]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/cpuset.c
[PATCH] cpuset: numa_policy_rebind cleanup
[net-next-2.6.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004 Silicon Graphics, Inc.
8 *
9 * Portions derived from Patrick Mochel's sysfs code.
10 * sysfs is Copyright (c) 2001-3 Patrick Mochel
11 * Portions Copyright (c) 2004 Silicon Graphics, Inc.
12 *
13 * 2003-10-10 Written by Simon Derr <simon.derr@bull.net>
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson <pj@sgi.com>
16 *
17 * This file is subject to the terms and conditions of the GNU General Public
18 * License. See the file COPYING in the main directory of the Linux
19 * distribution for more details.
20 */
21
22#include <linux/config.h>
23#include <linux/cpu.h>
24#include <linux/cpumask.h>
25#include <linux/cpuset.h>
26#include <linux/err.h>
27#include <linux/errno.h>
28#include <linux/file.h>
29#include <linux/fs.h>
30#include <linux/init.h>
31#include <linux/interrupt.h>
32#include <linux/kernel.h>
33#include <linux/kmod.h>
34#include <linux/list.h>
68860ec1 35#include <linux/mempolicy.h>
1da177e4
LT
36#include <linux/mm.h>
37#include <linux/module.h>
38#include <linux/mount.h>
39#include <linux/namei.h>
40#include <linux/pagemap.h>
41#include <linux/proc_fs.h>
42#include <linux/sched.h>
43#include <linux/seq_file.h>
44#include <linux/slab.h>
45#include <linux/smp_lock.h>
46#include <linux/spinlock.h>
47#include <linux/stat.h>
48#include <linux/string.h>
49#include <linux/time.h>
50#include <linux/backing-dev.h>
51#include <linux/sort.h>
52
53#include <asm/uaccess.h>
54#include <asm/atomic.h>
55#include <asm/semaphore.h>
56
c5b2aff8 57#define CPUSET_SUPER_MAGIC 0x27e0eb
1da177e4 58
3e0d98b9
PJ
59/* See "Frequency meter" comments, below. */
60
61struct fmeter {
62 int cnt; /* unprocessed events count */
63 int val; /* most recent output value */
64 time_t time; /* clock (secs) when val computed */
65 spinlock_t lock; /* guards read or write of above */
66};
67
1da177e4
LT
68struct cpuset {
69 unsigned long flags; /* "unsigned long" so bitops work */
70 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
71 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
72
053199ed
PJ
73 /*
74 * Count is atomic so can incr (fork) or decr (exit) without a lock.
75 */
1da177e4
LT
76 atomic_t count; /* count tasks using this cpuset */
77
78 /*
79 * We link our 'sibling' struct into our parents 'children'.
80 * Our children link their 'sibling' into our 'children'.
81 */
82 struct list_head sibling; /* my parents children */
83 struct list_head children; /* my children */
84
85 struct cpuset *parent; /* my parent */
86 struct dentry *dentry; /* cpuset fs entry */
87
88 /*
89 * Copy of global cpuset_mems_generation as of the most
90 * recent time this cpuset changed its mems_allowed.
91 */
3e0d98b9
PJ
92 int mems_generation;
93
94 struct fmeter fmeter; /* memory_pressure filter */
1da177e4
LT
95};
96
97/* bits in struct cpuset flags field */
98typedef enum {
99 CS_CPU_EXCLUSIVE,
100 CS_MEM_EXCLUSIVE,
45b07ef3 101 CS_MEMORY_MIGRATE,
1da177e4
LT
102 CS_REMOVED,
103 CS_NOTIFY_ON_RELEASE
104} cpuset_flagbits_t;
105
106/* convenient tests for these bits */
107static inline int is_cpu_exclusive(const struct cpuset *cs)
108{
109 return !!test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
110}
111
112static inline int is_mem_exclusive(const struct cpuset *cs)
113{
114 return !!test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
115}
116
117static inline int is_removed(const struct cpuset *cs)
118{
119 return !!test_bit(CS_REMOVED, &cs->flags);
120}
121
122static inline int notify_on_release(const struct cpuset *cs)
123{
124 return !!test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
125}
126
45b07ef3
PJ
127static inline int is_memory_migrate(const struct cpuset *cs)
128{
129 return !!test_bit(CS_MEMORY_MIGRATE, &cs->flags);
130}
131
1da177e4
LT
132/*
133 * Increment this atomic integer everytime any cpuset changes its
134 * mems_allowed value. Users of cpusets can track this generation
135 * number, and avoid having to lock and reload mems_allowed unless
136 * the cpuset they're using changes generation.
137 *
138 * A single, global generation is needed because attach_task() could
139 * reattach a task to a different cpuset, which must not have its
140 * generation numbers aliased with those of that tasks previous cpuset.
141 *
142 * Generations are needed for mems_allowed because one task cannot
143 * modify anothers memory placement. So we must enable every task,
144 * on every visit to __alloc_pages(), to efficiently check whether
145 * its current->cpuset->mems_allowed has changed, requiring an update
146 * of its current->mems_allowed.
147 */
148static atomic_t cpuset_mems_generation = ATOMIC_INIT(1);
149
150static struct cpuset top_cpuset = {
151 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
152 .cpus_allowed = CPU_MASK_ALL,
153 .mems_allowed = NODE_MASK_ALL,
154 .count = ATOMIC_INIT(0),
155 .sibling = LIST_HEAD_INIT(top_cpuset.sibling),
156 .children = LIST_HEAD_INIT(top_cpuset.children),
1da177e4
LT
157};
158
159static struct vfsmount *cpuset_mount;
3e0d98b9 160static struct super_block *cpuset_sb;
1da177e4
LT
161
162/*
053199ed
PJ
163 * We have two global cpuset semaphores below. They can nest.
164 * It is ok to first take manage_sem, then nest callback_sem. We also
165 * require taking task_lock() when dereferencing a tasks cpuset pointer.
166 * See "The task_lock() exception", at the end of this comment.
167 *
168 * A task must hold both semaphores to modify cpusets. If a task
169 * holds manage_sem, then it blocks others wanting that semaphore,
170 * ensuring that it is the only task able to also acquire callback_sem
171 * and be able to modify cpusets. It can perform various checks on
172 * the cpuset structure first, knowing nothing will change. It can
173 * also allocate memory while just holding manage_sem. While it is
174 * performing these checks, various callback routines can briefly
175 * acquire callback_sem to query cpusets. Once it is ready to make
176 * the changes, it takes callback_sem, blocking everyone else.
177 *
178 * Calls to the kernel memory allocator can not be made while holding
179 * callback_sem, as that would risk double tripping on callback_sem
180 * from one of the callbacks into the cpuset code from within
181 * __alloc_pages().
182 *
183 * If a task is only holding callback_sem, then it has read-only
184 * access to cpusets.
185 *
186 * The task_struct fields mems_allowed and mems_generation may only
187 * be accessed in the context of that task, so require no locks.
188 *
189 * Any task can increment and decrement the count field without lock.
190 * So in general, code holding manage_sem or callback_sem can't rely
191 * on the count field not changing. However, if the count goes to
192 * zero, then only attach_task(), which holds both semaphores, can
193 * increment it again. Because a count of zero means that no tasks
194 * are currently attached, therefore there is no way a task attached
195 * to that cpuset can fork (the other way to increment the count).
196 * So code holding manage_sem or callback_sem can safely assume that
197 * if the count is zero, it will stay zero. Similarly, if a task
198 * holds manage_sem or callback_sem on a cpuset with zero count, it
199 * knows that the cpuset won't be removed, as cpuset_rmdir() needs
200 * both of those semaphores.
201 *
202 * A possible optimization to improve parallelism would be to make
203 * callback_sem a R/W semaphore (rwsem), allowing the callback routines
204 * to proceed in parallel, with read access, until the holder of
205 * manage_sem needed to take this rwsem for exclusive write access
206 * and modify some cpusets.
207 *
208 * The cpuset_common_file_write handler for operations that modify
209 * the cpuset hierarchy holds manage_sem across the entire operation,
210 * single threading all such cpuset modifications across the system.
211 *
212 * The cpuset_common_file_read() handlers only hold callback_sem across
213 * small pieces of code, such as when reading out possibly multi-word
214 * cpumasks and nodemasks.
215 *
216 * The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't
217 * (usually) take either semaphore. These are the two most performance
218 * critical pieces of code here. The exception occurs on cpuset_exit(),
219 * when a task in a notify_on_release cpuset exits. Then manage_sem
2efe86b8 220 * is taken, and if the cpuset count is zero, a usermode call made
1da177e4
LT
221 * to /sbin/cpuset_release_agent with the name of the cpuset (path
222 * relative to the root of cpuset file system) as the argument.
223 *
053199ed
PJ
224 * A cpuset can only be deleted if both its 'count' of using tasks
225 * is zero, and its list of 'children' cpusets is empty. Since all
226 * tasks in the system use _some_ cpuset, and since there is always at
227 * least one task in the system (init, pid == 1), therefore, top_cpuset
228 * always has either children cpusets and/or using tasks. So we don't
229 * need a special hack to ensure that top_cpuset cannot be deleted.
230 *
231 * The above "Tale of Two Semaphores" would be complete, but for:
232 *
233 * The task_lock() exception
234 *
235 * The need for this exception arises from the action of attach_task(),
236 * which overwrites one tasks cpuset pointer with another. It does
237 * so using both semaphores, however there are several performance
238 * critical places that need to reference task->cpuset without the
239 * expense of grabbing a system global semaphore. Therefore except as
240 * noted below, when dereferencing or, as in attach_task(), modifying
241 * a tasks cpuset pointer we use task_lock(), which acts on a spinlock
242 * (task->alloc_lock) already in the task_struct routinely used for
243 * such matters.
1da177e4
LT
244 */
245
053199ed
PJ
246static DECLARE_MUTEX(manage_sem);
247static DECLARE_MUTEX(callback_sem);
4247bdc6 248
1da177e4
LT
249/*
250 * A couple of forward declarations required, due to cyclic reference loop:
251 * cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file
252 * -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
253 */
254
255static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
256static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);
257
258static struct backing_dev_info cpuset_backing_dev_info = {
259 .ra_pages = 0, /* No readahead */
260 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
261};
262
263static struct inode *cpuset_new_inode(mode_t mode)
264{
265 struct inode *inode = new_inode(cpuset_sb);
266
267 if (inode) {
268 inode->i_mode = mode;
269 inode->i_uid = current->fsuid;
270 inode->i_gid = current->fsgid;
271 inode->i_blksize = PAGE_CACHE_SIZE;
272 inode->i_blocks = 0;
273 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
274 inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;
275 }
276 return inode;
277}
278
279static void cpuset_diput(struct dentry *dentry, struct inode *inode)
280{
281 /* is dentry a directory ? if so, kfree() associated cpuset */
282 if (S_ISDIR(inode->i_mode)) {
283 struct cpuset *cs = dentry->d_fsdata;
284 BUG_ON(!(is_removed(cs)));
285 kfree(cs);
286 }
287 iput(inode);
288}
289
290static struct dentry_operations cpuset_dops = {
291 .d_iput = cpuset_diput,
292};
293
294static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
295{
5f45f1a7 296 struct dentry *d = lookup_one_len(name, parent, strlen(name));
1da177e4
LT
297 if (!IS_ERR(d))
298 d->d_op = &cpuset_dops;
299 return d;
300}
301
302static void remove_dir(struct dentry *d)
303{
304 struct dentry *parent = dget(d->d_parent);
305
306 d_delete(d);
307 simple_rmdir(parent->d_inode, d);
308 dput(parent);
309}
310
311/*
312 * NOTE : the dentry must have been dget()'ed
313 */
314static void cpuset_d_remove_dir(struct dentry *dentry)
315{
316 struct list_head *node;
317
318 spin_lock(&dcache_lock);
319 node = dentry->d_subdirs.next;
320 while (node != &dentry->d_subdirs) {
321 struct dentry *d = list_entry(node, struct dentry, d_child);
322 list_del_init(node);
323 if (d->d_inode) {
324 d = dget_locked(d);
325 spin_unlock(&dcache_lock);
326 d_delete(d);
327 simple_unlink(dentry->d_inode, d);
328 dput(d);
329 spin_lock(&dcache_lock);
330 }
331 node = dentry->d_subdirs.next;
332 }
333 list_del_init(&dentry->d_child);
334 spin_unlock(&dcache_lock);
335 remove_dir(dentry);
336}
337
338static struct super_operations cpuset_ops = {
339 .statfs = simple_statfs,
340 .drop_inode = generic_delete_inode,
341};
342
343static int cpuset_fill_super(struct super_block *sb, void *unused_data,
344 int unused_silent)
345{
346 struct inode *inode;
347 struct dentry *root;
348
349 sb->s_blocksize = PAGE_CACHE_SIZE;
350 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
351 sb->s_magic = CPUSET_SUPER_MAGIC;
352 sb->s_op = &cpuset_ops;
353 cpuset_sb = sb;
354
355 inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
356 if (inode) {
357 inode->i_op = &simple_dir_inode_operations;
358 inode->i_fop = &simple_dir_operations;
359 /* directories start off with i_nlink == 2 (for "." entry) */
360 inode->i_nlink++;
361 } else {
362 return -ENOMEM;
363 }
364
365 root = d_alloc_root(inode);
366 if (!root) {
367 iput(inode);
368 return -ENOMEM;
369 }
370 sb->s_root = root;
371 return 0;
372}
373
374static struct super_block *cpuset_get_sb(struct file_system_type *fs_type,
375 int flags, const char *unused_dev_name,
376 void *data)
377{
378 return get_sb_single(fs_type, flags, data, cpuset_fill_super);
379}
380
381static struct file_system_type cpuset_fs_type = {
382 .name = "cpuset",
383 .get_sb = cpuset_get_sb,
384 .kill_sb = kill_litter_super,
385};
386
387/* struct cftype:
388 *
389 * The files in the cpuset filesystem mostly have a very simple read/write
390 * handling, some common function will take care of it. Nevertheless some cases
391 * (read tasks) are special and therefore I define this structure for every
392 * kind of file.
393 *
394 *
395 * When reading/writing to a file:
396 * - the cpuset to use in file->f_dentry->d_parent->d_fsdata
397 * - the 'cftype' of the file is file->f_dentry->d_fsdata
398 */
399
400struct cftype {
401 char *name;
402 int private;
403 int (*open) (struct inode *inode, struct file *file);
404 ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,
405 loff_t *ppos);
406 int (*write) (struct file *file, const char __user *buf, size_t nbytes,
407 loff_t *ppos);
408 int (*release) (struct inode *inode, struct file *file);
409};
410
411static inline struct cpuset *__d_cs(struct dentry *dentry)
412{
413 return dentry->d_fsdata;
414}
415
416static inline struct cftype *__d_cft(struct dentry *dentry)
417{
418 return dentry->d_fsdata;
419}
420
421/*
053199ed 422 * Call with manage_sem held. Writes path of cpuset into buf.
1da177e4
LT
423 * Returns 0 on success, -errno on error.
424 */
425
426static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
427{
428 char *start;
429
430 start = buf + buflen;
431
432 *--start = '\0';
433 for (;;) {
434 int len = cs->dentry->d_name.len;
435 if ((start -= len) < buf)
436 return -ENAMETOOLONG;
437 memcpy(start, cs->dentry->d_name.name, len);
438 cs = cs->parent;
439 if (!cs)
440 break;
441 if (!cs->parent)
442 continue;
443 if (--start < buf)
444 return -ENAMETOOLONG;
445 *start = '/';
446 }
447 memmove(buf, start, buf + buflen - start);
448 return 0;
449}
450
451/*
452 * Notify userspace when a cpuset is released, by running
453 * /sbin/cpuset_release_agent with the name of the cpuset (path
454 * relative to the root of cpuset file system) as the argument.
455 *
456 * Most likely, this user command will try to rmdir this cpuset.
457 *
458 * This races with the possibility that some other task will be
459 * attached to this cpuset before it is removed, or that some other
460 * user task will 'mkdir' a child cpuset of this cpuset. That's ok.
461 * The presumed 'rmdir' will fail quietly if this cpuset is no longer
462 * unused, and this cpuset will be reprieved from its death sentence,
463 * to continue to serve a useful existence. Next time it's released,
464 * we will get notified again, if it still has 'notify_on_release' set.
465 *
3077a260
PJ
466 * The final arg to call_usermodehelper() is 0, which means don't
467 * wait. The separate /sbin/cpuset_release_agent task is forked by
468 * call_usermodehelper(), then control in this thread returns here,
469 * without waiting for the release agent task. We don't bother to
470 * wait because the caller of this routine has no use for the exit
471 * status of the /sbin/cpuset_release_agent task, so no sense holding
472 * our caller up for that.
473 *
053199ed
PJ
474 * When we had only one cpuset semaphore, we had to call this
475 * without holding it, to avoid deadlock when call_usermodehelper()
476 * allocated memory. With two locks, we could now call this while
477 * holding manage_sem, but we still don't, so as to minimize
478 * the time manage_sem is held.
1da177e4
LT
479 */
480
3077a260 481static void cpuset_release_agent(const char *pathbuf)
1da177e4
LT
482{
483 char *argv[3], *envp[3];
484 int i;
485
3077a260
PJ
486 if (!pathbuf)
487 return;
488
1da177e4
LT
489 i = 0;
490 argv[i++] = "/sbin/cpuset_release_agent";
3077a260 491 argv[i++] = (char *)pathbuf;
1da177e4
LT
492 argv[i] = NULL;
493
494 i = 0;
495 /* minimal command environment */
496 envp[i++] = "HOME=/";
497 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
498 envp[i] = NULL;
499
3077a260
PJ
500 call_usermodehelper(argv[0], argv, envp, 0);
501 kfree(pathbuf);
1da177e4
LT
502}
503
504/*
505 * Either cs->count of using tasks transitioned to zero, or the
506 * cs->children list of child cpusets just became empty. If this
507 * cs is notify_on_release() and now both the user count is zero and
3077a260
PJ
508 * the list of children is empty, prepare cpuset path in a kmalloc'd
509 * buffer, to be returned via ppathbuf, so that the caller can invoke
053199ed
PJ
510 * cpuset_release_agent() with it later on, once manage_sem is dropped.
511 * Call here with manage_sem held.
3077a260
PJ
512 *
513 * This check_for_release() routine is responsible for kmalloc'ing
514 * pathbuf. The above cpuset_release_agent() is responsible for
515 * kfree'ing pathbuf. The caller of these routines is responsible
516 * for providing a pathbuf pointer, initialized to NULL, then
053199ed
PJ
517 * calling check_for_release() with manage_sem held and the address
518 * of the pathbuf pointer, then dropping manage_sem, then calling
3077a260 519 * cpuset_release_agent() with pathbuf, as set by check_for_release().
1da177e4
LT
520 */
521
3077a260 522static void check_for_release(struct cpuset *cs, char **ppathbuf)
1da177e4
LT
523{
524 if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&
525 list_empty(&cs->children)) {
526 char *buf;
527
528 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
529 if (!buf)
530 return;
531 if (cpuset_path(cs, buf, PAGE_SIZE) < 0)
3077a260
PJ
532 kfree(buf);
533 else
534 *ppathbuf = buf;
1da177e4
LT
535 }
536}
537
538/*
539 * Return in *pmask the portion of a cpusets's cpus_allowed that
540 * are online. If none are online, walk up the cpuset hierarchy
541 * until we find one that does have some online cpus. If we get
542 * all the way to the top and still haven't found any online cpus,
543 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
544 * task, return cpu_online_map.
545 *
546 * One way or another, we guarantee to return some non-empty subset
547 * of cpu_online_map.
548 *
053199ed 549 * Call with callback_sem held.
1da177e4
LT
550 */
551
552static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
553{
554 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
555 cs = cs->parent;
556 if (cs)
557 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
558 else
559 *pmask = cpu_online_map;
560 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
561}
562
563/*
564 * Return in *pmask the portion of a cpusets's mems_allowed that
565 * are online. If none are online, walk up the cpuset hierarchy
566 * until we find one that does have some online mems. If we get
567 * all the way to the top and still haven't found any online mems,
568 * return node_online_map.
569 *
570 * One way or another, we guarantee to return some non-empty subset
571 * of node_online_map.
572 *
053199ed 573 * Call with callback_sem held.
1da177e4
LT
574 */
575
576static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
577{
578 while (cs && !nodes_intersects(cs->mems_allowed, node_online_map))
579 cs = cs->parent;
580 if (cs)
581 nodes_and(*pmask, cs->mems_allowed, node_online_map);
582 else
583 *pmask = node_online_map;
584 BUG_ON(!nodes_intersects(*pmask, node_online_map));
585}
586
cf2a473c
PJ
587/**
588 * cpuset_update_task_memory_state - update task memory placement
589 *
590 * If the current tasks cpusets mems_allowed changed behind our
591 * backs, update current->mems_allowed, mems_generation and task NUMA
592 * mempolicy to the new value.
053199ed 593 *
cf2a473c
PJ
594 * Task mempolicy is updated by rebinding it relative to the
595 * current->cpuset if a task has its memory placement changed.
596 * Do not call this routine if in_interrupt().
597 *
598 * Call without callback_sem or task_lock() held. May be called
599 * with or without manage_sem held. Except in early boot or
600 * an exiting task, when tsk->cpuset is NULL, this routine will
601 * acquire task_lock(). We don't need to use task_lock to guard
602 * against another task changing a non-NULL cpuset pointer to NULL,
603 * as that is only done by a task on itself, and if the current task
604 * is here, it is not simultaneously in the exit code NULL'ing its
605 * cpuset pointer. This routine also might acquire callback_sem and
606 * current->mm->mmap_sem during call.
053199ed
PJ
607 *
608 * The task_lock() is required to dereference current->cpuset safely.
609 * Without it, we could pick up the pointer value of current->cpuset
610 * in one instruction, and then attach_task could give us a different
611 * cpuset, and then the cpuset we had could be removed and freed,
612 * and then on our next instruction, we could dereference a no longer
613 * valid cpuset pointer to get its mems_generation field.
614 *
615 * This routine is needed to update the per-task mems_allowed data,
616 * within the tasks context, when it is trying to allocate memory
617 * (in various mm/mempolicy.c routines) and notices that some other
618 * task has been modifying its cpuset.
1da177e4
LT
619 */
620
cf2a473c 621void cpuset_update_task_memory_state()
1da177e4 622{
053199ed 623 int my_cpusets_mem_gen;
cf2a473c
PJ
624 struct task_struct *tsk = current;
625 struct cpuset *cs = tsk->cpuset;
053199ed 626
cf2a473c
PJ
627 if (unlikely(!cs))
628 return;
629
630 task_lock(tsk);
631 my_cpusets_mem_gen = cs->mems_generation;
632 task_unlock(tsk);
1da177e4 633
cf2a473c
PJ
634 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
635 nodemask_t oldmem = tsk->mems_allowed;
45b07ef3 636 int migrate;
053199ed
PJ
637
638 down(&callback_sem);
cf2a473c
PJ
639 task_lock(tsk);
640 cs = tsk->cpuset; /* Maybe changed when task not locked */
45b07ef3 641 migrate = is_memory_migrate(cs);
cf2a473c
PJ
642 guarantee_online_mems(cs, &tsk->mems_allowed);
643 tsk->cpuset_mems_generation = cs->mems_generation;
644 task_unlock(tsk);
053199ed 645 up(&callback_sem);
74cb2155 646 mpol_rebind_task(tsk, &tsk->mems_allowed);
cf2a473c 647 if (!nodes_equal(oldmem, tsk->mems_allowed)) {
45b07ef3 648 if (migrate) {
cf2a473c
PJ
649 do_migrate_pages(tsk->mm, &oldmem,
650 &tsk->mems_allowed,
45b07ef3
PJ
651 MPOL_MF_MOVE_ALL);
652 }
653 }
1da177e4
LT
654 }
655}
656
657/*
658 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
659 *
660 * One cpuset is a subset of another if all its allowed CPUs and
661 * Memory Nodes are a subset of the other, and its exclusive flags
053199ed 662 * are only set if the other's are set. Call holding manage_sem.
1da177e4
LT
663 */
664
665static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
666{
667 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
668 nodes_subset(p->mems_allowed, q->mems_allowed) &&
669 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
670 is_mem_exclusive(p) <= is_mem_exclusive(q);
671}
672
673/*
674 * validate_change() - Used to validate that any proposed cpuset change
675 * follows the structural rules for cpusets.
676 *
677 * If we replaced the flag and mask values of the current cpuset
678 * (cur) with those values in the trial cpuset (trial), would
679 * our various subset and exclusive rules still be valid? Presumes
053199ed 680 * manage_sem held.
1da177e4
LT
681 *
682 * 'cur' is the address of an actual, in-use cpuset. Operations
683 * such as list traversal that depend on the actual address of the
684 * cpuset in the list must use cur below, not trial.
685 *
686 * 'trial' is the address of bulk structure copy of cur, with
687 * perhaps one or more of the fields cpus_allowed, mems_allowed,
688 * or flags changed to new, trial values.
689 *
690 * Return 0 if valid, -errno if not.
691 */
692
693static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
694{
695 struct cpuset *c, *par;
696
697 /* Each of our child cpusets must be a subset of us */
698 list_for_each_entry(c, &cur->children, sibling) {
699 if (!is_cpuset_subset(c, trial))
700 return -EBUSY;
701 }
702
703 /* Remaining checks don't apply to root cpuset */
704 if ((par = cur->parent) == NULL)
705 return 0;
706
707 /* We must be a subset of our parent cpuset */
708 if (!is_cpuset_subset(trial, par))
709 return -EACCES;
710
711 /* If either I or some sibling (!= me) is exclusive, we can't overlap */
712 list_for_each_entry(c, &par->children, sibling) {
713 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
714 c != cur &&
715 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
716 return -EINVAL;
717 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
718 c != cur &&
719 nodes_intersects(trial->mems_allowed, c->mems_allowed))
720 return -EINVAL;
721 }
722
723 return 0;
724}
725
85d7b949
DG
726/*
727 * For a given cpuset cur, partition the system as follows
728 * a. All cpus in the parent cpuset's cpus_allowed that are not part of any
729 * exclusive child cpusets
730 * b. All cpus in the current cpuset's cpus_allowed that are not part of any
731 * exclusive child cpusets
732 * Build these two partitions by calling partition_sched_domains
733 *
053199ed 734 * Call with manage_sem held. May nest a call to the
85d7b949
DG
735 * lock_cpu_hotplug()/unlock_cpu_hotplug() pair.
736 */
212d6d22 737
85d7b949
DG
738static void update_cpu_domains(struct cpuset *cur)
739{
740 struct cpuset *c, *par = cur->parent;
741 cpumask_t pspan, cspan;
742
743 if (par == NULL || cpus_empty(cur->cpus_allowed))
744 return;
745
746 /*
747 * Get all cpus from parent's cpus_allowed not part of exclusive
748 * children
749 */
750 pspan = par->cpus_allowed;
751 list_for_each_entry(c, &par->children, sibling) {
752 if (is_cpu_exclusive(c))
753 cpus_andnot(pspan, pspan, c->cpus_allowed);
754 }
755 if (is_removed(cur) || !is_cpu_exclusive(cur)) {
756 cpus_or(pspan, pspan, cur->cpus_allowed);
757 if (cpus_equal(pspan, cur->cpus_allowed))
758 return;
759 cspan = CPU_MASK_NONE;
760 } else {
761 if (cpus_empty(pspan))
762 return;
763 cspan = cur->cpus_allowed;
764 /*
765 * Get all cpus from current cpuset's cpus_allowed not part
766 * of exclusive children
767 */
768 list_for_each_entry(c, &cur->children, sibling) {
769 if (is_cpu_exclusive(c))
770 cpus_andnot(cspan, cspan, c->cpus_allowed);
771 }
772 }
773
774 lock_cpu_hotplug();
775 partition_sched_domains(&pspan, &cspan);
776 unlock_cpu_hotplug();
777}
778
053199ed
PJ
779/*
780 * Call with manage_sem held. May take callback_sem during call.
781 */
782
1da177e4
LT
783static int update_cpumask(struct cpuset *cs, char *buf)
784{
785 struct cpuset trialcs;
85d7b949 786 int retval, cpus_unchanged;
1da177e4
LT
787
788 trialcs = *cs;
789 retval = cpulist_parse(buf, trialcs.cpus_allowed);
790 if (retval < 0)
791 return retval;
792 cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
793 if (cpus_empty(trialcs.cpus_allowed))
794 return -ENOSPC;
795 retval = validate_change(cs, &trialcs);
85d7b949
DG
796 if (retval < 0)
797 return retval;
798 cpus_unchanged = cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed);
053199ed 799 down(&callback_sem);
85d7b949 800 cs->cpus_allowed = trialcs.cpus_allowed;
053199ed 801 up(&callback_sem);
85d7b949
DG
802 if (is_cpu_exclusive(cs) && !cpus_unchanged)
803 update_cpu_domains(cs);
804 return 0;
1da177e4
LT
805}
806
053199ed
PJ
807/*
808 * Call with manage_sem held. May take callback_sem during call.
809 */
810
1da177e4
LT
811static int update_nodemask(struct cpuset *cs, char *buf)
812{
813 struct cpuset trialcs;
814 int retval;
815
816 trialcs = *cs;
817 retval = nodelist_parse(buf, trialcs.mems_allowed);
818 if (retval < 0)
59dac16f 819 goto done;
1da177e4 820 nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, node_online_map);
59dac16f
PJ
821 if (nodes_empty(trialcs.mems_allowed)) {
822 retval = -ENOSPC;
823 goto done;
1da177e4 824 }
59dac16f
PJ
825 retval = validate_change(cs, &trialcs);
826 if (retval < 0)
827 goto done;
828
829 down(&callback_sem);
830 cs->mems_allowed = trialcs.mems_allowed;
831 atomic_inc(&cpuset_mems_generation);
832 cs->mems_generation = atomic_read(&cpuset_mems_generation);
833 up(&callback_sem);
834
835done:
1da177e4
LT
836 return retval;
837}
838
3e0d98b9
PJ
839/*
840 * Call with manage_sem held.
841 */
842
843static int update_memory_pressure_enabled(struct cpuset *cs, char *buf)
844{
845 if (simple_strtoul(buf, NULL, 10) != 0)
846 cpuset_memory_pressure_enabled = 1;
847 else
848 cpuset_memory_pressure_enabled = 0;
849 return 0;
850}
851
1da177e4
LT
852/*
853 * update_flag - read a 0 or a 1 in a file and update associated flag
854 * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
45b07ef3 855 * CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE)
1da177e4
LT
856 * cs: the cpuset to update
857 * buf: the buffer where we read the 0 or 1
053199ed
PJ
858 *
859 * Call with manage_sem held.
1da177e4
LT
860 */
861
862static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
863{
864 int turning_on;
865 struct cpuset trialcs;
85d7b949 866 int err, cpu_exclusive_changed;
1da177e4
LT
867
868 turning_on = (simple_strtoul(buf, NULL, 10) != 0);
869
870 trialcs = *cs;
871 if (turning_on)
872 set_bit(bit, &trialcs.flags);
873 else
874 clear_bit(bit, &trialcs.flags);
875
876 err = validate_change(cs, &trialcs);
85d7b949
DG
877 if (err < 0)
878 return err;
879 cpu_exclusive_changed =
880 (is_cpu_exclusive(cs) != is_cpu_exclusive(&trialcs));
053199ed 881 down(&callback_sem);
85d7b949
DG
882 if (turning_on)
883 set_bit(bit, &cs->flags);
884 else
885 clear_bit(bit, &cs->flags);
053199ed 886 up(&callback_sem);
85d7b949
DG
887
888 if (cpu_exclusive_changed)
889 update_cpu_domains(cs);
890 return 0;
1da177e4
LT
891}
892
3e0d98b9
PJ
893/*
894 * Frequency meter - How fast is some event occuring?
895 *
896 * These routines manage a digitally filtered, constant time based,
897 * event frequency meter. There are four routines:
898 * fmeter_init() - initialize a frequency meter.
899 * fmeter_markevent() - called each time the event happens.
900 * fmeter_getrate() - returns the recent rate of such events.
901 * fmeter_update() - internal routine used to update fmeter.
902 *
903 * A common data structure is passed to each of these routines,
904 * which is used to keep track of the state required to manage the
905 * frequency meter and its digital filter.
906 *
907 * The filter works on the number of events marked per unit time.
908 * The filter is single-pole low-pass recursive (IIR). The time unit
909 * is 1 second. Arithmetic is done using 32-bit integers scaled to
910 * simulate 3 decimal digits of precision (multiplied by 1000).
911 *
912 * With an FM_COEF of 933, and a time base of 1 second, the filter
913 * has a half-life of 10 seconds, meaning that if the events quit
914 * happening, then the rate returned from the fmeter_getrate()
915 * will be cut in half each 10 seconds, until it converges to zero.
916 *
917 * It is not worth doing a real infinitely recursive filter. If more
918 * than FM_MAXTICKS ticks have elapsed since the last filter event,
919 * just compute FM_MAXTICKS ticks worth, by which point the level
920 * will be stable.
921 *
922 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
923 * arithmetic overflow in the fmeter_update() routine.
924 *
925 * Given the simple 32 bit integer arithmetic used, this meter works
926 * best for reporting rates between one per millisecond (msec) and
927 * one per 32 (approx) seconds. At constant rates faster than one
928 * per msec it maxes out at values just under 1,000,000. At constant
929 * rates between one per msec, and one per second it will stabilize
930 * to a value N*1000, where N is the rate of events per second.
931 * At constant rates between one per second and one per 32 seconds,
932 * it will be choppy, moving up on the seconds that have an event,
933 * and then decaying until the next event. At rates slower than
934 * about one in 32 seconds, it decays all the way back to zero between
935 * each event.
936 */
937
938#define FM_COEF 933 /* coefficient for half-life of 10 secs */
939#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
940#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
941#define FM_SCALE 1000 /* faux fixed point scale */
942
943/* Initialize a frequency meter */
944static void fmeter_init(struct fmeter *fmp)
945{
946 fmp->cnt = 0;
947 fmp->val = 0;
948 fmp->time = 0;
949 spin_lock_init(&fmp->lock);
950}
951
952/* Internal meter update - process cnt events and update value */
953static void fmeter_update(struct fmeter *fmp)
954{
955 time_t now = get_seconds();
956 time_t ticks = now - fmp->time;
957
958 if (ticks == 0)
959 return;
960
961 ticks = min(FM_MAXTICKS, ticks);
962 while (ticks-- > 0)
963 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
964 fmp->time = now;
965
966 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
967 fmp->cnt = 0;
968}
969
970/* Process any previous ticks, then bump cnt by one (times scale). */
971static void fmeter_markevent(struct fmeter *fmp)
972{
973 spin_lock(&fmp->lock);
974 fmeter_update(fmp);
975 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
976 spin_unlock(&fmp->lock);
977}
978
979/* Process any previous ticks, then return current value. */
980static int fmeter_getrate(struct fmeter *fmp)
981{
982 int val;
983
984 spin_lock(&fmp->lock);
985 fmeter_update(fmp);
986 val = fmp->val;
987 spin_unlock(&fmp->lock);
988 return val;
989}
990
053199ed
PJ
991/*
992 * Attack task specified by pid in 'pidbuf' to cpuset 'cs', possibly
993 * writing the path of the old cpuset in 'ppathbuf' if it needs to be
994 * notified on release.
995 *
996 * Call holding manage_sem. May take callback_sem and task_lock of
997 * the task 'pid' during call.
998 */
999
3077a260 1000static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
1da177e4
LT
1001{
1002 pid_t pid;
1003 struct task_struct *tsk;
1004 struct cpuset *oldcs;
1005 cpumask_t cpus;
45b07ef3 1006 nodemask_t from, to;
1da177e4 1007
3077a260 1008 if (sscanf(pidbuf, "%d", &pid) != 1)
1da177e4
LT
1009 return -EIO;
1010 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1011 return -ENOSPC;
1012
1013 if (pid) {
1014 read_lock(&tasklist_lock);
1015
1016 tsk = find_task_by_pid(pid);
053199ed 1017 if (!tsk || tsk->flags & PF_EXITING) {
1da177e4
LT
1018 read_unlock(&tasklist_lock);
1019 return -ESRCH;
1020 }
1021
1022 get_task_struct(tsk);
1023 read_unlock(&tasklist_lock);
1024
1025 if ((current->euid) && (current->euid != tsk->uid)
1026 && (current->euid != tsk->suid)) {
1027 put_task_struct(tsk);
1028 return -EACCES;
1029 }
1030 } else {
1031 tsk = current;
1032 get_task_struct(tsk);
1033 }
1034
053199ed
PJ
1035 down(&callback_sem);
1036
1da177e4
LT
1037 task_lock(tsk);
1038 oldcs = tsk->cpuset;
1039 if (!oldcs) {
1040 task_unlock(tsk);
053199ed 1041 up(&callback_sem);
1da177e4
LT
1042 put_task_struct(tsk);
1043 return -ESRCH;
1044 }
1045 atomic_inc(&cs->count);
1046 tsk->cpuset = cs;
1047 task_unlock(tsk);
1048
1049 guarantee_online_cpus(cs, &cpus);
1050 set_cpus_allowed(tsk, cpus);
1051
45b07ef3
PJ
1052 from = oldcs->mems_allowed;
1053 to = cs->mems_allowed;
1054
053199ed 1055 up(&callback_sem);
45b07ef3
PJ
1056 if (is_memory_migrate(cs))
1057 do_migrate_pages(tsk->mm, &from, &to, MPOL_MF_MOVE_ALL);
1da177e4
LT
1058 put_task_struct(tsk);
1059 if (atomic_dec_and_test(&oldcs->count))
3077a260 1060 check_for_release(oldcs, ppathbuf);
1da177e4
LT
1061 return 0;
1062}
1063
1064/* The various types of files and directories in a cpuset file system */
1065
1066typedef enum {
1067 FILE_ROOT,
1068 FILE_DIR,
45b07ef3 1069 FILE_MEMORY_MIGRATE,
1da177e4
LT
1070 FILE_CPULIST,
1071 FILE_MEMLIST,
1072 FILE_CPU_EXCLUSIVE,
1073 FILE_MEM_EXCLUSIVE,
1074 FILE_NOTIFY_ON_RELEASE,
3e0d98b9
PJ
1075 FILE_MEMORY_PRESSURE_ENABLED,
1076 FILE_MEMORY_PRESSURE,
1da177e4
LT
1077 FILE_TASKLIST,
1078} cpuset_filetype_t;
1079
1080static ssize_t cpuset_common_file_write(struct file *file, const char __user *userbuf,
1081 size_t nbytes, loff_t *unused_ppos)
1082{
1083 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
1084 struct cftype *cft = __d_cft(file->f_dentry);
1085 cpuset_filetype_t type = cft->private;
1086 char *buffer;
3077a260 1087 char *pathbuf = NULL;
1da177e4
LT
1088 int retval = 0;
1089
1090 /* Crude upper limit on largest legitimate cpulist user might write. */
1091 if (nbytes > 100 + 6 * NR_CPUS)
1092 return -E2BIG;
1093
1094 /* +1 for nul-terminator */
1095 if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
1096 return -ENOMEM;
1097
1098 if (copy_from_user(buffer, userbuf, nbytes)) {
1099 retval = -EFAULT;
1100 goto out1;
1101 }
1102 buffer[nbytes] = 0; /* nul-terminate */
1103
053199ed 1104 down(&manage_sem);
1da177e4
LT
1105
1106 if (is_removed(cs)) {
1107 retval = -ENODEV;
1108 goto out2;
1109 }
1110
1111 switch (type) {
1112 case FILE_CPULIST:
1113 retval = update_cpumask(cs, buffer);
1114 break;
1115 case FILE_MEMLIST:
1116 retval = update_nodemask(cs, buffer);
1117 break;
1118 case FILE_CPU_EXCLUSIVE:
1119 retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
1120 break;
1121 case FILE_MEM_EXCLUSIVE:
1122 retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
1123 break;
1124 case FILE_NOTIFY_ON_RELEASE:
1125 retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer);
1126 break;
45b07ef3
PJ
1127 case FILE_MEMORY_MIGRATE:
1128 retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer);
1129 break;
3e0d98b9
PJ
1130 case FILE_MEMORY_PRESSURE_ENABLED:
1131 retval = update_memory_pressure_enabled(cs, buffer);
1132 break;
1133 case FILE_MEMORY_PRESSURE:
1134 retval = -EACCES;
1135 break;
1da177e4 1136 case FILE_TASKLIST:
3077a260 1137 retval = attach_task(cs, buffer, &pathbuf);
1da177e4
LT
1138 break;
1139 default:
1140 retval = -EINVAL;
1141 goto out2;
1142 }
1143
1144 if (retval == 0)
1145 retval = nbytes;
1146out2:
053199ed 1147 up(&manage_sem);
3077a260 1148 cpuset_release_agent(pathbuf);
1da177e4
LT
1149out1:
1150 kfree(buffer);
1151 return retval;
1152}
1153
1154static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
1155 size_t nbytes, loff_t *ppos)
1156{
1157 ssize_t retval = 0;
1158 struct cftype *cft = __d_cft(file->f_dentry);
1159 if (!cft)
1160 return -ENODEV;
1161
1162 /* special function ? */
1163 if (cft->write)
1164 retval = cft->write(file, buf, nbytes, ppos);
1165 else
1166 retval = cpuset_common_file_write(file, buf, nbytes, ppos);
1167
1168 return retval;
1169}
1170
1171/*
1172 * These ascii lists should be read in a single call, by using a user
1173 * buffer large enough to hold the entire map. If read in smaller
1174 * chunks, there is no guarantee of atomicity. Since the display format
1175 * used, list of ranges of sequential numbers, is variable length,
1176 * and since these maps can change value dynamically, one could read
1177 * gibberish by doing partial reads while a list was changing.
1178 * A single large read to a buffer that crosses a page boundary is
1179 * ok, because the result being copied to user land is not recomputed
1180 * across a page fault.
1181 */
1182
1183static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1184{
1185 cpumask_t mask;
1186
053199ed 1187 down(&callback_sem);
1da177e4 1188 mask = cs->cpus_allowed;
053199ed 1189 up(&callback_sem);
1da177e4
LT
1190
1191 return cpulist_scnprintf(page, PAGE_SIZE, mask);
1192}
1193
1194static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1195{
1196 nodemask_t mask;
1197
053199ed 1198 down(&callback_sem);
1da177e4 1199 mask = cs->mems_allowed;
053199ed 1200 up(&callback_sem);
1da177e4
LT
1201
1202 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1203}
1204
1205static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
1206 size_t nbytes, loff_t *ppos)
1207{
1208 struct cftype *cft = __d_cft(file->f_dentry);
1209 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
1210 cpuset_filetype_t type = cft->private;
1211 char *page;
1212 ssize_t retval = 0;
1213 char *s;
1da177e4
LT
1214
1215 if (!(page = (char *)__get_free_page(GFP_KERNEL)))
1216 return -ENOMEM;
1217
1218 s = page;
1219
1220 switch (type) {
1221 case FILE_CPULIST:
1222 s += cpuset_sprintf_cpulist(s, cs);
1223 break;
1224 case FILE_MEMLIST:
1225 s += cpuset_sprintf_memlist(s, cs);
1226 break;
1227 case FILE_CPU_EXCLUSIVE:
1228 *s++ = is_cpu_exclusive(cs) ? '1' : '0';
1229 break;
1230 case FILE_MEM_EXCLUSIVE:
1231 *s++ = is_mem_exclusive(cs) ? '1' : '0';
1232 break;
1233 case FILE_NOTIFY_ON_RELEASE:
1234 *s++ = notify_on_release(cs) ? '1' : '0';
1235 break;
45b07ef3
PJ
1236 case FILE_MEMORY_MIGRATE:
1237 *s++ = is_memory_migrate(cs) ? '1' : '0';
1238 break;
3e0d98b9
PJ
1239 case FILE_MEMORY_PRESSURE_ENABLED:
1240 *s++ = cpuset_memory_pressure_enabled ? '1' : '0';
1241 break;
1242 case FILE_MEMORY_PRESSURE:
1243 s += sprintf(s, "%d", fmeter_getrate(&cs->fmeter));
1244 break;
1da177e4
LT
1245 default:
1246 retval = -EINVAL;
1247 goto out;
1248 }
1249 *s++ = '\n';
1da177e4 1250
eacaa1f5 1251 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1252out:
1253 free_page((unsigned long)page);
1254 return retval;
1255}
1256
1257static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes,
1258 loff_t *ppos)
1259{
1260 ssize_t retval = 0;
1261 struct cftype *cft = __d_cft(file->f_dentry);
1262 if (!cft)
1263 return -ENODEV;
1264
1265 /* special function ? */
1266 if (cft->read)
1267 retval = cft->read(file, buf, nbytes, ppos);
1268 else
1269 retval = cpuset_common_file_read(file, buf, nbytes, ppos);
1270
1271 return retval;
1272}
1273
1274static int cpuset_file_open(struct inode *inode, struct file *file)
1275{
1276 int err;
1277 struct cftype *cft;
1278
1279 err = generic_file_open(inode, file);
1280 if (err)
1281 return err;
1282
1283 cft = __d_cft(file->f_dentry);
1284 if (!cft)
1285 return -ENODEV;
1286 if (cft->open)
1287 err = cft->open(inode, file);
1288 else
1289 err = 0;
1290
1291 return err;
1292}
1293
1294static int cpuset_file_release(struct inode *inode, struct file *file)
1295{
1296 struct cftype *cft = __d_cft(file->f_dentry);
1297 if (cft->release)
1298 return cft->release(inode, file);
1299 return 0;
1300}
1301
18a19cb3
PJ
1302/*
1303 * cpuset_rename - Only allow simple rename of directories in place.
1304 */
1305static int cpuset_rename(struct inode *old_dir, struct dentry *old_dentry,
1306 struct inode *new_dir, struct dentry *new_dentry)
1307{
1308 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1309 return -ENOTDIR;
1310 if (new_dentry->d_inode)
1311 return -EEXIST;
1312 if (old_dir != new_dir)
1313 return -EIO;
1314 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1315}
1316
1da177e4
LT
1317static struct file_operations cpuset_file_operations = {
1318 .read = cpuset_file_read,
1319 .write = cpuset_file_write,
1320 .llseek = generic_file_llseek,
1321 .open = cpuset_file_open,
1322 .release = cpuset_file_release,
1323};
1324
1325static struct inode_operations cpuset_dir_inode_operations = {
1326 .lookup = simple_lookup,
1327 .mkdir = cpuset_mkdir,
1328 .rmdir = cpuset_rmdir,
18a19cb3 1329 .rename = cpuset_rename,
1da177e4
LT
1330};
1331
1332static int cpuset_create_file(struct dentry *dentry, int mode)
1333{
1334 struct inode *inode;
1335
1336 if (!dentry)
1337 return -ENOENT;
1338 if (dentry->d_inode)
1339 return -EEXIST;
1340
1341 inode = cpuset_new_inode(mode);
1342 if (!inode)
1343 return -ENOMEM;
1344
1345 if (S_ISDIR(mode)) {
1346 inode->i_op = &cpuset_dir_inode_operations;
1347 inode->i_fop = &simple_dir_operations;
1348
1349 /* start off with i_nlink == 2 (for "." entry) */
1350 inode->i_nlink++;
1351 } else if (S_ISREG(mode)) {
1352 inode->i_size = 0;
1353 inode->i_fop = &cpuset_file_operations;
1354 }
1355
1356 d_instantiate(dentry, inode);
1357 dget(dentry); /* Extra count - pin the dentry in core */
1358 return 0;
1359}
1360
1361/*
1362 * cpuset_create_dir - create a directory for an object.
c5b2aff8 1363 * cs: the cpuset we create the directory for.
1da177e4
LT
1364 * It must have a valid ->parent field
1365 * And we are going to fill its ->dentry field.
1366 * name: The name to give to the cpuset directory. Will be copied.
1367 * mode: mode to set on new directory.
1368 */
1369
1370static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode)
1371{
1372 struct dentry *dentry = NULL;
1373 struct dentry *parent;
1374 int error = 0;
1375
1376 parent = cs->parent->dentry;
1377 dentry = cpuset_get_dentry(parent, name);
1378 if (IS_ERR(dentry))
1379 return PTR_ERR(dentry);
1380 error = cpuset_create_file(dentry, S_IFDIR | mode);
1381 if (!error) {
1382 dentry->d_fsdata = cs;
1383 parent->d_inode->i_nlink++;
1384 cs->dentry = dentry;
1385 }
1386 dput(dentry);
1387
1388 return error;
1389}
1390
1391static int cpuset_add_file(struct dentry *dir, const struct cftype *cft)
1392{
1393 struct dentry *dentry;
1394 int error;
1395
1396 down(&dir->d_inode->i_sem);
1397 dentry = cpuset_get_dentry(dir, cft->name);
1398 if (!IS_ERR(dentry)) {
1399 error = cpuset_create_file(dentry, 0644 | S_IFREG);
1400 if (!error)
1401 dentry->d_fsdata = (void *)cft;
1402 dput(dentry);
1403 } else
1404 error = PTR_ERR(dentry);
1405 up(&dir->d_inode->i_sem);
1406 return error;
1407}
1408
1409/*
1410 * Stuff for reading the 'tasks' file.
1411 *
1412 * Reading this file can return large amounts of data if a cpuset has
1413 * *lots* of attached tasks. So it may need several calls to read(),
1414 * but we cannot guarantee that the information we produce is correct
1415 * unless we produce it entirely atomically.
1416 *
1417 * Upon tasks file open(), a struct ctr_struct is allocated, that
1418 * will have a pointer to an array (also allocated here). The struct
1419 * ctr_struct * is stored in file->private_data. Its resources will
1420 * be freed by release() when the file is closed. The array is used
1421 * to sprintf the PIDs and then used by read().
1422 */
1423
1424/* cpusets_tasks_read array */
1425
1426struct ctr_struct {
1427 char *buf;
1428 int bufsz;
1429};
1430
1431/*
1432 * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'.
053199ed
PJ
1433 * Return actual number of pids loaded. No need to task_lock(p)
1434 * when reading out p->cpuset, as we don't really care if it changes
1435 * on the next cycle, and we are not going to try to dereference it.
1da177e4
LT
1436 */
1437static inline int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs)
1438{
1439 int n = 0;
1440 struct task_struct *g, *p;
1441
1442 read_lock(&tasklist_lock);
1443
1444 do_each_thread(g, p) {
1445 if (p->cpuset == cs) {
1446 pidarray[n++] = p->pid;
1447 if (unlikely(n == npids))
1448 goto array_full;
1449 }
1450 } while_each_thread(g, p);
1451
1452array_full:
1453 read_unlock(&tasklist_lock);
1454 return n;
1455}
1456
1457static int cmppid(const void *a, const void *b)
1458{
1459 return *(pid_t *)a - *(pid_t *)b;
1460}
1461
1462/*
1463 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
1464 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
1465 * count 'cnt' of how many chars would be written if buf were large enough.
1466 */
1467static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
1468{
1469 int cnt = 0;
1470 int i;
1471
1472 for (i = 0; i < npids; i++)
1473 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
1474 return cnt;
1475}
1476
053199ed
PJ
1477/*
1478 * Handle an open on 'tasks' file. Prepare a buffer listing the
1479 * process id's of tasks currently attached to the cpuset being opened.
1480 *
1481 * Does not require any specific cpuset semaphores, and does not take any.
1482 */
1da177e4
LT
1483static int cpuset_tasks_open(struct inode *unused, struct file *file)
1484{
1485 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
1486 struct ctr_struct *ctr;
1487 pid_t *pidarray;
1488 int npids;
1489 char c;
1490
1491 if (!(file->f_mode & FMODE_READ))
1492 return 0;
1493
1494 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
1495 if (!ctr)
1496 goto err0;
1497
1498 /*
1499 * If cpuset gets more users after we read count, we won't have
1500 * enough space - tough. This race is indistinguishable to the
1501 * caller from the case that the additional cpuset users didn't
1502 * show up until sometime later on.
1503 */
1504 npids = atomic_read(&cs->count);
1505 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
1506 if (!pidarray)
1507 goto err1;
1508
1509 npids = pid_array_load(pidarray, npids, cs);
1510 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
1511
1512 /* Call pid_array_to_buf() twice, first just to get bufsz */
1513 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
1514 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
1515 if (!ctr->buf)
1516 goto err2;
1517 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
1518
1519 kfree(pidarray);
1520 file->private_data = ctr;
1521 return 0;
1522
1523err2:
1524 kfree(pidarray);
1525err1:
1526 kfree(ctr);
1527err0:
1528 return -ENOMEM;
1529}
1530
1531static ssize_t cpuset_tasks_read(struct file *file, char __user *buf,
1532 size_t nbytes, loff_t *ppos)
1533{
1534 struct ctr_struct *ctr = file->private_data;
1535
1536 if (*ppos + nbytes > ctr->bufsz)
1537 nbytes = ctr->bufsz - *ppos;
1538 if (copy_to_user(buf, ctr->buf + *ppos, nbytes))
1539 return -EFAULT;
1540 *ppos += nbytes;
1541 return nbytes;
1542}
1543
1544static int cpuset_tasks_release(struct inode *unused_inode, struct file *file)
1545{
1546 struct ctr_struct *ctr;
1547
1548 if (file->f_mode & FMODE_READ) {
1549 ctr = file->private_data;
1550 kfree(ctr->buf);
1551 kfree(ctr);
1552 }
1553 return 0;
1554}
1555
1556/*
1557 * for the common functions, 'private' gives the type of file
1558 */
1559
1560static struct cftype cft_tasks = {
1561 .name = "tasks",
1562 .open = cpuset_tasks_open,
1563 .read = cpuset_tasks_read,
1564 .release = cpuset_tasks_release,
1565 .private = FILE_TASKLIST,
1566};
1567
1568static struct cftype cft_cpus = {
1569 .name = "cpus",
1570 .private = FILE_CPULIST,
1571};
1572
1573static struct cftype cft_mems = {
1574 .name = "mems",
1575 .private = FILE_MEMLIST,
1576};
1577
1578static struct cftype cft_cpu_exclusive = {
1579 .name = "cpu_exclusive",
1580 .private = FILE_CPU_EXCLUSIVE,
1581};
1582
1583static struct cftype cft_mem_exclusive = {
1584 .name = "mem_exclusive",
1585 .private = FILE_MEM_EXCLUSIVE,
1586};
1587
1588static struct cftype cft_notify_on_release = {
1589 .name = "notify_on_release",
1590 .private = FILE_NOTIFY_ON_RELEASE,
1591};
1592
45b07ef3
PJ
1593static struct cftype cft_memory_migrate = {
1594 .name = "memory_migrate",
1595 .private = FILE_MEMORY_MIGRATE,
1596};
1597
3e0d98b9
PJ
1598static struct cftype cft_memory_pressure_enabled = {
1599 .name = "memory_pressure_enabled",
1600 .private = FILE_MEMORY_PRESSURE_ENABLED,
1601};
1602
1603static struct cftype cft_memory_pressure = {
1604 .name = "memory_pressure",
1605 .private = FILE_MEMORY_PRESSURE,
1606};
1607
1da177e4
LT
1608static int cpuset_populate_dir(struct dentry *cs_dentry)
1609{
1610 int err;
1611
1612 if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0)
1613 return err;
1614 if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0)
1615 return err;
1616 if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0)
1617 return err;
1618 if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0)
1619 return err;
1620 if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0)
1621 return err;
45b07ef3
PJ
1622 if ((err = cpuset_add_file(cs_dentry, &cft_memory_migrate)) < 0)
1623 return err;
3e0d98b9
PJ
1624 if ((err = cpuset_add_file(cs_dentry, &cft_memory_pressure)) < 0)
1625 return err;
1da177e4
LT
1626 if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0)
1627 return err;
1628 return 0;
1629}
1630
1631/*
1632 * cpuset_create - create a cpuset
1633 * parent: cpuset that will be parent of the new cpuset.
1634 * name: name of the new cpuset. Will be strcpy'ed.
1635 * mode: mode to set on new inode
1636 *
1637 * Must be called with the semaphore on the parent inode held
1638 */
1639
1640static long cpuset_create(struct cpuset *parent, const char *name, int mode)
1641{
1642 struct cpuset *cs;
1643 int err;
1644
1645 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1646 if (!cs)
1647 return -ENOMEM;
1648
053199ed 1649 down(&manage_sem);
cf2a473c 1650 cpuset_update_task_memory_state();
1da177e4
LT
1651 cs->flags = 0;
1652 if (notify_on_release(parent))
1653 set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
1654 cs->cpus_allowed = CPU_MASK_NONE;
1655 cs->mems_allowed = NODE_MASK_NONE;
1656 atomic_set(&cs->count, 0);
1657 INIT_LIST_HEAD(&cs->sibling);
1658 INIT_LIST_HEAD(&cs->children);
1659 atomic_inc(&cpuset_mems_generation);
1660 cs->mems_generation = atomic_read(&cpuset_mems_generation);
3e0d98b9 1661 fmeter_init(&cs->fmeter);
1da177e4
LT
1662
1663 cs->parent = parent;
1664
053199ed 1665 down(&callback_sem);
1da177e4 1666 list_add(&cs->sibling, &cs->parent->children);
053199ed 1667 up(&callback_sem);
1da177e4
LT
1668
1669 err = cpuset_create_dir(cs, name, mode);
1670 if (err < 0)
1671 goto err;
1672
1673 /*
053199ed 1674 * Release manage_sem before cpuset_populate_dir() because it
1da177e4
LT
1675 * will down() this new directory's i_sem and if we race with
1676 * another mkdir, we might deadlock.
1677 */
053199ed 1678 up(&manage_sem);
1da177e4
LT
1679
1680 err = cpuset_populate_dir(cs->dentry);
1681 /* If err < 0, we have a half-filled directory - oh well ;) */
1682 return 0;
1683err:
1684 list_del(&cs->sibling);
053199ed 1685 up(&manage_sem);
1da177e4
LT
1686 kfree(cs);
1687 return err;
1688}
1689
1690static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1691{
1692 struct cpuset *c_parent = dentry->d_parent->d_fsdata;
1693
1694 /* the vfs holds inode->i_sem already */
1695 return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR);
1696}
1697
1698static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry)
1699{
1700 struct cpuset *cs = dentry->d_fsdata;
1701 struct dentry *d;
1702 struct cpuset *parent;
3077a260 1703 char *pathbuf = NULL;
1da177e4
LT
1704
1705 /* the vfs holds both inode->i_sem already */
1706
053199ed 1707 down(&manage_sem);
cf2a473c 1708 cpuset_update_task_memory_state();
1da177e4 1709 if (atomic_read(&cs->count) > 0) {
053199ed 1710 up(&manage_sem);
1da177e4
LT
1711 return -EBUSY;
1712 }
1713 if (!list_empty(&cs->children)) {
053199ed 1714 up(&manage_sem);
1da177e4
LT
1715 return -EBUSY;
1716 }
1da177e4 1717 parent = cs->parent;
053199ed 1718 down(&callback_sem);
1da177e4 1719 set_bit(CS_REMOVED, &cs->flags);
85d7b949
DG
1720 if (is_cpu_exclusive(cs))
1721 update_cpu_domains(cs);
1da177e4 1722 list_del(&cs->sibling); /* delete my sibling from parent->children */
85d7b949 1723 spin_lock(&cs->dentry->d_lock);
1da177e4
LT
1724 d = dget(cs->dentry);
1725 cs->dentry = NULL;
1726 spin_unlock(&d->d_lock);
1727 cpuset_d_remove_dir(d);
1728 dput(d);
053199ed
PJ
1729 up(&callback_sem);
1730 if (list_empty(&parent->children))
1731 check_for_release(parent, &pathbuf);
1732 up(&manage_sem);
3077a260 1733 cpuset_release_agent(pathbuf);
1da177e4
LT
1734 return 0;
1735}
1736
1737/**
1738 * cpuset_init - initialize cpusets at system boot
1739 *
1740 * Description: Initialize top_cpuset and the cpuset internal file system,
1741 **/
1742
1743int __init cpuset_init(void)
1744{
1745 struct dentry *root;
1746 int err;
1747
1748 top_cpuset.cpus_allowed = CPU_MASK_ALL;
1749 top_cpuset.mems_allowed = NODE_MASK_ALL;
1750
3e0d98b9 1751 fmeter_init(&top_cpuset.fmeter);
1da177e4
LT
1752 atomic_inc(&cpuset_mems_generation);
1753 top_cpuset.mems_generation = atomic_read(&cpuset_mems_generation);
1754
1755 init_task.cpuset = &top_cpuset;
1756
1757 err = register_filesystem(&cpuset_fs_type);
1758 if (err < 0)
1759 goto out;
1760 cpuset_mount = kern_mount(&cpuset_fs_type);
1761 if (IS_ERR(cpuset_mount)) {
1762 printk(KERN_ERR "cpuset: could not mount!\n");
1763 err = PTR_ERR(cpuset_mount);
1764 cpuset_mount = NULL;
1765 goto out;
1766 }
1767 root = cpuset_mount->mnt_sb->s_root;
1768 root->d_fsdata = &top_cpuset;
1769 root->d_inode->i_nlink++;
1770 top_cpuset.dentry = root;
1771 root->d_inode->i_op = &cpuset_dir_inode_operations;
1772 err = cpuset_populate_dir(root);
3e0d98b9
PJ
1773 /* memory_pressure_enabled is in root cpuset only */
1774 if (err == 0)
1775 err = cpuset_add_file(root, &cft_memory_pressure_enabled);
1da177e4
LT
1776out:
1777 return err;
1778}
1779
1780/**
1781 * cpuset_init_smp - initialize cpus_allowed
1782 *
1783 * Description: Finish top cpuset after cpu, node maps are initialized
1784 **/
1785
1786void __init cpuset_init_smp(void)
1787{
1788 top_cpuset.cpus_allowed = cpu_online_map;
1789 top_cpuset.mems_allowed = node_online_map;
1790}
1791
1792/**
1793 * cpuset_fork - attach newly forked task to its parents cpuset.
d9fd8a6d 1794 * @tsk: pointer to task_struct of forking parent process.
1da177e4 1795 *
053199ed
PJ
1796 * Description: A task inherits its parent's cpuset at fork().
1797 *
1798 * A pointer to the shared cpuset was automatically copied in fork.c
1799 * by dup_task_struct(). However, we ignore that copy, since it was
1800 * not made under the protection of task_lock(), so might no longer be
1801 * a valid cpuset pointer. attach_task() might have already changed
1802 * current->cpuset, allowing the previously referenced cpuset to
1803 * be removed and freed. Instead, we task_lock(current) and copy
1804 * its present value of current->cpuset for our freshly forked child.
1805 *
1806 * At the point that cpuset_fork() is called, 'current' is the parent
1807 * task, and the passed argument 'child' points to the child task.
1da177e4
LT
1808 **/
1809
053199ed 1810void cpuset_fork(struct task_struct *child)
1da177e4 1811{
053199ed
PJ
1812 task_lock(current);
1813 child->cpuset = current->cpuset;
1814 atomic_inc(&child->cpuset->count);
1815 task_unlock(current);
1da177e4
LT
1816}
1817
1818/**
1819 * cpuset_exit - detach cpuset from exiting task
1820 * @tsk: pointer to task_struct of exiting process
1821 *
1822 * Description: Detach cpuset from @tsk and release it.
1823 *
053199ed
PJ
1824 * Note that cpusets marked notify_on_release force every task in
1825 * them to take the global manage_sem semaphore when exiting.
1826 * This could impact scaling on very large systems. Be reluctant to
1827 * use notify_on_release cpusets where very high task exit scaling
1828 * is required on large systems.
1829 *
1830 * Don't even think about derefencing 'cs' after the cpuset use count
1831 * goes to zero, except inside a critical section guarded by manage_sem
1832 * or callback_sem. Otherwise a zero cpuset use count is a license to
1833 * any other task to nuke the cpuset immediately, via cpuset_rmdir().
1834 *
1835 * This routine has to take manage_sem, not callback_sem, because
1836 * it is holding that semaphore while calling check_for_release(),
1837 * which calls kmalloc(), so can't be called holding callback__sem().
1838 *
1839 * We don't need to task_lock() this reference to tsk->cpuset,
1840 * because tsk is already marked PF_EXITING, so attach_task() won't
b4b26418 1841 * mess with it, or task is a failed fork, never visible to attach_task.
1da177e4
LT
1842 **/
1843
1844void cpuset_exit(struct task_struct *tsk)
1845{
1846 struct cpuset *cs;
1847
1da177e4
LT
1848 cs = tsk->cpuset;
1849 tsk->cpuset = NULL;
1da177e4 1850
2efe86b8 1851 if (notify_on_release(cs)) {
3077a260
PJ
1852 char *pathbuf = NULL;
1853
053199ed 1854 down(&manage_sem);
2efe86b8 1855 if (atomic_dec_and_test(&cs->count))
3077a260 1856 check_for_release(cs, &pathbuf);
053199ed 1857 up(&manage_sem);
3077a260 1858 cpuset_release_agent(pathbuf);
2efe86b8
PJ
1859 } else {
1860 atomic_dec(&cs->count);
1da177e4
LT
1861 }
1862}
1863
1864/**
1865 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
1866 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
1867 *
1868 * Description: Returns the cpumask_t cpus_allowed of the cpuset
1869 * attached to the specified @tsk. Guaranteed to return some non-empty
1870 * subset of cpu_online_map, even if this means going outside the
1871 * tasks cpuset.
1872 **/
1873
909d75a3 1874cpumask_t cpuset_cpus_allowed(struct task_struct *tsk)
1da177e4
LT
1875{
1876 cpumask_t mask;
1877
053199ed 1878 down(&callback_sem);
909d75a3 1879 task_lock(tsk);
1da177e4 1880 guarantee_online_cpus(tsk->cpuset, &mask);
909d75a3 1881 task_unlock(tsk);
053199ed 1882 up(&callback_sem);
1da177e4
LT
1883
1884 return mask;
1885}
1886
1887void cpuset_init_current_mems_allowed(void)
1888{
1889 current->mems_allowed = NODE_MASK_ALL;
1890}
1891
909d75a3
PJ
1892/**
1893 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
1894 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
1895 *
1896 * Description: Returns the nodemask_t mems_allowed of the cpuset
1897 * attached to the specified @tsk. Guaranteed to return some non-empty
1898 * subset of node_online_map, even if this means going outside the
1899 * tasks cpuset.
1900 **/
1901
1902nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
1903{
1904 nodemask_t mask;
1905
1906 down(&callback_sem);
1907 task_lock(tsk);
1908 guarantee_online_mems(tsk->cpuset, &mask);
1909 task_unlock(tsk);
1910 up(&callback_sem);
1911
1912 return mask;
1913}
1914
d9fd8a6d
RD
1915/**
1916 * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
1917 * @zl: the zonelist to be checked
1918 *
1da177e4
LT
1919 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
1920 */
1921int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
1922{
1923 int i;
1924
1925 for (i = 0; zl->zones[i]; i++) {
1926 int nid = zl->zones[i]->zone_pgdat->node_id;
1927
1928 if (node_isset(nid, current->mems_allowed))
1929 return 1;
1930 }
1931 return 0;
1932}
1933
9bf2229f
PJ
1934/*
1935 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
053199ed 1936 * ancestor to the specified cpuset. Call holding callback_sem.
9bf2229f
PJ
1937 * If no ancestor is mem_exclusive (an unusual configuration), then
1938 * returns the root cpuset.
1939 */
1940static const struct cpuset *nearest_exclusive_ancestor(const struct cpuset *cs)
1941{
1942 while (!is_mem_exclusive(cs) && cs->parent)
1943 cs = cs->parent;
1944 return cs;
1945}
1946
d9fd8a6d 1947/**
9bf2229f
PJ
1948 * cpuset_zone_allowed - Can we allocate memory on zone z's memory node?
1949 * @z: is this zone on an allowed node?
1950 * @gfp_mask: memory allocation flags (we use __GFP_HARDWALL)
d9fd8a6d 1951 *
9bf2229f
PJ
1952 * If we're in interrupt, yes, we can always allocate. If zone
1953 * z's node is in our tasks mems_allowed, yes. If it's not a
1954 * __GFP_HARDWALL request and this zone's nodes is in the nearest
1955 * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
1956 * Otherwise, no.
1957 *
1958 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
1959 * and do not allow allocations outside the current tasks cpuset.
1960 * GFP_KERNEL allocations are not so marked, so can escape to the
1961 * nearest mem_exclusive ancestor cpuset.
1962 *
053199ed 1963 * Scanning up parent cpusets requires callback_sem. The __alloc_pages()
9bf2229f
PJ
1964 * routine only calls here with __GFP_HARDWALL bit _not_ set if
1965 * it's a GFP_KERNEL allocation, and all nodes in the current tasks
1966 * mems_allowed came up empty on the first pass over the zonelist.
1967 * So only GFP_KERNEL allocations, if all nodes in the cpuset are
053199ed 1968 * short of memory, might require taking the callback_sem semaphore.
9bf2229f
PJ
1969 *
1970 * The first loop over the zonelist in mm/page_alloc.c:__alloc_pages()
1971 * calls here with __GFP_HARDWALL always set in gfp_mask, enforcing
1972 * hardwall cpusets - no allocation on a node outside the cpuset is
1973 * allowed (unless in interrupt, of course).
1974 *
1975 * The second loop doesn't even call here for GFP_ATOMIC requests
1976 * (if the __alloc_pages() local variable 'wait' is set). That check
1977 * and the checks below have the combined affect in the second loop of
1978 * the __alloc_pages() routine that:
1979 * in_interrupt - any node ok (current task context irrelevant)
1980 * GFP_ATOMIC - any node ok
1981 * GFP_KERNEL - any node in enclosing mem_exclusive cpuset ok
1982 * GFP_USER - only nodes in current tasks mems allowed ok.
1983 **/
1984
dd0fc66f 1985int cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
1da177e4 1986{
9bf2229f
PJ
1987 int node; /* node that zone z is on */
1988 const struct cpuset *cs; /* current cpuset ancestors */
1989 int allowed = 1; /* is allocation in zone z allowed? */
1990
1991 if (in_interrupt())
1992 return 1;
1993 node = z->zone_pgdat->node_id;
1994 if (node_isset(node, current->mems_allowed))
1995 return 1;
1996 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
1997 return 0;
1998
5563e770
BP
1999 if (current->flags & PF_EXITING) /* Let dying task have memory */
2000 return 1;
2001
9bf2229f 2002 /* Not hardwall and node outside mems_allowed: scan up cpusets */
053199ed
PJ
2003 down(&callback_sem);
2004
053199ed
PJ
2005 task_lock(current);
2006 cs = nearest_exclusive_ancestor(current->cpuset);
2007 task_unlock(current);
2008
9bf2229f 2009 allowed = node_isset(node, cs->mems_allowed);
053199ed 2010 up(&callback_sem);
9bf2229f 2011 return allowed;
1da177e4
LT
2012}
2013
ef08e3b4
PJ
2014/**
2015 * cpuset_excl_nodes_overlap - Do we overlap @p's mem_exclusive ancestors?
2016 * @p: pointer to task_struct of some other task.
2017 *
2018 * Description: Return true if the nearest mem_exclusive ancestor
2019 * cpusets of tasks @p and current overlap. Used by oom killer to
2020 * determine if task @p's memory usage might impact the memory
2021 * available to the current task.
2022 *
053199ed 2023 * Acquires callback_sem - not suitable for calling from a fast path.
ef08e3b4
PJ
2024 **/
2025
2026int cpuset_excl_nodes_overlap(const struct task_struct *p)
2027{
2028 const struct cpuset *cs1, *cs2; /* my and p's cpuset ancestors */
2029 int overlap = 0; /* do cpusets overlap? */
2030
053199ed
PJ
2031 down(&callback_sem);
2032
2033 task_lock(current);
2034 if (current->flags & PF_EXITING) {
2035 task_unlock(current);
2036 goto done;
2037 }
2038 cs1 = nearest_exclusive_ancestor(current->cpuset);
2039 task_unlock(current);
2040
2041 task_lock((struct task_struct *)p);
2042 if (p->flags & PF_EXITING) {
2043 task_unlock((struct task_struct *)p);
2044 goto done;
2045 }
2046 cs2 = nearest_exclusive_ancestor(p->cpuset);
2047 task_unlock((struct task_struct *)p);
2048
ef08e3b4
PJ
2049 overlap = nodes_intersects(cs1->mems_allowed, cs2->mems_allowed);
2050done:
053199ed 2051 up(&callback_sem);
ef08e3b4
PJ
2052
2053 return overlap;
2054}
2055
3e0d98b9
PJ
2056/*
2057 * Collection of memory_pressure is suppressed unless
2058 * this flag is enabled by writing "1" to the special
2059 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2060 */
2061
c5b2aff8 2062int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2063
2064/**
2065 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2066 *
2067 * Keep a running average of the rate of synchronous (direct)
2068 * page reclaim efforts initiated by tasks in each cpuset.
2069 *
2070 * This represents the rate at which some task in the cpuset
2071 * ran low on memory on all nodes it was allowed to use, and
2072 * had to enter the kernels page reclaim code in an effort to
2073 * create more free memory by tossing clean pages or swapping
2074 * or writing dirty pages.
2075 *
2076 * Display to user space in the per-cpuset read-only file
2077 * "memory_pressure". Value displayed is an integer
2078 * representing the recent rate of entry into the synchronous
2079 * (direct) page reclaim by any task attached to the cpuset.
2080 **/
2081
2082void __cpuset_memory_pressure_bump(void)
2083{
2084 struct cpuset *cs;
2085
2086 task_lock(current);
2087 cs = current->cpuset;
2088 fmeter_markevent(&cs->fmeter);
2089 task_unlock(current);
2090}
2091
1da177e4
LT
2092/*
2093 * proc_cpuset_show()
2094 * - Print tasks cpuset path into seq_file.
2095 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2096 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2097 * doesn't really matter if tsk->cpuset changes after we read it,
2098 * and we take manage_sem, keeping attach_task() from changing it
2099 * anyway.
1da177e4
LT
2100 */
2101
2102static int proc_cpuset_show(struct seq_file *m, void *v)
2103{
2104 struct cpuset *cs;
2105 struct task_struct *tsk;
2106 char *buf;
2107 int retval = 0;
2108
2109 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2110 if (!buf)
2111 return -ENOMEM;
2112
2113 tsk = m->private;
053199ed 2114 down(&manage_sem);
1da177e4 2115 cs = tsk->cpuset;
1da177e4
LT
2116 if (!cs) {
2117 retval = -EINVAL;
2118 goto out;
2119 }
2120
2121 retval = cpuset_path(cs, buf, PAGE_SIZE);
2122 if (retval < 0)
2123 goto out;
2124 seq_puts(m, buf);
2125 seq_putc(m, '\n');
2126out:
053199ed 2127 up(&manage_sem);
1da177e4
LT
2128 kfree(buf);
2129 return retval;
2130}
2131
2132static int cpuset_open(struct inode *inode, struct file *file)
2133{
2134 struct task_struct *tsk = PROC_I(inode)->task;
2135 return single_open(file, proc_cpuset_show, tsk);
2136}
2137
2138struct file_operations proc_cpuset_operations = {
2139 .open = cpuset_open,
2140 .read = seq_read,
2141 .llseek = seq_lseek,
2142 .release = single_release,
2143};
2144
2145/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2146char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)
2147{
2148 buffer += sprintf(buffer, "Cpus_allowed:\t");
2149 buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed);
2150 buffer += sprintf(buffer, "\n");
2151 buffer += sprintf(buffer, "Mems_allowed:\t");
2152 buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed);
2153 buffer += sprintf(buffer, "\n");
2154 return buffer;
2155}