]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/cpuset.c
cpuset: rcu_read_lock() to protect task_cs()
[net-next-2.6.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
1da177e4
LT
40#include <linux/module.h>
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
58#include <asm/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
1da177e4 62
202f72d5
PJ
63/*
64 * Tracks how many cpusets are currently defined in system.
65 * When there is only one cpuset (the root cpuset) we can
66 * short circuit some hooks.
67 */
7edc5962 68int number_of_cpusets __read_mostly;
202f72d5 69
2df167a3 70/* Forward declare cgroup structures */
8793d854
PM
71struct cgroup_subsys cpuset_subsys;
72struct cpuset;
73
3e0d98b9
PJ
74/* See "Frequency meter" comments, below. */
75
76struct fmeter {
77 int cnt; /* unprocessed events count */
78 int val; /* most recent output value */
79 time_t time; /* clock (secs) when val computed */
80 spinlock_t lock; /* guards read or write of above */
81};
82
1da177e4 83struct cpuset {
8793d854
PM
84 struct cgroup_subsys_state css;
85
1da177e4
LT
86 unsigned long flags; /* "unsigned long" so bitops work */
87 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
88 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
89
1da177e4 90 struct cpuset *parent; /* my parent */
1da177e4
LT
91
92 /*
93 * Copy of global cpuset_mems_generation as of the most
94 * recent time this cpuset changed its mems_allowed.
95 */
3e0d98b9
PJ
96 int mems_generation;
97
98 struct fmeter fmeter; /* memory_pressure filter */
029190c5
PJ
99
100 /* partition number for rebuild_sched_domains() */
101 int pn;
956db3ca 102
1d3504fc
HS
103 /* for custom sched domain */
104 int relax_domain_level;
105
956db3ca
CW
106 /* used for walking a cpuset heirarchy */
107 struct list_head stack_list;
1da177e4
LT
108};
109
8793d854
PM
110/* Retrieve the cpuset for a cgroup */
111static inline struct cpuset *cgroup_cs(struct cgroup *cont)
112{
113 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
114 struct cpuset, css);
115}
116
117/* Retrieve the cpuset for a task */
118static inline struct cpuset *task_cs(struct task_struct *task)
119{
120 return container_of(task_subsys_state(task, cpuset_subsys_id),
121 struct cpuset, css);
122}
956db3ca
CW
123struct cpuset_hotplug_scanner {
124 struct cgroup_scanner scan;
125 struct cgroup *to;
126};
8793d854 127
1da177e4
LT
128/* bits in struct cpuset flags field */
129typedef enum {
130 CS_CPU_EXCLUSIVE,
131 CS_MEM_EXCLUSIVE,
78608366 132 CS_MEM_HARDWALL,
45b07ef3 133 CS_MEMORY_MIGRATE,
029190c5 134 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
135 CS_SPREAD_PAGE,
136 CS_SPREAD_SLAB,
1da177e4
LT
137} cpuset_flagbits_t;
138
139/* convenient tests for these bits */
140static inline int is_cpu_exclusive(const struct cpuset *cs)
141{
7b5b9ef0 142 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
143}
144
145static inline int is_mem_exclusive(const struct cpuset *cs)
146{
7b5b9ef0 147 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
148}
149
78608366
PM
150static inline int is_mem_hardwall(const struct cpuset *cs)
151{
152 return test_bit(CS_MEM_HARDWALL, &cs->flags);
153}
154
029190c5
PJ
155static inline int is_sched_load_balance(const struct cpuset *cs)
156{
157 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
158}
159
45b07ef3
PJ
160static inline int is_memory_migrate(const struct cpuset *cs)
161{
7b5b9ef0 162 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
163}
164
825a46af
PJ
165static inline int is_spread_page(const struct cpuset *cs)
166{
167 return test_bit(CS_SPREAD_PAGE, &cs->flags);
168}
169
170static inline int is_spread_slab(const struct cpuset *cs)
171{
172 return test_bit(CS_SPREAD_SLAB, &cs->flags);
173}
174
1da177e4 175/*
151a4420 176 * Increment this integer everytime any cpuset changes its
1da177e4
LT
177 * mems_allowed value. Users of cpusets can track this generation
178 * number, and avoid having to lock and reload mems_allowed unless
179 * the cpuset they're using changes generation.
180 *
2df167a3 181 * A single, global generation is needed because cpuset_attach_task() could
1da177e4
LT
182 * reattach a task to a different cpuset, which must not have its
183 * generation numbers aliased with those of that tasks previous cpuset.
184 *
185 * Generations are needed for mems_allowed because one task cannot
2df167a3 186 * modify another's memory placement. So we must enable every task,
1da177e4
LT
187 * on every visit to __alloc_pages(), to efficiently check whether
188 * its current->cpuset->mems_allowed has changed, requiring an update
189 * of its current->mems_allowed.
151a4420 190 *
2df167a3 191 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
151a4420 192 * there is no need to mark it atomic.
1da177e4 193 */
151a4420 194static int cpuset_mems_generation;
1da177e4
LT
195
196static struct cpuset top_cpuset = {
197 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
198 .cpus_allowed = CPU_MASK_ALL,
199 .mems_allowed = NODE_MASK_ALL,
1da177e4
LT
200};
201
1da177e4 202/*
2df167a3
PM
203 * There are two global mutexes guarding cpuset structures. The first
204 * is the main control groups cgroup_mutex, accessed via
205 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
206 * callback_mutex, below. They can nest. It is ok to first take
207 * cgroup_mutex, then nest callback_mutex. We also require taking
208 * task_lock() when dereferencing a task's cpuset pointer. See "The
209 * task_lock() exception", at the end of this comment.
053199ed 210 *
3d3f26a7 211 * A task must hold both mutexes to modify cpusets. If a task
2df167a3 212 * holds cgroup_mutex, then it blocks others wanting that mutex,
3d3f26a7 213 * ensuring that it is the only task able to also acquire callback_mutex
053199ed
PJ
214 * and be able to modify cpusets. It can perform various checks on
215 * the cpuset structure first, knowing nothing will change. It can
2df167a3 216 * also allocate memory while just holding cgroup_mutex. While it is
053199ed 217 * performing these checks, various callback routines can briefly
3d3f26a7
IM
218 * acquire callback_mutex to query cpusets. Once it is ready to make
219 * the changes, it takes callback_mutex, blocking everyone else.
053199ed
PJ
220 *
221 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 222 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
223 * from one of the callbacks into the cpuset code from within
224 * __alloc_pages().
225 *
3d3f26a7 226 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
227 * access to cpusets.
228 *
229 * The task_struct fields mems_allowed and mems_generation may only
230 * be accessed in the context of that task, so require no locks.
231 *
3d3f26a7 232 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
233 * small pieces of code, such as when reading out possibly multi-word
234 * cpumasks and nodemasks.
235 *
2df167a3
PM
236 * Accessing a task's cpuset should be done in accordance with the
237 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
238 */
239
3d3f26a7 240static DEFINE_MUTEX(callback_mutex);
4247bdc6 241
75aa1994
DR
242/*
243 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
244 * buffers. They are statically allocated to prevent using excess stack
245 * when calling cpuset_print_task_mems_allowed().
246 */
247#define CPUSET_NAME_LEN (128)
248#define CPUSET_NODELIST_LEN (256)
249static char cpuset_name[CPUSET_NAME_LEN];
250static char cpuset_nodelist[CPUSET_NODELIST_LEN];
251static DEFINE_SPINLOCK(cpuset_buffer_lock);
252
cf417141
MK
253/*
254 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 255 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
256 * silently switch it to mount "cgroup" instead
257 */
454e2398
DH
258static int cpuset_get_sb(struct file_system_type *fs_type,
259 int flags, const char *unused_dev_name,
260 void *data, struct vfsmount *mnt)
1da177e4 261{
8793d854
PM
262 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
263 int ret = -ENODEV;
264 if (cgroup_fs) {
265 char mountopts[] =
266 "cpuset,noprefix,"
267 "release_agent=/sbin/cpuset_release_agent";
268 ret = cgroup_fs->get_sb(cgroup_fs, flags,
269 unused_dev_name, mountopts, mnt);
270 put_filesystem(cgroup_fs);
271 }
272 return ret;
1da177e4
LT
273}
274
275static struct file_system_type cpuset_fs_type = {
276 .name = "cpuset",
277 .get_sb = cpuset_get_sb,
1da177e4
LT
278};
279
1da177e4
LT
280/*
281 * Return in *pmask the portion of a cpusets's cpus_allowed that
282 * are online. If none are online, walk up the cpuset hierarchy
283 * until we find one that does have some online cpus. If we get
284 * all the way to the top and still haven't found any online cpus,
285 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
286 * task, return cpu_online_map.
287 *
288 * One way or another, we guarantee to return some non-empty subset
289 * of cpu_online_map.
290 *
3d3f26a7 291 * Call with callback_mutex held.
1da177e4
LT
292 */
293
294static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
295{
296 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
297 cs = cs->parent;
298 if (cs)
299 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
300 else
301 *pmask = cpu_online_map;
302 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
303}
304
305/*
306 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
307 * are online, with memory. If none are online with memory, walk
308 * up the cpuset hierarchy until we find one that does have some
309 * online mems. If we get all the way to the top and still haven't
310 * found any online mems, return node_states[N_HIGH_MEMORY].
1da177e4
LT
311 *
312 * One way or another, we guarantee to return some non-empty subset
0e1e7c7a 313 * of node_states[N_HIGH_MEMORY].
1da177e4 314 *
3d3f26a7 315 * Call with callback_mutex held.
1da177e4
LT
316 */
317
318static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
319{
0e1e7c7a
CL
320 while (cs && !nodes_intersects(cs->mems_allowed,
321 node_states[N_HIGH_MEMORY]))
1da177e4
LT
322 cs = cs->parent;
323 if (cs)
0e1e7c7a
CL
324 nodes_and(*pmask, cs->mems_allowed,
325 node_states[N_HIGH_MEMORY]);
1da177e4 326 else
0e1e7c7a
CL
327 *pmask = node_states[N_HIGH_MEMORY];
328 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
1da177e4
LT
329}
330
cf2a473c
PJ
331/**
332 * cpuset_update_task_memory_state - update task memory placement
333 *
334 * If the current tasks cpusets mems_allowed changed behind our
335 * backs, update current->mems_allowed, mems_generation and task NUMA
336 * mempolicy to the new value.
053199ed 337 *
cf2a473c
PJ
338 * Task mempolicy is updated by rebinding it relative to the
339 * current->cpuset if a task has its memory placement changed.
340 * Do not call this routine if in_interrupt().
341 *
4a01c8d5 342 * Call without callback_mutex or task_lock() held. May be
2df167a3
PM
343 * called with or without cgroup_mutex held. Thanks in part to
344 * 'the_top_cpuset_hack', the task's cpuset pointer will never
41f7f60d
DR
345 * be NULL. This routine also might acquire callback_mutex during
346 * call.
053199ed 347 *
6b9c2603
PJ
348 * Reading current->cpuset->mems_generation doesn't need task_lock
349 * to guard the current->cpuset derefence, because it is guarded
2df167a3 350 * from concurrent freeing of current->cpuset using RCU.
6b9c2603
PJ
351 *
352 * The rcu_dereference() is technically probably not needed,
353 * as I don't actually mind if I see a new cpuset pointer but
354 * an old value of mems_generation. However this really only
355 * matters on alpha systems using cpusets heavily. If I dropped
356 * that rcu_dereference(), it would save them a memory barrier.
357 * For all other arch's, rcu_dereference is a no-op anyway, and for
358 * alpha systems not using cpusets, another planned optimization,
359 * avoiding the rcu critical section for tasks in the root cpuset
360 * which is statically allocated, so can't vanish, will make this
361 * irrelevant. Better to use RCU as intended, than to engage in
362 * some cute trick to save a memory barrier that is impossible to
363 * test, for alpha systems using cpusets heavily, which might not
364 * even exist.
053199ed
PJ
365 *
366 * This routine is needed to update the per-task mems_allowed data,
367 * within the tasks context, when it is trying to allocate memory
368 * (in various mm/mempolicy.c routines) and notices that some other
369 * task has been modifying its cpuset.
1da177e4
LT
370 */
371
fe85a998 372void cpuset_update_task_memory_state(void)
1da177e4 373{
053199ed 374 int my_cpusets_mem_gen;
cf2a473c 375 struct task_struct *tsk = current;
6b9c2603 376 struct cpuset *cs;
053199ed 377
13337714
LJ
378 rcu_read_lock();
379 my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
380 rcu_read_unlock();
1da177e4 381
cf2a473c 382 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
3d3f26a7 383 mutex_lock(&callback_mutex);
cf2a473c 384 task_lock(tsk);
8793d854 385 cs = task_cs(tsk); /* Maybe changed when task not locked */
cf2a473c
PJ
386 guarantee_online_mems(cs, &tsk->mems_allowed);
387 tsk->cpuset_mems_generation = cs->mems_generation;
825a46af
PJ
388 if (is_spread_page(cs))
389 tsk->flags |= PF_SPREAD_PAGE;
390 else
391 tsk->flags &= ~PF_SPREAD_PAGE;
392 if (is_spread_slab(cs))
393 tsk->flags |= PF_SPREAD_SLAB;
394 else
395 tsk->flags &= ~PF_SPREAD_SLAB;
cf2a473c 396 task_unlock(tsk);
3d3f26a7 397 mutex_unlock(&callback_mutex);
74cb2155 398 mpol_rebind_task(tsk, &tsk->mems_allowed);
1da177e4
LT
399 }
400}
401
402/*
403 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
404 *
405 * One cpuset is a subset of another if all its allowed CPUs and
406 * Memory Nodes are a subset of the other, and its exclusive flags
2df167a3 407 * are only set if the other's are set. Call holding cgroup_mutex.
1da177e4
LT
408 */
409
410static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
411{
412 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
413 nodes_subset(p->mems_allowed, q->mems_allowed) &&
414 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
415 is_mem_exclusive(p) <= is_mem_exclusive(q);
416}
417
418/*
419 * validate_change() - Used to validate that any proposed cpuset change
420 * follows the structural rules for cpusets.
421 *
422 * If we replaced the flag and mask values of the current cpuset
423 * (cur) with those values in the trial cpuset (trial), would
424 * our various subset and exclusive rules still be valid? Presumes
2df167a3 425 * cgroup_mutex held.
1da177e4
LT
426 *
427 * 'cur' is the address of an actual, in-use cpuset. Operations
428 * such as list traversal that depend on the actual address of the
429 * cpuset in the list must use cur below, not trial.
430 *
431 * 'trial' is the address of bulk structure copy of cur, with
432 * perhaps one or more of the fields cpus_allowed, mems_allowed,
433 * or flags changed to new, trial values.
434 *
435 * Return 0 if valid, -errno if not.
436 */
437
438static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
439{
8793d854 440 struct cgroup *cont;
1da177e4
LT
441 struct cpuset *c, *par;
442
443 /* Each of our child cpusets must be a subset of us */
8793d854
PM
444 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
445 if (!is_cpuset_subset(cgroup_cs(cont), trial))
1da177e4
LT
446 return -EBUSY;
447 }
448
449 /* Remaining checks don't apply to root cpuset */
69604067 450 if (cur == &top_cpuset)
1da177e4
LT
451 return 0;
452
69604067
PJ
453 par = cur->parent;
454
1da177e4
LT
455 /* We must be a subset of our parent cpuset */
456 if (!is_cpuset_subset(trial, par))
457 return -EACCES;
458
2df167a3
PM
459 /*
460 * If either I or some sibling (!= me) is exclusive, we can't
461 * overlap
462 */
8793d854
PM
463 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
464 c = cgroup_cs(cont);
1da177e4
LT
465 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
466 c != cur &&
467 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
468 return -EINVAL;
469 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
470 c != cur &&
471 nodes_intersects(trial->mems_allowed, c->mems_allowed))
472 return -EINVAL;
473 }
474
020958b6
PJ
475 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
476 if (cgroup_task_count(cur->css.cgroup)) {
477 if (cpus_empty(trial->cpus_allowed) ||
478 nodes_empty(trial->mems_allowed)) {
479 return -ENOSPC;
480 }
481 }
482
1da177e4
LT
483 return 0;
484}
485
029190c5 486/*
cf417141 487 * Helper routine for generate_sched_domains().
029190c5
PJ
488 * Do cpusets a, b have overlapping cpus_allowed masks?
489 */
029190c5
PJ
490static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
491{
492 return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
493}
494
1d3504fc
HS
495static void
496update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
497{
1d3504fc
HS
498 if (dattr->relax_domain_level < c->relax_domain_level)
499 dattr->relax_domain_level = c->relax_domain_level;
500 return;
501}
502
f5393693
LJ
503static void
504update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
505{
506 LIST_HEAD(q);
507
508 list_add(&c->stack_list, &q);
509 while (!list_empty(&q)) {
510 struct cpuset *cp;
511 struct cgroup *cont;
512 struct cpuset *child;
513
514 cp = list_first_entry(&q, struct cpuset, stack_list);
515 list_del(q.next);
516
517 if (cpus_empty(cp->cpus_allowed))
518 continue;
519
520 if (is_sched_load_balance(cp))
521 update_domain_attr(dattr, cp);
522
523 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
524 child = cgroup_cs(cont);
525 list_add_tail(&child->stack_list, &q);
526 }
527 }
528}
529
029190c5 530/*
cf417141
MK
531 * generate_sched_domains()
532 *
533 * This function builds a partial partition of the systems CPUs
534 * A 'partial partition' is a set of non-overlapping subsets whose
535 * union is a subset of that set.
536 * The output of this function needs to be passed to kernel/sched.c
537 * partition_sched_domains() routine, which will rebuild the scheduler's
538 * load balancing domains (sched domains) as specified by that partial
539 * partition.
029190c5
PJ
540 *
541 * See "What is sched_load_balance" in Documentation/cpusets.txt
542 * for a background explanation of this.
543 *
544 * Does not return errors, on the theory that the callers of this
545 * routine would rather not worry about failures to rebuild sched
546 * domains when operating in the severe memory shortage situations
547 * that could cause allocation failures below.
548 *
cf417141 549 * Must be called with cgroup_lock held.
029190c5
PJ
550 *
551 * The three key local variables below are:
aeed6824 552 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
553 * top-down scan of all cpusets. This scan loads a pointer
554 * to each cpuset marked is_sched_load_balance into the
555 * array 'csa'. For our purposes, rebuilding the schedulers
556 * sched domains, we can ignore !is_sched_load_balance cpusets.
557 * csa - (for CpuSet Array) Array of pointers to all the cpusets
558 * that need to be load balanced, for convenient iterative
559 * access by the subsequent code that finds the best partition,
560 * i.e the set of domains (subsets) of CPUs such that the
561 * cpus_allowed of every cpuset marked is_sched_load_balance
562 * is a subset of one of these domains, while there are as
563 * many such domains as possible, each as small as possible.
564 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
565 * the kernel/sched.c routine partition_sched_domains() in a
566 * convenient format, that can be easily compared to the prior
567 * value to determine what partition elements (sched domains)
568 * were changed (added or removed.)
569 *
570 * Finding the best partition (set of domains):
571 * The triple nested loops below over i, j, k scan over the
572 * load balanced cpusets (using the array of cpuset pointers in
573 * csa[]) looking for pairs of cpusets that have overlapping
574 * cpus_allowed, but which don't have the same 'pn' partition
575 * number and gives them in the same partition number. It keeps
576 * looping on the 'restart' label until it can no longer find
577 * any such pairs.
578 *
579 * The union of the cpus_allowed masks from the set of
580 * all cpusets having the same 'pn' value then form the one
581 * element of the partition (one sched domain) to be passed to
582 * partition_sched_domains().
583 */
cf417141
MK
584static int generate_sched_domains(cpumask_t **domains,
585 struct sched_domain_attr **attributes)
029190c5 586{
cf417141 587 LIST_HEAD(q); /* queue of cpusets to be scanned */
029190c5
PJ
588 struct cpuset *cp; /* scans q */
589 struct cpuset **csa; /* array of all cpuset ptrs */
590 int csn; /* how many cpuset ptrs in csa so far */
591 int i, j, k; /* indices for partition finding loops */
592 cpumask_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 593 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 594 int ndoms = 0; /* number of sched domains in result */
029190c5
PJ
595 int nslot; /* next empty doms[] cpumask_t slot */
596
029190c5 597 doms = NULL;
1d3504fc 598 dattr = NULL;
cf417141 599 csa = NULL;
029190c5
PJ
600
601 /* Special case for the 99% of systems with one, full, sched domain */
602 if (is_sched_load_balance(&top_cpuset)) {
029190c5
PJ
603 doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
604 if (!doms)
cf417141
MK
605 goto done;
606
1d3504fc
HS
607 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
608 if (dattr) {
609 *dattr = SD_ATTR_INIT;
93a65575 610 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 611 }
029190c5 612 *doms = top_cpuset.cpus_allowed;
cf417141
MK
613
614 ndoms = 1;
615 goto done;
029190c5
PJ
616 }
617
029190c5
PJ
618 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
619 if (!csa)
620 goto done;
621 csn = 0;
622
aeed6824
LZ
623 list_add(&top_cpuset.stack_list, &q);
624 while (!list_empty(&q)) {
029190c5
PJ
625 struct cgroup *cont;
626 struct cpuset *child; /* scans child cpusets of cp */
489a5393 627
aeed6824
LZ
628 cp = list_first_entry(&q, struct cpuset, stack_list);
629 list_del(q.next);
630
489a5393
LJ
631 if (cpus_empty(cp->cpus_allowed))
632 continue;
633
f5393693
LJ
634 /*
635 * All child cpusets contain a subset of the parent's cpus, so
636 * just skip them, and then we call update_domain_attr_tree()
637 * to calc relax_domain_level of the corresponding sched
638 * domain.
639 */
640 if (is_sched_load_balance(cp)) {
029190c5 641 csa[csn++] = cp;
f5393693
LJ
642 continue;
643 }
489a5393 644
029190c5
PJ
645 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
646 child = cgroup_cs(cont);
aeed6824 647 list_add_tail(&child->stack_list, &q);
029190c5
PJ
648 }
649 }
650
651 for (i = 0; i < csn; i++)
652 csa[i]->pn = i;
653 ndoms = csn;
654
655restart:
656 /* Find the best partition (set of sched domains) */
657 for (i = 0; i < csn; i++) {
658 struct cpuset *a = csa[i];
659 int apn = a->pn;
660
661 for (j = 0; j < csn; j++) {
662 struct cpuset *b = csa[j];
663 int bpn = b->pn;
664
665 if (apn != bpn && cpusets_overlap(a, b)) {
666 for (k = 0; k < csn; k++) {
667 struct cpuset *c = csa[k];
668
669 if (c->pn == bpn)
670 c->pn = apn;
671 }
672 ndoms--; /* one less element */
673 goto restart;
674 }
675 }
676 }
677
cf417141
MK
678 /*
679 * Now we know how many domains to create.
680 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
681 */
029190c5 682 doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
700018e0 683 if (!doms)
cf417141 684 goto done;
cf417141
MK
685
686 /*
687 * The rest of the code, including the scheduler, can deal with
688 * dattr==NULL case. No need to abort if alloc fails.
689 */
1d3504fc 690 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
691
692 for (nslot = 0, i = 0; i < csn; i++) {
693 struct cpuset *a = csa[i];
cf417141 694 cpumask_t *dp;
029190c5
PJ
695 int apn = a->pn;
696
cf417141
MK
697 if (apn < 0) {
698 /* Skip completed partitions */
699 continue;
700 }
701
702 dp = doms + nslot;
703
704 if (nslot == ndoms) {
705 static int warnings = 10;
706 if (warnings) {
707 printk(KERN_WARNING
708 "rebuild_sched_domains confused:"
709 " nslot %d, ndoms %d, csn %d, i %d,"
710 " apn %d\n",
711 nslot, ndoms, csn, i, apn);
712 warnings--;
029190c5 713 }
cf417141
MK
714 continue;
715 }
029190c5 716
cf417141
MK
717 cpus_clear(*dp);
718 if (dattr)
719 *(dattr + nslot) = SD_ATTR_INIT;
720 for (j = i; j < csn; j++) {
721 struct cpuset *b = csa[j];
722
723 if (apn == b->pn) {
724 cpus_or(*dp, *dp, b->cpus_allowed);
725 if (dattr)
726 update_domain_attr_tree(dattr + nslot, b);
727
728 /* Done with this partition */
729 b->pn = -1;
029190c5 730 }
029190c5 731 }
cf417141 732 nslot++;
029190c5
PJ
733 }
734 BUG_ON(nslot != ndoms);
735
cf417141
MK
736done:
737 kfree(csa);
738
700018e0
LZ
739 /*
740 * Fallback to the default domain if kmalloc() failed.
741 * See comments in partition_sched_domains().
742 */
743 if (doms == NULL)
744 ndoms = 1;
745
cf417141
MK
746 *domains = doms;
747 *attributes = dattr;
748 return ndoms;
749}
750
751/*
752 * Rebuild scheduler domains.
753 *
754 * Call with neither cgroup_mutex held nor within get_online_cpus().
755 * Takes both cgroup_mutex and get_online_cpus().
756 *
757 * Cannot be directly called from cpuset code handling changes
758 * to the cpuset pseudo-filesystem, because it cannot be called
759 * from code that already holds cgroup_mutex.
760 */
761static void do_rebuild_sched_domains(struct work_struct *unused)
762{
763 struct sched_domain_attr *attr;
764 cpumask_t *doms;
765 int ndoms;
766
86ef5c9a 767 get_online_cpus();
cf417141
MK
768
769 /* Generate domain masks and attrs */
770 cgroup_lock();
771 ndoms = generate_sched_domains(&doms, &attr);
772 cgroup_unlock();
773
774 /* Have scheduler rebuild the domains */
775 partition_sched_domains(ndoms, doms, attr);
776
86ef5c9a 777 put_online_cpus();
cf417141 778}
029190c5 779
cf417141
MK
780static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
781
782/*
783 * Rebuild scheduler domains, asynchronously via workqueue.
784 *
785 * If the flag 'sched_load_balance' of any cpuset with non-empty
786 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
787 * which has that flag enabled, or if any cpuset with a non-empty
788 * 'cpus' is removed, then call this routine to rebuild the
789 * scheduler's dynamic sched domains.
790 *
791 * The rebuild_sched_domains() and partition_sched_domains()
792 * routines must nest cgroup_lock() inside get_online_cpus(),
793 * but such cpuset changes as these must nest that locking the
794 * other way, holding cgroup_lock() for much of the code.
795 *
796 * So in order to avoid an ABBA deadlock, the cpuset code handling
797 * these user changes delegates the actual sched domain rebuilding
798 * to a separate workqueue thread, which ends up processing the
799 * above do_rebuild_sched_domains() function.
800 */
801static void async_rebuild_sched_domains(void)
802{
803 schedule_work(&rebuild_sched_domains_work);
804}
805
806/*
807 * Accomplishes the same scheduler domain rebuild as the above
808 * async_rebuild_sched_domains(), however it directly calls the
809 * rebuild routine synchronously rather than calling it via an
810 * asynchronous work thread.
811 *
812 * This can only be called from code that is not holding
813 * cgroup_mutex (not nested in a cgroup_lock() call.)
814 */
815void rebuild_sched_domains(void)
816{
817 do_rebuild_sched_domains(NULL);
029190c5
PJ
818}
819
58f4790b
CW
820/**
821 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
822 * @tsk: task to test
823 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
824 *
2df167a3 825 * Call with cgroup_mutex held. May take callback_mutex during call.
58f4790b
CW
826 * Called for each task in a cgroup by cgroup_scan_tasks().
827 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
828 * words, if its mask is not equal to its cpuset's mask).
053199ed 829 */
9e0c914c
AB
830static int cpuset_test_cpumask(struct task_struct *tsk,
831 struct cgroup_scanner *scan)
58f4790b
CW
832{
833 return !cpus_equal(tsk->cpus_allowed,
834 (cgroup_cs(scan->cg))->cpus_allowed);
835}
053199ed 836
58f4790b
CW
837/**
838 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
839 * @tsk: task to test
840 * @scan: struct cgroup_scanner containing the cgroup of the task
841 *
842 * Called by cgroup_scan_tasks() for each task in a cgroup whose
843 * cpus_allowed mask needs to be changed.
844 *
845 * We don't need to re-check for the cgroup/cpuset membership, since we're
846 * holding cgroup_lock() at this point.
847 */
9e0c914c
AB
848static void cpuset_change_cpumask(struct task_struct *tsk,
849 struct cgroup_scanner *scan)
58f4790b 850{
f9a86fcb 851 set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed));
58f4790b
CW
852}
853
0b2f630a
MX
854/**
855 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
856 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
4e74339a 857 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a
MX
858 *
859 * Called with cgroup_mutex held
860 *
861 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
862 * calling callback functions for each.
863 *
4e74339a
LZ
864 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
865 * if @heap != NULL.
0b2f630a 866 */
4e74339a 867static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
0b2f630a
MX
868{
869 struct cgroup_scanner scan;
0b2f630a
MX
870
871 scan.cg = cs->css.cgroup;
872 scan.test_task = cpuset_test_cpumask;
873 scan.process_task = cpuset_change_cpumask;
4e74339a
LZ
874 scan.heap = heap;
875 cgroup_scan_tasks(&scan);
0b2f630a
MX
876}
877
58f4790b
CW
878/**
879 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
880 * @cs: the cpuset to consider
881 * @buf: buffer of cpu numbers written to this cpuset
882 */
e3712395 883static int update_cpumask(struct cpuset *cs, const char *buf)
1da177e4 884{
4e74339a 885 struct ptr_heap heap;
1da177e4 886 struct cpuset trialcs;
58f4790b
CW
887 int retval;
888 int is_load_balanced;
1da177e4 889
4c4d50f7
PJ
890 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
891 if (cs == &top_cpuset)
892 return -EACCES;
893
1da177e4 894 trialcs = *cs;
6f7f02e7
DR
895
896 /*
c8d9c90c 897 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
898 * Since cpulist_parse() fails on an empty mask, we special case
899 * that parsing. The validate_change() call ensures that cpusets
900 * with tasks have cpus.
6f7f02e7 901 */
020958b6 902 if (!*buf) {
6f7f02e7
DR
903 cpus_clear(trialcs.cpus_allowed);
904 } else {
29c0177e 905 retval = cpulist_parse(buf, &trialcs.cpus_allowed);
6f7f02e7
DR
906 if (retval < 0)
907 return retval;
37340746
LJ
908
909 if (!cpus_subset(trialcs.cpus_allowed, cpu_online_map))
910 return -EINVAL;
6f7f02e7 911 }
1da177e4 912 retval = validate_change(cs, &trialcs);
85d7b949
DG
913 if (retval < 0)
914 return retval;
029190c5 915
8707d8b8
PM
916 /* Nothing to do if the cpus didn't change */
917 if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
918 return 0;
58f4790b 919
4e74339a
LZ
920 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
921 if (retval)
922 return retval;
923
029190c5
PJ
924 is_load_balanced = is_sched_load_balance(&trialcs);
925
3d3f26a7 926 mutex_lock(&callback_mutex);
85d7b949 927 cs->cpus_allowed = trialcs.cpus_allowed;
3d3f26a7 928 mutex_unlock(&callback_mutex);
029190c5 929
8707d8b8
PM
930 /*
931 * Scan tasks in the cpuset, and update the cpumasks of any
58f4790b 932 * that need an update.
8707d8b8 933 */
4e74339a
LZ
934 update_tasks_cpumask(cs, &heap);
935
936 heap_free(&heap);
58f4790b 937
8707d8b8 938 if (is_load_balanced)
cf417141 939 async_rebuild_sched_domains();
85d7b949 940 return 0;
1da177e4
LT
941}
942
e4e364e8
PJ
943/*
944 * cpuset_migrate_mm
945 *
946 * Migrate memory region from one set of nodes to another.
947 *
948 * Temporarilly set tasks mems_allowed to target nodes of migration,
949 * so that the migration code can allocate pages on these nodes.
950 *
2df167a3 951 * Call holding cgroup_mutex, so current's cpuset won't change
c8d9c90c 952 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
953 * calls. Therefore we don't need to take task_lock around the
954 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 955 * our task's cpuset.
e4e364e8
PJ
956 *
957 * Hold callback_mutex around the two modifications of our tasks
958 * mems_allowed to synchronize with cpuset_mems_allowed().
959 *
960 * While the mm_struct we are migrating is typically from some
961 * other task, the task_struct mems_allowed that we are hacking
962 * is for our current task, which must allocate new pages for that
963 * migrating memory region.
964 *
965 * We call cpuset_update_task_memory_state() before hacking
966 * our tasks mems_allowed, so that we are assured of being in
967 * sync with our tasks cpuset, and in particular, callbacks to
968 * cpuset_update_task_memory_state() from nested page allocations
969 * won't see any mismatch of our cpuset and task mems_generation
970 * values, so won't overwrite our hacked tasks mems_allowed
971 * nodemask.
972 */
973
974static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
975 const nodemask_t *to)
976{
977 struct task_struct *tsk = current;
978
979 cpuset_update_task_memory_state();
980
981 mutex_lock(&callback_mutex);
982 tsk->mems_allowed = *to;
983 mutex_unlock(&callback_mutex);
984
985 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
986
987 mutex_lock(&callback_mutex);
8793d854 988 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
e4e364e8
PJ
989 mutex_unlock(&callback_mutex);
990}
991
8793d854
PM
992static void *cpuset_being_rebound;
993
0b2f630a
MX
994/**
995 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
996 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
997 * @oldmem: old mems_allowed of cpuset cs
998 *
999 * Called with cgroup_mutex held
1000 * Return 0 if successful, -errno if not.
1001 */
1002static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem)
1da177e4 1003{
8793d854 1004 struct task_struct *p;
4225399a
PJ
1005 struct mm_struct **mmarray;
1006 int i, n, ntasks;
04c19fa6 1007 int migrate;
4225399a 1008 int fudge;
8793d854 1009 struct cgroup_iter it;
0b2f630a 1010 int retval;
59dac16f 1011
846a16bf 1012 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a
PJ
1013
1014 fudge = 10; /* spare mmarray[] slots */
1015 fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
1016 retval = -ENOMEM;
1017
1018 /*
1019 * Allocate mmarray[] to hold mm reference for each task
1020 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
1021 * tasklist_lock. We could use GFP_ATOMIC, but with a
1022 * few more lines of code, we can retry until we get a big
1023 * enough mmarray[] w/o using GFP_ATOMIC.
1024 */
1025 while (1) {
8793d854 1026 ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
4225399a
PJ
1027 ntasks += fudge;
1028 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
1029 if (!mmarray)
1030 goto done;
c2aef333 1031 read_lock(&tasklist_lock); /* block fork */
8793d854 1032 if (cgroup_task_count(cs->css.cgroup) <= ntasks)
4225399a 1033 break; /* got enough */
c2aef333 1034 read_unlock(&tasklist_lock); /* try again */
4225399a
PJ
1035 kfree(mmarray);
1036 }
1037
1038 n = 0;
1039
1040 /* Load up mmarray[] with mm reference for each task in cpuset. */
8793d854
PM
1041 cgroup_iter_start(cs->css.cgroup, &it);
1042 while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
4225399a
PJ
1043 struct mm_struct *mm;
1044
1045 if (n >= ntasks) {
1046 printk(KERN_WARNING
1047 "Cpuset mempolicy rebind incomplete.\n");
8793d854 1048 break;
4225399a 1049 }
4225399a
PJ
1050 mm = get_task_mm(p);
1051 if (!mm)
1052 continue;
1053 mmarray[n++] = mm;
8793d854
PM
1054 }
1055 cgroup_iter_end(cs->css.cgroup, &it);
c2aef333 1056 read_unlock(&tasklist_lock);
4225399a
PJ
1057
1058 /*
1059 * Now that we've dropped the tasklist spinlock, we can
1060 * rebind the vma mempolicies of each mm in mmarray[] to their
1061 * new cpuset, and release that mm. The mpol_rebind_mm()
1062 * call takes mmap_sem, which we couldn't take while holding
846a16bf 1063 * tasklist_lock. Forks can happen again now - the mpol_dup()
4225399a
PJ
1064 * cpuset_being_rebound check will catch such forks, and rebind
1065 * their vma mempolicies too. Because we still hold the global
2df167a3 1066 * cgroup_mutex, we know that no other rebind effort will
4225399a
PJ
1067 * be contending for the global variable cpuset_being_rebound.
1068 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1069 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1070 */
04c19fa6 1071 migrate = is_memory_migrate(cs);
4225399a
PJ
1072 for (i = 0; i < n; i++) {
1073 struct mm_struct *mm = mmarray[i];
1074
1075 mpol_rebind_mm(mm, &cs->mems_allowed);
e4e364e8 1076 if (migrate)
0b2f630a 1077 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
4225399a
PJ
1078 mmput(mm);
1079 }
1080
2df167a3 1081 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
4225399a 1082 kfree(mmarray);
8793d854 1083 cpuset_being_rebound = NULL;
4225399a 1084 retval = 0;
59dac16f 1085done:
1da177e4
LT
1086 return retval;
1087}
1088
0b2f630a
MX
1089/*
1090 * Handle user request to change the 'mems' memory placement
1091 * of a cpuset. Needs to validate the request, update the
1092 * cpusets mems_allowed and mems_generation, and for each
1093 * task in the cpuset, rebind any vma mempolicies and if
1094 * the cpuset is marked 'memory_migrate', migrate the tasks
1095 * pages to the new memory.
1096 *
1097 * Call with cgroup_mutex held. May take callback_mutex during call.
1098 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1099 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1100 * their mempolicies to the cpusets new mems_allowed.
1101 */
1102static int update_nodemask(struct cpuset *cs, const char *buf)
1103{
1104 struct cpuset trialcs;
1105 nodemask_t oldmem;
1106 int retval;
1107
1108 /*
1109 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1110 * it's read-only
1111 */
1112 if (cs == &top_cpuset)
1113 return -EACCES;
1114
1115 trialcs = *cs;
1116
1117 /*
1118 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1119 * Since nodelist_parse() fails on an empty mask, we special case
1120 * that parsing. The validate_change() call ensures that cpusets
1121 * with tasks have memory.
1122 */
1123 if (!*buf) {
1124 nodes_clear(trialcs.mems_allowed);
1125 } else {
1126 retval = nodelist_parse(buf, trialcs.mems_allowed);
1127 if (retval < 0)
1128 goto done;
1129
1130 if (!nodes_subset(trialcs.mems_allowed,
1131 node_states[N_HIGH_MEMORY]))
1132 return -EINVAL;
1133 }
1134 oldmem = cs->mems_allowed;
1135 if (nodes_equal(oldmem, trialcs.mems_allowed)) {
1136 retval = 0; /* Too easy - nothing to do */
1137 goto done;
1138 }
1139 retval = validate_change(cs, &trialcs);
1140 if (retval < 0)
1141 goto done;
1142
1143 mutex_lock(&callback_mutex);
1144 cs->mems_allowed = trialcs.mems_allowed;
1145 cs->mems_generation = cpuset_mems_generation++;
1146 mutex_unlock(&callback_mutex);
1147
1148 retval = update_tasks_nodemask(cs, &oldmem);
1149done:
1150 return retval;
1151}
1152
8793d854
PM
1153int current_cpuset_is_being_rebound(void)
1154{
1155 return task_cs(current) == cpuset_being_rebound;
1156}
1157
5be7a479 1158static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1159{
30e0e178
LZ
1160 if (val < -1 || val >= SD_LV_MAX)
1161 return -EINVAL;
1d3504fc
HS
1162
1163 if (val != cs->relax_domain_level) {
1164 cs->relax_domain_level = val;
c372e817 1165 if (!cpus_empty(cs->cpus_allowed) && is_sched_load_balance(cs))
cf417141 1166 async_rebuild_sched_domains();
1d3504fc
HS
1167 }
1168
1169 return 0;
1170}
1171
1da177e4
LT
1172/*
1173 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1174 * bit: the bit to update (see cpuset_flagbits_t)
1175 * cs: the cpuset to update
1176 * turning_on: whether the flag is being set or cleared
053199ed 1177 *
2df167a3 1178 * Call with cgroup_mutex held.
1da177e4
LT
1179 */
1180
700fe1ab
PM
1181static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1182 int turning_on)
1da177e4 1183{
1da177e4 1184 struct cpuset trialcs;
607717a6 1185 int err;
40b6a762 1186 int balance_flag_changed;
1da177e4 1187
1da177e4
LT
1188 trialcs = *cs;
1189 if (turning_on)
1190 set_bit(bit, &trialcs.flags);
1191 else
1192 clear_bit(bit, &trialcs.flags);
1193
1194 err = validate_change(cs, &trialcs);
85d7b949
DG
1195 if (err < 0)
1196 return err;
029190c5 1197
029190c5
PJ
1198 balance_flag_changed = (is_sched_load_balance(cs) !=
1199 is_sched_load_balance(&trialcs));
1200
3d3f26a7 1201 mutex_lock(&callback_mutex);
69604067 1202 cs->flags = trialcs.flags;
3d3f26a7 1203 mutex_unlock(&callback_mutex);
85d7b949 1204
40b6a762 1205 if (!cpus_empty(trialcs.cpus_allowed) && balance_flag_changed)
cf417141 1206 async_rebuild_sched_domains();
029190c5 1207
85d7b949 1208 return 0;
1da177e4
LT
1209}
1210
3e0d98b9 1211/*
80f7228b 1212 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1213 *
1214 * These routines manage a digitally filtered, constant time based,
1215 * event frequency meter. There are four routines:
1216 * fmeter_init() - initialize a frequency meter.
1217 * fmeter_markevent() - called each time the event happens.
1218 * fmeter_getrate() - returns the recent rate of such events.
1219 * fmeter_update() - internal routine used to update fmeter.
1220 *
1221 * A common data structure is passed to each of these routines,
1222 * which is used to keep track of the state required to manage the
1223 * frequency meter and its digital filter.
1224 *
1225 * The filter works on the number of events marked per unit time.
1226 * The filter is single-pole low-pass recursive (IIR). The time unit
1227 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1228 * simulate 3 decimal digits of precision (multiplied by 1000).
1229 *
1230 * With an FM_COEF of 933, and a time base of 1 second, the filter
1231 * has a half-life of 10 seconds, meaning that if the events quit
1232 * happening, then the rate returned from the fmeter_getrate()
1233 * will be cut in half each 10 seconds, until it converges to zero.
1234 *
1235 * It is not worth doing a real infinitely recursive filter. If more
1236 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1237 * just compute FM_MAXTICKS ticks worth, by which point the level
1238 * will be stable.
1239 *
1240 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1241 * arithmetic overflow in the fmeter_update() routine.
1242 *
1243 * Given the simple 32 bit integer arithmetic used, this meter works
1244 * best for reporting rates between one per millisecond (msec) and
1245 * one per 32 (approx) seconds. At constant rates faster than one
1246 * per msec it maxes out at values just under 1,000,000. At constant
1247 * rates between one per msec, and one per second it will stabilize
1248 * to a value N*1000, where N is the rate of events per second.
1249 * At constant rates between one per second and one per 32 seconds,
1250 * it will be choppy, moving up on the seconds that have an event,
1251 * and then decaying until the next event. At rates slower than
1252 * about one in 32 seconds, it decays all the way back to zero between
1253 * each event.
1254 */
1255
1256#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1257#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1258#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1259#define FM_SCALE 1000 /* faux fixed point scale */
1260
1261/* Initialize a frequency meter */
1262static void fmeter_init(struct fmeter *fmp)
1263{
1264 fmp->cnt = 0;
1265 fmp->val = 0;
1266 fmp->time = 0;
1267 spin_lock_init(&fmp->lock);
1268}
1269
1270/* Internal meter update - process cnt events and update value */
1271static void fmeter_update(struct fmeter *fmp)
1272{
1273 time_t now = get_seconds();
1274 time_t ticks = now - fmp->time;
1275
1276 if (ticks == 0)
1277 return;
1278
1279 ticks = min(FM_MAXTICKS, ticks);
1280 while (ticks-- > 0)
1281 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1282 fmp->time = now;
1283
1284 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1285 fmp->cnt = 0;
1286}
1287
1288/* Process any previous ticks, then bump cnt by one (times scale). */
1289static void fmeter_markevent(struct fmeter *fmp)
1290{
1291 spin_lock(&fmp->lock);
1292 fmeter_update(fmp);
1293 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1294 spin_unlock(&fmp->lock);
1295}
1296
1297/* Process any previous ticks, then return current value. */
1298static int fmeter_getrate(struct fmeter *fmp)
1299{
1300 int val;
1301
1302 spin_lock(&fmp->lock);
1303 fmeter_update(fmp);
1304 val = fmp->val;
1305 spin_unlock(&fmp->lock);
1306 return val;
1307}
1308
2df167a3 1309/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
8793d854
PM
1310static int cpuset_can_attach(struct cgroup_subsys *ss,
1311 struct cgroup *cont, struct task_struct *tsk)
1da177e4 1312{
8793d854 1313 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1314
1da177e4
LT
1315 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1316 return -ENOSPC;
9985b0ba
DR
1317 if (tsk->flags & PF_THREAD_BOUND) {
1318 cpumask_t mask;
1319
1320 mutex_lock(&callback_mutex);
1321 mask = cs->cpus_allowed;
1322 mutex_unlock(&callback_mutex);
1323 if (!cpus_equal(tsk->cpus_allowed, mask))
1324 return -EINVAL;
1325 }
1da177e4 1326
8793d854
PM
1327 return security_task_setscheduler(tsk, 0, NULL);
1328}
1da177e4 1329
8793d854
PM
1330static void cpuset_attach(struct cgroup_subsys *ss,
1331 struct cgroup *cont, struct cgroup *oldcont,
1332 struct task_struct *tsk)
1333{
1334 cpumask_t cpus;
1335 nodemask_t from, to;
1336 struct mm_struct *mm;
1337 struct cpuset *cs = cgroup_cs(cont);
1338 struct cpuset *oldcs = cgroup_cs(oldcont);
9985b0ba 1339 int err;
22fb52dd 1340
3d3f26a7 1341 mutex_lock(&callback_mutex);
1da177e4 1342 guarantee_online_cpus(cs, &cpus);
9985b0ba 1343 err = set_cpus_allowed_ptr(tsk, &cpus);
8793d854 1344 mutex_unlock(&callback_mutex);
9985b0ba
DR
1345 if (err)
1346 return;
1da177e4 1347
45b07ef3
PJ
1348 from = oldcs->mems_allowed;
1349 to = cs->mems_allowed;
4225399a
PJ
1350 mm = get_task_mm(tsk);
1351 if (mm) {
1352 mpol_rebind_mm(mm, &to);
2741a559 1353 if (is_memory_migrate(cs))
e4e364e8 1354 cpuset_migrate_mm(mm, &from, &to);
4225399a
PJ
1355 mmput(mm);
1356 }
1357
1da177e4
LT
1358}
1359
1360/* The various types of files and directories in a cpuset file system */
1361
1362typedef enum {
45b07ef3 1363 FILE_MEMORY_MIGRATE,
1da177e4
LT
1364 FILE_CPULIST,
1365 FILE_MEMLIST,
1366 FILE_CPU_EXCLUSIVE,
1367 FILE_MEM_EXCLUSIVE,
78608366 1368 FILE_MEM_HARDWALL,
029190c5 1369 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1370 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1371 FILE_MEMORY_PRESSURE_ENABLED,
1372 FILE_MEMORY_PRESSURE,
825a46af
PJ
1373 FILE_SPREAD_PAGE,
1374 FILE_SPREAD_SLAB,
1da177e4
LT
1375} cpuset_filetype_t;
1376
700fe1ab
PM
1377static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1378{
1379 int retval = 0;
1380 struct cpuset *cs = cgroup_cs(cgrp);
1381 cpuset_filetype_t type = cft->private;
1382
e3712395 1383 if (!cgroup_lock_live_group(cgrp))
700fe1ab 1384 return -ENODEV;
700fe1ab
PM
1385
1386 switch (type) {
1da177e4 1387 case FILE_CPU_EXCLUSIVE:
700fe1ab 1388 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1389 break;
1390 case FILE_MEM_EXCLUSIVE:
700fe1ab 1391 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1392 break;
78608366
PM
1393 case FILE_MEM_HARDWALL:
1394 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1395 break;
029190c5 1396 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1397 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1398 break;
45b07ef3 1399 case FILE_MEMORY_MIGRATE:
700fe1ab 1400 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1401 break;
3e0d98b9 1402 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1403 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1404 break;
1405 case FILE_MEMORY_PRESSURE:
1406 retval = -EACCES;
1407 break;
825a46af 1408 case FILE_SPREAD_PAGE:
700fe1ab 1409 retval = update_flag(CS_SPREAD_PAGE, cs, val);
151a4420 1410 cs->mems_generation = cpuset_mems_generation++;
825a46af
PJ
1411 break;
1412 case FILE_SPREAD_SLAB:
700fe1ab 1413 retval = update_flag(CS_SPREAD_SLAB, cs, val);
151a4420 1414 cs->mems_generation = cpuset_mems_generation++;
825a46af 1415 break;
1da177e4
LT
1416 default:
1417 retval = -EINVAL;
700fe1ab 1418 break;
1da177e4 1419 }
8793d854 1420 cgroup_unlock();
1da177e4
LT
1421 return retval;
1422}
1423
5be7a479
PM
1424static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1425{
1426 int retval = 0;
1427 struct cpuset *cs = cgroup_cs(cgrp);
1428 cpuset_filetype_t type = cft->private;
1429
e3712395 1430 if (!cgroup_lock_live_group(cgrp))
5be7a479 1431 return -ENODEV;
e3712395 1432
5be7a479
PM
1433 switch (type) {
1434 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1435 retval = update_relax_domain_level(cs, val);
1436 break;
1437 default:
1438 retval = -EINVAL;
1439 break;
1440 }
1441 cgroup_unlock();
1442 return retval;
1443}
1444
e3712395
PM
1445/*
1446 * Common handling for a write to a "cpus" or "mems" file.
1447 */
1448static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1449 const char *buf)
1450{
1451 int retval = 0;
1452
1453 if (!cgroup_lock_live_group(cgrp))
1454 return -ENODEV;
1455
1456 switch (cft->private) {
1457 case FILE_CPULIST:
1458 retval = update_cpumask(cgroup_cs(cgrp), buf);
1459 break;
1460 case FILE_MEMLIST:
1461 retval = update_nodemask(cgroup_cs(cgrp), buf);
1462 break;
1463 default:
1464 retval = -EINVAL;
1465 break;
1466 }
1467 cgroup_unlock();
1468 return retval;
1469}
1470
1da177e4
LT
1471/*
1472 * These ascii lists should be read in a single call, by using a user
1473 * buffer large enough to hold the entire map. If read in smaller
1474 * chunks, there is no guarantee of atomicity. Since the display format
1475 * used, list of ranges of sequential numbers, is variable length,
1476 * and since these maps can change value dynamically, one could read
1477 * gibberish by doing partial reads while a list was changing.
1478 * A single large read to a buffer that crosses a page boundary is
1479 * ok, because the result being copied to user land is not recomputed
1480 * across a page fault.
1481 */
1482
1483static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1484{
1485 cpumask_t mask;
1486
3d3f26a7 1487 mutex_lock(&callback_mutex);
1da177e4 1488 mask = cs->cpus_allowed;
3d3f26a7 1489 mutex_unlock(&callback_mutex);
1da177e4 1490
29c0177e 1491 return cpulist_scnprintf(page, PAGE_SIZE, &mask);
1da177e4
LT
1492}
1493
1494static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1495{
1496 nodemask_t mask;
1497
3d3f26a7 1498 mutex_lock(&callback_mutex);
1da177e4 1499 mask = cs->mems_allowed;
3d3f26a7 1500 mutex_unlock(&callback_mutex);
1da177e4
LT
1501
1502 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1503}
1504
8793d854
PM
1505static ssize_t cpuset_common_file_read(struct cgroup *cont,
1506 struct cftype *cft,
1507 struct file *file,
1508 char __user *buf,
1509 size_t nbytes, loff_t *ppos)
1da177e4 1510{
8793d854 1511 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1512 cpuset_filetype_t type = cft->private;
1513 char *page;
1514 ssize_t retval = 0;
1515 char *s;
1da177e4 1516
e12ba74d 1517 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1518 return -ENOMEM;
1519
1520 s = page;
1521
1522 switch (type) {
1523 case FILE_CPULIST:
1524 s += cpuset_sprintf_cpulist(s, cs);
1525 break;
1526 case FILE_MEMLIST:
1527 s += cpuset_sprintf_memlist(s, cs);
1528 break;
1da177e4
LT
1529 default:
1530 retval = -EINVAL;
1531 goto out;
1532 }
1533 *s++ = '\n';
1da177e4 1534
eacaa1f5 1535 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1536out:
1537 free_page((unsigned long)page);
1538 return retval;
1539}
1540
700fe1ab
PM
1541static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1542{
1543 struct cpuset *cs = cgroup_cs(cont);
1544 cpuset_filetype_t type = cft->private;
1545 switch (type) {
1546 case FILE_CPU_EXCLUSIVE:
1547 return is_cpu_exclusive(cs);
1548 case FILE_MEM_EXCLUSIVE:
1549 return is_mem_exclusive(cs);
78608366
PM
1550 case FILE_MEM_HARDWALL:
1551 return is_mem_hardwall(cs);
700fe1ab
PM
1552 case FILE_SCHED_LOAD_BALANCE:
1553 return is_sched_load_balance(cs);
1554 case FILE_MEMORY_MIGRATE:
1555 return is_memory_migrate(cs);
1556 case FILE_MEMORY_PRESSURE_ENABLED:
1557 return cpuset_memory_pressure_enabled;
1558 case FILE_MEMORY_PRESSURE:
1559 return fmeter_getrate(&cs->fmeter);
1560 case FILE_SPREAD_PAGE:
1561 return is_spread_page(cs);
1562 case FILE_SPREAD_SLAB:
1563 return is_spread_slab(cs);
1564 default:
1565 BUG();
1566 }
cf417141
MK
1567
1568 /* Unreachable but makes gcc happy */
1569 return 0;
700fe1ab 1570}
1da177e4 1571
5be7a479
PM
1572static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1573{
1574 struct cpuset *cs = cgroup_cs(cont);
1575 cpuset_filetype_t type = cft->private;
1576 switch (type) {
1577 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1578 return cs->relax_domain_level;
1579 default:
1580 BUG();
1581 }
cf417141
MK
1582
1583 /* Unrechable but makes gcc happy */
1584 return 0;
5be7a479
PM
1585}
1586
1da177e4
LT
1587
1588/*
1589 * for the common functions, 'private' gives the type of file
1590 */
1591
addf2c73
PM
1592static struct cftype files[] = {
1593 {
1594 .name = "cpus",
1595 .read = cpuset_common_file_read,
e3712395
PM
1596 .write_string = cpuset_write_resmask,
1597 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1598 .private = FILE_CPULIST,
1599 },
1600
1601 {
1602 .name = "mems",
1603 .read = cpuset_common_file_read,
e3712395
PM
1604 .write_string = cpuset_write_resmask,
1605 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1606 .private = FILE_MEMLIST,
1607 },
1608
1609 {
1610 .name = "cpu_exclusive",
1611 .read_u64 = cpuset_read_u64,
1612 .write_u64 = cpuset_write_u64,
1613 .private = FILE_CPU_EXCLUSIVE,
1614 },
1615
1616 {
1617 .name = "mem_exclusive",
1618 .read_u64 = cpuset_read_u64,
1619 .write_u64 = cpuset_write_u64,
1620 .private = FILE_MEM_EXCLUSIVE,
1621 },
1622
78608366
PM
1623 {
1624 .name = "mem_hardwall",
1625 .read_u64 = cpuset_read_u64,
1626 .write_u64 = cpuset_write_u64,
1627 .private = FILE_MEM_HARDWALL,
1628 },
1629
addf2c73
PM
1630 {
1631 .name = "sched_load_balance",
1632 .read_u64 = cpuset_read_u64,
1633 .write_u64 = cpuset_write_u64,
1634 .private = FILE_SCHED_LOAD_BALANCE,
1635 },
1636
1637 {
1638 .name = "sched_relax_domain_level",
5be7a479
PM
1639 .read_s64 = cpuset_read_s64,
1640 .write_s64 = cpuset_write_s64,
addf2c73
PM
1641 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1642 },
1643
1644 {
1645 .name = "memory_migrate",
1646 .read_u64 = cpuset_read_u64,
1647 .write_u64 = cpuset_write_u64,
1648 .private = FILE_MEMORY_MIGRATE,
1649 },
1650
1651 {
1652 .name = "memory_pressure",
1653 .read_u64 = cpuset_read_u64,
1654 .write_u64 = cpuset_write_u64,
1655 .private = FILE_MEMORY_PRESSURE,
1656 },
1657
1658 {
1659 .name = "memory_spread_page",
1660 .read_u64 = cpuset_read_u64,
1661 .write_u64 = cpuset_write_u64,
1662 .private = FILE_SPREAD_PAGE,
1663 },
1664
1665 {
1666 .name = "memory_spread_slab",
1667 .read_u64 = cpuset_read_u64,
1668 .write_u64 = cpuset_write_u64,
1669 .private = FILE_SPREAD_SLAB,
1670 },
45b07ef3
PJ
1671};
1672
3e0d98b9
PJ
1673static struct cftype cft_memory_pressure_enabled = {
1674 .name = "memory_pressure_enabled",
700fe1ab
PM
1675 .read_u64 = cpuset_read_u64,
1676 .write_u64 = cpuset_write_u64,
3e0d98b9
PJ
1677 .private = FILE_MEMORY_PRESSURE_ENABLED,
1678};
1679
8793d854 1680static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4
LT
1681{
1682 int err;
1683
addf2c73
PM
1684 err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1685 if (err)
1da177e4 1686 return err;
8793d854 1687 /* memory_pressure_enabled is in root cpuset only */
addf2c73 1688 if (!cont->parent)
8793d854 1689 err = cgroup_add_file(cont, ss,
addf2c73
PM
1690 &cft_memory_pressure_enabled);
1691 return err;
1da177e4
LT
1692}
1693
8793d854
PM
1694/*
1695 * post_clone() is called at the end of cgroup_clone().
1696 * 'cgroup' was just created automatically as a result of
1697 * a cgroup_clone(), and the current task is about to
1698 * be moved into 'cgroup'.
1699 *
1700 * Currently we refuse to set up the cgroup - thereby
1701 * refusing the task to be entered, and as a result refusing
1702 * the sys_unshare() or clone() which initiated it - if any
1703 * sibling cpusets have exclusive cpus or mem.
1704 *
1705 * If this becomes a problem for some users who wish to
1706 * allow that scenario, then cpuset_post_clone() could be
1707 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2df167a3
PM
1708 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1709 * held.
8793d854
PM
1710 */
1711static void cpuset_post_clone(struct cgroup_subsys *ss,
1712 struct cgroup *cgroup)
1713{
1714 struct cgroup *parent, *child;
1715 struct cpuset *cs, *parent_cs;
1716
1717 parent = cgroup->parent;
1718 list_for_each_entry(child, &parent->children, sibling) {
1719 cs = cgroup_cs(child);
1720 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1721 return;
1722 }
1723 cs = cgroup_cs(cgroup);
1724 parent_cs = cgroup_cs(parent);
1725
1726 cs->mems_allowed = parent_cs->mems_allowed;
1727 cs->cpus_allowed = parent_cs->cpus_allowed;
1728 return;
1729}
1730
1da177e4
LT
1731/*
1732 * cpuset_create - create a cpuset
2df167a3
PM
1733 * ss: cpuset cgroup subsystem
1734 * cont: control group that the new cpuset will be part of
1da177e4
LT
1735 */
1736
8793d854
PM
1737static struct cgroup_subsys_state *cpuset_create(
1738 struct cgroup_subsys *ss,
1739 struct cgroup *cont)
1da177e4
LT
1740{
1741 struct cpuset *cs;
8793d854 1742 struct cpuset *parent;
1da177e4 1743
8793d854
PM
1744 if (!cont->parent) {
1745 /* This is early initialization for the top cgroup */
1746 top_cpuset.mems_generation = cpuset_mems_generation++;
1747 return &top_cpuset.css;
1748 }
1749 parent = cgroup_cs(cont->parent);
1da177e4
LT
1750 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1751 if (!cs)
8793d854 1752 return ERR_PTR(-ENOMEM);
1da177e4 1753
cf2a473c 1754 cpuset_update_task_memory_state();
1da177e4 1755 cs->flags = 0;
825a46af
PJ
1756 if (is_spread_page(parent))
1757 set_bit(CS_SPREAD_PAGE, &cs->flags);
1758 if (is_spread_slab(parent))
1759 set_bit(CS_SPREAD_SLAB, &cs->flags);
029190c5 1760 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
f9a86fcb
MT
1761 cpus_clear(cs->cpus_allowed);
1762 nodes_clear(cs->mems_allowed);
151a4420 1763 cs->mems_generation = cpuset_mems_generation++;
3e0d98b9 1764 fmeter_init(&cs->fmeter);
1d3504fc 1765 cs->relax_domain_level = -1;
1da177e4
LT
1766
1767 cs->parent = parent;
202f72d5 1768 number_of_cpusets++;
8793d854 1769 return &cs->css ;
1da177e4
LT
1770}
1771
029190c5 1772/*
029190c5
PJ
1773 * If the cpuset being removed has its flag 'sched_load_balance'
1774 * enabled, then simulate turning sched_load_balance off, which
cf417141 1775 * will call async_rebuild_sched_domains().
029190c5
PJ
1776 */
1777
8793d854 1778static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4 1779{
8793d854 1780 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1781
cf2a473c 1782 cpuset_update_task_memory_state();
029190c5
PJ
1783
1784 if (is_sched_load_balance(cs))
700fe1ab 1785 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
029190c5 1786
202f72d5 1787 number_of_cpusets--;
8793d854 1788 kfree(cs);
1da177e4
LT
1789}
1790
8793d854
PM
1791struct cgroup_subsys cpuset_subsys = {
1792 .name = "cpuset",
1793 .create = cpuset_create,
cf417141 1794 .destroy = cpuset_destroy,
8793d854
PM
1795 .can_attach = cpuset_can_attach,
1796 .attach = cpuset_attach,
1797 .populate = cpuset_populate,
1798 .post_clone = cpuset_post_clone,
1799 .subsys_id = cpuset_subsys_id,
1800 .early_init = 1,
1801};
1802
c417f024
PJ
1803/*
1804 * cpuset_init_early - just enough so that the calls to
1805 * cpuset_update_task_memory_state() in early init code
1806 * are harmless.
1807 */
1808
1809int __init cpuset_init_early(void)
1810{
8793d854 1811 top_cpuset.mems_generation = cpuset_mems_generation++;
c417f024
PJ
1812 return 0;
1813}
1814
8793d854 1815
1da177e4
LT
1816/**
1817 * cpuset_init - initialize cpusets at system boot
1818 *
1819 * Description: Initialize top_cpuset and the cpuset internal file system,
1820 **/
1821
1822int __init cpuset_init(void)
1823{
8793d854 1824 int err = 0;
1da177e4 1825
f9a86fcb
MT
1826 cpus_setall(top_cpuset.cpus_allowed);
1827 nodes_setall(top_cpuset.mems_allowed);
1da177e4 1828
3e0d98b9 1829 fmeter_init(&top_cpuset.fmeter);
151a4420 1830 top_cpuset.mems_generation = cpuset_mems_generation++;
029190c5 1831 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 1832 top_cpuset.relax_domain_level = -1;
1da177e4 1833
1da177e4
LT
1834 err = register_filesystem(&cpuset_fs_type);
1835 if (err < 0)
8793d854
PM
1836 return err;
1837
202f72d5 1838 number_of_cpusets = 1;
8793d854 1839 return 0;
1da177e4
LT
1840}
1841
956db3ca
CW
1842/**
1843 * cpuset_do_move_task - move a given task to another cpuset
1844 * @tsk: pointer to task_struct the task to move
1845 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1846 *
1847 * Called by cgroup_scan_tasks() for each task in a cgroup.
1848 * Return nonzero to stop the walk through the tasks.
1849 */
9e0c914c
AB
1850static void cpuset_do_move_task(struct task_struct *tsk,
1851 struct cgroup_scanner *scan)
956db3ca
CW
1852{
1853 struct cpuset_hotplug_scanner *chsp;
1854
1855 chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
1856 cgroup_attach_task(chsp->to, tsk);
1857}
1858
1859/**
1860 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1861 * @from: cpuset in which the tasks currently reside
1862 * @to: cpuset to which the tasks will be moved
1863 *
c8d9c90c
PJ
1864 * Called with cgroup_mutex held
1865 * callback_mutex must not be held, as cpuset_attach() will take it.
956db3ca
CW
1866 *
1867 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1868 * calling callback functions for each.
1869 */
1870static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1871{
1872 struct cpuset_hotplug_scanner scan;
1873
1874 scan.scan.cg = from->css.cgroup;
1875 scan.scan.test_task = NULL; /* select all tasks in cgroup */
1876 scan.scan.process_task = cpuset_do_move_task;
1877 scan.scan.heap = NULL;
1878 scan.to = to->css.cgroup;
1879
da5ef6bb 1880 if (cgroup_scan_tasks(&scan.scan))
956db3ca
CW
1881 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1882 "cgroup_scan_tasks failed\n");
1883}
1884
b1aac8bb 1885/*
cf417141 1886 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
1887 * or memory nodes, we need to walk over the cpuset hierarchy,
1888 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
1889 * last CPU or node from a cpuset, then move the tasks in the empty
1890 * cpuset to its next-highest non-empty parent.
b1aac8bb 1891 *
c8d9c90c
PJ
1892 * Called with cgroup_mutex held
1893 * callback_mutex must not be held, as cpuset_attach() will take it.
b1aac8bb 1894 */
956db3ca
CW
1895static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1896{
1897 struct cpuset *parent;
1898
c8d9c90c
PJ
1899 /*
1900 * The cgroup's css_sets list is in use if there are tasks
1901 * in the cpuset; the list is empty if there are none;
1902 * the cs->css.refcnt seems always 0.
1903 */
956db3ca
CW
1904 if (list_empty(&cs->css.cgroup->css_sets))
1905 return;
b1aac8bb 1906
956db3ca
CW
1907 /*
1908 * Find its next-highest non-empty parent, (top cpuset
1909 * has online cpus, so can't be empty).
1910 */
1911 parent = cs->parent;
b4501295
PJ
1912 while (cpus_empty(parent->cpus_allowed) ||
1913 nodes_empty(parent->mems_allowed))
956db3ca 1914 parent = parent->parent;
956db3ca
CW
1915
1916 move_member_tasks_to_cpuset(cs, parent);
1917}
1918
1919/*
1920 * Walk the specified cpuset subtree and look for empty cpusets.
1921 * The tasks of such cpuset must be moved to a parent cpuset.
1922 *
2df167a3 1923 * Called with cgroup_mutex held. We take callback_mutex to modify
956db3ca
CW
1924 * cpus_allowed and mems_allowed.
1925 *
1926 * This walk processes the tree from top to bottom, completing one layer
1927 * before dropping down to the next. It always processes a node before
1928 * any of its children.
1929 *
1930 * For now, since we lack memory hot unplug, we'll never see a cpuset
1931 * that has tasks along with an empty 'mems'. But if we did see such
1932 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1933 */
d294eb83 1934static void scan_for_empty_cpusets(struct cpuset *root)
b1aac8bb 1935{
8d1e6266 1936 LIST_HEAD(queue);
956db3ca
CW
1937 struct cpuset *cp; /* scans cpusets being updated */
1938 struct cpuset *child; /* scans child cpusets of cp */
8793d854 1939 struct cgroup *cont;
f9b4fb8d 1940 nodemask_t oldmems;
b1aac8bb 1941
956db3ca
CW
1942 list_add_tail((struct list_head *)&root->stack_list, &queue);
1943
956db3ca 1944 while (!list_empty(&queue)) {
8d1e6266 1945 cp = list_first_entry(&queue, struct cpuset, stack_list);
956db3ca
CW
1946 list_del(queue.next);
1947 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
1948 child = cgroup_cs(cont);
1949 list_add_tail(&child->stack_list, &queue);
1950 }
b4501295
PJ
1951
1952 /* Continue past cpusets with all cpus, mems online */
1953 if (cpus_subset(cp->cpus_allowed, cpu_online_map) &&
1954 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
1955 continue;
1956
f9b4fb8d
MX
1957 oldmems = cp->mems_allowed;
1958
956db3ca 1959 /* Remove offline cpus and mems from this cpuset. */
b4501295 1960 mutex_lock(&callback_mutex);
956db3ca
CW
1961 cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map);
1962 nodes_and(cp->mems_allowed, cp->mems_allowed,
1963 node_states[N_HIGH_MEMORY]);
b4501295
PJ
1964 mutex_unlock(&callback_mutex);
1965
1966 /* Move tasks from the empty cpuset to a parent */
c8d9c90c 1967 if (cpus_empty(cp->cpus_allowed) ||
b4501295 1968 nodes_empty(cp->mems_allowed))
956db3ca 1969 remove_tasks_in_empty_cpuset(cp);
f9b4fb8d 1970 else {
4e74339a 1971 update_tasks_cpumask(cp, NULL);
f9b4fb8d
MX
1972 update_tasks_nodemask(cp, &oldmems);
1973 }
b1aac8bb
PJ
1974 }
1975}
1976
4c4d50f7
PJ
1977/*
1978 * The top_cpuset tracks what CPUs and Memory Nodes are online,
1979 * period. This is necessary in order to make cpusets transparent
1980 * (of no affect) on systems that are actively using CPU hotplug
1981 * but making no active use of cpusets.
1982 *
38837fc7
PJ
1983 * This routine ensures that top_cpuset.cpus_allowed tracks
1984 * cpu_online_map on each CPU hotplug (cpuhp) event.
cf417141
MK
1985 *
1986 * Called within get_online_cpus(). Needs to call cgroup_lock()
1987 * before calling generate_sched_domains().
4c4d50f7 1988 */
cf417141 1989static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
029190c5 1990 unsigned long phase, void *unused_cpu)
4c4d50f7 1991{
cf417141
MK
1992 struct sched_domain_attr *attr;
1993 cpumask_t *doms;
1994 int ndoms;
1995
3e84050c 1996 switch (phase) {
3e84050c
DA
1997 case CPU_ONLINE:
1998 case CPU_ONLINE_FROZEN:
1999 case CPU_DEAD:
2000 case CPU_DEAD_FROZEN:
3e84050c 2001 break;
cf417141 2002
3e84050c 2003 default:
ac076758 2004 return NOTIFY_DONE;
3e84050c 2005 }
ac076758 2006
cf417141
MK
2007 cgroup_lock();
2008 top_cpuset.cpus_allowed = cpu_online_map;
2009 scan_for_empty_cpusets(&top_cpuset);
2010 ndoms = generate_sched_domains(&doms, &attr);
2011 cgroup_unlock();
2012
2013 /* Have scheduler rebuild the domains */
2014 partition_sched_domains(ndoms, doms, attr);
2015
3e84050c 2016 return NOTIFY_OK;
4c4d50f7 2017}
4c4d50f7 2018
b1aac8bb 2019#ifdef CONFIG_MEMORY_HOTPLUG
38837fc7 2020/*
0e1e7c7a 2021 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
cf417141
MK
2022 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2023 * See also the previous routine cpuset_track_online_cpus().
38837fc7 2024 */
f481891f
MX
2025static int cpuset_track_online_nodes(struct notifier_block *self,
2026 unsigned long action, void *arg)
38837fc7 2027{
cf417141 2028 cgroup_lock();
f481891f
MX
2029 switch (action) {
2030 case MEM_ONLINE:
2031 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2032 break;
2033 case MEM_OFFLINE:
2034 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2035 scan_for_empty_cpusets(&top_cpuset);
2036 break;
2037 default:
2038 break;
2039 }
cf417141 2040 cgroup_unlock();
f481891f 2041 return NOTIFY_OK;
38837fc7
PJ
2042}
2043#endif
2044
1da177e4
LT
2045/**
2046 * cpuset_init_smp - initialize cpus_allowed
2047 *
2048 * Description: Finish top cpuset after cpu, node maps are initialized
2049 **/
2050
2051void __init cpuset_init_smp(void)
2052{
2053 top_cpuset.cpus_allowed = cpu_online_map;
0e1e7c7a 2054 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
4c4d50f7 2055
cf417141 2056 hotcpu_notifier(cpuset_track_online_cpus, 0);
f481891f 2057 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
1da177e4
LT
2058}
2059
2060/**
1da177e4
LT
2061 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2062 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
f9a86fcb 2063 * @pmask: pointer to cpumask_t variable to receive cpus_allowed set.
1da177e4
LT
2064 *
2065 * Description: Returns the cpumask_t cpus_allowed of the cpuset
2066 * attached to the specified @tsk. Guaranteed to return some non-empty
2067 * subset of cpu_online_map, even if this means going outside the
2068 * tasks cpuset.
2069 **/
2070
f9a86fcb 2071void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask)
1da177e4 2072{
3d3f26a7 2073 mutex_lock(&callback_mutex);
f9a86fcb 2074 cpuset_cpus_allowed_locked(tsk, pmask);
470fd646 2075 mutex_unlock(&callback_mutex);
470fd646
CW
2076}
2077
2078/**
2079 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
2df167a3 2080 * Must be called with callback_mutex held.
470fd646 2081 **/
f9a86fcb 2082void cpuset_cpus_allowed_locked(struct task_struct *tsk, cpumask_t *pmask)
470fd646 2083{
909d75a3 2084 task_lock(tsk);
f9a86fcb 2085 guarantee_online_cpus(task_cs(tsk), pmask);
909d75a3 2086 task_unlock(tsk);
1da177e4
LT
2087}
2088
2089void cpuset_init_current_mems_allowed(void)
2090{
f9a86fcb 2091 nodes_setall(current->mems_allowed);
1da177e4
LT
2092}
2093
909d75a3
PJ
2094/**
2095 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2096 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2097 *
2098 * Description: Returns the nodemask_t mems_allowed of the cpuset
2099 * attached to the specified @tsk. Guaranteed to return some non-empty
0e1e7c7a 2100 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
909d75a3
PJ
2101 * tasks cpuset.
2102 **/
2103
2104nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2105{
2106 nodemask_t mask;
2107
3d3f26a7 2108 mutex_lock(&callback_mutex);
909d75a3 2109 task_lock(tsk);
8793d854 2110 guarantee_online_mems(task_cs(tsk), &mask);
909d75a3 2111 task_unlock(tsk);
3d3f26a7 2112 mutex_unlock(&callback_mutex);
909d75a3
PJ
2113
2114 return mask;
2115}
2116
d9fd8a6d 2117/**
19770b32
MG
2118 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2119 * @nodemask: the nodemask to be checked
d9fd8a6d 2120 *
19770b32 2121 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2122 */
19770b32 2123int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2124{
19770b32 2125 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2126}
2127
9bf2229f 2128/*
78608366
PM
2129 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2130 * mem_hardwall ancestor to the specified cpuset. Call holding
2131 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2132 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2133 */
78608366 2134static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
9bf2229f 2135{
78608366 2136 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
9bf2229f
PJ
2137 cs = cs->parent;
2138 return cs;
2139}
2140
d9fd8a6d 2141/**
02a0e53d 2142 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
9bf2229f 2143 * @z: is this zone on an allowed node?
02a0e53d 2144 * @gfp_mask: memory allocation flags
d9fd8a6d 2145 *
02a0e53d
PJ
2146 * If we're in interrupt, yes, we can always allocate. If
2147 * __GFP_THISNODE is set, yes, we can always allocate. If zone
9bf2229f
PJ
2148 * z's node is in our tasks mems_allowed, yes. If it's not a
2149 * __GFP_HARDWALL request and this zone's nodes is in the nearest
78608366 2150 * hardwalled cpuset ancestor to this tasks cpuset, yes.
c596d9f3
DR
2151 * If the task has been OOM killed and has access to memory reserves
2152 * as specified by the TIF_MEMDIE flag, yes.
9bf2229f
PJ
2153 * Otherwise, no.
2154 *
02a0e53d
PJ
2155 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
2156 * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
2157 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
2158 * from an enclosing cpuset.
2159 *
2160 * cpuset_zone_allowed_hardwall() only handles the simpler case of
2161 * hardwall cpusets, and never sleeps.
2162 *
2163 * The __GFP_THISNODE placement logic is really handled elsewhere,
2164 * by forcibly using a zonelist starting at a specified node, and by
2165 * (in get_page_from_freelist()) refusing to consider the zones for
2166 * any node on the zonelist except the first. By the time any such
2167 * calls get to this routine, we should just shut up and say 'yes'.
2168 *
9bf2229f 2169 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2170 * and do not allow allocations outside the current tasks cpuset
2171 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2172 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2173 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2174 *
02a0e53d
PJ
2175 * Scanning up parent cpusets requires callback_mutex. The
2176 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2177 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2178 * current tasks mems_allowed came up empty on the first pass over
2179 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2180 * cpuset are short of memory, might require taking the callback_mutex
2181 * mutex.
9bf2229f 2182 *
36be57ff 2183 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2184 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2185 * so no allocation on a node outside the cpuset is allowed (unless
2186 * in interrupt, of course).
36be57ff
PJ
2187 *
2188 * The second pass through get_page_from_freelist() doesn't even call
2189 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2190 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2191 * in alloc_flags. That logic and the checks below have the combined
2192 * affect that:
9bf2229f
PJ
2193 * in_interrupt - any node ok (current task context irrelevant)
2194 * GFP_ATOMIC - any node ok
c596d9f3 2195 * TIF_MEMDIE - any node ok
78608366 2196 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2197 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2198 *
2199 * Rule:
02a0e53d 2200 * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2201 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2202 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2203 */
9bf2229f 2204
02a0e53d 2205int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
1da177e4 2206{
9bf2229f
PJ
2207 int node; /* node that zone z is on */
2208 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2209 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2210
9b819d20 2211 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2212 return 1;
89fa3024 2213 node = zone_to_nid(z);
92d1dbd2 2214 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2215 if (node_isset(node, current->mems_allowed))
2216 return 1;
c596d9f3
DR
2217 /*
2218 * Allow tasks that have access to memory reserves because they have
2219 * been OOM killed to get memory anywhere.
2220 */
2221 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2222 return 1;
9bf2229f
PJ
2223 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2224 return 0;
2225
5563e770
BP
2226 if (current->flags & PF_EXITING) /* Let dying task have memory */
2227 return 1;
2228
9bf2229f 2229 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2230 mutex_lock(&callback_mutex);
053199ed 2231
053199ed 2232 task_lock(current);
78608366 2233 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2234 task_unlock(current);
2235
9bf2229f 2236 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2237 mutex_unlock(&callback_mutex);
9bf2229f 2238 return allowed;
1da177e4
LT
2239}
2240
02a0e53d
PJ
2241/*
2242 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
2243 * @z: is this zone on an allowed node?
2244 * @gfp_mask: memory allocation flags
2245 *
2246 * If we're in interrupt, yes, we can always allocate.
2247 * If __GFP_THISNODE is set, yes, we can always allocate. If zone
c596d9f3
DR
2248 * z's node is in our tasks mems_allowed, yes. If the task has been
2249 * OOM killed and has access to memory reserves as specified by the
2250 * TIF_MEMDIE flag, yes. Otherwise, no.
02a0e53d
PJ
2251 *
2252 * The __GFP_THISNODE placement logic is really handled elsewhere,
2253 * by forcibly using a zonelist starting at a specified node, and by
2254 * (in get_page_from_freelist()) refusing to consider the zones for
2255 * any node on the zonelist except the first. By the time any such
2256 * calls get to this routine, we should just shut up and say 'yes'.
2257 *
2258 * Unlike the cpuset_zone_allowed_softwall() variant, above,
2259 * this variant requires that the zone be in the current tasks
2260 * mems_allowed or that we're in interrupt. It does not scan up the
2261 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2262 * It never sleeps.
2263 */
2264
2265int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
2266{
2267 int node; /* node that zone z is on */
2268
2269 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2270 return 1;
2271 node = zone_to_nid(z);
2272 if (node_isset(node, current->mems_allowed))
2273 return 1;
dedf8b79
DW
2274 /*
2275 * Allow tasks that have access to memory reserves because they have
2276 * been OOM killed to get memory anywhere.
2277 */
2278 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2279 return 1;
02a0e53d
PJ
2280 return 0;
2281}
2282
505970b9
PJ
2283/**
2284 * cpuset_lock - lock out any changes to cpuset structures
2285 *
3d3f26a7 2286 * The out of memory (oom) code needs to mutex_lock cpusets
505970b9 2287 * from being changed while it scans the tasklist looking for a
3d3f26a7 2288 * task in an overlapping cpuset. Expose callback_mutex via this
505970b9
PJ
2289 * cpuset_lock() routine, so the oom code can lock it, before
2290 * locking the task list. The tasklist_lock is a spinlock, so
3d3f26a7 2291 * must be taken inside callback_mutex.
505970b9
PJ
2292 */
2293
2294void cpuset_lock(void)
2295{
3d3f26a7 2296 mutex_lock(&callback_mutex);
505970b9
PJ
2297}
2298
2299/**
2300 * cpuset_unlock - release lock on cpuset changes
2301 *
2302 * Undo the lock taken in a previous cpuset_lock() call.
2303 */
2304
2305void cpuset_unlock(void)
2306{
3d3f26a7 2307 mutex_unlock(&callback_mutex);
505970b9
PJ
2308}
2309
825a46af
PJ
2310/**
2311 * cpuset_mem_spread_node() - On which node to begin search for a page
2312 *
2313 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2314 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2315 * and if the memory allocation used cpuset_mem_spread_node()
2316 * to determine on which node to start looking, as it will for
2317 * certain page cache or slab cache pages such as used for file
2318 * system buffers and inode caches, then instead of starting on the
2319 * local node to look for a free page, rather spread the starting
2320 * node around the tasks mems_allowed nodes.
2321 *
2322 * We don't have to worry about the returned node being offline
2323 * because "it can't happen", and even if it did, it would be ok.
2324 *
2325 * The routines calling guarantee_online_mems() are careful to
2326 * only set nodes in task->mems_allowed that are online. So it
2327 * should not be possible for the following code to return an
2328 * offline node. But if it did, that would be ok, as this routine
2329 * is not returning the node where the allocation must be, only
2330 * the node where the search should start. The zonelist passed to
2331 * __alloc_pages() will include all nodes. If the slab allocator
2332 * is passed an offline node, it will fall back to the local node.
2333 * See kmem_cache_alloc_node().
2334 */
2335
2336int cpuset_mem_spread_node(void)
2337{
2338 int node;
2339
2340 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2341 if (node == MAX_NUMNODES)
2342 node = first_node(current->mems_allowed);
2343 current->cpuset_mem_spread_rotor = node;
2344 return node;
2345}
2346EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2347
ef08e3b4 2348/**
bbe373f2
DR
2349 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2350 * @tsk1: pointer to task_struct of some task.
2351 * @tsk2: pointer to task_struct of some other task.
2352 *
2353 * Description: Return true if @tsk1's mems_allowed intersects the
2354 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2355 * one of the task's memory usage might impact the memory available
2356 * to the other.
ef08e3b4
PJ
2357 **/
2358
bbe373f2
DR
2359int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2360 const struct task_struct *tsk2)
ef08e3b4 2361{
bbe373f2 2362 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2363}
2364
75aa1994
DR
2365/**
2366 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2367 * @task: pointer to task_struct of some task.
2368 *
2369 * Description: Prints @task's name, cpuset name, and cached copy of its
2370 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2371 * dereferencing task_cs(task).
2372 */
2373void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2374{
2375 struct dentry *dentry;
2376
2377 dentry = task_cs(tsk)->css.cgroup->dentry;
2378 spin_lock(&cpuset_buffer_lock);
2379 snprintf(cpuset_name, CPUSET_NAME_LEN,
2380 dentry ? (const char *)dentry->d_name.name : "/");
2381 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2382 tsk->mems_allowed);
2383 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2384 tsk->comm, cpuset_name, cpuset_nodelist);
2385 spin_unlock(&cpuset_buffer_lock);
2386}
2387
3e0d98b9
PJ
2388/*
2389 * Collection of memory_pressure is suppressed unless
2390 * this flag is enabled by writing "1" to the special
2391 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2392 */
2393
c5b2aff8 2394int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2395
2396/**
2397 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2398 *
2399 * Keep a running average of the rate of synchronous (direct)
2400 * page reclaim efforts initiated by tasks in each cpuset.
2401 *
2402 * This represents the rate at which some task in the cpuset
2403 * ran low on memory on all nodes it was allowed to use, and
2404 * had to enter the kernels page reclaim code in an effort to
2405 * create more free memory by tossing clean pages or swapping
2406 * or writing dirty pages.
2407 *
2408 * Display to user space in the per-cpuset read-only file
2409 * "memory_pressure". Value displayed is an integer
2410 * representing the recent rate of entry into the synchronous
2411 * (direct) page reclaim by any task attached to the cpuset.
2412 **/
2413
2414void __cpuset_memory_pressure_bump(void)
2415{
3e0d98b9 2416 task_lock(current);
8793d854 2417 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2418 task_unlock(current);
2419}
2420
8793d854 2421#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2422/*
2423 * proc_cpuset_show()
2424 * - Print tasks cpuset path into seq_file.
2425 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2426 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2427 * doesn't really matter if tsk->cpuset changes after we read it,
c8d9c90c 2428 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2df167a3 2429 * anyway.
1da177e4 2430 */
029190c5 2431static int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2432{
13b41b09 2433 struct pid *pid;
1da177e4
LT
2434 struct task_struct *tsk;
2435 char *buf;
8793d854 2436 struct cgroup_subsys_state *css;
99f89551 2437 int retval;
1da177e4 2438
99f89551 2439 retval = -ENOMEM;
1da177e4
LT
2440 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2441 if (!buf)
99f89551
EB
2442 goto out;
2443
2444 retval = -ESRCH;
13b41b09
EB
2445 pid = m->private;
2446 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2447 if (!tsk)
2448 goto out_free;
1da177e4 2449
99f89551 2450 retval = -EINVAL;
8793d854
PM
2451 cgroup_lock();
2452 css = task_subsys_state(tsk, cpuset_subsys_id);
2453 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
1da177e4 2454 if (retval < 0)
99f89551 2455 goto out_unlock;
1da177e4
LT
2456 seq_puts(m, buf);
2457 seq_putc(m, '\n');
99f89551 2458out_unlock:
8793d854 2459 cgroup_unlock();
99f89551
EB
2460 put_task_struct(tsk);
2461out_free:
1da177e4 2462 kfree(buf);
99f89551 2463out:
1da177e4
LT
2464 return retval;
2465}
2466
2467static int cpuset_open(struct inode *inode, struct file *file)
2468{
13b41b09
EB
2469 struct pid *pid = PROC_I(inode)->pid;
2470 return single_open(file, proc_cpuset_show, pid);
1da177e4
LT
2471}
2472
9a32144e 2473const struct file_operations proc_cpuset_operations = {
1da177e4
LT
2474 .open = cpuset_open,
2475 .read = seq_read,
2476 .llseek = seq_lseek,
2477 .release = single_release,
2478};
8793d854 2479#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4
LT
2480
2481/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2482void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2483{
2484 seq_printf(m, "Cpus_allowed:\t");
30e8e136 2485 seq_cpumask(m, &task->cpus_allowed);
df5f8314 2486 seq_printf(m, "\n");
39106dcf 2487 seq_printf(m, "Cpus_allowed_list:\t");
30e8e136 2488 seq_cpumask_list(m, &task->cpus_allowed);
39106dcf 2489 seq_printf(m, "\n");
df5f8314 2490 seq_printf(m, "Mems_allowed:\t");
30e8e136 2491 seq_nodemask(m, &task->mems_allowed);
df5f8314 2492 seq_printf(m, "\n");
39106dcf 2493 seq_printf(m, "Mems_allowed_list:\t");
30e8e136 2494 seq_nodemask_list(m, &task->mems_allowed);
39106dcf 2495 seq_printf(m, "\n");
1da177e4 2496}