]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/cpuset.c
procfs: use simple_read_from_buffer()
[net-next-2.6.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
825a46af 7 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
1da177e4
LT
8 *
9 * Portions derived from Patrick Mochel's sysfs code.
10 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 11 *
825a46af 12 * 2003-10-10 Written by Simon Derr.
1da177e4 13 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 14 * 2004 May-July Rework by Paul Jackson.
1da177e4
LT
15 *
16 * This file is subject to the terms and conditions of the GNU General Public
17 * License. See the file COPYING in the main directory of the Linux
18 * distribution for more details.
19 */
20
1da177e4
LT
21#include <linux/cpu.h>
22#include <linux/cpumask.h>
23#include <linux/cpuset.h>
24#include <linux/err.h>
25#include <linux/errno.h>
26#include <linux/file.h>
27#include <linux/fs.h>
28#include <linux/init.h>
29#include <linux/interrupt.h>
30#include <linux/kernel.h>
31#include <linux/kmod.h>
32#include <linux/list.h>
68860ec1 33#include <linux/mempolicy.h>
1da177e4
LT
34#include <linux/mm.h>
35#include <linux/module.h>
36#include <linux/mount.h>
37#include <linux/namei.h>
38#include <linux/pagemap.h>
39#include <linux/proc_fs.h>
6b9c2603 40#include <linux/rcupdate.h>
1da177e4
LT
41#include <linux/sched.h>
42#include <linux/seq_file.h>
22fb52dd 43#include <linux/security.h>
1da177e4 44#include <linux/slab.h>
1da177e4
LT
45#include <linux/spinlock.h>
46#include <linux/stat.h>
47#include <linux/string.h>
48#include <linux/time.h>
49#include <linux/backing-dev.h>
50#include <linux/sort.h>
51
52#include <asm/uaccess.h>
53#include <asm/atomic.h>
3d3f26a7 54#include <linux/mutex.h>
1da177e4 55
c5b2aff8 56#define CPUSET_SUPER_MAGIC 0x27e0eb
1da177e4 57
202f72d5
PJ
58/*
59 * Tracks how many cpusets are currently defined in system.
60 * When there is only one cpuset (the root cpuset) we can
61 * short circuit some hooks.
62 */
7edc5962 63int number_of_cpusets __read_mostly;
202f72d5 64
3e0d98b9
PJ
65/* See "Frequency meter" comments, below. */
66
67struct fmeter {
68 int cnt; /* unprocessed events count */
69 int val; /* most recent output value */
70 time_t time; /* clock (secs) when val computed */
71 spinlock_t lock; /* guards read or write of above */
72};
73
1da177e4
LT
74struct cpuset {
75 unsigned long flags; /* "unsigned long" so bitops work */
76 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
77 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
78
053199ed
PJ
79 /*
80 * Count is atomic so can incr (fork) or decr (exit) without a lock.
81 */
1da177e4
LT
82 atomic_t count; /* count tasks using this cpuset */
83
84 /*
85 * We link our 'sibling' struct into our parents 'children'.
86 * Our children link their 'sibling' into our 'children'.
87 */
88 struct list_head sibling; /* my parents children */
89 struct list_head children; /* my children */
90
91 struct cpuset *parent; /* my parent */
92 struct dentry *dentry; /* cpuset fs entry */
93
94 /*
95 * Copy of global cpuset_mems_generation as of the most
96 * recent time this cpuset changed its mems_allowed.
97 */
3e0d98b9
PJ
98 int mems_generation;
99
100 struct fmeter fmeter; /* memory_pressure filter */
1da177e4
LT
101};
102
103/* bits in struct cpuset flags field */
104typedef enum {
105 CS_CPU_EXCLUSIVE,
106 CS_MEM_EXCLUSIVE,
45b07ef3 107 CS_MEMORY_MIGRATE,
1da177e4 108 CS_REMOVED,
825a46af
PJ
109 CS_NOTIFY_ON_RELEASE,
110 CS_SPREAD_PAGE,
111 CS_SPREAD_SLAB,
1da177e4
LT
112} cpuset_flagbits_t;
113
114/* convenient tests for these bits */
115static inline int is_cpu_exclusive(const struct cpuset *cs)
116{
7b5b9ef0 117 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
118}
119
120static inline int is_mem_exclusive(const struct cpuset *cs)
121{
7b5b9ef0 122 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
123}
124
125static inline int is_removed(const struct cpuset *cs)
126{
7b5b9ef0 127 return test_bit(CS_REMOVED, &cs->flags);
1da177e4
LT
128}
129
130static inline int notify_on_release(const struct cpuset *cs)
131{
7b5b9ef0 132 return test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
1da177e4
LT
133}
134
45b07ef3
PJ
135static inline int is_memory_migrate(const struct cpuset *cs)
136{
7b5b9ef0 137 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
138}
139
825a46af
PJ
140static inline int is_spread_page(const struct cpuset *cs)
141{
142 return test_bit(CS_SPREAD_PAGE, &cs->flags);
143}
144
145static inline int is_spread_slab(const struct cpuset *cs)
146{
147 return test_bit(CS_SPREAD_SLAB, &cs->flags);
148}
149
1da177e4 150/*
151a4420 151 * Increment this integer everytime any cpuset changes its
1da177e4
LT
152 * mems_allowed value. Users of cpusets can track this generation
153 * number, and avoid having to lock and reload mems_allowed unless
154 * the cpuset they're using changes generation.
155 *
156 * A single, global generation is needed because attach_task() could
157 * reattach a task to a different cpuset, which must not have its
158 * generation numbers aliased with those of that tasks previous cpuset.
159 *
160 * Generations are needed for mems_allowed because one task cannot
161 * modify anothers memory placement. So we must enable every task,
162 * on every visit to __alloc_pages(), to efficiently check whether
163 * its current->cpuset->mems_allowed has changed, requiring an update
164 * of its current->mems_allowed.
151a4420
PJ
165 *
166 * Since cpuset_mems_generation is guarded by manage_mutex,
167 * there is no need to mark it atomic.
1da177e4 168 */
151a4420 169static int cpuset_mems_generation;
1da177e4
LT
170
171static struct cpuset top_cpuset = {
172 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
173 .cpus_allowed = CPU_MASK_ALL,
174 .mems_allowed = NODE_MASK_ALL,
175 .count = ATOMIC_INIT(0),
176 .sibling = LIST_HEAD_INIT(top_cpuset.sibling),
177 .children = LIST_HEAD_INIT(top_cpuset.children),
1da177e4
LT
178};
179
180static struct vfsmount *cpuset_mount;
3e0d98b9 181static struct super_block *cpuset_sb;
1da177e4
LT
182
183/*
3d3f26a7
IM
184 * We have two global cpuset mutexes below. They can nest.
185 * It is ok to first take manage_mutex, then nest callback_mutex. We also
053199ed
PJ
186 * require taking task_lock() when dereferencing a tasks cpuset pointer.
187 * See "The task_lock() exception", at the end of this comment.
188 *
3d3f26a7
IM
189 * A task must hold both mutexes to modify cpusets. If a task
190 * holds manage_mutex, then it blocks others wanting that mutex,
191 * ensuring that it is the only task able to also acquire callback_mutex
053199ed
PJ
192 * and be able to modify cpusets. It can perform various checks on
193 * the cpuset structure first, knowing nothing will change. It can
3d3f26a7 194 * also allocate memory while just holding manage_mutex. While it is
053199ed 195 * performing these checks, various callback routines can briefly
3d3f26a7
IM
196 * acquire callback_mutex to query cpusets. Once it is ready to make
197 * the changes, it takes callback_mutex, blocking everyone else.
053199ed
PJ
198 *
199 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 200 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
201 * from one of the callbacks into the cpuset code from within
202 * __alloc_pages().
203 *
3d3f26a7 204 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
205 * access to cpusets.
206 *
207 * The task_struct fields mems_allowed and mems_generation may only
208 * be accessed in the context of that task, so require no locks.
209 *
210 * Any task can increment and decrement the count field without lock.
3d3f26a7 211 * So in general, code holding manage_mutex or callback_mutex can't rely
053199ed 212 * on the count field not changing. However, if the count goes to
3d3f26a7 213 * zero, then only attach_task(), which holds both mutexes, can
053199ed
PJ
214 * increment it again. Because a count of zero means that no tasks
215 * are currently attached, therefore there is no way a task attached
216 * to that cpuset can fork (the other way to increment the count).
3d3f26a7 217 * So code holding manage_mutex or callback_mutex can safely assume that
053199ed 218 * if the count is zero, it will stay zero. Similarly, if a task
3d3f26a7 219 * holds manage_mutex or callback_mutex on a cpuset with zero count, it
053199ed 220 * knows that the cpuset won't be removed, as cpuset_rmdir() needs
3d3f26a7 221 * both of those mutexes.
053199ed
PJ
222 *
223 * The cpuset_common_file_write handler for operations that modify
3d3f26a7 224 * the cpuset hierarchy holds manage_mutex across the entire operation,
053199ed
PJ
225 * single threading all such cpuset modifications across the system.
226 *
3d3f26a7 227 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
228 * small pieces of code, such as when reading out possibly multi-word
229 * cpumasks and nodemasks.
230 *
231 * The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't
3d3f26a7 232 * (usually) take either mutex. These are the two most performance
053199ed 233 * critical pieces of code here. The exception occurs on cpuset_exit(),
3d3f26a7 234 * when a task in a notify_on_release cpuset exits. Then manage_mutex
2efe86b8 235 * is taken, and if the cpuset count is zero, a usermode call made
1da177e4
LT
236 * to /sbin/cpuset_release_agent with the name of the cpuset (path
237 * relative to the root of cpuset file system) as the argument.
238 *
053199ed
PJ
239 * A cpuset can only be deleted if both its 'count' of using tasks
240 * is zero, and its list of 'children' cpusets is empty. Since all
241 * tasks in the system use _some_ cpuset, and since there is always at
f400e198 242 * least one task in the system (init), therefore, top_cpuset
053199ed
PJ
243 * always has either children cpusets and/or using tasks. So we don't
244 * need a special hack to ensure that top_cpuset cannot be deleted.
245 *
246 * The above "Tale of Two Semaphores" would be complete, but for:
247 *
248 * The task_lock() exception
249 *
250 * The need for this exception arises from the action of attach_task(),
251 * which overwrites one tasks cpuset pointer with another. It does
3d3f26a7 252 * so using both mutexes, however there are several performance
053199ed 253 * critical places that need to reference task->cpuset without the
3d3f26a7 254 * expense of grabbing a system global mutex. Therefore except as
053199ed
PJ
255 * noted below, when dereferencing or, as in attach_task(), modifying
256 * a tasks cpuset pointer we use task_lock(), which acts on a spinlock
257 * (task->alloc_lock) already in the task_struct routinely used for
258 * such matters.
6b9c2603
PJ
259 *
260 * P.S. One more locking exception. RCU is used to guard the
261 * update of a tasks cpuset pointer by attach_task() and the
262 * access of task->cpuset->mems_generation via that pointer in
263 * the routine cpuset_update_task_memory_state().
1da177e4
LT
264 */
265
3d3f26a7
IM
266static DEFINE_MUTEX(manage_mutex);
267static DEFINE_MUTEX(callback_mutex);
4247bdc6 268
1da177e4
LT
269/*
270 * A couple of forward declarations required, due to cyclic reference loop:
271 * cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file
272 * -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
273 */
274
275static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
276static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);
277
278static struct backing_dev_info cpuset_backing_dev_info = {
279 .ra_pages = 0, /* No readahead */
280 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
281};
282
283static struct inode *cpuset_new_inode(mode_t mode)
284{
285 struct inode *inode = new_inode(cpuset_sb);
286
287 if (inode) {
288 inode->i_mode = mode;
289 inode->i_uid = current->fsuid;
290 inode->i_gid = current->fsgid;
1da177e4
LT
291 inode->i_blocks = 0;
292 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
293 inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;
294 }
295 return inode;
296}
297
298static void cpuset_diput(struct dentry *dentry, struct inode *inode)
299{
300 /* is dentry a directory ? if so, kfree() associated cpuset */
301 if (S_ISDIR(inode->i_mode)) {
302 struct cpuset *cs = dentry->d_fsdata;
303 BUG_ON(!(is_removed(cs)));
304 kfree(cs);
305 }
306 iput(inode);
307}
308
309static struct dentry_operations cpuset_dops = {
310 .d_iput = cpuset_diput,
311};
312
313static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
314{
5f45f1a7 315 struct dentry *d = lookup_one_len(name, parent, strlen(name));
1da177e4
LT
316 if (!IS_ERR(d))
317 d->d_op = &cpuset_dops;
318 return d;
319}
320
321static void remove_dir(struct dentry *d)
322{
323 struct dentry *parent = dget(d->d_parent);
324
325 d_delete(d);
326 simple_rmdir(parent->d_inode, d);
327 dput(parent);
328}
329
330/*
331 * NOTE : the dentry must have been dget()'ed
332 */
333static void cpuset_d_remove_dir(struct dentry *dentry)
334{
335 struct list_head *node;
336
337 spin_lock(&dcache_lock);
338 node = dentry->d_subdirs.next;
339 while (node != &dentry->d_subdirs) {
5160ee6f 340 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
1da177e4
LT
341 list_del_init(node);
342 if (d->d_inode) {
343 d = dget_locked(d);
344 spin_unlock(&dcache_lock);
345 d_delete(d);
346 simple_unlink(dentry->d_inode, d);
347 dput(d);
348 spin_lock(&dcache_lock);
349 }
350 node = dentry->d_subdirs.next;
351 }
5160ee6f 352 list_del_init(&dentry->d_u.d_child);
1da177e4
LT
353 spin_unlock(&dcache_lock);
354 remove_dir(dentry);
355}
356
357static struct super_operations cpuset_ops = {
358 .statfs = simple_statfs,
359 .drop_inode = generic_delete_inode,
360};
361
362static int cpuset_fill_super(struct super_block *sb, void *unused_data,
363 int unused_silent)
364{
365 struct inode *inode;
366 struct dentry *root;
367
368 sb->s_blocksize = PAGE_CACHE_SIZE;
369 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
370 sb->s_magic = CPUSET_SUPER_MAGIC;
371 sb->s_op = &cpuset_ops;
372 cpuset_sb = sb;
373
374 inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
375 if (inode) {
376 inode->i_op = &simple_dir_inode_operations;
377 inode->i_fop = &simple_dir_operations;
378 /* directories start off with i_nlink == 2 (for "." entry) */
d8c76e6f 379 inc_nlink(inode);
1da177e4
LT
380 } else {
381 return -ENOMEM;
382 }
383
384 root = d_alloc_root(inode);
385 if (!root) {
386 iput(inode);
387 return -ENOMEM;
388 }
389 sb->s_root = root;
390 return 0;
391}
392
454e2398
DH
393static int cpuset_get_sb(struct file_system_type *fs_type,
394 int flags, const char *unused_dev_name,
395 void *data, struct vfsmount *mnt)
1da177e4 396{
454e2398 397 return get_sb_single(fs_type, flags, data, cpuset_fill_super, mnt);
1da177e4
LT
398}
399
400static struct file_system_type cpuset_fs_type = {
401 .name = "cpuset",
402 .get_sb = cpuset_get_sb,
403 .kill_sb = kill_litter_super,
404};
405
406/* struct cftype:
407 *
408 * The files in the cpuset filesystem mostly have a very simple read/write
409 * handling, some common function will take care of it. Nevertheless some cases
410 * (read tasks) are special and therefore I define this structure for every
411 * kind of file.
412 *
413 *
414 * When reading/writing to a file:
a7a005fd
JS
415 * - the cpuset to use in file->f_path.dentry->d_parent->d_fsdata
416 * - the 'cftype' of the file is file->f_path.dentry->d_fsdata
1da177e4
LT
417 */
418
419struct cftype {
420 char *name;
421 int private;
422 int (*open) (struct inode *inode, struct file *file);
423 ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,
424 loff_t *ppos);
425 int (*write) (struct file *file, const char __user *buf, size_t nbytes,
426 loff_t *ppos);
427 int (*release) (struct inode *inode, struct file *file);
428};
429
430static inline struct cpuset *__d_cs(struct dentry *dentry)
431{
432 return dentry->d_fsdata;
433}
434
435static inline struct cftype *__d_cft(struct dentry *dentry)
436{
437 return dentry->d_fsdata;
438}
439
440/*
3d3f26a7 441 * Call with manage_mutex held. Writes path of cpuset into buf.
1da177e4
LT
442 * Returns 0 on success, -errno on error.
443 */
444
445static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
446{
447 char *start;
448
449 start = buf + buflen;
450
451 *--start = '\0';
452 for (;;) {
453 int len = cs->dentry->d_name.len;
454 if ((start -= len) < buf)
455 return -ENAMETOOLONG;
456 memcpy(start, cs->dentry->d_name.name, len);
457 cs = cs->parent;
458 if (!cs)
459 break;
460 if (!cs->parent)
461 continue;
462 if (--start < buf)
463 return -ENAMETOOLONG;
464 *start = '/';
465 }
466 memmove(buf, start, buf + buflen - start);
467 return 0;
468}
469
470/*
471 * Notify userspace when a cpuset is released, by running
472 * /sbin/cpuset_release_agent with the name of the cpuset (path
473 * relative to the root of cpuset file system) as the argument.
474 *
475 * Most likely, this user command will try to rmdir this cpuset.
476 *
477 * This races with the possibility that some other task will be
478 * attached to this cpuset before it is removed, or that some other
479 * user task will 'mkdir' a child cpuset of this cpuset. That's ok.
480 * The presumed 'rmdir' will fail quietly if this cpuset is no longer
481 * unused, and this cpuset will be reprieved from its death sentence,
482 * to continue to serve a useful existence. Next time it's released,
483 * we will get notified again, if it still has 'notify_on_release' set.
484 *
3077a260
PJ
485 * The final arg to call_usermodehelper() is 0, which means don't
486 * wait. The separate /sbin/cpuset_release_agent task is forked by
487 * call_usermodehelper(), then control in this thread returns here,
488 * without waiting for the release agent task. We don't bother to
489 * wait because the caller of this routine has no use for the exit
490 * status of the /sbin/cpuset_release_agent task, so no sense holding
491 * our caller up for that.
492 *
3d3f26a7 493 * When we had only one cpuset mutex, we had to call this
053199ed
PJ
494 * without holding it, to avoid deadlock when call_usermodehelper()
495 * allocated memory. With two locks, we could now call this while
3d3f26a7
IM
496 * holding manage_mutex, but we still don't, so as to minimize
497 * the time manage_mutex is held.
1da177e4
LT
498 */
499
3077a260 500static void cpuset_release_agent(const char *pathbuf)
1da177e4
LT
501{
502 char *argv[3], *envp[3];
503 int i;
504
3077a260
PJ
505 if (!pathbuf)
506 return;
507
1da177e4
LT
508 i = 0;
509 argv[i++] = "/sbin/cpuset_release_agent";
3077a260 510 argv[i++] = (char *)pathbuf;
1da177e4
LT
511 argv[i] = NULL;
512
513 i = 0;
514 /* minimal command environment */
515 envp[i++] = "HOME=/";
516 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
517 envp[i] = NULL;
518
3077a260
PJ
519 call_usermodehelper(argv[0], argv, envp, 0);
520 kfree(pathbuf);
1da177e4
LT
521}
522
523/*
524 * Either cs->count of using tasks transitioned to zero, or the
525 * cs->children list of child cpusets just became empty. If this
526 * cs is notify_on_release() and now both the user count is zero and
3077a260
PJ
527 * the list of children is empty, prepare cpuset path in a kmalloc'd
528 * buffer, to be returned via ppathbuf, so that the caller can invoke
3d3f26a7
IM
529 * cpuset_release_agent() with it later on, once manage_mutex is dropped.
530 * Call here with manage_mutex held.
3077a260
PJ
531 *
532 * This check_for_release() routine is responsible for kmalloc'ing
533 * pathbuf. The above cpuset_release_agent() is responsible for
534 * kfree'ing pathbuf. The caller of these routines is responsible
535 * for providing a pathbuf pointer, initialized to NULL, then
3d3f26a7
IM
536 * calling check_for_release() with manage_mutex held and the address
537 * of the pathbuf pointer, then dropping manage_mutex, then calling
3077a260 538 * cpuset_release_agent() with pathbuf, as set by check_for_release().
1da177e4
LT
539 */
540
3077a260 541static void check_for_release(struct cpuset *cs, char **ppathbuf)
1da177e4
LT
542{
543 if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&
544 list_empty(&cs->children)) {
545 char *buf;
546
547 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
548 if (!buf)
549 return;
550 if (cpuset_path(cs, buf, PAGE_SIZE) < 0)
3077a260
PJ
551 kfree(buf);
552 else
553 *ppathbuf = buf;
1da177e4
LT
554 }
555}
556
557/*
558 * Return in *pmask the portion of a cpusets's cpus_allowed that
559 * are online. If none are online, walk up the cpuset hierarchy
560 * until we find one that does have some online cpus. If we get
561 * all the way to the top and still haven't found any online cpus,
562 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
563 * task, return cpu_online_map.
564 *
565 * One way or another, we guarantee to return some non-empty subset
566 * of cpu_online_map.
567 *
3d3f26a7 568 * Call with callback_mutex held.
1da177e4
LT
569 */
570
571static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
572{
573 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
574 cs = cs->parent;
575 if (cs)
576 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
577 else
578 *pmask = cpu_online_map;
579 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
580}
581
582/*
583 * Return in *pmask the portion of a cpusets's mems_allowed that
584 * are online. If none are online, walk up the cpuset hierarchy
585 * until we find one that does have some online mems. If we get
586 * all the way to the top and still haven't found any online mems,
587 * return node_online_map.
588 *
589 * One way or another, we guarantee to return some non-empty subset
590 * of node_online_map.
591 *
3d3f26a7 592 * Call with callback_mutex held.
1da177e4
LT
593 */
594
595static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
596{
597 while (cs && !nodes_intersects(cs->mems_allowed, node_online_map))
598 cs = cs->parent;
599 if (cs)
600 nodes_and(*pmask, cs->mems_allowed, node_online_map);
601 else
602 *pmask = node_online_map;
603 BUG_ON(!nodes_intersects(*pmask, node_online_map));
604}
605
cf2a473c
PJ
606/**
607 * cpuset_update_task_memory_state - update task memory placement
608 *
609 * If the current tasks cpusets mems_allowed changed behind our
610 * backs, update current->mems_allowed, mems_generation and task NUMA
611 * mempolicy to the new value.
053199ed 612 *
cf2a473c
PJ
613 * Task mempolicy is updated by rebinding it relative to the
614 * current->cpuset if a task has its memory placement changed.
615 * Do not call this routine if in_interrupt().
616 *
4a01c8d5
PJ
617 * Call without callback_mutex or task_lock() held. May be
618 * called with or without manage_mutex held. Thanks in part to
619 * 'the_top_cpuset_hack', the tasks cpuset pointer will never
620 * be NULL. This routine also might acquire callback_mutex and
cf2a473c 621 * current->mm->mmap_sem during call.
053199ed 622 *
6b9c2603
PJ
623 * Reading current->cpuset->mems_generation doesn't need task_lock
624 * to guard the current->cpuset derefence, because it is guarded
625 * from concurrent freeing of current->cpuset by attach_task(),
626 * using RCU.
627 *
628 * The rcu_dereference() is technically probably not needed,
629 * as I don't actually mind if I see a new cpuset pointer but
630 * an old value of mems_generation. However this really only
631 * matters on alpha systems using cpusets heavily. If I dropped
632 * that rcu_dereference(), it would save them a memory barrier.
633 * For all other arch's, rcu_dereference is a no-op anyway, and for
634 * alpha systems not using cpusets, another planned optimization,
635 * avoiding the rcu critical section for tasks in the root cpuset
636 * which is statically allocated, so can't vanish, will make this
637 * irrelevant. Better to use RCU as intended, than to engage in
638 * some cute trick to save a memory barrier that is impossible to
639 * test, for alpha systems using cpusets heavily, which might not
640 * even exist.
053199ed
PJ
641 *
642 * This routine is needed to update the per-task mems_allowed data,
643 * within the tasks context, when it is trying to allocate memory
644 * (in various mm/mempolicy.c routines) and notices that some other
645 * task has been modifying its cpuset.
1da177e4
LT
646 */
647
fe85a998 648void cpuset_update_task_memory_state(void)
1da177e4 649{
053199ed 650 int my_cpusets_mem_gen;
cf2a473c 651 struct task_struct *tsk = current;
6b9c2603 652 struct cpuset *cs;
053199ed 653
03a285f5
PJ
654 if (tsk->cpuset == &top_cpuset) {
655 /* Don't need rcu for top_cpuset. It's never freed. */
656 my_cpusets_mem_gen = top_cpuset.mems_generation;
657 } else {
658 rcu_read_lock();
659 cs = rcu_dereference(tsk->cpuset);
660 my_cpusets_mem_gen = cs->mems_generation;
661 rcu_read_unlock();
662 }
1da177e4 663
cf2a473c 664 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
3d3f26a7 665 mutex_lock(&callback_mutex);
cf2a473c
PJ
666 task_lock(tsk);
667 cs = tsk->cpuset; /* Maybe changed when task not locked */
cf2a473c
PJ
668 guarantee_online_mems(cs, &tsk->mems_allowed);
669 tsk->cpuset_mems_generation = cs->mems_generation;
825a46af
PJ
670 if (is_spread_page(cs))
671 tsk->flags |= PF_SPREAD_PAGE;
672 else
673 tsk->flags &= ~PF_SPREAD_PAGE;
674 if (is_spread_slab(cs))
675 tsk->flags |= PF_SPREAD_SLAB;
676 else
677 tsk->flags &= ~PF_SPREAD_SLAB;
cf2a473c 678 task_unlock(tsk);
3d3f26a7 679 mutex_unlock(&callback_mutex);
74cb2155 680 mpol_rebind_task(tsk, &tsk->mems_allowed);
1da177e4
LT
681 }
682}
683
684/*
685 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
686 *
687 * One cpuset is a subset of another if all its allowed CPUs and
688 * Memory Nodes are a subset of the other, and its exclusive flags
3d3f26a7 689 * are only set if the other's are set. Call holding manage_mutex.
1da177e4
LT
690 */
691
692static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
693{
694 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
695 nodes_subset(p->mems_allowed, q->mems_allowed) &&
696 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
697 is_mem_exclusive(p) <= is_mem_exclusive(q);
698}
699
700/*
701 * validate_change() - Used to validate that any proposed cpuset change
702 * follows the structural rules for cpusets.
703 *
704 * If we replaced the flag and mask values of the current cpuset
705 * (cur) with those values in the trial cpuset (trial), would
706 * our various subset and exclusive rules still be valid? Presumes
3d3f26a7 707 * manage_mutex held.
1da177e4
LT
708 *
709 * 'cur' is the address of an actual, in-use cpuset. Operations
710 * such as list traversal that depend on the actual address of the
711 * cpuset in the list must use cur below, not trial.
712 *
713 * 'trial' is the address of bulk structure copy of cur, with
714 * perhaps one or more of the fields cpus_allowed, mems_allowed,
715 * or flags changed to new, trial values.
716 *
717 * Return 0 if valid, -errno if not.
718 */
719
720static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
721{
722 struct cpuset *c, *par;
723
724 /* Each of our child cpusets must be a subset of us */
725 list_for_each_entry(c, &cur->children, sibling) {
726 if (!is_cpuset_subset(c, trial))
727 return -EBUSY;
728 }
729
730 /* Remaining checks don't apply to root cpuset */
69604067 731 if (cur == &top_cpuset)
1da177e4
LT
732 return 0;
733
69604067
PJ
734 par = cur->parent;
735
1da177e4
LT
736 /* We must be a subset of our parent cpuset */
737 if (!is_cpuset_subset(trial, par))
738 return -EACCES;
739
740 /* If either I or some sibling (!= me) is exclusive, we can't overlap */
741 list_for_each_entry(c, &par->children, sibling) {
742 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
743 c != cur &&
744 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
745 return -EINVAL;
746 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
747 c != cur &&
748 nodes_intersects(trial->mems_allowed, c->mems_allowed))
749 return -EINVAL;
750 }
751
752 return 0;
753}
754
85d7b949
DG
755/*
756 * For a given cpuset cur, partition the system as follows
757 * a. All cpus in the parent cpuset's cpus_allowed that are not part of any
758 * exclusive child cpusets
759 * b. All cpus in the current cpuset's cpus_allowed that are not part of any
760 * exclusive child cpusets
761 * Build these two partitions by calling partition_sched_domains
762 *
3d3f26a7 763 * Call with manage_mutex held. May nest a call to the
85d7b949 764 * lock_cpu_hotplug()/unlock_cpu_hotplug() pair.
abb5a5cc
PJ
765 * Must not be called holding callback_mutex, because we must
766 * not call lock_cpu_hotplug() while holding callback_mutex.
85d7b949 767 */
212d6d22 768
85d7b949
DG
769static void update_cpu_domains(struct cpuset *cur)
770{
771 struct cpuset *c, *par = cur->parent;
772 cpumask_t pspan, cspan;
773
774 if (par == NULL || cpus_empty(cur->cpus_allowed))
775 return;
776
777 /*
778 * Get all cpus from parent's cpus_allowed not part of exclusive
779 * children
780 */
781 pspan = par->cpus_allowed;
782 list_for_each_entry(c, &par->children, sibling) {
783 if (is_cpu_exclusive(c))
784 cpus_andnot(pspan, pspan, c->cpus_allowed);
785 }
abb5a5cc 786 if (!is_cpu_exclusive(cur)) {
85d7b949
DG
787 cpus_or(pspan, pspan, cur->cpus_allowed);
788 if (cpus_equal(pspan, cur->cpus_allowed))
789 return;
790 cspan = CPU_MASK_NONE;
791 } else {
792 if (cpus_empty(pspan))
793 return;
794 cspan = cur->cpus_allowed;
795 /*
796 * Get all cpus from current cpuset's cpus_allowed not part
797 * of exclusive children
798 */
799 list_for_each_entry(c, &cur->children, sibling) {
800 if (is_cpu_exclusive(c))
801 cpus_andnot(cspan, cspan, c->cpus_allowed);
802 }
803 }
804
805 lock_cpu_hotplug();
806 partition_sched_domains(&pspan, &cspan);
807 unlock_cpu_hotplug();
808}
809
053199ed 810/*
3d3f26a7 811 * Call with manage_mutex held. May take callback_mutex during call.
053199ed
PJ
812 */
813
1da177e4
LT
814static int update_cpumask(struct cpuset *cs, char *buf)
815{
816 struct cpuset trialcs;
85d7b949 817 int retval, cpus_unchanged;
1da177e4 818
4c4d50f7
PJ
819 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
820 if (cs == &top_cpuset)
821 return -EACCES;
822
1da177e4
LT
823 trialcs = *cs;
824 retval = cpulist_parse(buf, trialcs.cpus_allowed);
825 if (retval < 0)
826 return retval;
827 cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
828 if (cpus_empty(trialcs.cpus_allowed))
829 return -ENOSPC;
830 retval = validate_change(cs, &trialcs);
85d7b949
DG
831 if (retval < 0)
832 return retval;
833 cpus_unchanged = cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed);
3d3f26a7 834 mutex_lock(&callback_mutex);
85d7b949 835 cs->cpus_allowed = trialcs.cpus_allowed;
3d3f26a7 836 mutex_unlock(&callback_mutex);
85d7b949
DG
837 if (is_cpu_exclusive(cs) && !cpus_unchanged)
838 update_cpu_domains(cs);
839 return 0;
1da177e4
LT
840}
841
e4e364e8
PJ
842/*
843 * cpuset_migrate_mm
844 *
845 * Migrate memory region from one set of nodes to another.
846 *
847 * Temporarilly set tasks mems_allowed to target nodes of migration,
848 * so that the migration code can allocate pages on these nodes.
849 *
850 * Call holding manage_mutex, so our current->cpuset won't change
851 * during this call, as manage_mutex holds off any attach_task()
852 * calls. Therefore we don't need to take task_lock around the
853 * call to guarantee_online_mems(), as we know no one is changing
854 * our tasks cpuset.
855 *
856 * Hold callback_mutex around the two modifications of our tasks
857 * mems_allowed to synchronize with cpuset_mems_allowed().
858 *
859 * While the mm_struct we are migrating is typically from some
860 * other task, the task_struct mems_allowed that we are hacking
861 * is for our current task, which must allocate new pages for that
862 * migrating memory region.
863 *
864 * We call cpuset_update_task_memory_state() before hacking
865 * our tasks mems_allowed, so that we are assured of being in
866 * sync with our tasks cpuset, and in particular, callbacks to
867 * cpuset_update_task_memory_state() from nested page allocations
868 * won't see any mismatch of our cpuset and task mems_generation
869 * values, so won't overwrite our hacked tasks mems_allowed
870 * nodemask.
871 */
872
873static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
874 const nodemask_t *to)
875{
876 struct task_struct *tsk = current;
877
878 cpuset_update_task_memory_state();
879
880 mutex_lock(&callback_mutex);
881 tsk->mems_allowed = *to;
882 mutex_unlock(&callback_mutex);
883
884 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
885
886 mutex_lock(&callback_mutex);
887 guarantee_online_mems(tsk->cpuset, &tsk->mems_allowed);
888 mutex_unlock(&callback_mutex);
889}
890
053199ed 891/*
4225399a
PJ
892 * Handle user request to change the 'mems' memory placement
893 * of a cpuset. Needs to validate the request, update the
894 * cpusets mems_allowed and mems_generation, and for each
04c19fa6
PJ
895 * task in the cpuset, rebind any vma mempolicies and if
896 * the cpuset is marked 'memory_migrate', migrate the tasks
897 * pages to the new memory.
4225399a 898 *
3d3f26a7 899 * Call with manage_mutex held. May take callback_mutex during call.
4225399a
PJ
900 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
901 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
902 * their mempolicies to the cpusets new mems_allowed.
053199ed
PJ
903 */
904
1da177e4
LT
905static int update_nodemask(struct cpuset *cs, char *buf)
906{
907 struct cpuset trialcs;
04c19fa6 908 nodemask_t oldmem;
4225399a
PJ
909 struct task_struct *g, *p;
910 struct mm_struct **mmarray;
911 int i, n, ntasks;
04c19fa6 912 int migrate;
4225399a 913 int fudge;
1da177e4
LT
914 int retval;
915
38837fc7
PJ
916 /* top_cpuset.mems_allowed tracks node_online_map; it's read-only */
917 if (cs == &top_cpuset)
918 return -EACCES;
919
1da177e4
LT
920 trialcs = *cs;
921 retval = nodelist_parse(buf, trialcs.mems_allowed);
922 if (retval < 0)
59dac16f 923 goto done;
1da177e4 924 nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, node_online_map);
04c19fa6
PJ
925 oldmem = cs->mems_allowed;
926 if (nodes_equal(oldmem, trialcs.mems_allowed)) {
927 retval = 0; /* Too easy - nothing to do */
928 goto done;
929 }
59dac16f
PJ
930 if (nodes_empty(trialcs.mems_allowed)) {
931 retval = -ENOSPC;
932 goto done;
1da177e4 933 }
59dac16f
PJ
934 retval = validate_change(cs, &trialcs);
935 if (retval < 0)
936 goto done;
937
3d3f26a7 938 mutex_lock(&callback_mutex);
59dac16f 939 cs->mems_allowed = trialcs.mems_allowed;
151a4420 940 cs->mems_generation = cpuset_mems_generation++;
3d3f26a7 941 mutex_unlock(&callback_mutex);
59dac16f 942
4225399a
PJ
943 set_cpuset_being_rebound(cs); /* causes mpol_copy() rebind */
944
945 fudge = 10; /* spare mmarray[] slots */
946 fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
947 retval = -ENOMEM;
948
949 /*
950 * Allocate mmarray[] to hold mm reference for each task
951 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
952 * tasklist_lock. We could use GFP_ATOMIC, but with a
953 * few more lines of code, we can retry until we get a big
954 * enough mmarray[] w/o using GFP_ATOMIC.
955 */
956 while (1) {
957 ntasks = atomic_read(&cs->count); /* guess */
958 ntasks += fudge;
959 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
960 if (!mmarray)
961 goto done;
962 write_lock_irq(&tasklist_lock); /* block fork */
963 if (atomic_read(&cs->count) <= ntasks)
964 break; /* got enough */
965 write_unlock_irq(&tasklist_lock); /* try again */
966 kfree(mmarray);
967 }
968
969 n = 0;
970
971 /* Load up mmarray[] with mm reference for each task in cpuset. */
972 do_each_thread(g, p) {
973 struct mm_struct *mm;
974
975 if (n >= ntasks) {
976 printk(KERN_WARNING
977 "Cpuset mempolicy rebind incomplete.\n");
978 continue;
979 }
980 if (p->cpuset != cs)
981 continue;
982 mm = get_task_mm(p);
983 if (!mm)
984 continue;
985 mmarray[n++] = mm;
986 } while_each_thread(g, p);
987 write_unlock_irq(&tasklist_lock);
988
989 /*
990 * Now that we've dropped the tasklist spinlock, we can
991 * rebind the vma mempolicies of each mm in mmarray[] to their
992 * new cpuset, and release that mm. The mpol_rebind_mm()
993 * call takes mmap_sem, which we couldn't take while holding
994 * tasklist_lock. Forks can happen again now - the mpol_copy()
995 * cpuset_being_rebound check will catch such forks, and rebind
996 * their vma mempolicies too. Because we still hold the global
3d3f26a7 997 * cpuset manage_mutex, we know that no other rebind effort will
4225399a
PJ
998 * be contending for the global variable cpuset_being_rebound.
999 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1000 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1001 */
04c19fa6 1002 migrate = is_memory_migrate(cs);
4225399a
PJ
1003 for (i = 0; i < n; i++) {
1004 struct mm_struct *mm = mmarray[i];
1005
1006 mpol_rebind_mm(mm, &cs->mems_allowed);
e4e364e8
PJ
1007 if (migrate)
1008 cpuset_migrate_mm(mm, &oldmem, &cs->mems_allowed);
4225399a
PJ
1009 mmput(mm);
1010 }
1011
1012 /* We're done rebinding vma's to this cpusets new mems_allowed. */
1013 kfree(mmarray);
1014 set_cpuset_being_rebound(NULL);
1015 retval = 0;
59dac16f 1016done:
1da177e4
LT
1017 return retval;
1018}
1019
3e0d98b9 1020/*
3d3f26a7 1021 * Call with manage_mutex held.
3e0d98b9
PJ
1022 */
1023
1024static int update_memory_pressure_enabled(struct cpuset *cs, char *buf)
1025{
1026 if (simple_strtoul(buf, NULL, 10) != 0)
1027 cpuset_memory_pressure_enabled = 1;
1028 else
1029 cpuset_memory_pressure_enabled = 0;
1030 return 0;
1031}
1032
1da177e4
LT
1033/*
1034 * update_flag - read a 0 or a 1 in a file and update associated flag
1035 * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
825a46af
PJ
1036 * CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE,
1037 * CS_SPREAD_PAGE, CS_SPREAD_SLAB)
1da177e4
LT
1038 * cs: the cpuset to update
1039 * buf: the buffer where we read the 0 or 1
053199ed 1040 *
3d3f26a7 1041 * Call with manage_mutex held.
1da177e4
LT
1042 */
1043
1044static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
1045{
1046 int turning_on;
1047 struct cpuset trialcs;
85d7b949 1048 int err, cpu_exclusive_changed;
1da177e4
LT
1049
1050 turning_on = (simple_strtoul(buf, NULL, 10) != 0);
1051
1052 trialcs = *cs;
1053 if (turning_on)
1054 set_bit(bit, &trialcs.flags);
1055 else
1056 clear_bit(bit, &trialcs.flags);
1057
1058 err = validate_change(cs, &trialcs);
85d7b949
DG
1059 if (err < 0)
1060 return err;
1061 cpu_exclusive_changed =
1062 (is_cpu_exclusive(cs) != is_cpu_exclusive(&trialcs));
3d3f26a7 1063 mutex_lock(&callback_mutex);
69604067 1064 cs->flags = trialcs.flags;
3d3f26a7 1065 mutex_unlock(&callback_mutex);
85d7b949
DG
1066
1067 if (cpu_exclusive_changed)
1068 update_cpu_domains(cs);
1069 return 0;
1da177e4
LT
1070}
1071
3e0d98b9 1072/*
80f7228b 1073 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1074 *
1075 * These routines manage a digitally filtered, constant time based,
1076 * event frequency meter. There are four routines:
1077 * fmeter_init() - initialize a frequency meter.
1078 * fmeter_markevent() - called each time the event happens.
1079 * fmeter_getrate() - returns the recent rate of such events.
1080 * fmeter_update() - internal routine used to update fmeter.
1081 *
1082 * A common data structure is passed to each of these routines,
1083 * which is used to keep track of the state required to manage the
1084 * frequency meter and its digital filter.
1085 *
1086 * The filter works on the number of events marked per unit time.
1087 * The filter is single-pole low-pass recursive (IIR). The time unit
1088 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1089 * simulate 3 decimal digits of precision (multiplied by 1000).
1090 *
1091 * With an FM_COEF of 933, and a time base of 1 second, the filter
1092 * has a half-life of 10 seconds, meaning that if the events quit
1093 * happening, then the rate returned from the fmeter_getrate()
1094 * will be cut in half each 10 seconds, until it converges to zero.
1095 *
1096 * It is not worth doing a real infinitely recursive filter. If more
1097 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1098 * just compute FM_MAXTICKS ticks worth, by which point the level
1099 * will be stable.
1100 *
1101 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1102 * arithmetic overflow in the fmeter_update() routine.
1103 *
1104 * Given the simple 32 bit integer arithmetic used, this meter works
1105 * best for reporting rates between one per millisecond (msec) and
1106 * one per 32 (approx) seconds. At constant rates faster than one
1107 * per msec it maxes out at values just under 1,000,000. At constant
1108 * rates between one per msec, and one per second it will stabilize
1109 * to a value N*1000, where N is the rate of events per second.
1110 * At constant rates between one per second and one per 32 seconds,
1111 * it will be choppy, moving up on the seconds that have an event,
1112 * and then decaying until the next event. At rates slower than
1113 * about one in 32 seconds, it decays all the way back to zero between
1114 * each event.
1115 */
1116
1117#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1118#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1119#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1120#define FM_SCALE 1000 /* faux fixed point scale */
1121
1122/* Initialize a frequency meter */
1123static void fmeter_init(struct fmeter *fmp)
1124{
1125 fmp->cnt = 0;
1126 fmp->val = 0;
1127 fmp->time = 0;
1128 spin_lock_init(&fmp->lock);
1129}
1130
1131/* Internal meter update - process cnt events and update value */
1132static void fmeter_update(struct fmeter *fmp)
1133{
1134 time_t now = get_seconds();
1135 time_t ticks = now - fmp->time;
1136
1137 if (ticks == 0)
1138 return;
1139
1140 ticks = min(FM_MAXTICKS, ticks);
1141 while (ticks-- > 0)
1142 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1143 fmp->time = now;
1144
1145 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1146 fmp->cnt = 0;
1147}
1148
1149/* Process any previous ticks, then bump cnt by one (times scale). */
1150static void fmeter_markevent(struct fmeter *fmp)
1151{
1152 spin_lock(&fmp->lock);
1153 fmeter_update(fmp);
1154 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1155 spin_unlock(&fmp->lock);
1156}
1157
1158/* Process any previous ticks, then return current value. */
1159static int fmeter_getrate(struct fmeter *fmp)
1160{
1161 int val;
1162
1163 spin_lock(&fmp->lock);
1164 fmeter_update(fmp);
1165 val = fmp->val;
1166 spin_unlock(&fmp->lock);
1167 return val;
1168}
1169
053199ed
PJ
1170/*
1171 * Attack task specified by pid in 'pidbuf' to cpuset 'cs', possibly
1172 * writing the path of the old cpuset in 'ppathbuf' if it needs to be
1173 * notified on release.
1174 *
3d3f26a7 1175 * Call holding manage_mutex. May take callback_mutex and task_lock of
053199ed
PJ
1176 * the task 'pid' during call.
1177 */
1178
3077a260 1179static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
1da177e4
LT
1180{
1181 pid_t pid;
1182 struct task_struct *tsk;
1183 struct cpuset *oldcs;
1184 cpumask_t cpus;
45b07ef3 1185 nodemask_t from, to;
4225399a 1186 struct mm_struct *mm;
22fb52dd 1187 int retval;
1da177e4 1188
3077a260 1189 if (sscanf(pidbuf, "%d", &pid) != 1)
1da177e4
LT
1190 return -EIO;
1191 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1192 return -ENOSPC;
1193
1194 if (pid) {
1195 read_lock(&tasklist_lock);
1196
1197 tsk = find_task_by_pid(pid);
053199ed 1198 if (!tsk || tsk->flags & PF_EXITING) {
1da177e4
LT
1199 read_unlock(&tasklist_lock);
1200 return -ESRCH;
1201 }
1202
1203 get_task_struct(tsk);
1204 read_unlock(&tasklist_lock);
1205
1206 if ((current->euid) && (current->euid != tsk->uid)
1207 && (current->euid != tsk->suid)) {
1208 put_task_struct(tsk);
1209 return -EACCES;
1210 }
1211 } else {
1212 tsk = current;
1213 get_task_struct(tsk);
1214 }
1215
22fb52dd
DQ
1216 retval = security_task_setscheduler(tsk, 0, NULL);
1217 if (retval) {
1218 put_task_struct(tsk);
1219 return retval;
1220 }
1221
3d3f26a7 1222 mutex_lock(&callback_mutex);
053199ed 1223
1da177e4
LT
1224 task_lock(tsk);
1225 oldcs = tsk->cpuset;
181b6480
PJ
1226 /*
1227 * After getting 'oldcs' cpuset ptr, be sure still not exiting.
1228 * If 'oldcs' might be the top_cpuset due to the_top_cpuset_hack
1229 * then fail this attach_task(), to avoid breaking top_cpuset.count.
1230 */
1231 if (tsk->flags & PF_EXITING) {
1da177e4 1232 task_unlock(tsk);
3d3f26a7 1233 mutex_unlock(&callback_mutex);
1da177e4
LT
1234 put_task_struct(tsk);
1235 return -ESRCH;
1236 }
1237 atomic_inc(&cs->count);
6b9c2603 1238 rcu_assign_pointer(tsk->cpuset, cs);
1da177e4
LT
1239 task_unlock(tsk);
1240
1241 guarantee_online_cpus(cs, &cpus);
1242 set_cpus_allowed(tsk, cpus);
1243
45b07ef3
PJ
1244 from = oldcs->mems_allowed;
1245 to = cs->mems_allowed;
1246
3d3f26a7 1247 mutex_unlock(&callback_mutex);
4225399a
PJ
1248
1249 mm = get_task_mm(tsk);
1250 if (mm) {
1251 mpol_rebind_mm(mm, &to);
2741a559 1252 if (is_memory_migrate(cs))
e4e364e8 1253 cpuset_migrate_mm(mm, &from, &to);
4225399a
PJ
1254 mmput(mm);
1255 }
1256
1da177e4 1257 put_task_struct(tsk);
6b9c2603 1258 synchronize_rcu();
1da177e4 1259 if (atomic_dec_and_test(&oldcs->count))
3077a260 1260 check_for_release(oldcs, ppathbuf);
1da177e4
LT
1261 return 0;
1262}
1263
1264/* The various types of files and directories in a cpuset file system */
1265
1266typedef enum {
1267 FILE_ROOT,
1268 FILE_DIR,
45b07ef3 1269 FILE_MEMORY_MIGRATE,
1da177e4
LT
1270 FILE_CPULIST,
1271 FILE_MEMLIST,
1272 FILE_CPU_EXCLUSIVE,
1273 FILE_MEM_EXCLUSIVE,
1274 FILE_NOTIFY_ON_RELEASE,
3e0d98b9
PJ
1275 FILE_MEMORY_PRESSURE_ENABLED,
1276 FILE_MEMORY_PRESSURE,
825a46af
PJ
1277 FILE_SPREAD_PAGE,
1278 FILE_SPREAD_SLAB,
1da177e4
LT
1279 FILE_TASKLIST,
1280} cpuset_filetype_t;
1281
d3ed11c3
PM
1282static ssize_t cpuset_common_file_write(struct file *file,
1283 const char __user *userbuf,
1da177e4
LT
1284 size_t nbytes, loff_t *unused_ppos)
1285{
a7a005fd
JS
1286 struct cpuset *cs = __d_cs(file->f_path.dentry->d_parent);
1287 struct cftype *cft = __d_cft(file->f_path.dentry);
1da177e4
LT
1288 cpuset_filetype_t type = cft->private;
1289 char *buffer;
3077a260 1290 char *pathbuf = NULL;
1da177e4
LT
1291 int retval = 0;
1292
1293 /* Crude upper limit on largest legitimate cpulist user might write. */
d3ed11c3 1294 if (nbytes > 100 + 6 * max(NR_CPUS, MAX_NUMNODES))
1da177e4
LT
1295 return -E2BIG;
1296
1297 /* +1 for nul-terminator */
1298 if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
1299 return -ENOMEM;
1300
1301 if (copy_from_user(buffer, userbuf, nbytes)) {
1302 retval = -EFAULT;
1303 goto out1;
1304 }
1305 buffer[nbytes] = 0; /* nul-terminate */
1306
3d3f26a7 1307 mutex_lock(&manage_mutex);
1da177e4
LT
1308
1309 if (is_removed(cs)) {
1310 retval = -ENODEV;
1311 goto out2;
1312 }
1313
1314 switch (type) {
1315 case FILE_CPULIST:
1316 retval = update_cpumask(cs, buffer);
1317 break;
1318 case FILE_MEMLIST:
1319 retval = update_nodemask(cs, buffer);
1320 break;
1321 case FILE_CPU_EXCLUSIVE:
1322 retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
1323 break;
1324 case FILE_MEM_EXCLUSIVE:
1325 retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
1326 break;
1327 case FILE_NOTIFY_ON_RELEASE:
1328 retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer);
1329 break;
45b07ef3
PJ
1330 case FILE_MEMORY_MIGRATE:
1331 retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer);
1332 break;
3e0d98b9
PJ
1333 case FILE_MEMORY_PRESSURE_ENABLED:
1334 retval = update_memory_pressure_enabled(cs, buffer);
1335 break;
1336 case FILE_MEMORY_PRESSURE:
1337 retval = -EACCES;
1338 break;
825a46af
PJ
1339 case FILE_SPREAD_PAGE:
1340 retval = update_flag(CS_SPREAD_PAGE, cs, buffer);
151a4420 1341 cs->mems_generation = cpuset_mems_generation++;
825a46af
PJ
1342 break;
1343 case FILE_SPREAD_SLAB:
1344 retval = update_flag(CS_SPREAD_SLAB, cs, buffer);
151a4420 1345 cs->mems_generation = cpuset_mems_generation++;
825a46af 1346 break;
1da177e4 1347 case FILE_TASKLIST:
3077a260 1348 retval = attach_task(cs, buffer, &pathbuf);
1da177e4
LT
1349 break;
1350 default:
1351 retval = -EINVAL;
1352 goto out2;
1353 }
1354
1355 if (retval == 0)
1356 retval = nbytes;
1357out2:
3d3f26a7 1358 mutex_unlock(&manage_mutex);
3077a260 1359 cpuset_release_agent(pathbuf);
1da177e4
LT
1360out1:
1361 kfree(buffer);
1362 return retval;
1363}
1364
1365static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
1366 size_t nbytes, loff_t *ppos)
1367{
1368 ssize_t retval = 0;
a7a005fd 1369 struct cftype *cft = __d_cft(file->f_path.dentry);
1da177e4
LT
1370 if (!cft)
1371 return -ENODEV;
1372
1373 /* special function ? */
1374 if (cft->write)
1375 retval = cft->write(file, buf, nbytes, ppos);
1376 else
1377 retval = cpuset_common_file_write(file, buf, nbytes, ppos);
1378
1379 return retval;
1380}
1381
1382/*
1383 * These ascii lists should be read in a single call, by using a user
1384 * buffer large enough to hold the entire map. If read in smaller
1385 * chunks, there is no guarantee of atomicity. Since the display format
1386 * used, list of ranges of sequential numbers, is variable length,
1387 * and since these maps can change value dynamically, one could read
1388 * gibberish by doing partial reads while a list was changing.
1389 * A single large read to a buffer that crosses a page boundary is
1390 * ok, because the result being copied to user land is not recomputed
1391 * across a page fault.
1392 */
1393
1394static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1395{
1396 cpumask_t mask;
1397
3d3f26a7 1398 mutex_lock(&callback_mutex);
1da177e4 1399 mask = cs->cpus_allowed;
3d3f26a7 1400 mutex_unlock(&callback_mutex);
1da177e4
LT
1401
1402 return cpulist_scnprintf(page, PAGE_SIZE, mask);
1403}
1404
1405static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1406{
1407 nodemask_t mask;
1408
3d3f26a7 1409 mutex_lock(&callback_mutex);
1da177e4 1410 mask = cs->mems_allowed;
3d3f26a7 1411 mutex_unlock(&callback_mutex);
1da177e4
LT
1412
1413 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1414}
1415
1416static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
1417 size_t nbytes, loff_t *ppos)
1418{
a7a005fd
JS
1419 struct cftype *cft = __d_cft(file->f_path.dentry);
1420 struct cpuset *cs = __d_cs(file->f_path.dentry->d_parent);
1da177e4
LT
1421 cpuset_filetype_t type = cft->private;
1422 char *page;
1423 ssize_t retval = 0;
1424 char *s;
1da177e4
LT
1425
1426 if (!(page = (char *)__get_free_page(GFP_KERNEL)))
1427 return -ENOMEM;
1428
1429 s = page;
1430
1431 switch (type) {
1432 case FILE_CPULIST:
1433 s += cpuset_sprintf_cpulist(s, cs);
1434 break;
1435 case FILE_MEMLIST:
1436 s += cpuset_sprintf_memlist(s, cs);
1437 break;
1438 case FILE_CPU_EXCLUSIVE:
1439 *s++ = is_cpu_exclusive(cs) ? '1' : '0';
1440 break;
1441 case FILE_MEM_EXCLUSIVE:
1442 *s++ = is_mem_exclusive(cs) ? '1' : '0';
1443 break;
1444 case FILE_NOTIFY_ON_RELEASE:
1445 *s++ = notify_on_release(cs) ? '1' : '0';
1446 break;
45b07ef3
PJ
1447 case FILE_MEMORY_MIGRATE:
1448 *s++ = is_memory_migrate(cs) ? '1' : '0';
1449 break;
3e0d98b9
PJ
1450 case FILE_MEMORY_PRESSURE_ENABLED:
1451 *s++ = cpuset_memory_pressure_enabled ? '1' : '0';
1452 break;
1453 case FILE_MEMORY_PRESSURE:
1454 s += sprintf(s, "%d", fmeter_getrate(&cs->fmeter));
1455 break;
825a46af
PJ
1456 case FILE_SPREAD_PAGE:
1457 *s++ = is_spread_page(cs) ? '1' : '0';
1458 break;
1459 case FILE_SPREAD_SLAB:
1460 *s++ = is_spread_slab(cs) ? '1' : '0';
1461 break;
1da177e4
LT
1462 default:
1463 retval = -EINVAL;
1464 goto out;
1465 }
1466 *s++ = '\n';
1da177e4 1467
eacaa1f5 1468 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1469out:
1470 free_page((unsigned long)page);
1471 return retval;
1472}
1473
1474static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes,
1475 loff_t *ppos)
1476{
1477 ssize_t retval = 0;
a7a005fd 1478 struct cftype *cft = __d_cft(file->f_path.dentry);
1da177e4
LT
1479 if (!cft)
1480 return -ENODEV;
1481
1482 /* special function ? */
1483 if (cft->read)
1484 retval = cft->read(file, buf, nbytes, ppos);
1485 else
1486 retval = cpuset_common_file_read(file, buf, nbytes, ppos);
1487
1488 return retval;
1489}
1490
1491static int cpuset_file_open(struct inode *inode, struct file *file)
1492{
1493 int err;
1494 struct cftype *cft;
1495
1496 err = generic_file_open(inode, file);
1497 if (err)
1498 return err;
1499
a7a005fd 1500 cft = __d_cft(file->f_path.dentry);
1da177e4
LT
1501 if (!cft)
1502 return -ENODEV;
1503 if (cft->open)
1504 err = cft->open(inode, file);
1505 else
1506 err = 0;
1507
1508 return err;
1509}
1510
1511static int cpuset_file_release(struct inode *inode, struct file *file)
1512{
a7a005fd 1513 struct cftype *cft = __d_cft(file->f_path.dentry);
1da177e4
LT
1514 if (cft->release)
1515 return cft->release(inode, file);
1516 return 0;
1517}
1518
18a19cb3
PJ
1519/*
1520 * cpuset_rename - Only allow simple rename of directories in place.
1521 */
1522static int cpuset_rename(struct inode *old_dir, struct dentry *old_dentry,
1523 struct inode *new_dir, struct dentry *new_dentry)
1524{
1525 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1526 return -ENOTDIR;
1527 if (new_dentry->d_inode)
1528 return -EEXIST;
1529 if (old_dir != new_dir)
1530 return -EIO;
1531 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1532}
1533
15ad7cdc 1534static const struct file_operations cpuset_file_operations = {
1da177e4
LT
1535 .read = cpuset_file_read,
1536 .write = cpuset_file_write,
1537 .llseek = generic_file_llseek,
1538 .open = cpuset_file_open,
1539 .release = cpuset_file_release,
1540};
1541
92e1d5be 1542static const struct inode_operations cpuset_dir_inode_operations = {
1da177e4
LT
1543 .lookup = simple_lookup,
1544 .mkdir = cpuset_mkdir,
1545 .rmdir = cpuset_rmdir,
18a19cb3 1546 .rename = cpuset_rename,
1da177e4
LT
1547};
1548
1549static int cpuset_create_file(struct dentry *dentry, int mode)
1550{
1551 struct inode *inode;
1552
1553 if (!dentry)
1554 return -ENOENT;
1555 if (dentry->d_inode)
1556 return -EEXIST;
1557
1558 inode = cpuset_new_inode(mode);
1559 if (!inode)
1560 return -ENOMEM;
1561
1562 if (S_ISDIR(mode)) {
1563 inode->i_op = &cpuset_dir_inode_operations;
1564 inode->i_fop = &simple_dir_operations;
1565
1566 /* start off with i_nlink == 2 (for "." entry) */
d8c76e6f 1567 inc_nlink(inode);
1da177e4
LT
1568 } else if (S_ISREG(mode)) {
1569 inode->i_size = 0;
1570 inode->i_fop = &cpuset_file_operations;
1571 }
1572
1573 d_instantiate(dentry, inode);
1574 dget(dentry); /* Extra count - pin the dentry in core */
1575 return 0;
1576}
1577
1578/*
1579 * cpuset_create_dir - create a directory for an object.
c5b2aff8 1580 * cs: the cpuset we create the directory for.
1da177e4
LT
1581 * It must have a valid ->parent field
1582 * And we are going to fill its ->dentry field.
1583 * name: The name to give to the cpuset directory. Will be copied.
1584 * mode: mode to set on new directory.
1585 */
1586
1587static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode)
1588{
1589 struct dentry *dentry = NULL;
1590 struct dentry *parent;
1591 int error = 0;
1592
1593 parent = cs->parent->dentry;
1594 dentry = cpuset_get_dentry(parent, name);
1595 if (IS_ERR(dentry))
1596 return PTR_ERR(dentry);
1597 error = cpuset_create_file(dentry, S_IFDIR | mode);
1598 if (!error) {
1599 dentry->d_fsdata = cs;
d8c76e6f 1600 inc_nlink(parent->d_inode);
1da177e4
LT
1601 cs->dentry = dentry;
1602 }
1603 dput(dentry);
1604
1605 return error;
1606}
1607
1608static int cpuset_add_file(struct dentry *dir, const struct cftype *cft)
1609{
1610 struct dentry *dentry;
1611 int error;
1612
1b1dcc1b 1613 mutex_lock(&dir->d_inode->i_mutex);
1da177e4
LT
1614 dentry = cpuset_get_dentry(dir, cft->name);
1615 if (!IS_ERR(dentry)) {
1616 error = cpuset_create_file(dentry, 0644 | S_IFREG);
1617 if (!error)
1618 dentry->d_fsdata = (void *)cft;
1619 dput(dentry);
1620 } else
1621 error = PTR_ERR(dentry);
1b1dcc1b 1622 mutex_unlock(&dir->d_inode->i_mutex);
1da177e4
LT
1623 return error;
1624}
1625
1626/*
1627 * Stuff for reading the 'tasks' file.
1628 *
1629 * Reading this file can return large amounts of data if a cpuset has
1630 * *lots* of attached tasks. So it may need several calls to read(),
1631 * but we cannot guarantee that the information we produce is correct
1632 * unless we produce it entirely atomically.
1633 *
1634 * Upon tasks file open(), a struct ctr_struct is allocated, that
1635 * will have a pointer to an array (also allocated here). The struct
1636 * ctr_struct * is stored in file->private_data. Its resources will
1637 * be freed by release() when the file is closed. The array is used
1638 * to sprintf the PIDs and then used by read().
1639 */
1640
1641/* cpusets_tasks_read array */
1642
1643struct ctr_struct {
1644 char *buf;
1645 int bufsz;
1646};
1647
1648/*
1649 * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'.
053199ed
PJ
1650 * Return actual number of pids loaded. No need to task_lock(p)
1651 * when reading out p->cpuset, as we don't really care if it changes
1652 * on the next cycle, and we are not going to try to dereference it.
1da177e4 1653 */
858119e1 1654static int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs)
1da177e4
LT
1655{
1656 int n = 0;
1657 struct task_struct *g, *p;
1658
1659 read_lock(&tasklist_lock);
1660
1661 do_each_thread(g, p) {
1662 if (p->cpuset == cs) {
1663 pidarray[n++] = p->pid;
1664 if (unlikely(n == npids))
1665 goto array_full;
1666 }
1667 } while_each_thread(g, p);
1668
1669array_full:
1670 read_unlock(&tasklist_lock);
1671 return n;
1672}
1673
1674static int cmppid(const void *a, const void *b)
1675{
1676 return *(pid_t *)a - *(pid_t *)b;
1677}
1678
1679/*
1680 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
1681 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
1682 * count 'cnt' of how many chars would be written if buf were large enough.
1683 */
1684static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
1685{
1686 int cnt = 0;
1687 int i;
1688
1689 for (i = 0; i < npids; i++)
1690 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
1691 return cnt;
1692}
1693
053199ed
PJ
1694/*
1695 * Handle an open on 'tasks' file. Prepare a buffer listing the
1696 * process id's of tasks currently attached to the cpuset being opened.
1697 *
3d3f26a7 1698 * Does not require any specific cpuset mutexes, and does not take any.
053199ed 1699 */
1da177e4
LT
1700static int cpuset_tasks_open(struct inode *unused, struct file *file)
1701{
a7a005fd 1702 struct cpuset *cs = __d_cs(file->f_path.dentry->d_parent);
1da177e4
LT
1703 struct ctr_struct *ctr;
1704 pid_t *pidarray;
1705 int npids;
1706 char c;
1707
1708 if (!(file->f_mode & FMODE_READ))
1709 return 0;
1710
1711 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
1712 if (!ctr)
1713 goto err0;
1714
1715 /*
1716 * If cpuset gets more users after we read count, we won't have
1717 * enough space - tough. This race is indistinguishable to the
1718 * caller from the case that the additional cpuset users didn't
1719 * show up until sometime later on.
1720 */
1721 npids = atomic_read(&cs->count);
1722 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
1723 if (!pidarray)
1724 goto err1;
1725
1726 npids = pid_array_load(pidarray, npids, cs);
1727 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
1728
1729 /* Call pid_array_to_buf() twice, first just to get bufsz */
1730 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
1731 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
1732 if (!ctr->buf)
1733 goto err2;
1734 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
1735
1736 kfree(pidarray);
1737 file->private_data = ctr;
1738 return 0;
1739
1740err2:
1741 kfree(pidarray);
1742err1:
1743 kfree(ctr);
1744err0:
1745 return -ENOMEM;
1746}
1747
1748static ssize_t cpuset_tasks_read(struct file *file, char __user *buf,
1749 size_t nbytes, loff_t *ppos)
1750{
1751 struct ctr_struct *ctr = file->private_data;
1752
1753 if (*ppos + nbytes > ctr->bufsz)
1754 nbytes = ctr->bufsz - *ppos;
1755 if (copy_to_user(buf, ctr->buf + *ppos, nbytes))
1756 return -EFAULT;
1757 *ppos += nbytes;
1758 return nbytes;
1759}
1760
1761static int cpuset_tasks_release(struct inode *unused_inode, struct file *file)
1762{
1763 struct ctr_struct *ctr;
1764
1765 if (file->f_mode & FMODE_READ) {
1766 ctr = file->private_data;
1767 kfree(ctr->buf);
1768 kfree(ctr);
1769 }
1770 return 0;
1771}
1772
1773/*
1774 * for the common functions, 'private' gives the type of file
1775 */
1776
1777static struct cftype cft_tasks = {
1778 .name = "tasks",
1779 .open = cpuset_tasks_open,
1780 .read = cpuset_tasks_read,
1781 .release = cpuset_tasks_release,
1782 .private = FILE_TASKLIST,
1783};
1784
1785static struct cftype cft_cpus = {
1786 .name = "cpus",
1787 .private = FILE_CPULIST,
1788};
1789
1790static struct cftype cft_mems = {
1791 .name = "mems",
1792 .private = FILE_MEMLIST,
1793};
1794
1795static struct cftype cft_cpu_exclusive = {
1796 .name = "cpu_exclusive",
1797 .private = FILE_CPU_EXCLUSIVE,
1798};
1799
1800static struct cftype cft_mem_exclusive = {
1801 .name = "mem_exclusive",
1802 .private = FILE_MEM_EXCLUSIVE,
1803};
1804
1805static struct cftype cft_notify_on_release = {
1806 .name = "notify_on_release",
1807 .private = FILE_NOTIFY_ON_RELEASE,
1808};
1809
45b07ef3
PJ
1810static struct cftype cft_memory_migrate = {
1811 .name = "memory_migrate",
1812 .private = FILE_MEMORY_MIGRATE,
1813};
1814
3e0d98b9
PJ
1815static struct cftype cft_memory_pressure_enabled = {
1816 .name = "memory_pressure_enabled",
1817 .private = FILE_MEMORY_PRESSURE_ENABLED,
1818};
1819
1820static struct cftype cft_memory_pressure = {
1821 .name = "memory_pressure",
1822 .private = FILE_MEMORY_PRESSURE,
1823};
1824
825a46af
PJ
1825static struct cftype cft_spread_page = {
1826 .name = "memory_spread_page",
1827 .private = FILE_SPREAD_PAGE,
1828};
1829
1830static struct cftype cft_spread_slab = {
1831 .name = "memory_spread_slab",
1832 .private = FILE_SPREAD_SLAB,
1833};
1834
1da177e4
LT
1835static int cpuset_populate_dir(struct dentry *cs_dentry)
1836{
1837 int err;
1838
1839 if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0)
1840 return err;
1841 if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0)
1842 return err;
1843 if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0)
1844 return err;
1845 if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0)
1846 return err;
1847 if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0)
1848 return err;
45b07ef3
PJ
1849 if ((err = cpuset_add_file(cs_dentry, &cft_memory_migrate)) < 0)
1850 return err;
3e0d98b9
PJ
1851 if ((err = cpuset_add_file(cs_dentry, &cft_memory_pressure)) < 0)
1852 return err;
825a46af
PJ
1853 if ((err = cpuset_add_file(cs_dentry, &cft_spread_page)) < 0)
1854 return err;
1855 if ((err = cpuset_add_file(cs_dentry, &cft_spread_slab)) < 0)
1856 return err;
1da177e4
LT
1857 if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0)
1858 return err;
1859 return 0;
1860}
1861
1862/*
1863 * cpuset_create - create a cpuset
1864 * parent: cpuset that will be parent of the new cpuset.
1865 * name: name of the new cpuset. Will be strcpy'ed.
1866 * mode: mode to set on new inode
1867 *
3d3f26a7 1868 * Must be called with the mutex on the parent inode held
1da177e4
LT
1869 */
1870
1871static long cpuset_create(struct cpuset *parent, const char *name, int mode)
1872{
1873 struct cpuset *cs;
1874 int err;
1875
1876 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1877 if (!cs)
1878 return -ENOMEM;
1879
3d3f26a7 1880 mutex_lock(&manage_mutex);
cf2a473c 1881 cpuset_update_task_memory_state();
1da177e4
LT
1882 cs->flags = 0;
1883 if (notify_on_release(parent))
1884 set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
825a46af
PJ
1885 if (is_spread_page(parent))
1886 set_bit(CS_SPREAD_PAGE, &cs->flags);
1887 if (is_spread_slab(parent))
1888 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4
LT
1889 cs->cpus_allowed = CPU_MASK_NONE;
1890 cs->mems_allowed = NODE_MASK_NONE;
1891 atomic_set(&cs->count, 0);
1892 INIT_LIST_HEAD(&cs->sibling);
1893 INIT_LIST_HEAD(&cs->children);
151a4420 1894 cs->mems_generation = cpuset_mems_generation++;
3e0d98b9 1895 fmeter_init(&cs->fmeter);
1da177e4
LT
1896
1897 cs->parent = parent;
1898
3d3f26a7 1899 mutex_lock(&callback_mutex);
1da177e4 1900 list_add(&cs->sibling, &cs->parent->children);
202f72d5 1901 number_of_cpusets++;
3d3f26a7 1902 mutex_unlock(&callback_mutex);
1da177e4
LT
1903
1904 err = cpuset_create_dir(cs, name, mode);
1905 if (err < 0)
1906 goto err;
1907
1908 /*
3d3f26a7 1909 * Release manage_mutex before cpuset_populate_dir() because it
1b1dcc1b 1910 * will down() this new directory's i_mutex and if we race with
1da177e4
LT
1911 * another mkdir, we might deadlock.
1912 */
3d3f26a7 1913 mutex_unlock(&manage_mutex);
1da177e4
LT
1914
1915 err = cpuset_populate_dir(cs->dentry);
1916 /* If err < 0, we have a half-filled directory - oh well ;) */
1917 return 0;
1918err:
1919 list_del(&cs->sibling);
3d3f26a7 1920 mutex_unlock(&manage_mutex);
1da177e4
LT
1921 kfree(cs);
1922 return err;
1923}
1924
1925static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1926{
1927 struct cpuset *c_parent = dentry->d_parent->d_fsdata;
1928
1b1dcc1b 1929 /* the vfs holds inode->i_mutex already */
1da177e4
LT
1930 return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR);
1931}
1932
abb5a5cc
PJ
1933/*
1934 * Locking note on the strange update_flag() call below:
1935 *
1936 * If the cpuset being removed is marked cpu_exclusive, then simulate
1937 * turning cpu_exclusive off, which will call update_cpu_domains().
1938 * The lock_cpu_hotplug() call in update_cpu_domains() must not be
1939 * made while holding callback_mutex. Elsewhere the kernel nests
1940 * callback_mutex inside lock_cpu_hotplug() calls. So the reverse
1941 * nesting would risk an ABBA deadlock.
1942 */
1943
1da177e4
LT
1944static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry)
1945{
1946 struct cpuset *cs = dentry->d_fsdata;
1947 struct dentry *d;
1948 struct cpuset *parent;
3077a260 1949 char *pathbuf = NULL;
1da177e4 1950
1b1dcc1b 1951 /* the vfs holds both inode->i_mutex already */
1da177e4 1952
3d3f26a7 1953 mutex_lock(&manage_mutex);
cf2a473c 1954 cpuset_update_task_memory_state();
1da177e4 1955 if (atomic_read(&cs->count) > 0) {
3d3f26a7 1956 mutex_unlock(&manage_mutex);
1da177e4
LT
1957 return -EBUSY;
1958 }
1959 if (!list_empty(&cs->children)) {
3d3f26a7 1960 mutex_unlock(&manage_mutex);
1da177e4
LT
1961 return -EBUSY;
1962 }
abb5a5cc
PJ
1963 if (is_cpu_exclusive(cs)) {
1964 int retval = update_flag(CS_CPU_EXCLUSIVE, cs, "0");
1965 if (retval < 0) {
1966 mutex_unlock(&manage_mutex);
1967 return retval;
1968 }
1969 }
1da177e4 1970 parent = cs->parent;
3d3f26a7 1971 mutex_lock(&callback_mutex);
1da177e4
LT
1972 set_bit(CS_REMOVED, &cs->flags);
1973 list_del(&cs->sibling); /* delete my sibling from parent->children */
85d7b949 1974 spin_lock(&cs->dentry->d_lock);
1da177e4
LT
1975 d = dget(cs->dentry);
1976 cs->dentry = NULL;
1977 spin_unlock(&d->d_lock);
1978 cpuset_d_remove_dir(d);
1979 dput(d);
202f72d5 1980 number_of_cpusets--;
3d3f26a7 1981 mutex_unlock(&callback_mutex);
053199ed
PJ
1982 if (list_empty(&parent->children))
1983 check_for_release(parent, &pathbuf);
3d3f26a7 1984 mutex_unlock(&manage_mutex);
3077a260 1985 cpuset_release_agent(pathbuf);
1da177e4
LT
1986 return 0;
1987}
1988
c417f024
PJ
1989/*
1990 * cpuset_init_early - just enough so that the calls to
1991 * cpuset_update_task_memory_state() in early init code
1992 * are harmless.
1993 */
1994
1995int __init cpuset_init_early(void)
1996{
1997 struct task_struct *tsk = current;
1998
1999 tsk->cpuset = &top_cpuset;
151a4420 2000 tsk->cpuset->mems_generation = cpuset_mems_generation++;
c417f024
PJ
2001 return 0;
2002}
2003
1da177e4
LT
2004/**
2005 * cpuset_init - initialize cpusets at system boot
2006 *
2007 * Description: Initialize top_cpuset and the cpuset internal file system,
2008 **/
2009
2010int __init cpuset_init(void)
2011{
2012 struct dentry *root;
2013 int err;
2014
2015 top_cpuset.cpus_allowed = CPU_MASK_ALL;
2016 top_cpuset.mems_allowed = NODE_MASK_ALL;
2017
3e0d98b9 2018 fmeter_init(&top_cpuset.fmeter);
151a4420 2019 top_cpuset.mems_generation = cpuset_mems_generation++;
1da177e4
LT
2020
2021 init_task.cpuset = &top_cpuset;
2022
2023 err = register_filesystem(&cpuset_fs_type);
2024 if (err < 0)
2025 goto out;
2026 cpuset_mount = kern_mount(&cpuset_fs_type);
2027 if (IS_ERR(cpuset_mount)) {
2028 printk(KERN_ERR "cpuset: could not mount!\n");
2029 err = PTR_ERR(cpuset_mount);
2030 cpuset_mount = NULL;
2031 goto out;
2032 }
2033 root = cpuset_mount->mnt_sb->s_root;
2034 root->d_fsdata = &top_cpuset;
d8c76e6f 2035 inc_nlink(root->d_inode);
1da177e4
LT
2036 top_cpuset.dentry = root;
2037 root->d_inode->i_op = &cpuset_dir_inode_operations;
202f72d5 2038 number_of_cpusets = 1;
1da177e4 2039 err = cpuset_populate_dir(root);
3e0d98b9
PJ
2040 /* memory_pressure_enabled is in root cpuset only */
2041 if (err == 0)
2042 err = cpuset_add_file(root, &cft_memory_pressure_enabled);
1da177e4
LT
2043out:
2044 return err;
2045}
2046
b1aac8bb
PJ
2047/*
2048 * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs
2049 * or memory nodes, we need to walk over the cpuset hierarchy,
2050 * removing that CPU or node from all cpusets. If this removes the
2051 * last CPU or node from a cpuset, then the guarantee_online_cpus()
2052 * or guarantee_online_mems() code will use that emptied cpusets
2053 * parent online CPUs or nodes. Cpusets that were already empty of
2054 * CPUs or nodes are left empty.
2055 *
2056 * This routine is intentionally inefficient in a couple of regards.
2057 * It will check all cpusets in a subtree even if the top cpuset of
2058 * the subtree has no offline CPUs or nodes. It checks both CPUs and
2059 * nodes, even though the caller could have been coded to know that
2060 * only one of CPUs or nodes needed to be checked on a given call.
2061 * This was done to minimize text size rather than cpu cycles.
2062 *
2063 * Call with both manage_mutex and callback_mutex held.
2064 *
2065 * Recursive, on depth of cpuset subtree.
2066 */
2067
2068static void guarantee_online_cpus_mems_in_subtree(const struct cpuset *cur)
2069{
2070 struct cpuset *c;
2071
2072 /* Each of our child cpusets mems must be online */
2073 list_for_each_entry(c, &cur->children, sibling) {
2074 guarantee_online_cpus_mems_in_subtree(c);
2075 if (!cpus_empty(c->cpus_allowed))
2076 guarantee_online_cpus(c, &c->cpus_allowed);
2077 if (!nodes_empty(c->mems_allowed))
2078 guarantee_online_mems(c, &c->mems_allowed);
2079 }
2080}
2081
2082/*
2083 * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track
2084 * cpu_online_map and node_online_map. Force the top cpuset to track
2085 * whats online after any CPU or memory node hotplug or unplug event.
2086 *
2087 * To ensure that we don't remove a CPU or node from the top cpuset
2088 * that is currently in use by a child cpuset (which would violate
2089 * the rule that cpusets must be subsets of their parent), we first
2090 * call the recursive routine guarantee_online_cpus_mems_in_subtree().
2091 *
2092 * Since there are two callers of this routine, one for CPU hotplug
2093 * events and one for memory node hotplug events, we could have coded
2094 * two separate routines here. We code it as a single common routine
2095 * in order to minimize text size.
2096 */
2097
2098static void common_cpu_mem_hotplug_unplug(void)
2099{
2100 mutex_lock(&manage_mutex);
2101 mutex_lock(&callback_mutex);
2102
2103 guarantee_online_cpus_mems_in_subtree(&top_cpuset);
2104 top_cpuset.cpus_allowed = cpu_online_map;
2105 top_cpuset.mems_allowed = node_online_map;
2106
2107 mutex_unlock(&callback_mutex);
2108 mutex_unlock(&manage_mutex);
2109}
b1aac8bb 2110
4c4d50f7
PJ
2111/*
2112 * The top_cpuset tracks what CPUs and Memory Nodes are online,
2113 * period. This is necessary in order to make cpusets transparent
2114 * (of no affect) on systems that are actively using CPU hotplug
2115 * but making no active use of cpusets.
2116 *
38837fc7
PJ
2117 * This routine ensures that top_cpuset.cpus_allowed tracks
2118 * cpu_online_map on each CPU hotplug (cpuhp) event.
4c4d50f7
PJ
2119 */
2120
4c4d50f7
PJ
2121static int cpuset_handle_cpuhp(struct notifier_block *nb,
2122 unsigned long phase, void *cpu)
2123{
b1aac8bb 2124 common_cpu_mem_hotplug_unplug();
4c4d50f7
PJ
2125 return 0;
2126}
4c4d50f7 2127
b1aac8bb 2128#ifdef CONFIG_MEMORY_HOTPLUG
38837fc7
PJ
2129/*
2130 * Keep top_cpuset.mems_allowed tracking node_online_map.
2131 * Call this routine anytime after you change node_online_map.
2132 * See also the previous routine cpuset_handle_cpuhp().
2133 */
2134
1af98928 2135void cpuset_track_online_nodes(void)
38837fc7 2136{
b1aac8bb 2137 common_cpu_mem_hotplug_unplug();
38837fc7
PJ
2138}
2139#endif
2140
1da177e4
LT
2141/**
2142 * cpuset_init_smp - initialize cpus_allowed
2143 *
2144 * Description: Finish top cpuset after cpu, node maps are initialized
2145 **/
2146
2147void __init cpuset_init_smp(void)
2148{
2149 top_cpuset.cpus_allowed = cpu_online_map;
2150 top_cpuset.mems_allowed = node_online_map;
4c4d50f7
PJ
2151
2152 hotcpu_notifier(cpuset_handle_cpuhp, 0);
1da177e4
LT
2153}
2154
2155/**
2156 * cpuset_fork - attach newly forked task to its parents cpuset.
d9fd8a6d 2157 * @tsk: pointer to task_struct of forking parent process.
1da177e4 2158 *
053199ed
PJ
2159 * Description: A task inherits its parent's cpuset at fork().
2160 *
2161 * A pointer to the shared cpuset was automatically copied in fork.c
2162 * by dup_task_struct(). However, we ignore that copy, since it was
2163 * not made under the protection of task_lock(), so might no longer be
2164 * a valid cpuset pointer. attach_task() might have already changed
2165 * current->cpuset, allowing the previously referenced cpuset to
2166 * be removed and freed. Instead, we task_lock(current) and copy
2167 * its present value of current->cpuset for our freshly forked child.
2168 *
2169 * At the point that cpuset_fork() is called, 'current' is the parent
2170 * task, and the passed argument 'child' points to the child task.
1da177e4
LT
2171 **/
2172
053199ed 2173void cpuset_fork(struct task_struct *child)
1da177e4 2174{
053199ed
PJ
2175 task_lock(current);
2176 child->cpuset = current->cpuset;
2177 atomic_inc(&child->cpuset->count);
2178 task_unlock(current);
1da177e4
LT
2179}
2180
2181/**
2182 * cpuset_exit - detach cpuset from exiting task
2183 * @tsk: pointer to task_struct of exiting process
2184 *
2185 * Description: Detach cpuset from @tsk and release it.
2186 *
053199ed 2187 * Note that cpusets marked notify_on_release force every task in
3d3f26a7 2188 * them to take the global manage_mutex mutex when exiting.
053199ed
PJ
2189 * This could impact scaling on very large systems. Be reluctant to
2190 * use notify_on_release cpusets where very high task exit scaling
2191 * is required on large systems.
2192 *
2193 * Don't even think about derefencing 'cs' after the cpuset use count
3d3f26a7
IM
2194 * goes to zero, except inside a critical section guarded by manage_mutex
2195 * or callback_mutex. Otherwise a zero cpuset use count is a license to
053199ed
PJ
2196 * any other task to nuke the cpuset immediately, via cpuset_rmdir().
2197 *
3d3f26a7
IM
2198 * This routine has to take manage_mutex, not callback_mutex, because
2199 * it is holding that mutex while calling check_for_release(),
2200 * which calls kmalloc(), so can't be called holding callback_mutex().
053199ed 2201 *
8488bc35 2202 * the_top_cpuset_hack:
06fed338
PJ
2203 *
2204 * Set the exiting tasks cpuset to the root cpuset (top_cpuset).
2205 *
2206 * Don't leave a task unable to allocate memory, as that is an
2207 * accident waiting to happen should someone add a callout in
2208 * do_exit() after the cpuset_exit() call that might allocate.
2209 * If a task tries to allocate memory with an invalid cpuset,
2210 * it will oops in cpuset_update_task_memory_state().
2211 *
2212 * We call cpuset_exit() while the task is still competent to
2213 * handle notify_on_release(), then leave the task attached to
2214 * the root cpuset (top_cpuset) for the remainder of its exit.
2215 *
2216 * To do this properly, we would increment the reference count on
2217 * top_cpuset, and near the very end of the kernel/exit.c do_exit()
2218 * code we would add a second cpuset function call, to drop that
2219 * reference. This would just create an unnecessary hot spot on
2220 * the top_cpuset reference count, to no avail.
2221 *
2222 * Normally, holding a reference to a cpuset without bumping its
2223 * count is unsafe. The cpuset could go away, or someone could
2224 * attach us to a different cpuset, decrementing the count on
2225 * the first cpuset that we never incremented. But in this case,
2226 * top_cpuset isn't going away, and either task has PF_EXITING set,
2227 * which wards off any attach_task() attempts, or task is a failed
2228 * fork, never visible to attach_task.
2229 *
2230 * Another way to do this would be to set the cpuset pointer
2231 * to NULL here, and check in cpuset_update_task_memory_state()
2232 * for a NULL pointer. This hack avoids that NULL check, for no
2233 * cost (other than this way too long comment ;).
1da177e4
LT
2234 **/
2235
2236void cpuset_exit(struct task_struct *tsk)
2237{
2238 struct cpuset *cs;
2239
dd9037a2 2240 task_lock(current);
1da177e4 2241 cs = tsk->cpuset;
8488bc35 2242 tsk->cpuset = &top_cpuset; /* the_top_cpuset_hack - see above */
dd9037a2 2243 task_unlock(current);
1da177e4 2244
2efe86b8 2245 if (notify_on_release(cs)) {
3077a260
PJ
2246 char *pathbuf = NULL;
2247
3d3f26a7 2248 mutex_lock(&manage_mutex);
2efe86b8 2249 if (atomic_dec_and_test(&cs->count))
3077a260 2250 check_for_release(cs, &pathbuf);
3d3f26a7 2251 mutex_unlock(&manage_mutex);
3077a260 2252 cpuset_release_agent(pathbuf);
2efe86b8
PJ
2253 } else {
2254 atomic_dec(&cs->count);
1da177e4
LT
2255 }
2256}
2257
2258/**
2259 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2260 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2261 *
2262 * Description: Returns the cpumask_t cpus_allowed of the cpuset
2263 * attached to the specified @tsk. Guaranteed to return some non-empty
2264 * subset of cpu_online_map, even if this means going outside the
2265 * tasks cpuset.
2266 **/
2267
909d75a3 2268cpumask_t cpuset_cpus_allowed(struct task_struct *tsk)
1da177e4
LT
2269{
2270 cpumask_t mask;
2271
3d3f26a7 2272 mutex_lock(&callback_mutex);
909d75a3 2273 task_lock(tsk);
1da177e4 2274 guarantee_online_cpus(tsk->cpuset, &mask);
909d75a3 2275 task_unlock(tsk);
3d3f26a7 2276 mutex_unlock(&callback_mutex);
1da177e4
LT
2277
2278 return mask;
2279}
2280
2281void cpuset_init_current_mems_allowed(void)
2282{
2283 current->mems_allowed = NODE_MASK_ALL;
2284}
2285
909d75a3
PJ
2286/**
2287 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2288 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2289 *
2290 * Description: Returns the nodemask_t mems_allowed of the cpuset
2291 * attached to the specified @tsk. Guaranteed to return some non-empty
2292 * subset of node_online_map, even if this means going outside the
2293 * tasks cpuset.
2294 **/
2295
2296nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2297{
2298 nodemask_t mask;
2299
3d3f26a7 2300 mutex_lock(&callback_mutex);
909d75a3
PJ
2301 task_lock(tsk);
2302 guarantee_online_mems(tsk->cpuset, &mask);
2303 task_unlock(tsk);
3d3f26a7 2304 mutex_unlock(&callback_mutex);
909d75a3
PJ
2305
2306 return mask;
2307}
2308
d9fd8a6d
RD
2309/**
2310 * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
2311 * @zl: the zonelist to be checked
2312 *
1da177e4
LT
2313 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
2314 */
2315int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
2316{
2317 int i;
2318
2319 for (i = 0; zl->zones[i]; i++) {
89fa3024 2320 int nid = zone_to_nid(zl->zones[i]);
1da177e4
LT
2321
2322 if (node_isset(nid, current->mems_allowed))
2323 return 1;
2324 }
2325 return 0;
2326}
2327
9bf2229f
PJ
2328/*
2329 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
3d3f26a7 2330 * ancestor to the specified cpuset. Call holding callback_mutex.
9bf2229f
PJ
2331 * If no ancestor is mem_exclusive (an unusual configuration), then
2332 * returns the root cpuset.
2333 */
2334static const struct cpuset *nearest_exclusive_ancestor(const struct cpuset *cs)
2335{
2336 while (!is_mem_exclusive(cs) && cs->parent)
2337 cs = cs->parent;
2338 return cs;
2339}
2340
d9fd8a6d 2341/**
02a0e53d 2342 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
9bf2229f 2343 * @z: is this zone on an allowed node?
02a0e53d 2344 * @gfp_mask: memory allocation flags
d9fd8a6d 2345 *
02a0e53d
PJ
2346 * If we're in interrupt, yes, we can always allocate. If
2347 * __GFP_THISNODE is set, yes, we can always allocate. If zone
9bf2229f
PJ
2348 * z's node is in our tasks mems_allowed, yes. If it's not a
2349 * __GFP_HARDWALL request and this zone's nodes is in the nearest
2350 * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
c596d9f3
DR
2351 * If the task has been OOM killed and has access to memory reserves
2352 * as specified by the TIF_MEMDIE flag, yes.
9bf2229f
PJ
2353 * Otherwise, no.
2354 *
02a0e53d
PJ
2355 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
2356 * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
2357 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
2358 * from an enclosing cpuset.
2359 *
2360 * cpuset_zone_allowed_hardwall() only handles the simpler case of
2361 * hardwall cpusets, and never sleeps.
2362 *
2363 * The __GFP_THISNODE placement logic is really handled elsewhere,
2364 * by forcibly using a zonelist starting at a specified node, and by
2365 * (in get_page_from_freelist()) refusing to consider the zones for
2366 * any node on the zonelist except the first. By the time any such
2367 * calls get to this routine, we should just shut up and say 'yes'.
2368 *
9bf2229f 2369 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2370 * and do not allow allocations outside the current tasks cpuset
2371 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2372 * GFP_KERNEL allocations are not so marked, so can escape to the
02a0e53d 2373 * nearest enclosing mem_exclusive ancestor cpuset.
9bf2229f 2374 *
02a0e53d
PJ
2375 * Scanning up parent cpusets requires callback_mutex. The
2376 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2377 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2378 * current tasks mems_allowed came up empty on the first pass over
2379 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2380 * cpuset are short of memory, might require taking the callback_mutex
2381 * mutex.
9bf2229f 2382 *
36be57ff 2383 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2384 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2385 * so no allocation on a node outside the cpuset is allowed (unless
2386 * in interrupt, of course).
36be57ff
PJ
2387 *
2388 * The second pass through get_page_from_freelist() doesn't even call
2389 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2390 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2391 * in alloc_flags. That logic and the checks below have the combined
2392 * affect that:
9bf2229f
PJ
2393 * in_interrupt - any node ok (current task context irrelevant)
2394 * GFP_ATOMIC - any node ok
c596d9f3 2395 * TIF_MEMDIE - any node ok
9bf2229f
PJ
2396 * GFP_KERNEL - any node in enclosing mem_exclusive cpuset ok
2397 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2398 *
2399 * Rule:
02a0e53d 2400 * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2401 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2402 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2403 */
9bf2229f 2404
02a0e53d 2405int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
1da177e4 2406{
9bf2229f
PJ
2407 int node; /* node that zone z is on */
2408 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2409 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2410
9b819d20 2411 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2412 return 1;
89fa3024 2413 node = zone_to_nid(z);
92d1dbd2 2414 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2415 if (node_isset(node, current->mems_allowed))
2416 return 1;
c596d9f3
DR
2417 /*
2418 * Allow tasks that have access to memory reserves because they have
2419 * been OOM killed to get memory anywhere.
2420 */
2421 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2422 return 1;
9bf2229f
PJ
2423 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2424 return 0;
2425
5563e770
BP
2426 if (current->flags & PF_EXITING) /* Let dying task have memory */
2427 return 1;
2428
9bf2229f 2429 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2430 mutex_lock(&callback_mutex);
053199ed 2431
053199ed
PJ
2432 task_lock(current);
2433 cs = nearest_exclusive_ancestor(current->cpuset);
2434 task_unlock(current);
2435
9bf2229f 2436 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2437 mutex_unlock(&callback_mutex);
9bf2229f 2438 return allowed;
1da177e4
LT
2439}
2440
02a0e53d
PJ
2441/*
2442 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
2443 * @z: is this zone on an allowed node?
2444 * @gfp_mask: memory allocation flags
2445 *
2446 * If we're in interrupt, yes, we can always allocate.
2447 * If __GFP_THISNODE is set, yes, we can always allocate. If zone
c596d9f3
DR
2448 * z's node is in our tasks mems_allowed, yes. If the task has been
2449 * OOM killed and has access to memory reserves as specified by the
2450 * TIF_MEMDIE flag, yes. Otherwise, no.
02a0e53d
PJ
2451 *
2452 * The __GFP_THISNODE placement logic is really handled elsewhere,
2453 * by forcibly using a zonelist starting at a specified node, and by
2454 * (in get_page_from_freelist()) refusing to consider the zones for
2455 * any node on the zonelist except the first. By the time any such
2456 * calls get to this routine, we should just shut up and say 'yes'.
2457 *
2458 * Unlike the cpuset_zone_allowed_softwall() variant, above,
2459 * this variant requires that the zone be in the current tasks
2460 * mems_allowed or that we're in interrupt. It does not scan up the
2461 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2462 * It never sleeps.
2463 */
2464
2465int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
2466{
2467 int node; /* node that zone z is on */
2468
2469 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2470 return 1;
2471 node = zone_to_nid(z);
2472 if (node_isset(node, current->mems_allowed))
2473 return 1;
c596d9f3
DR
2474 /*
2475 * Allow tasks that have access to memory reserves because they have
2476 * been OOM killed to get memory anywhere.
2477 */
2478 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2479 return 1;
02a0e53d
PJ
2480 return 0;
2481}
2482
505970b9
PJ
2483/**
2484 * cpuset_lock - lock out any changes to cpuset structures
2485 *
3d3f26a7 2486 * The out of memory (oom) code needs to mutex_lock cpusets
505970b9 2487 * from being changed while it scans the tasklist looking for a
3d3f26a7 2488 * task in an overlapping cpuset. Expose callback_mutex via this
505970b9
PJ
2489 * cpuset_lock() routine, so the oom code can lock it, before
2490 * locking the task list. The tasklist_lock is a spinlock, so
3d3f26a7 2491 * must be taken inside callback_mutex.
505970b9
PJ
2492 */
2493
2494void cpuset_lock(void)
2495{
3d3f26a7 2496 mutex_lock(&callback_mutex);
505970b9
PJ
2497}
2498
2499/**
2500 * cpuset_unlock - release lock on cpuset changes
2501 *
2502 * Undo the lock taken in a previous cpuset_lock() call.
2503 */
2504
2505void cpuset_unlock(void)
2506{
3d3f26a7 2507 mutex_unlock(&callback_mutex);
505970b9
PJ
2508}
2509
825a46af
PJ
2510/**
2511 * cpuset_mem_spread_node() - On which node to begin search for a page
2512 *
2513 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2514 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2515 * and if the memory allocation used cpuset_mem_spread_node()
2516 * to determine on which node to start looking, as it will for
2517 * certain page cache or slab cache pages such as used for file
2518 * system buffers and inode caches, then instead of starting on the
2519 * local node to look for a free page, rather spread the starting
2520 * node around the tasks mems_allowed nodes.
2521 *
2522 * We don't have to worry about the returned node being offline
2523 * because "it can't happen", and even if it did, it would be ok.
2524 *
2525 * The routines calling guarantee_online_mems() are careful to
2526 * only set nodes in task->mems_allowed that are online. So it
2527 * should not be possible for the following code to return an
2528 * offline node. But if it did, that would be ok, as this routine
2529 * is not returning the node where the allocation must be, only
2530 * the node where the search should start. The zonelist passed to
2531 * __alloc_pages() will include all nodes. If the slab allocator
2532 * is passed an offline node, it will fall back to the local node.
2533 * See kmem_cache_alloc_node().
2534 */
2535
2536int cpuset_mem_spread_node(void)
2537{
2538 int node;
2539
2540 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2541 if (node == MAX_NUMNODES)
2542 node = first_node(current->mems_allowed);
2543 current->cpuset_mem_spread_rotor = node;
2544 return node;
2545}
2546EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2547
ef08e3b4
PJ
2548/**
2549 * cpuset_excl_nodes_overlap - Do we overlap @p's mem_exclusive ancestors?
2550 * @p: pointer to task_struct of some other task.
2551 *
2552 * Description: Return true if the nearest mem_exclusive ancestor
2553 * cpusets of tasks @p and current overlap. Used by oom killer to
2554 * determine if task @p's memory usage might impact the memory
2555 * available to the current task.
2556 *
3d3f26a7 2557 * Call while holding callback_mutex.
ef08e3b4
PJ
2558 **/
2559
2560int cpuset_excl_nodes_overlap(const struct task_struct *p)
2561{
2562 const struct cpuset *cs1, *cs2; /* my and p's cpuset ancestors */
0d673a5a 2563 int overlap = 1; /* do cpusets overlap? */
ef08e3b4 2564
053199ed
PJ
2565 task_lock(current);
2566 if (current->flags & PF_EXITING) {
2567 task_unlock(current);
2568 goto done;
2569 }
2570 cs1 = nearest_exclusive_ancestor(current->cpuset);
2571 task_unlock(current);
2572
2573 task_lock((struct task_struct *)p);
2574 if (p->flags & PF_EXITING) {
2575 task_unlock((struct task_struct *)p);
2576 goto done;
2577 }
2578 cs2 = nearest_exclusive_ancestor(p->cpuset);
2579 task_unlock((struct task_struct *)p);
2580
ef08e3b4
PJ
2581 overlap = nodes_intersects(cs1->mems_allowed, cs2->mems_allowed);
2582done:
ef08e3b4
PJ
2583 return overlap;
2584}
2585
3e0d98b9
PJ
2586/*
2587 * Collection of memory_pressure is suppressed unless
2588 * this flag is enabled by writing "1" to the special
2589 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2590 */
2591
c5b2aff8 2592int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2593
2594/**
2595 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2596 *
2597 * Keep a running average of the rate of synchronous (direct)
2598 * page reclaim efforts initiated by tasks in each cpuset.
2599 *
2600 * This represents the rate at which some task in the cpuset
2601 * ran low on memory on all nodes it was allowed to use, and
2602 * had to enter the kernels page reclaim code in an effort to
2603 * create more free memory by tossing clean pages or swapping
2604 * or writing dirty pages.
2605 *
2606 * Display to user space in the per-cpuset read-only file
2607 * "memory_pressure". Value displayed is an integer
2608 * representing the recent rate of entry into the synchronous
2609 * (direct) page reclaim by any task attached to the cpuset.
2610 **/
2611
2612void __cpuset_memory_pressure_bump(void)
2613{
2614 struct cpuset *cs;
2615
2616 task_lock(current);
2617 cs = current->cpuset;
2618 fmeter_markevent(&cs->fmeter);
2619 task_unlock(current);
2620}
2621
1da177e4
LT
2622/*
2623 * proc_cpuset_show()
2624 * - Print tasks cpuset path into seq_file.
2625 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2626 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2627 * doesn't really matter if tsk->cpuset changes after we read it,
3d3f26a7 2628 * and we take manage_mutex, keeping attach_task() from changing it
8488bc35
PJ
2629 * anyway. No need to check that tsk->cpuset != NULL, thanks to
2630 * the_top_cpuset_hack in cpuset_exit(), which sets an exiting tasks
2631 * cpuset to top_cpuset.
1da177e4 2632 */
1da177e4
LT
2633static int proc_cpuset_show(struct seq_file *m, void *v)
2634{
13b41b09 2635 struct pid *pid;
1da177e4
LT
2636 struct task_struct *tsk;
2637 char *buf;
99f89551 2638 int retval;
1da177e4 2639
99f89551 2640 retval = -ENOMEM;
1da177e4
LT
2641 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2642 if (!buf)
99f89551
EB
2643 goto out;
2644
2645 retval = -ESRCH;
13b41b09
EB
2646 pid = m->private;
2647 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2648 if (!tsk)
2649 goto out_free;
1da177e4 2650
99f89551 2651 retval = -EINVAL;
3d3f26a7 2652 mutex_lock(&manage_mutex);
99f89551 2653
8488bc35 2654 retval = cpuset_path(tsk->cpuset, buf, PAGE_SIZE);
1da177e4 2655 if (retval < 0)
99f89551 2656 goto out_unlock;
1da177e4
LT
2657 seq_puts(m, buf);
2658 seq_putc(m, '\n');
99f89551 2659out_unlock:
3d3f26a7 2660 mutex_unlock(&manage_mutex);
99f89551
EB
2661 put_task_struct(tsk);
2662out_free:
1da177e4 2663 kfree(buf);
99f89551 2664out:
1da177e4
LT
2665 return retval;
2666}
2667
2668static int cpuset_open(struct inode *inode, struct file *file)
2669{
13b41b09
EB
2670 struct pid *pid = PROC_I(inode)->pid;
2671 return single_open(file, proc_cpuset_show, pid);
1da177e4
LT
2672}
2673
9a32144e 2674const struct file_operations proc_cpuset_operations = {
1da177e4
LT
2675 .open = cpuset_open,
2676 .read = seq_read,
2677 .llseek = seq_lseek,
2678 .release = single_release,
2679};
2680
2681/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2682char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)
2683{
2684 buffer += sprintf(buffer, "Cpus_allowed:\t");
2685 buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed);
2686 buffer += sprintf(buffer, "\n");
2687 buffer += sprintf(buffer, "Mems_allowed:\t");
2688 buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed);
2689 buffer += sprintf(buffer, "\n");
2690 return buffer;
2691}