(cont->parent);
1da177e4
LT
1743 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1744 if (!cs)
8793d854 1745 return ERR_PTR(-ENOMEM);
1da177e4 1746
cf2a473c 1747 cpuset_update_task_memory_state();
1da177e4 1748 cs->flags = 0;
825a46af
PJ
1749 if (is_spread_page(parent))
1750 set_bit(CS_SPREAD_PAGE, &cs->flags);
1751 if (is_spread_slab(parent))
1752 set_bit(CS_SPREAD_SLAB, &cs->flags);
029190c5 1753 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
f9a86fcb
MT
1754 cpus_clear(cs->cpus_allowed);
1755 nodes_clear(cs->mems_allowed);
151a4420 1756 cs->mems_generation = cpuset_mems_generation++;
3e0d98b9 1757 fmeter_init(&cs->fmeter);
1d3504fc 1758 cs->relax_domain_level = -1;
1da177e4
LT
1759
1760 cs->parent = parent;
202f72d5 1761 number_of_cpusets++;
8793d854 1762 return &cs->css ;
1da177e4
LT
1763}
1764
029190c5 1765/*
029190c5
PJ
1766 * If the cpuset being removed has its flag 'sched_load_balance'
1767 * enabled, then simulate turning sched_load_balance off, which
cf417141 1768 * will call async_rebuild_sched_domains().
029190c5
PJ
1769 */
1770
8793d854 1771static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4 1772{
8793d854 1773 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1774
cf2a473c 1775 cpuset_update_task_memory_state();
029190c5
PJ
1776
1777 if (is_sched_load_balance(cs))
700fe1ab 1778 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
029190c5 1779
202f72d5 1780 number_of_cpusets--;
8793d854 1781 kfree(cs);
1da177e4
LT
1782}
1783
8793d854
PM
1784struct cgroup_subsys cpuset_subsys = {
1785 .name = "cpuset",
1786 .create = cpuset_create,
cf417141 1787 .destroy = cpuset_destroy,
8793d854
PM
1788 .can_attach = cpuset_can_attach,
1789 .attach = cpuset_attach,
1790 .populate = cpuset_populate,
1791 .post_clone = cpuset_post_clone,
1792 .subsys_id = cpuset_subsys_id,
1793 .early_init = 1,
1794};
1795
c417f024
PJ
1796/*
1797 * cpuset_init_early - just enough so that the calls to
1798 * cpuset_update_task_memory_state() in early init code
1799 * are harmless.
1800 */
1801
1802int __init cpuset_init_early(void)
1803{
8793d854 1804 top_cpuset.mems_generation = cpuset_mems_generation++;
c417f024
PJ
1805 return 0;
1806}
1807
8793d854 1808
1da177e4
LT
1809/**
1810 * cpuset_init - initialize cpusets at system boot
1811 *
1812 * Description: Initialize top_cpuset and the cpuset internal file system,
1813 **/
1814
1815int __init cpuset_init(void)
1816{
8793d854 1817 int err = 0;
1da177e4 1818
f9a86fcb
MT
1819 cpus_setall(top_cpuset.cpus_allowed);
1820 nodes_setall(top_cpuset.mems_allowed);
1da177e4 1821
3e0d98b9 1822 fmeter_init(&top_cpuset.fmeter);
151a4420 1823 top_cpuset.mems_generation = cpuset_mems_generation++;
029190c5 1824 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 1825 top_cpuset.relax_domain_level = -1;
1da177e4 1826
1da177e4
LT
1827 err = register_filesystem(&cpuset_fs_type);
1828 if (err < 0)
8793d854
PM
1829 return err;
1830
202f72d5 1831 number_of_cpusets = 1;
8793d854 1832 return 0;
1da177e4
LT
1833}
1834
956db3ca
CW
1835/**
1836 * cpuset_do_move_task - move a given task to another cpuset
1837 * @tsk: pointer to task_struct the task to move
1838 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1839 *
1840 * Called by cgroup_scan_tasks() for each task in a cgroup.
1841 * Return nonzero to stop the walk through the tasks.
1842 */
9e0c914c
AB
1843static void cpuset_do_move_task(struct task_struct *tsk,
1844 struct cgroup_scanner *scan)
956db3ca
CW
1845{
1846 struct cpuset_hotplug_scanner *chsp;
1847
1848 chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
1849 cgroup_attach_task(chsp->to, tsk);
1850}
1851
1852/**
1853 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1854 * @from: cpuset in which the tasks currently reside
1855 * @to: cpuset to which the tasks will be moved
1856 *
c8d9c90c
PJ
1857 * Called with cgroup_mutex held
1858 * callback_mutex must not be held, as cpuset_attach() will take it.
956db3ca
CW
1859 *
1860 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1861 * calling callback functions for each.
1862 */
1863static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1864{
1865 struct cpuset_hotplug_scanner scan;
1866
1867 scan.scan.cg = from->css.cgroup;
1868 scan.scan.test_task = NULL; /* select all tasks in cgroup */
1869 scan.scan.process_task = cpuset_do_move_task;
1870 scan.scan.heap = NULL;
1871 scan.to = to->css.cgroup;
1872
da5ef6bb 1873 if (cgroup_scan_tasks(&scan.scan))
956db3ca
CW
1874 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1875 "cgroup_scan_tasks failed\n");
1876}
1877
b1aac8bb 1878/*
cf417141 1879 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
1880 * or memory nodes, we need to walk over the cpuset hierarchy,
1881 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
1882 * last CPU or node from a cpuset, then move the tasks in the empty
1883 * cpuset to its next-highest non-empty parent.
b1aac8bb 1884 *
c8d9c90c
PJ
1885 * Called with cgroup_mutex held
1886 * callback_mutex must not be held, as cpuset_attach() will take it.
b1aac8bb 1887 */
956db3ca
CW
1888static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1889{
1890 struct cpuset *parent;
1891
c8d9c90c
PJ
1892 /*
1893 * The cgroup's css_sets list is in use if there are tasks
1894 * in the cpuset; the list is empty if there are none;
1895 * the cs->css.refcnt seems always 0.
1896 */
956db3ca
CW
1897 if (list_empty(&cs->css.cgroup->css_sets))
1898 return;
b1aac8bb 1899
956db3ca
CW
1900 /*
1901 * Find its next-highest non-empty parent, (top cpuset
1902 * has online cpus, so can't be empty).
1903 */
1904 parent = cs->parent;
b4501295
PJ
1905 while (cpus_empty(parent->cpus_allowed) ||
1906 nodes_empty(parent->mems_allowed))
956db3ca 1907 parent = parent->parent;
956db3ca
CW
1908
1909 move_member_tasks_to_cpuset(cs, parent);
1910}
1911
1912/*
1913 * Walk the specified cpuset subtree and look for empty cpusets.
1914 * The tasks of such cpuset must be moved to a parent cpuset.
1915 *
2df167a3 1916 * Called with cgroup_mutex held. We take callback_mutex to modify
956db3ca
CW
1917 * cpus_allowed and mems_allowed.
1918 *
1919 * This walk processes the tree from top to bottom, completing one layer
1920 * before dropping down to the next. It always processes a node before
1921 * any of its children.
1922 *
1923 * For now, since we lack memory hot unplug, we'll never see a cpuset
1924 * that has tasks along with an empty 'mems'. But if we did see such
1925 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1926 */
d294eb83 1927static void scan_for_empty_cpusets(struct cpuset *root)
b1aac8bb 1928{
8d1e6266 1929 LIST_HEAD(queue);
956db3ca
CW
1930 struct cpuset *cp; /* scans cpusets being updated */
1931 struct cpuset *child; /* scans child cpusets of cp */
8793d854 1932 struct cgroup *cont;
f9b4fb8d 1933 nodemask_t oldmems;
b1aac8bb 1934
956db3ca
CW
1935 list_add_tail((struct list_head *)&root->stack_list, &queue);
1936
956db3ca 1937 while (!list_empty(&queue)) {
8d1e6266 1938 cp = list_first_entry(&queue, struct cpuset, stack_list);
956db3ca
CW
1939 list_del(queue.next);
1940 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
1941 child = cgroup_cs(cont);
1942 list_add_tail(&child->stack_list, &queue);
1943 }
b4501295
PJ
1944
1945 /* Continue past cpusets with all cpus, mems online */
1946 if (cpus_subset(cp->cpus_allowed, cpu_online_map) &&
1947 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
1948 continue;
1949
f9b4fb8d
MX
1950 oldmems = cp->mems_allowed;
1951
956db3ca 1952 /* Remove offline cpus and mems from this cpuset. */
b4501295 1953 mutex_lock(&callback_mutex);
956db3ca
CW
1954 cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map);
1955 nodes_and(cp->mems_allowed, cp->mems_allowed,
1956 node_states[N_HIGH_MEMORY]);
b4501295
PJ
1957 mutex_unlock(&callback_mutex);
1958
1959 /* Move tasks from the empty cpuset to a parent */
c8d9c90c 1960 if (cpus_empty(cp->cpus_allowed) ||
b4501295 1961 nodes_empty(cp->mems_allowed))
956db3ca 1962 remove_tasks_in_empty_cpuset(cp);
f9b4fb8d 1963 else {
4e74339a 1964 update_tasks_cpumask(cp, NULL);
f9b4fb8d
MX
1965 update_tasks_nodemask(cp, &oldmems);
1966 }
b1aac8bb
PJ
1967 }
1968}
1969
4c4d50f7
PJ
1970/*
1971 * The top_cpuset tracks what CPUs and Memory Nodes are online,
1972 * period. This is necessary in order to make cpusets transparent
1973 * (of no affect) on systems that are actively using CPU hotplug
1974 * but making no active use of cpusets.
1975 *
38837fc7
PJ
1976 * This routine ensures that top_cpuset.cpus_allowed tracks
1977 * cpu_online_map on each CPU hotplug (cpuhp) event.
cf417141
MK
1978 *
1979 * Called within get_online_cpus(). Needs to call cgroup_lock()
1980 * before calling generate_sched_domains().
4c4d50f7 1981 */
cf417141 1982static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
029190c5 1983 unsigned long phase, void *unused_cpu)
4c4d50f7 1984{
cf417141
MK
1985 struct sched_domain_attr *attr;
1986 cpumask_t *doms;
1987 int ndoms;
1988
3e84050c 1989 switch (phase) {
3e84050c
DA
1990 case CPU_ONLINE:
1991 case CPU_ONLINE_FROZEN:
1992 case CPU_DEAD:
1993 case CPU_DEAD_FROZEN:
3e84050c 1994 break;
cf417141 1995
3e84050c 1996 default:
ac076758 1997 return NOTIFY_DONE;
3e84050c 1998 }
ac076758 1999
cf417141
MK
2000 cgroup_lock();
2001 top_cpuset.cpus_allowed = cpu_online_map;
2002 scan_for_empty_cpusets(&top_cpuset);
2003 ndoms = generate_sched_domains(&doms, &attr);
2004 cgroup_unlock();
2005
2006 /* Have scheduler rebuild the domains */
2007 partition_sched_domains(ndoms, doms, attr);
2008
3e84050c 2009 return NOTIFY_OK;
4c4d50f7 2010}
4c4d50f7 2011
b1aac8bb 2012#ifdef CONFIG_MEMORY_HOTPLUG
38837fc7 2013/*
0e1e7c7a 2014 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
cf417141
MK
2015 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2016 * See also the previous routine cpuset_track_online_cpus().
38837fc7 2017 */
1af98928 2018void cpuset_track_online_nodes(void)
38837fc7 2019{
cf417141
MK
2020 cgroup_lock();
2021 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2022 scan_for_empty_cpusets(&top_cpuset);
2023 cgroup_unlock();
38837fc7
PJ
2024}
2025#endif
2026
1da177e4
LT
2027/**
2028 * cpuset_init_smp - initialize cpus_allowed
2029 *
2030 * Description: Finish top cpuset after cpu, node maps are initialized
2031 **/
2032
2033void __init cpuset_init_smp(void)
2034{
2035 top_cpuset.cpus_allowed = cpu_online_map;
0e1e7c7a 2036 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
4c4d50f7 2037
cf417141 2038 hotcpu_notifier(cpuset_track_online_cpus, 0);
1da177e4
LT
2039}
2040
2041/**
1da177e4
LT
2042 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2043 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
f9a86fcb 2044 * @pmask: pointer to cpumask_t variable to receive cpus_allowed set.
1da177e4
LT
2045 *
2046 * Description: Returns the cpumask_t cpus_allowed of the cpuset
2047 * attached to the specified @tsk. Guaranteed to return some non-empty
2048 * subset of cpu_online_map, even if this means going outside the
2049 * tasks cpuset.
2050 **/
2051
f9a86fcb 2052void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask)
1da177e4 2053{
3d3f26a7 2054 mutex_lock(&callback_mutex);
f9a86fcb 2055 cpuset_cpus_allowed_locked(tsk, pmask);
470fd646 2056 mutex_unlock(&callback_mutex);
470fd646
CW
2057}
2058
2059/**
2060 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
2df167a3 2061 * Must be called with callback_mutex held.
470fd646 2062 **/
f9a86fcb 2063void cpuset_cpus_allowed_locked(struct task_struct *tsk, cpumask_t *pmask)
470fd646 2064{
909d75a3 2065 task_lock(tsk);
f9a86fcb 2066 guarantee_online_cpus(task_cs(tsk), pmask);
909d75a3 2067 task_unlock(tsk);
1da177e4
LT
2068}
2069
2070void cpuset_init_current_mems_allowed(void)
2071{
f9a86fcb 2072 nodes_setall(current->mems_allowed);
1da177e4
LT
2073}
2074
909d75a3
PJ
2075/**
2076 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2077 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2078 *
2079 * Description: Returns the nodemask_t mems_allowed of the cpuset
2080 * attached to the specified @tsk. Guaranteed to return some non-empty
0e1e7c7a 2081 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
909d75a3
PJ
2082 * tasks cpuset.
2083 **/
2084
2085nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2086{
2087 nodemask_t mask;
2088
3d3f26a7 2089 mutex_lock(&callback_mutex);
909d75a3 2090 task_lock(tsk);
8793d854 2091 guarantee_online_mems(task_cs(tsk), &mask);
909d75a3 2092 task_unlock(tsk);
3d3f26a7 2093 mutex_unlock(&callback_mutex);
909d75a3
PJ
2094
2095 return mask;
2096}
2097
d9fd8a6d 2098/**
19770b32
MG
2099 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2100 * @nodemask: the nodemask to be checked
d9fd8a6d 2101 *
19770b32 2102 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2103 */
19770b32 2104int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2105{
19770b32 2106 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2107}
2108
9bf2229f 2109/*
78608366
PM
2110 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2111 * mem_hardwall ancestor to the specified cpuset. Call holding
2112 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2113 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2114 */
78608366 2115static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
9bf2229f 2116{
78608366 2117 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
9bf2229f
PJ
2118 cs = cs->parent;
2119 return cs;
2120}
2121
d9fd8a6d 2122/**
02a0e53d 2123 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
9bf2229f 2124 * @z: is this zone on an allowed node?
02a0e53d 2125 * @gfp_mask: memory allocation flags
d9fd8a6d 2126 *
02a0e53d
PJ
2127 * If we're in interrupt, yes, we can always allocate. If
2128 * __GFP_THISNODE is set, yes, we can always allocate. If zone
9bf2229f
PJ
2129 * z's node is in our tasks mems_allowed, yes. If it's not a
2130 * __GFP_HARDWALL request and this zone's nodes is in the nearest
78608366 2131 * hardwalled cpuset ancestor to this tasks cpuset, yes.
c596d9f3
DR
2132 * If the task has been OOM killed and has access to memory reserves
2133 * as specified by the TIF_MEMDIE flag, yes.
9bf2229f
PJ
2134 * Otherwise, no.
2135 *
02a0e53d
PJ
2136 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
2137 * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
2138 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
2139 * from an enclosing cpuset.
2140 *
2141 * cpuset_zone_allowed_hardwall() only handles the simpler case of
2142 * hardwall cpusets, and never sleeps.
2143 *
2144 * The __GFP_THISNODE placement logic is really handled elsewhere,
2145 * by forcibly using a zonelist starting at a specified node, and by
2146 * (in get_page_from_freelist()) refusing to consider the zones for
2147 * any node on the zonelist except the first. By the time any such
2148 * calls get to this routine, we should just shut up and say 'yes'.
2149 *
9bf2229f 2150 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2151 * and do not allow allocations outside the current tasks cpuset
2152 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2153 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2154 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2155 *
02a0e53d
PJ
2156 * Scanning up parent cpusets requires callback_mutex. The
2157 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2158 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2159 * current tasks mems_allowed came up empty on the first pass over
2160 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2161 * cpuset are short of memory, might require taking the callback_mutex
2162 * mutex.
9bf2229f 2163 *
36be57ff 2164 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2165 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2166 * so no allocation on a node outside the cpuset is allowed (unless
2167 * in interrupt, of course).
36be57ff
PJ
2168 *
2169 * The second pass through get_page_from_freelist() doesn't even call
2170 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2171 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2172 * in alloc_flags. That logic and the checks below have the combined
2173 * affect that:
9bf2229f
PJ
2174 * in_interrupt - any node ok (current task context irrelevant)
2175 * GFP_ATOMIC - any node ok
c596d9f3 2176 * TIF_MEMDIE - any node ok
78608366 2177 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2178 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2179 *
2180 * Rule:
02a0e53d 2181 * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2182 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2183 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2184 */
9bf2229f 2185
02a0e53d 2186int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
1da177e4 2187{
9bf2229f
PJ
2188 int node; /* node that zone z is on */
2189 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2190 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2191
9b819d20 2192 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2193 return 1;
89fa3024 2194 node = zone_to_nid(z);
92d1dbd2 2195 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2196 if (node_isset(node, current->mems_allowed))
2197 return 1;
c596d9f3
DR
2198 /*
2199 * Allow tasks that have access to memory reserves because they have
2200 * been OOM killed to get memory anywhere.
2201 */
2202 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2203 return 1;
9bf2229f
PJ
2204 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2205 return 0;
2206
5563e770
BP
2207 if (current->flags & PF_EXITING) /* Let dying task have memory */
2208 return 1;
2209
9bf2229f 2210 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2211 mutex_lock(&callback_mutex);
053199ed 2212
053199ed 2213 task_lock(current);
78608366 2214 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2215 task_unlock(current);
2216
9bf2229f 2217 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2218 mutex_unlock(&callback_mutex);
9bf2229f 2219 return allowed;
1da177e4
LT
2220}
2221
02a0e53d
PJ
2222/*
2223 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
2224 * @z: is this zone on an allowed node?
2225 * @gfp_mask: memory allocation flags
2226 *
2227 * If we're in interrupt, yes, we can always allocate.
2228 * If __GFP_THISNODE is set, yes, we can always allocate. If zone
c596d9f3
DR
2229 * z's node is in our tasks mems_allowed, yes. If the task has been
2230 * OOM killed and has access to memory reserves as specified by the
2231 * TIF_MEMDIE flag, yes. Otherwise, no.
02a0e53d
PJ
2232 *
2233 * The __GFP_THISNODE placement logic is really handled elsewhere,
2234 * by forcibly using a zonelist starting at a specified node, and by
2235 * (in get_page_from_freelist()) refusing to consider the zones for
2236 * any node on the zonelist except the first. By the time any such
2237 * calls get to this routine, we should just shut up and say 'yes'.
2238 *
2239 * Unlike the cpuset_zone_allowed_softwall() variant, above,
2240 * this variant requires that the zone be in the current tasks
2241 * mems_allowed or that we're in interrupt. It does not scan up the
2242 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2243 * It never sleeps.
2244 */
2245
2246int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
2247{
2248 int node; /* node that zone z is on */
2249
2250 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2251 return 1;
2252 node = zone_to_nid(z);
2253 if (node_isset(node, current->mems_allowed))
2254 return 1;
dedf8b79
DW
2255 /*
2256 * Allow tasks that have access to memory reserves because they have
2257 * been OOM killed to get memory anywhere.
2258 */
2259 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2260 return 1;
02a0e53d
PJ
2261 return 0;
2262}
2263
505970b9
PJ
2264/**
2265 * cpuset_lock - lock out any changes to cpuset structures
2266 *
3d3f26a7 2267 * The out of memory (oom) code needs to mutex_lock cpusets
505970b9 2268 * from being changed while it scans the tasklist looking for a
3d3f26a7 2269 * task in an overlapping cpuset. Expose callback_mutex via this
505970b9
PJ
2270 * cpuset_lock() routine, so the oom code can lock it, before
2271 * locking the task list. The tasklist_lock is a spinlock, so
3d3f26a7 2272 * must be taken inside callback_mutex.
505970b9
PJ
2273 */
2274
2275void cpuset_lock(void)
2276{
3d3f26a7 2277 mutex_lock(&callback_mutex);
505970b9
PJ
2278}
2279
2280/**
2281 * cpuset_unlock - release lock on cpuset changes
2282 *
2283 * Undo the lock taken in a previous cpuset_lock() call.
2284 */
2285
2286void cpuset_unlock(void)
2287{
3d3f26a7 2288 mutex_unlock(&callback_mutex);
505970b9
PJ
2289}
2290
825a46af
PJ
2291/**
2292 * cpuset_mem_spread_node() - On which node to begin search for a page
2293 *
2294 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2295 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2296 * and if the memory allocation used cpuset_mem_spread_node()
2297 * to determine on which node to start looking, as it will for
2298 * certain page cache or slab cache pages such as used for file
2299 * system buffers and inode caches, then instead of starting on the
2300 * local node to look for a free page, rather spread the starting
2301 * node around the tasks mems_allowed nodes.
2302 *
2303 * We don't have to worry about the returned node being offline
2304 * because "it can't happen", and even if it did, it would be ok.
2305 *
2306 * The routines calling guarantee_online_mems() are careful to
2307 * only set nodes in task->mems_allowed that are online. So it
2308 * should not be possible for the following code to return an
2309 * offline node. But if it did, that would be ok, as this routine
2310 * is not returning the node where the allocation must be, only
2311 * the node where the search should start. The zonelist passed to
2312 * __alloc_pages() will include all nodes. If the slab allocator
2313 * is passed an offline node, it will fall back to the local node.
2314 * See kmem_cache_alloc_node().
2315 */
2316
2317int cpuset_mem_spread_node(void)
2318{
2319 int node;
2320
2321 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2322 if (node == MAX_NUMNODES)
2323 node = first_node(current->mems_allowed);
2324 current->cpuset_mem_spread_rotor = node;
2325 return node;
2326}
2327EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2328
ef08e3b4 2329/**
bbe373f2
DR
2330 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2331 * @tsk1: pointer to task_struct of some task.
2332 * @tsk2: pointer to task_struct of some other task.
2333 *
2334 * Description: Return true if @tsk1's mems_allowed intersects the
2335 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2336 * one of the task's memory usage might impact the memory available
2337 * to the other.
ef08e3b4
PJ
2338 **/
2339
bbe373f2
DR
2340int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2341 const struct task_struct *tsk2)
ef08e3b4 2342{
bbe373f2 2343 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2344}
2345
3e0d98b9
PJ
2346/*
2347 * Collection of memory_pressure is suppressed unless
2348 * this flag is enabled by writing "1" to the special
2349 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2350 */
2351
c5b2aff8 2352int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2353
2354/**
2355 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2356 *
2357 * Keep a running average of the rate of synchronous (direct)
2358 * page reclaim efforts initiated by tasks in each cpuset.
2359 *
2360 * This represents the rate at which some task in the cpuset
2361 * ran low on memory on all nodes it was allowed to use, and
2362 * had to enter the kernels page reclaim code in an effort to
2363 * create more free memory by tossing clean pages or swapping
2364 * or writing dirty pages.
2365 *
2366 * Display to user space in the per-cpuset read-only file
2367 * "memory_pressure". Value displayed is an integer
2368 * representing the recent rate of entry into the synchronous
2369 * (direct) page reclaim by any task attached to the cpuset.
2370 **/
2371
2372void __cpuset_memory_pressure_bump(void)
2373{
3e0d98b9 2374 task_lock(current);
8793d854 2375 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2376 task_unlock(current);
2377}
2378
8793d854 2379#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2380/*
2381 * proc_cpuset_show()
2382 * - Print tasks cpuset path into seq_file.
2383 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2384 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2385 * doesn't really matter if tsk->cpuset changes after we read it,
c8d9c90c 2386 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2df167a3 2387 * anyway.
1da177e4 2388 */
029190c5 2389static int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2390{
13b41b09 2391 struct pid *pid;
1da177e4
LT
2392 struct task_struct *tsk;
2393 char *buf;
8793d854 2394 struct cgroup_subsys_state *css;
99f89551 2395 int retval;
1da177e4 2396
99f89551 2397 retval = -ENOMEM;
1da177e4
LT
2398 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2399 if (!buf)
99f89551
EB
2400 goto out;
2401
2402 retval = -ESRCH;
13b41b09
EB
2403 pid = m->private;
2404 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2405 if (!tsk)
2406 goto out_free;
1da177e4 2407
99f89551 2408 retval = -EINVAL;
8793d854
PM
2409 cgroup_lock();
2410 css = task_subsys_state(tsk, cpuset_subsys_id);
2411 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
1da177e4 2412 if (retval < 0)
99f89551 2413 goto out_unlock;
1da177e4
LT
2414 seq_puts(m, buf);
2415 seq_putc(m, '\n');
99f89551 2416out_unlock:
8793d854 2417 cgroup_unlock();
99f89551
EB
2418 put_task_struct(tsk);
2419out_free:
1da177e4 2420 kfree(buf);
99f89551 2421out:
1da177e4
LT
2422 return retval;
2423}
2424
2425static int cpuset_open(struct inode *inode, struct file *file)
2426{
13b41b09
EB
2427 struct pid *pid = PROC_I(inode)->pid;
2428 return single_open(file, proc_cpuset_show, pid);
1da177e4
LT
2429}
2430
9a32144e 2431const struct file_operations proc_cpuset_operations = {
1da177e4
LT
2432 .open = cpuset_open,
2433 .read = seq_read,
2434 .llseek = seq_lseek,
2435 .release = single_release,
2436};
8793d854 2437#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4
LT
2438
2439/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2440void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2441{
2442 seq_printf(m, "Cpus_allowed:\t");
30e8e136 2443 seq_cpumask(m, &task->cpus_allowed);
df5f8314 2444 seq_printf(m, "\n");
39106dcf 2445 seq_printf(m, "Cpus_allowed_list:\t");
30e8e136 2446 seq_cpumask_list(m, &task->cpus_allowed);
39106dcf 2447 seq_printf(m, "\n");
df5f8314 2448 seq_printf(m, "Mems_allowed:\t");
30e8e136 2449 seq_nodemask(m, &task->mems_allowed);
df5f8314 2450 seq_printf(m, "\n");
39106dcf 2451 seq_printf(m, "Mems_allowed_list:\t");
30e8e136 2452 seq_nodemask_list(m, &task->mems_allowed);
39106dcf 2453 seq_printf(m, "\n");
1da177e4 2454}