]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/auditsc.c
This patch add a generic cpu endian caps structure and externally available
[net-next-2.6.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
45#include <linux/init.h>
1da177e4 46#include <asm/types.h>
715b49ef 47#include <asm/atomic.h>
73241ccc
AG
48#include <linux/fs.h>
49#include <linux/namei.h>
1da177e4
LT
50#include <linux/mm.h>
51#include <linux/module.h>
01116105 52#include <linux/mount.h>
3ec3b2fb 53#include <linux/socket.h>
20ca73bc 54#include <linux/mqueue.h>
1da177e4
LT
55#include <linux/audit.h>
56#include <linux/personality.h>
57#include <linux/time.h>
5bb289b5 58#include <linux/netlink.h>
f5561964 59#include <linux/compiler.h>
1da177e4 60#include <asm/unistd.h>
8c8570fb 61#include <linux/security.h>
fe7752ba 62#include <linux/list.h>
a6c043a8 63#include <linux/tty.h>
473ae30b 64#include <linux/binfmts.h>
a1f8e7f7 65#include <linux/highmem.h>
f46038ff 66#include <linux/syscalls.h>
74c3cbe3 67#include <linux/inotify.h>
1da177e4 68
fe7752ba 69#include "audit.h"
1da177e4 70
1da177e4
LT
71/* AUDIT_NAMES is the number of slots we reserve in the audit_context
72 * for saving names from getname(). */
73#define AUDIT_NAMES 20
74
9c937dcc
AG
75/* Indicates that audit should log the full pathname. */
76#define AUDIT_NAME_FULL -1
77
de6bbd1d
EP
78/* no execve audit message should be longer than this (userspace limits) */
79#define MAX_EXECVE_AUDIT_LEN 7500
80
471a5c7c
AV
81/* number of audit rules */
82int audit_n_rules;
83
e54dc243
AG
84/* determines whether we collect data for signals sent */
85int audit_signals;
86
1da177e4
LT
87/* When fs/namei.c:getname() is called, we store the pointer in name and
88 * we don't let putname() free it (instead we free all of the saved
89 * pointers at syscall exit time).
90 *
91 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
92struct audit_names {
93 const char *name;
9c937dcc
AG
94 int name_len; /* number of name's characters to log */
95 unsigned name_put; /* call __putname() for this name */
1da177e4
LT
96 unsigned long ino;
97 dev_t dev;
98 umode_t mode;
99 uid_t uid;
100 gid_t gid;
101 dev_t rdev;
1b50eed9 102 u32 osid;
1da177e4
LT
103};
104
105struct audit_aux_data {
106 struct audit_aux_data *next;
107 int type;
108};
109
110#define AUDIT_AUX_IPCPERM 0
111
e54dc243
AG
112/* Number of target pids per aux struct. */
113#define AUDIT_AUX_PIDS 16
114
20ca73bc
GW
115struct audit_aux_data_mq_open {
116 struct audit_aux_data d;
117 int oflag;
118 mode_t mode;
119 struct mq_attr attr;
120};
121
122struct audit_aux_data_mq_sendrecv {
123 struct audit_aux_data d;
124 mqd_t mqdes;
125 size_t msg_len;
126 unsigned int msg_prio;
127 struct timespec abs_timeout;
128};
129
130struct audit_aux_data_mq_notify {
131 struct audit_aux_data d;
132 mqd_t mqdes;
133 struct sigevent notification;
134};
135
136struct audit_aux_data_mq_getsetattr {
137 struct audit_aux_data d;
138 mqd_t mqdes;
139 struct mq_attr mqstat;
140};
141
1da177e4
LT
142struct audit_aux_data_ipcctl {
143 struct audit_aux_data d;
144 struct ipc_perm p;
145 unsigned long qbytes;
146 uid_t uid;
147 gid_t gid;
148 mode_t mode;
9c7aa6aa 149 u32 osid;
1da177e4
LT
150};
151
473ae30b
AV
152struct audit_aux_data_execve {
153 struct audit_aux_data d;
154 int argc;
155 int envc;
bdf4c48a 156 struct mm_struct *mm;
473ae30b
AV
157};
158
3ec3b2fb
DW
159struct audit_aux_data_socketcall {
160 struct audit_aux_data d;
161 int nargs;
162 unsigned long args[0];
163};
164
165struct audit_aux_data_sockaddr {
166 struct audit_aux_data d;
167 int len;
168 char a[0];
169};
170
db349509
AV
171struct audit_aux_data_fd_pair {
172 struct audit_aux_data d;
173 int fd[2];
174};
175
e54dc243
AG
176struct audit_aux_data_pids {
177 struct audit_aux_data d;
178 pid_t target_pid[AUDIT_AUX_PIDS];
c2a7780e
EP
179 uid_t target_auid[AUDIT_AUX_PIDS];
180 uid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 181 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 182 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 183 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
184 int pid_count;
185};
186
74c3cbe3
AV
187struct audit_tree_refs {
188 struct audit_tree_refs *next;
189 struct audit_chunk *c[31];
190};
191
1da177e4
LT
192/* The per-task audit context. */
193struct audit_context {
d51374ad 194 int dummy; /* must be the first element */
1da177e4
LT
195 int in_syscall; /* 1 if task is in a syscall */
196 enum audit_state state;
197 unsigned int serial; /* serial number for record */
198 struct timespec ctime; /* time of syscall entry */
1da177e4
LT
199 int major; /* syscall number */
200 unsigned long argv[4]; /* syscall arguments */
201 int return_valid; /* return code is valid */
2fd6f58b 202 long return_code;/* syscall return code */
1da177e4
LT
203 int auditable; /* 1 if record should be written */
204 int name_count;
205 struct audit_names names[AUDIT_NAMES];
5adc8a6a 206 char * filterkey; /* key for rule that triggered record */
44707fdf 207 struct path pwd;
1da177e4
LT
208 struct audit_context *previous; /* For nested syscalls */
209 struct audit_aux_data *aux;
e54dc243 210 struct audit_aux_data *aux_pids;
1da177e4
LT
211
212 /* Save things to print about task_struct */
f46038ff 213 pid_t pid, ppid;
1da177e4
LT
214 uid_t uid, euid, suid, fsuid;
215 gid_t gid, egid, sgid, fsgid;
216 unsigned long personality;
2fd6f58b 217 int arch;
1da177e4 218
a5cb013d 219 pid_t target_pid;
c2a7780e
EP
220 uid_t target_auid;
221 uid_t target_uid;
4746ec5b 222 unsigned int target_sessionid;
a5cb013d 223 u32 target_sid;
c2a7780e 224 char target_comm[TASK_COMM_LEN];
a5cb013d 225
74c3cbe3
AV
226 struct audit_tree_refs *trees, *first_trees;
227 int tree_count;
228
1da177e4
LT
229#if AUDIT_DEBUG
230 int put_count;
231 int ino_count;
232#endif
233};
234
55669bfa
AV
235#define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
236static inline int open_arg(int flags, int mask)
237{
238 int n = ACC_MODE(flags);
239 if (flags & (O_TRUNC | O_CREAT))
240 n |= AUDIT_PERM_WRITE;
241 return n & mask;
242}
243
244static int audit_match_perm(struct audit_context *ctx, int mask)
245{
c4bacefb 246 unsigned n;
1a61c88d 247 if (unlikely(!ctx))
248 return 0;
c4bacefb 249 n = ctx->major;
dbda4c0b 250
55669bfa
AV
251 switch (audit_classify_syscall(ctx->arch, n)) {
252 case 0: /* native */
253 if ((mask & AUDIT_PERM_WRITE) &&
254 audit_match_class(AUDIT_CLASS_WRITE, n))
255 return 1;
256 if ((mask & AUDIT_PERM_READ) &&
257 audit_match_class(AUDIT_CLASS_READ, n))
258 return 1;
259 if ((mask & AUDIT_PERM_ATTR) &&
260 audit_match_class(AUDIT_CLASS_CHATTR, n))
261 return 1;
262 return 0;
263 case 1: /* 32bit on biarch */
264 if ((mask & AUDIT_PERM_WRITE) &&
265 audit_match_class(AUDIT_CLASS_WRITE_32, n))
266 return 1;
267 if ((mask & AUDIT_PERM_READ) &&
268 audit_match_class(AUDIT_CLASS_READ_32, n))
269 return 1;
270 if ((mask & AUDIT_PERM_ATTR) &&
271 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
272 return 1;
273 return 0;
274 case 2: /* open */
275 return mask & ACC_MODE(ctx->argv[1]);
276 case 3: /* openat */
277 return mask & ACC_MODE(ctx->argv[2]);
278 case 4: /* socketcall */
279 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
280 case 5: /* execve */
281 return mask & AUDIT_PERM_EXEC;
282 default:
283 return 0;
284 }
285}
286
8b67dca9
AV
287static int audit_match_filetype(struct audit_context *ctx, int which)
288{
289 unsigned index = which & ~S_IFMT;
290 mode_t mode = which & S_IFMT;
1a61c88d 291
292 if (unlikely(!ctx))
293 return 0;
294
8b67dca9
AV
295 if (index >= ctx->name_count)
296 return 0;
297 if (ctx->names[index].ino == -1)
298 return 0;
299 if ((ctx->names[index].mode ^ mode) & S_IFMT)
300 return 0;
301 return 1;
302}
303
74c3cbe3
AV
304/*
305 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
306 * ->first_trees points to its beginning, ->trees - to the current end of data.
307 * ->tree_count is the number of free entries in array pointed to by ->trees.
308 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
309 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
310 * it's going to remain 1-element for almost any setup) until we free context itself.
311 * References in it _are_ dropped - at the same time we free/drop aux stuff.
312 */
313
314#ifdef CONFIG_AUDIT_TREE
315static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
316{
317 struct audit_tree_refs *p = ctx->trees;
318 int left = ctx->tree_count;
319 if (likely(left)) {
320 p->c[--left] = chunk;
321 ctx->tree_count = left;
322 return 1;
323 }
324 if (!p)
325 return 0;
326 p = p->next;
327 if (p) {
328 p->c[30] = chunk;
329 ctx->trees = p;
330 ctx->tree_count = 30;
331 return 1;
332 }
333 return 0;
334}
335
336static int grow_tree_refs(struct audit_context *ctx)
337{
338 struct audit_tree_refs *p = ctx->trees;
339 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
340 if (!ctx->trees) {
341 ctx->trees = p;
342 return 0;
343 }
344 if (p)
345 p->next = ctx->trees;
346 else
347 ctx->first_trees = ctx->trees;
348 ctx->tree_count = 31;
349 return 1;
350}
351#endif
352
353static void unroll_tree_refs(struct audit_context *ctx,
354 struct audit_tree_refs *p, int count)
355{
356#ifdef CONFIG_AUDIT_TREE
357 struct audit_tree_refs *q;
358 int n;
359 if (!p) {
360 /* we started with empty chain */
361 p = ctx->first_trees;
362 count = 31;
363 /* if the very first allocation has failed, nothing to do */
364 if (!p)
365 return;
366 }
367 n = count;
368 for (q = p; q != ctx->trees; q = q->next, n = 31) {
369 while (n--) {
370 audit_put_chunk(q->c[n]);
371 q->c[n] = NULL;
372 }
373 }
374 while (n-- > ctx->tree_count) {
375 audit_put_chunk(q->c[n]);
376 q->c[n] = NULL;
377 }
378 ctx->trees = p;
379 ctx->tree_count = count;
380#endif
381}
382
383static void free_tree_refs(struct audit_context *ctx)
384{
385 struct audit_tree_refs *p, *q;
386 for (p = ctx->first_trees; p; p = q) {
387 q = p->next;
388 kfree(p);
389 }
390}
391
392static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
393{
394#ifdef CONFIG_AUDIT_TREE
395 struct audit_tree_refs *p;
396 int n;
397 if (!tree)
398 return 0;
399 /* full ones */
400 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
401 for (n = 0; n < 31; n++)
402 if (audit_tree_match(p->c[n], tree))
403 return 1;
404 }
405 /* partial */
406 if (p) {
407 for (n = ctx->tree_count; n < 31; n++)
408 if (audit_tree_match(p->c[n], tree))
409 return 1;
410 }
411#endif
412 return 0;
413}
414
f368c07d 415/* Determine if any context name data matches a rule's watch data */
1da177e4
LT
416/* Compare a task_struct with an audit_rule. Return 1 on match, 0
417 * otherwise. */
418static int audit_filter_rules(struct task_struct *tsk,
93315ed6 419 struct audit_krule *rule,
1da177e4 420 struct audit_context *ctx,
f368c07d 421 struct audit_names *name,
1da177e4
LT
422 enum audit_state *state)
423{
2ad312d2 424 int i, j, need_sid = 1;
3dc7e315
DG
425 u32 sid;
426
1da177e4 427 for (i = 0; i < rule->field_count; i++) {
93315ed6 428 struct audit_field *f = &rule->fields[i];
1da177e4
LT
429 int result = 0;
430
93315ed6 431 switch (f->type) {
1da177e4 432 case AUDIT_PID:
93315ed6 433 result = audit_comparator(tsk->pid, f->op, f->val);
1da177e4 434 break;
3c66251e 435 case AUDIT_PPID:
419c58f1
AV
436 if (ctx) {
437 if (!ctx->ppid)
438 ctx->ppid = sys_getppid();
3c66251e 439 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 440 }
3c66251e 441 break;
1da177e4 442 case AUDIT_UID:
93315ed6 443 result = audit_comparator(tsk->uid, f->op, f->val);
1da177e4
LT
444 break;
445 case AUDIT_EUID:
93315ed6 446 result = audit_comparator(tsk->euid, f->op, f->val);
1da177e4
LT
447 break;
448 case AUDIT_SUID:
93315ed6 449 result = audit_comparator(tsk->suid, f->op, f->val);
1da177e4
LT
450 break;
451 case AUDIT_FSUID:
93315ed6 452 result = audit_comparator(tsk->fsuid, f->op, f->val);
1da177e4
LT
453 break;
454 case AUDIT_GID:
93315ed6 455 result = audit_comparator(tsk->gid, f->op, f->val);
1da177e4
LT
456 break;
457 case AUDIT_EGID:
93315ed6 458 result = audit_comparator(tsk->egid, f->op, f->val);
1da177e4
LT
459 break;
460 case AUDIT_SGID:
93315ed6 461 result = audit_comparator(tsk->sgid, f->op, f->val);
1da177e4
LT
462 break;
463 case AUDIT_FSGID:
93315ed6 464 result = audit_comparator(tsk->fsgid, f->op, f->val);
1da177e4
LT
465 break;
466 case AUDIT_PERS:
93315ed6 467 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 468 break;
2fd6f58b 469 case AUDIT_ARCH:
9f8dbe9c 470 if (ctx)
93315ed6 471 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 472 break;
1da177e4
LT
473
474 case AUDIT_EXIT:
475 if (ctx && ctx->return_valid)
93315ed6 476 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
477 break;
478 case AUDIT_SUCCESS:
b01f2cc1 479 if (ctx && ctx->return_valid) {
93315ed6
AG
480 if (f->val)
481 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 482 else
93315ed6 483 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 484 }
1da177e4
LT
485 break;
486 case AUDIT_DEVMAJOR:
f368c07d
AG
487 if (name)
488 result = audit_comparator(MAJOR(name->dev),
489 f->op, f->val);
490 else if (ctx) {
1da177e4 491 for (j = 0; j < ctx->name_count; j++) {
93315ed6 492 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
1da177e4
LT
493 ++result;
494 break;
495 }
496 }
497 }
498 break;
499 case AUDIT_DEVMINOR:
f368c07d
AG
500 if (name)
501 result = audit_comparator(MINOR(name->dev),
502 f->op, f->val);
503 else if (ctx) {
1da177e4 504 for (j = 0; j < ctx->name_count; j++) {
93315ed6 505 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
1da177e4
LT
506 ++result;
507 break;
508 }
509 }
510 }
511 break;
512 case AUDIT_INODE:
f368c07d 513 if (name)
9c937dcc 514 result = (name->ino == f->val);
f368c07d 515 else if (ctx) {
1da177e4 516 for (j = 0; j < ctx->name_count; j++) {
9c937dcc 517 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
1da177e4
LT
518 ++result;
519 break;
520 }
521 }
522 }
523 break;
f368c07d
AG
524 case AUDIT_WATCH:
525 if (name && rule->watch->ino != (unsigned long)-1)
526 result = (name->dev == rule->watch->dev &&
9c937dcc 527 name->ino == rule->watch->ino);
f368c07d 528 break;
74c3cbe3
AV
529 case AUDIT_DIR:
530 if (ctx)
531 result = match_tree_refs(ctx, rule->tree);
532 break;
1da177e4
LT
533 case AUDIT_LOGINUID:
534 result = 0;
535 if (ctx)
bfef93a5 536 result = audit_comparator(tsk->loginuid, f->op, f->val);
1da177e4 537 break;
3a6b9f85
DG
538 case AUDIT_SUBJ_USER:
539 case AUDIT_SUBJ_ROLE:
540 case AUDIT_SUBJ_TYPE:
541 case AUDIT_SUBJ_SEN:
542 case AUDIT_SUBJ_CLR:
3dc7e315
DG
543 /* NOTE: this may return negative values indicating
544 a temporary error. We simply treat this as a
545 match for now to avoid losing information that
546 may be wanted. An error message will also be
547 logged upon error */
04305e4a 548 if (f->lsm_rule) {
2ad312d2 549 if (need_sid) {
2a862b32 550 security_task_getsecid(tsk, &sid);
2ad312d2
SG
551 need_sid = 0;
552 }
d7a96f3a 553 result = security_audit_rule_match(sid, f->type,
3dc7e315 554 f->op,
04305e4a 555 f->lsm_rule,
3dc7e315 556 ctx);
2ad312d2 557 }
3dc7e315 558 break;
6e5a2d1d
DG
559 case AUDIT_OBJ_USER:
560 case AUDIT_OBJ_ROLE:
561 case AUDIT_OBJ_TYPE:
562 case AUDIT_OBJ_LEV_LOW:
563 case AUDIT_OBJ_LEV_HIGH:
564 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
565 also applies here */
04305e4a 566 if (f->lsm_rule) {
6e5a2d1d
DG
567 /* Find files that match */
568 if (name) {
d7a96f3a 569 result = security_audit_rule_match(
6e5a2d1d 570 name->osid, f->type, f->op,
04305e4a 571 f->lsm_rule, ctx);
6e5a2d1d
DG
572 } else if (ctx) {
573 for (j = 0; j < ctx->name_count; j++) {
d7a96f3a 574 if (security_audit_rule_match(
6e5a2d1d
DG
575 ctx->names[j].osid,
576 f->type, f->op,
04305e4a 577 f->lsm_rule, ctx)) {
6e5a2d1d
DG
578 ++result;
579 break;
580 }
581 }
582 }
583 /* Find ipc objects that match */
584 if (ctx) {
585 struct audit_aux_data *aux;
586 for (aux = ctx->aux; aux;
587 aux = aux->next) {
588 if (aux->type == AUDIT_IPC) {
589 struct audit_aux_data_ipcctl *axi = (void *)aux;
04305e4a 590 if (security_audit_rule_match(axi->osid, f->type, f->op, f->lsm_rule, ctx)) {
6e5a2d1d
DG
591 ++result;
592 break;
593 }
594 }
595 }
596 }
597 }
598 break;
1da177e4
LT
599 case AUDIT_ARG0:
600 case AUDIT_ARG1:
601 case AUDIT_ARG2:
602 case AUDIT_ARG3:
603 if (ctx)
93315ed6 604 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 605 break;
5adc8a6a
AG
606 case AUDIT_FILTERKEY:
607 /* ignore this field for filtering */
608 result = 1;
609 break;
55669bfa
AV
610 case AUDIT_PERM:
611 result = audit_match_perm(ctx, f->val);
612 break;
8b67dca9
AV
613 case AUDIT_FILETYPE:
614 result = audit_match_filetype(ctx, f->val);
615 break;
1da177e4
LT
616 }
617
1da177e4
LT
618 if (!result)
619 return 0;
620 }
980dfb0d 621 if (rule->filterkey && ctx)
5adc8a6a 622 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
1da177e4
LT
623 switch (rule->action) {
624 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
625 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
626 }
627 return 1;
628}
629
630/* At process creation time, we can determine if system-call auditing is
631 * completely disabled for this task. Since we only have the task
632 * structure at this point, we can only check uid and gid.
633 */
634static enum audit_state audit_filter_task(struct task_struct *tsk)
635{
636 struct audit_entry *e;
637 enum audit_state state;
638
639 rcu_read_lock();
0f45aa18 640 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f368c07d 641 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
1da177e4
LT
642 rcu_read_unlock();
643 return state;
644 }
645 }
646 rcu_read_unlock();
647 return AUDIT_BUILD_CONTEXT;
648}
649
650/* At syscall entry and exit time, this filter is called if the
651 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 652 * also not high enough that we already know we have to write an audit
b0dd25a8 653 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
654 */
655static enum audit_state audit_filter_syscall(struct task_struct *tsk,
656 struct audit_context *ctx,
657 struct list_head *list)
658{
659 struct audit_entry *e;
c3896495 660 enum audit_state state;
1da177e4 661
351bb722 662 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
663 return AUDIT_DISABLED;
664
1da177e4 665 rcu_read_lock();
c3896495 666 if (!list_empty(list)) {
b63862f4
DK
667 int word = AUDIT_WORD(ctx->major);
668 int bit = AUDIT_BIT(ctx->major);
669
670 list_for_each_entry_rcu(e, list, list) {
f368c07d
AG
671 if ((e->rule.mask[word] & bit) == bit &&
672 audit_filter_rules(tsk, &e->rule, ctx, NULL,
673 &state)) {
674 rcu_read_unlock();
675 return state;
676 }
677 }
678 }
679 rcu_read_unlock();
680 return AUDIT_BUILD_CONTEXT;
681}
682
683/* At syscall exit time, this filter is called if any audit_names[] have been
684 * collected during syscall processing. We only check rules in sublists at hash
685 * buckets applicable to the inode numbers in audit_names[].
686 * Regarding audit_state, same rules apply as for audit_filter_syscall().
687 */
688enum audit_state audit_filter_inodes(struct task_struct *tsk,
689 struct audit_context *ctx)
690{
691 int i;
692 struct audit_entry *e;
693 enum audit_state state;
694
695 if (audit_pid && tsk->tgid == audit_pid)
696 return AUDIT_DISABLED;
697
698 rcu_read_lock();
699 for (i = 0; i < ctx->name_count; i++) {
700 int word = AUDIT_WORD(ctx->major);
701 int bit = AUDIT_BIT(ctx->major);
702 struct audit_names *n = &ctx->names[i];
703 int h = audit_hash_ino((u32)n->ino);
704 struct list_head *list = &audit_inode_hash[h];
705
706 if (list_empty(list))
707 continue;
708
709 list_for_each_entry_rcu(e, list, list) {
710 if ((e->rule.mask[word] & bit) == bit &&
711 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
b63862f4
DK
712 rcu_read_unlock();
713 return state;
714 }
0f45aa18
DW
715 }
716 }
717 rcu_read_unlock();
1da177e4 718 return AUDIT_BUILD_CONTEXT;
0f45aa18
DW
719}
720
f368c07d
AG
721void audit_set_auditable(struct audit_context *ctx)
722{
723 ctx->auditable = 1;
724}
725
1da177e4
LT
726static inline struct audit_context *audit_get_context(struct task_struct *tsk,
727 int return_valid,
728 int return_code)
729{
730 struct audit_context *context = tsk->audit_context;
731
732 if (likely(!context))
733 return NULL;
734 context->return_valid = return_valid;
f701b75e
EP
735
736 /*
737 * we need to fix up the return code in the audit logs if the actual
738 * return codes are later going to be fixed up by the arch specific
739 * signal handlers
740 *
741 * This is actually a test for:
742 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
743 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
744 *
745 * but is faster than a bunch of ||
746 */
747 if (unlikely(return_code <= -ERESTARTSYS) &&
748 (return_code >= -ERESTART_RESTARTBLOCK) &&
749 (return_code != -ENOIOCTLCMD))
750 context->return_code = -EINTR;
751 else
752 context->return_code = return_code;
1da177e4 753
d51374ad 754 if (context->in_syscall && !context->dummy && !context->auditable) {
1da177e4 755 enum audit_state state;
f368c07d 756
0f45aa18 757 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
f368c07d
AG
758 if (state == AUDIT_RECORD_CONTEXT) {
759 context->auditable = 1;
760 goto get_context;
761 }
762
763 state = audit_filter_inodes(tsk, context);
1da177e4
LT
764 if (state == AUDIT_RECORD_CONTEXT)
765 context->auditable = 1;
f368c07d 766
1da177e4
LT
767 }
768
f368c07d 769get_context:
3f2792ff 770
1da177e4
LT
771 tsk->audit_context = NULL;
772 return context;
773}
774
775static inline void audit_free_names(struct audit_context *context)
776{
777 int i;
778
779#if AUDIT_DEBUG == 2
780 if (context->auditable
781 ||context->put_count + context->ino_count != context->name_count) {
73241ccc 782 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1da177e4
LT
783 " name_count=%d put_count=%d"
784 " ino_count=%d [NOT freeing]\n",
73241ccc 785 __FILE__, __LINE__,
1da177e4
LT
786 context->serial, context->major, context->in_syscall,
787 context->name_count, context->put_count,
788 context->ino_count);
8c8570fb 789 for (i = 0; i < context->name_count; i++) {
1da177e4
LT
790 printk(KERN_ERR "names[%d] = %p = %s\n", i,
791 context->names[i].name,
73241ccc 792 context->names[i].name ?: "(null)");
8c8570fb 793 }
1da177e4
LT
794 dump_stack();
795 return;
796 }
797#endif
798#if AUDIT_DEBUG
799 context->put_count = 0;
800 context->ino_count = 0;
801#endif
802
8c8570fb 803 for (i = 0; i < context->name_count; i++) {
9c937dcc 804 if (context->names[i].name && context->names[i].name_put)
1da177e4 805 __putname(context->names[i].name);
8c8570fb 806 }
1da177e4 807 context->name_count = 0;
44707fdf
JB
808 path_put(&context->pwd);
809 context->pwd.dentry = NULL;
810 context->pwd.mnt = NULL;
1da177e4
LT
811}
812
813static inline void audit_free_aux(struct audit_context *context)
814{
815 struct audit_aux_data *aux;
816
817 while ((aux = context->aux)) {
818 context->aux = aux->next;
819 kfree(aux);
820 }
e54dc243
AG
821 while ((aux = context->aux_pids)) {
822 context->aux_pids = aux->next;
823 kfree(aux);
824 }
1da177e4
LT
825}
826
827static inline void audit_zero_context(struct audit_context *context,
828 enum audit_state state)
829{
1da177e4
LT
830 memset(context, 0, sizeof(*context));
831 context->state = state;
1da177e4
LT
832}
833
834static inline struct audit_context *audit_alloc_context(enum audit_state state)
835{
836 struct audit_context *context;
837
838 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
839 return NULL;
840 audit_zero_context(context, state);
841 return context;
842}
843
b0dd25a8
RD
844/**
845 * audit_alloc - allocate an audit context block for a task
846 * @tsk: task
847 *
848 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
849 * if necessary. Doing so turns on system call auditing for the
850 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
851 * needed.
852 */
1da177e4
LT
853int audit_alloc(struct task_struct *tsk)
854{
855 struct audit_context *context;
856 enum audit_state state;
857
b593d384 858 if (likely(!audit_ever_enabled))
1da177e4
LT
859 return 0; /* Return if not auditing. */
860
861 state = audit_filter_task(tsk);
862 if (likely(state == AUDIT_DISABLED))
863 return 0;
864
865 if (!(context = audit_alloc_context(state))) {
866 audit_log_lost("out of memory in audit_alloc");
867 return -ENOMEM;
868 }
869
1da177e4
LT
870 tsk->audit_context = context;
871 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
872 return 0;
873}
874
875static inline void audit_free_context(struct audit_context *context)
876{
877 struct audit_context *previous;
878 int count = 0;
879
880 do {
881 previous = context->previous;
882 if (previous || (count && count < 10)) {
883 ++count;
884 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
885 " freeing multiple contexts (%d)\n",
886 context->serial, context->major,
887 context->name_count, count);
888 }
889 audit_free_names(context);
74c3cbe3
AV
890 unroll_tree_refs(context, NULL, 0);
891 free_tree_refs(context);
1da177e4 892 audit_free_aux(context);
5adc8a6a 893 kfree(context->filterkey);
1da177e4
LT
894 kfree(context);
895 context = previous;
896 } while (context);
897 if (count >= 10)
898 printk(KERN_ERR "audit: freed %d contexts\n", count);
899}
900
161a09e7 901void audit_log_task_context(struct audit_buffer *ab)
8c8570fb
DK
902{
903 char *ctx = NULL;
c4823bce
AV
904 unsigned len;
905 int error;
906 u32 sid;
907
2a862b32 908 security_task_getsecid(current, &sid);
c4823bce
AV
909 if (!sid)
910 return;
8c8570fb 911
2a862b32 912 error = security_secid_to_secctx(sid, &ctx, &len);
c4823bce
AV
913 if (error) {
914 if (error != -EINVAL)
8c8570fb
DK
915 goto error_path;
916 return;
917 }
918
8c8570fb 919 audit_log_format(ab, " subj=%s", ctx);
2a862b32 920 security_release_secctx(ctx, len);
7306a0b9 921 return;
8c8570fb
DK
922
923error_path:
7306a0b9 924 audit_panic("error in audit_log_task_context");
8c8570fb
DK
925 return;
926}
927
161a09e7
JL
928EXPORT_SYMBOL(audit_log_task_context);
929
e495149b 930static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
219f0817 931{
45d9bb0e
AV
932 char name[sizeof(tsk->comm)];
933 struct mm_struct *mm = tsk->mm;
219f0817
SS
934 struct vm_area_struct *vma;
935
e495149b
AV
936 /* tsk == current */
937
45d9bb0e 938 get_task_comm(name, tsk);
99e45eea
DW
939 audit_log_format(ab, " comm=");
940 audit_log_untrustedstring(ab, name);
219f0817 941
e495149b
AV
942 if (mm) {
943 down_read(&mm->mmap_sem);
944 vma = mm->mmap;
945 while (vma) {
946 if ((vma->vm_flags & VM_EXECUTABLE) &&
947 vma->vm_file) {
948 audit_log_d_path(ab, "exe=",
44707fdf 949 &vma->vm_file->f_path);
e495149b
AV
950 break;
951 }
952 vma = vma->vm_next;
219f0817 953 }
e495149b 954 up_read(&mm->mmap_sem);
219f0817 955 }
e495149b 956 audit_log_task_context(ab);
219f0817
SS
957}
958
e54dc243 959static int audit_log_pid_context(struct audit_context *context, pid_t pid,
4746ec5b
EP
960 uid_t auid, uid_t uid, unsigned int sessionid,
961 u32 sid, char *comm)
e54dc243
AG
962{
963 struct audit_buffer *ab;
2a862b32 964 char *ctx = NULL;
e54dc243
AG
965 u32 len;
966 int rc = 0;
967
968 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
969 if (!ab)
6246ccab 970 return rc;
e54dc243 971
4746ec5b
EP
972 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
973 uid, sessionid);
2a862b32 974 if (security_secid_to_secctx(sid, &ctx, &len)) {
c2a7780e 975 audit_log_format(ab, " obj=(none)");
e54dc243 976 rc = 1;
2a862b32
AD
977 } else {
978 audit_log_format(ab, " obj=%s", ctx);
979 security_release_secctx(ctx, len);
980 }
c2a7780e
EP
981 audit_log_format(ab, " ocomm=");
982 audit_log_untrustedstring(ab, comm);
e54dc243 983 audit_log_end(ab);
e54dc243
AG
984
985 return rc;
986}
987
de6bbd1d
EP
988/*
989 * to_send and len_sent accounting are very loose estimates. We aren't
990 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
991 * within about 500 bytes (next page boundry)
992 *
993 * why snprintf? an int is up to 12 digits long. if we just assumed when
994 * logging that a[%d]= was going to be 16 characters long we would be wasting
995 * space in every audit message. In one 7500 byte message we can log up to
996 * about 1000 min size arguments. That comes down to about 50% waste of space
997 * if we didn't do the snprintf to find out how long arg_num_len was.
998 */
999static int audit_log_single_execve_arg(struct audit_context *context,
1000 struct audit_buffer **ab,
1001 int arg_num,
1002 size_t *len_sent,
1003 const char __user *p,
1004 char *buf)
bdf4c48a 1005{
de6bbd1d
EP
1006 char arg_num_len_buf[12];
1007 const char __user *tmp_p = p;
1008 /* how many digits are in arg_num? 3 is the length of a=\n */
1009 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3;
1010 size_t len, len_left, to_send;
1011 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1012 unsigned int i, has_cntl = 0, too_long = 0;
1013 int ret;
1014
1015 /* strnlen_user includes the null we don't want to send */
1016 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
bdf4c48a 1017
de6bbd1d
EP
1018 /*
1019 * We just created this mm, if we can't find the strings
1020 * we just copied into it something is _very_ wrong. Similar
1021 * for strings that are too long, we should not have created
1022 * any.
1023 */
b0abcfc1 1024 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
de6bbd1d
EP
1025 WARN_ON(1);
1026 send_sig(SIGKILL, current, 0);
b0abcfc1 1027 return -1;
de6bbd1d 1028 }
040b3a2d 1029
de6bbd1d
EP
1030 /* walk the whole argument looking for non-ascii chars */
1031 do {
1032 if (len_left > MAX_EXECVE_AUDIT_LEN)
1033 to_send = MAX_EXECVE_AUDIT_LEN;
1034 else
1035 to_send = len_left;
1036 ret = copy_from_user(buf, tmp_p, to_send);
bdf4c48a 1037 /*
de6bbd1d
EP
1038 * There is no reason for this copy to be short. We just
1039 * copied them here, and the mm hasn't been exposed to user-
1040 * space yet.
bdf4c48a 1041 */
de6bbd1d 1042 if (ret) {
bdf4c48a
PZ
1043 WARN_ON(1);
1044 send_sig(SIGKILL, current, 0);
b0abcfc1 1045 return -1;
bdf4c48a 1046 }
de6bbd1d
EP
1047 buf[to_send] = '\0';
1048 has_cntl = audit_string_contains_control(buf, to_send);
1049 if (has_cntl) {
1050 /*
1051 * hex messages get logged as 2 bytes, so we can only
1052 * send half as much in each message
1053 */
1054 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
bdf4c48a
PZ
1055 break;
1056 }
de6bbd1d
EP
1057 len_left -= to_send;
1058 tmp_p += to_send;
1059 } while (len_left > 0);
1060
1061 len_left = len;
1062
1063 if (len > max_execve_audit_len)
1064 too_long = 1;
1065
1066 /* rewalk the argument actually logging the message */
1067 for (i = 0; len_left > 0; i++) {
1068 int room_left;
1069
1070 if (len_left > max_execve_audit_len)
1071 to_send = max_execve_audit_len;
1072 else
1073 to_send = len_left;
1074
1075 /* do we have space left to send this argument in this ab? */
1076 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1077 if (has_cntl)
1078 room_left -= (to_send * 2);
1079 else
1080 room_left -= to_send;
1081 if (room_left < 0) {
1082 *len_sent = 0;
1083 audit_log_end(*ab);
1084 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1085 if (!*ab)
1086 return 0;
1087 }
bdf4c48a 1088
bdf4c48a 1089 /*
de6bbd1d
EP
1090 * first record needs to say how long the original string was
1091 * so we can be sure nothing was lost.
1092 */
1093 if ((i == 0) && (too_long))
422b03cf 1094 audit_log_format(*ab, "a%d_len=%zu ", arg_num,
de6bbd1d
EP
1095 has_cntl ? 2*len : len);
1096
1097 /*
1098 * normally arguments are small enough to fit and we already
1099 * filled buf above when we checked for control characters
1100 * so don't bother with another copy_from_user
bdf4c48a 1101 */
de6bbd1d
EP
1102 if (len >= max_execve_audit_len)
1103 ret = copy_from_user(buf, p, to_send);
1104 else
1105 ret = 0;
040b3a2d 1106 if (ret) {
bdf4c48a
PZ
1107 WARN_ON(1);
1108 send_sig(SIGKILL, current, 0);
b0abcfc1 1109 return -1;
bdf4c48a 1110 }
de6bbd1d
EP
1111 buf[to_send] = '\0';
1112
1113 /* actually log it */
1114 audit_log_format(*ab, "a%d", arg_num);
1115 if (too_long)
1116 audit_log_format(*ab, "[%d]", i);
1117 audit_log_format(*ab, "=");
1118 if (has_cntl)
b556f8ad 1119 audit_log_n_hex(*ab, buf, to_send);
de6bbd1d
EP
1120 else
1121 audit_log_format(*ab, "\"%s\"", buf);
1122 audit_log_format(*ab, "\n");
1123
1124 p += to_send;
1125 len_left -= to_send;
1126 *len_sent += arg_num_len;
1127 if (has_cntl)
1128 *len_sent += to_send * 2;
1129 else
1130 *len_sent += to_send;
1131 }
1132 /* include the null we didn't log */
1133 return len + 1;
1134}
1135
1136static void audit_log_execve_info(struct audit_context *context,
1137 struct audit_buffer **ab,
1138 struct audit_aux_data_execve *axi)
1139{
1140 int i;
1141 size_t len, len_sent = 0;
1142 const char __user *p;
1143 char *buf;
bdf4c48a 1144
de6bbd1d
EP
1145 if (axi->mm != current->mm)
1146 return; /* execve failed, no additional info */
1147
1148 p = (const char __user *)axi->mm->arg_start;
bdf4c48a 1149
de6bbd1d
EP
1150 audit_log_format(*ab, "argc=%d ", axi->argc);
1151
1152 /*
1153 * we need some kernel buffer to hold the userspace args. Just
1154 * allocate one big one rather than allocating one of the right size
1155 * for every single argument inside audit_log_single_execve_arg()
1156 * should be <8k allocation so should be pretty safe.
1157 */
1158 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1159 if (!buf) {
1160 audit_panic("out of memory for argv string\n");
1161 return;
bdf4c48a 1162 }
de6bbd1d
EP
1163
1164 for (i = 0; i < axi->argc; i++) {
1165 len = audit_log_single_execve_arg(context, ab, i,
1166 &len_sent, p, buf);
1167 if (len <= 0)
1168 break;
1169 p += len;
1170 }
1171 kfree(buf);
bdf4c48a
PZ
1172}
1173
e495149b 1174static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1175{
9c7aa6aa 1176 int i, call_panic = 0;
1da177e4 1177 struct audit_buffer *ab;
7551ced3 1178 struct audit_aux_data *aux;
a6c043a8 1179 const char *tty;
1da177e4 1180
e495149b 1181 /* tsk == current */
3f2792ff 1182 context->pid = tsk->pid;
419c58f1
AV
1183 if (!context->ppid)
1184 context->ppid = sys_getppid();
3f2792ff
AV
1185 context->uid = tsk->uid;
1186 context->gid = tsk->gid;
1187 context->euid = tsk->euid;
1188 context->suid = tsk->suid;
1189 context->fsuid = tsk->fsuid;
1190 context->egid = tsk->egid;
1191 context->sgid = tsk->sgid;
1192 context->fsgid = tsk->fsgid;
1193 context->personality = tsk->personality;
e495149b
AV
1194
1195 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1196 if (!ab)
1197 return; /* audit_panic has been called */
bccf6ae0
DW
1198 audit_log_format(ab, "arch=%x syscall=%d",
1199 context->arch, context->major);
1da177e4
LT
1200 if (context->personality != PER_LINUX)
1201 audit_log_format(ab, " per=%lx", context->personality);
1202 if (context->return_valid)
9f8dbe9c 1203 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b
DW
1204 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1205 context->return_code);
eb84a20e 1206
dbda4c0b 1207 spin_lock_irq(&tsk->sighand->siglock);
45d9bb0e
AV
1208 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1209 tty = tsk->signal->tty->name;
a6c043a8
SG
1210 else
1211 tty = "(none)";
dbda4c0b
AC
1212 spin_unlock_irq(&tsk->sighand->siglock);
1213
1da177e4
LT
1214 audit_log_format(ab,
1215 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
f46038ff 1216 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
326e9c8b 1217 " euid=%u suid=%u fsuid=%u"
4746ec5b 1218 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1da177e4
LT
1219 context->argv[0],
1220 context->argv[1],
1221 context->argv[2],
1222 context->argv[3],
1223 context->name_count,
f46038ff 1224 context->ppid,
1da177e4 1225 context->pid,
bfef93a5 1226 tsk->loginuid,
1da177e4
LT
1227 context->uid,
1228 context->gid,
1229 context->euid, context->suid, context->fsuid,
4746ec5b
EP
1230 context->egid, context->sgid, context->fsgid, tty,
1231 tsk->sessionid);
eb84a20e 1232
eb84a20e 1233
e495149b 1234 audit_log_task_info(ab, tsk);
5adc8a6a
AG
1235 if (context->filterkey) {
1236 audit_log_format(ab, " key=");
1237 audit_log_untrustedstring(ab, context->filterkey);
1238 } else
1239 audit_log_format(ab, " key=(null)");
1da177e4 1240 audit_log_end(ab);
1da177e4 1241
7551ced3 1242 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1243
e495149b 1244 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1245 if (!ab)
1246 continue; /* audit_panic has been called */
1247
1da177e4 1248 switch (aux->type) {
20ca73bc
GW
1249 case AUDIT_MQ_OPEN: {
1250 struct audit_aux_data_mq_open *axi = (void *)aux;
1251 audit_log_format(ab,
1252 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1253 "mq_msgsize=%ld mq_curmsgs=%ld",
1254 axi->oflag, axi->mode, axi->attr.mq_flags,
1255 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
1256 axi->attr.mq_curmsgs);
1257 break; }
1258
1259 case AUDIT_MQ_SENDRECV: {
1260 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
1261 audit_log_format(ab,
1262 "mqdes=%d msg_len=%zd msg_prio=%u "
1263 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1264 axi->mqdes, axi->msg_len, axi->msg_prio,
1265 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
1266 break; }
1267
1268 case AUDIT_MQ_NOTIFY: {
1269 struct audit_aux_data_mq_notify *axi = (void *)aux;
1270 audit_log_format(ab,
1271 "mqdes=%d sigev_signo=%d",
1272 axi->mqdes,
1273 axi->notification.sigev_signo);
1274 break; }
1275
1276 case AUDIT_MQ_GETSETATTR: {
1277 struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
1278 audit_log_format(ab,
1279 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1280 "mq_curmsgs=%ld ",
1281 axi->mqdes,
1282 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
1283 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
1284 break; }
1285
c0404993 1286 case AUDIT_IPC: {
1da177e4
LT
1287 struct audit_aux_data_ipcctl *axi = (void *)aux;
1288 audit_log_format(ab,
5b9a4262 1289 "ouid=%u ogid=%u mode=%#o",
ac03221a 1290 axi->uid, axi->gid, axi->mode);
9c7aa6aa
SG
1291 if (axi->osid != 0) {
1292 char *ctx = NULL;
1293 u32 len;
2a862b32 1294 if (security_secid_to_secctx(
9c7aa6aa 1295 axi->osid, &ctx, &len)) {
ce29b682 1296 audit_log_format(ab, " osid=%u",
9c7aa6aa
SG
1297 axi->osid);
1298 call_panic = 1;
2a862b32 1299 } else {
9c7aa6aa 1300 audit_log_format(ab, " obj=%s", ctx);
2a862b32
AD
1301 security_release_secctx(ctx, len);
1302 }
9c7aa6aa 1303 }
3ec3b2fb
DW
1304 break; }
1305
073115d6
SG
1306 case AUDIT_IPC_SET_PERM: {
1307 struct audit_aux_data_ipcctl *axi = (void *)aux;
1308 audit_log_format(ab,
5b9a4262 1309 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
073115d6 1310 axi->qbytes, axi->uid, axi->gid, axi->mode);
073115d6 1311 break; }
ac03221a 1312
473ae30b
AV
1313 case AUDIT_EXECVE: {
1314 struct audit_aux_data_execve *axi = (void *)aux;
de6bbd1d 1315 audit_log_execve_info(context, &ab, axi);
473ae30b 1316 break; }
073115d6 1317
3ec3b2fb 1318 case AUDIT_SOCKETCALL: {
3ec3b2fb
DW
1319 struct audit_aux_data_socketcall *axs = (void *)aux;
1320 audit_log_format(ab, "nargs=%d", axs->nargs);
1321 for (i=0; i<axs->nargs; i++)
1322 audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
1323 break; }
1324
1325 case AUDIT_SOCKADDR: {
1326 struct audit_aux_data_sockaddr *axs = (void *)aux;
1327
1328 audit_log_format(ab, "saddr=");
b556f8ad 1329 audit_log_n_hex(ab, axs->a, axs->len);
3ec3b2fb 1330 break; }
01116105 1331
db349509
AV
1332 case AUDIT_FD_PAIR: {
1333 struct audit_aux_data_fd_pair *axs = (void *)aux;
1334 audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1335 break; }
1336
1da177e4
LT
1337 }
1338 audit_log_end(ab);
1da177e4
LT
1339 }
1340
e54dc243
AG
1341 for (aux = context->aux_pids; aux; aux = aux->next) {
1342 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1343
1344 for (i = 0; i < axs->pid_count; i++)
1345 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1346 axs->target_auid[i],
1347 axs->target_uid[i],
4746ec5b 1348 axs->target_sessionid[i],
c2a7780e
EP
1349 axs->target_sid[i],
1350 axs->target_comm[i]))
e54dc243 1351 call_panic = 1;
a5cb013d
AV
1352 }
1353
e54dc243
AG
1354 if (context->target_pid &&
1355 audit_log_pid_context(context, context->target_pid,
c2a7780e 1356 context->target_auid, context->target_uid,
4746ec5b 1357 context->target_sessionid,
c2a7780e 1358 context->target_sid, context->target_comm))
e54dc243
AG
1359 call_panic = 1;
1360
44707fdf 1361 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1362 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1363 if (ab) {
44707fdf 1364 audit_log_d_path(ab, "cwd=", &context->pwd);
8f37d47c
DW
1365 audit_log_end(ab);
1366 }
1367 }
1da177e4 1368 for (i = 0; i < context->name_count; i++) {
9c937dcc 1369 struct audit_names *n = &context->names[i];
73241ccc 1370
e495149b 1371 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1da177e4
LT
1372 if (!ab)
1373 continue; /* audit_panic has been called */
8f37d47c 1374
1da177e4 1375 audit_log_format(ab, "item=%d", i);
73241ccc 1376
9c937dcc
AG
1377 if (n->name) {
1378 switch(n->name_len) {
1379 case AUDIT_NAME_FULL:
1380 /* log the full path */
1381 audit_log_format(ab, " name=");
1382 audit_log_untrustedstring(ab, n->name);
1383 break;
1384 case 0:
1385 /* name was specified as a relative path and the
1386 * directory component is the cwd */
44707fdf 1387 audit_log_d_path(ab, " name=", &context->pwd);
9c937dcc
AG
1388 break;
1389 default:
1390 /* log the name's directory component */
1391 audit_log_format(ab, " name=");
b556f8ad
EP
1392 audit_log_n_untrustedstring(ab, n->name,
1393 n->name_len);
9c937dcc
AG
1394 }
1395 } else
1396 audit_log_format(ab, " name=(null)");
1397
1398 if (n->ino != (unsigned long)-1) {
1399 audit_log_format(ab, " inode=%lu"
1400 " dev=%02x:%02x mode=%#o"
1401 " ouid=%u ogid=%u rdev=%02x:%02x",
1402 n->ino,
1403 MAJOR(n->dev),
1404 MINOR(n->dev),
1405 n->mode,
1406 n->uid,
1407 n->gid,
1408 MAJOR(n->rdev),
1409 MINOR(n->rdev));
1410 }
1411 if (n->osid != 0) {
1b50eed9
SG
1412 char *ctx = NULL;
1413 u32 len;
2a862b32 1414 if (security_secid_to_secctx(
9c937dcc
AG
1415 n->osid, &ctx, &len)) {
1416 audit_log_format(ab, " osid=%u", n->osid);
9c7aa6aa 1417 call_panic = 2;
2a862b32 1418 } else {
1b50eed9 1419 audit_log_format(ab, " obj=%s", ctx);
2a862b32
AD
1420 security_release_secctx(ctx, len);
1421 }
8c8570fb
DK
1422 }
1423
1da177e4
LT
1424 audit_log_end(ab);
1425 }
c0641f28
EP
1426
1427 /* Send end of event record to help user space know we are finished */
1428 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1429 if (ab)
1430 audit_log_end(ab);
9c7aa6aa
SG
1431 if (call_panic)
1432 audit_panic("error converting sid to string");
1da177e4
LT
1433}
1434
b0dd25a8
RD
1435/**
1436 * audit_free - free a per-task audit context
1437 * @tsk: task whose audit context block to free
1438 *
fa84cb93 1439 * Called from copy_process and do_exit
b0dd25a8 1440 */
1da177e4
LT
1441void audit_free(struct task_struct *tsk)
1442{
1443 struct audit_context *context;
1444
1da177e4 1445 context = audit_get_context(tsk, 0, 0);
1da177e4
LT
1446 if (likely(!context))
1447 return;
1448
1449 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1450 * function (e.g., exit_group), then free context block.
1451 * We use GFP_ATOMIC here because we might be doing this
f5561964 1452 * in the context of the idle thread */
e495149b 1453 /* that can happen only if we are called from do_exit() */
f7056d64 1454 if (context->in_syscall && context->auditable)
e495149b 1455 audit_log_exit(context, tsk);
1da177e4
LT
1456
1457 audit_free_context(context);
1458}
1459
b0dd25a8
RD
1460/**
1461 * audit_syscall_entry - fill in an audit record at syscall entry
1462 * @tsk: task being audited
1463 * @arch: architecture type
1464 * @major: major syscall type (function)
1465 * @a1: additional syscall register 1
1466 * @a2: additional syscall register 2
1467 * @a3: additional syscall register 3
1468 * @a4: additional syscall register 4
1469 *
1470 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1471 * audit context was created when the task was created and the state or
1472 * filters demand the audit context be built. If the state from the
1473 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1474 * then the record will be written at syscall exit time (otherwise, it
1475 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1476 * be written).
1477 */
5411be59 1478void audit_syscall_entry(int arch, int major,
1da177e4
LT
1479 unsigned long a1, unsigned long a2,
1480 unsigned long a3, unsigned long a4)
1481{
5411be59 1482 struct task_struct *tsk = current;
1da177e4
LT
1483 struct audit_context *context = tsk->audit_context;
1484 enum audit_state state;
1485
86a1c34a
RM
1486 if (unlikely(!context))
1487 return;
1da177e4 1488
b0dd25a8
RD
1489 /*
1490 * This happens only on certain architectures that make system
1da177e4
LT
1491 * calls in kernel_thread via the entry.S interface, instead of
1492 * with direct calls. (If you are porting to a new
1493 * architecture, hitting this condition can indicate that you
1494 * got the _exit/_leave calls backward in entry.S.)
1495 *
1496 * i386 no
1497 * x86_64 no
2ef9481e 1498 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1da177e4
LT
1499 *
1500 * This also happens with vm86 emulation in a non-nested manner
1501 * (entries without exits), so this case must be caught.
1502 */
1503 if (context->in_syscall) {
1504 struct audit_context *newctx;
1505
1da177e4
LT
1506#if AUDIT_DEBUG
1507 printk(KERN_ERR
1508 "audit(:%d) pid=%d in syscall=%d;"
1509 " entering syscall=%d\n",
1510 context->serial, tsk->pid, context->major, major);
1511#endif
1512 newctx = audit_alloc_context(context->state);
1513 if (newctx) {
1514 newctx->previous = context;
1515 context = newctx;
1516 tsk->audit_context = newctx;
1517 } else {
1518 /* If we can't alloc a new context, the best we
1519 * can do is to leak memory (any pending putname
1520 * will be lost). The only other alternative is
1521 * to abandon auditing. */
1522 audit_zero_context(context, context->state);
1523 }
1524 }
1525 BUG_ON(context->in_syscall || context->name_count);
1526
1527 if (!audit_enabled)
1528 return;
1529
2fd6f58b 1530 context->arch = arch;
1da177e4
LT
1531 context->major = major;
1532 context->argv[0] = a1;
1533 context->argv[1] = a2;
1534 context->argv[2] = a3;
1535 context->argv[3] = a4;
1536
1537 state = context->state;
d51374ad
AV
1538 context->dummy = !audit_n_rules;
1539 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
0f45aa18 1540 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1da177e4
LT
1541 if (likely(state == AUDIT_DISABLED))
1542 return;
1543
ce625a80 1544 context->serial = 0;
1da177e4
LT
1545 context->ctime = CURRENT_TIME;
1546 context->in_syscall = 1;
1547 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
419c58f1 1548 context->ppid = 0;
1da177e4
LT
1549}
1550
b0dd25a8
RD
1551/**
1552 * audit_syscall_exit - deallocate audit context after a system call
1553 * @tsk: task being audited
1554 * @valid: success/failure flag
1555 * @return_code: syscall return value
1556 *
1557 * Tear down after system call. If the audit context has been marked as
1da177e4
LT
1558 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1559 * filtering, or because some other part of the kernel write an audit
1560 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1561 * free the names stored from getname().
1562 */
5411be59 1563void audit_syscall_exit(int valid, long return_code)
1da177e4 1564{
5411be59 1565 struct task_struct *tsk = current;
1da177e4
LT
1566 struct audit_context *context;
1567
2fd6f58b 1568 context = audit_get_context(tsk, valid, return_code);
1da177e4 1569
1da177e4 1570 if (likely(!context))
97e94c45 1571 return;
1da177e4 1572
f7056d64 1573 if (context->in_syscall && context->auditable)
e495149b 1574 audit_log_exit(context, tsk);
1da177e4
LT
1575
1576 context->in_syscall = 0;
1577 context->auditable = 0;
2fd6f58b 1578
1da177e4
LT
1579 if (context->previous) {
1580 struct audit_context *new_context = context->previous;
1581 context->previous = NULL;
1582 audit_free_context(context);
1583 tsk->audit_context = new_context;
1584 } else {
1585 audit_free_names(context);
74c3cbe3 1586 unroll_tree_refs(context, NULL, 0);
1da177e4 1587 audit_free_aux(context);
e54dc243
AG
1588 context->aux = NULL;
1589 context->aux_pids = NULL;
a5cb013d 1590 context->target_pid = 0;
e54dc243 1591 context->target_sid = 0;
5adc8a6a
AG
1592 kfree(context->filterkey);
1593 context->filterkey = NULL;
1da177e4
LT
1594 tsk->audit_context = context;
1595 }
1da177e4
LT
1596}
1597
74c3cbe3
AV
1598static inline void handle_one(const struct inode *inode)
1599{
1600#ifdef CONFIG_AUDIT_TREE
1601 struct audit_context *context;
1602 struct audit_tree_refs *p;
1603 struct audit_chunk *chunk;
1604 int count;
1605 if (likely(list_empty(&inode->inotify_watches)))
1606 return;
1607 context = current->audit_context;
1608 p = context->trees;
1609 count = context->tree_count;
1610 rcu_read_lock();
1611 chunk = audit_tree_lookup(inode);
1612 rcu_read_unlock();
1613 if (!chunk)
1614 return;
1615 if (likely(put_tree_ref(context, chunk)))
1616 return;
1617 if (unlikely(!grow_tree_refs(context))) {
436c405c 1618 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1619 audit_set_auditable(context);
1620 audit_put_chunk(chunk);
1621 unroll_tree_refs(context, p, count);
1622 return;
1623 }
1624 put_tree_ref(context, chunk);
1625#endif
1626}
1627
1628static void handle_path(const struct dentry *dentry)
1629{
1630#ifdef CONFIG_AUDIT_TREE
1631 struct audit_context *context;
1632 struct audit_tree_refs *p;
1633 const struct dentry *d, *parent;
1634 struct audit_chunk *drop;
1635 unsigned long seq;
1636 int count;
1637
1638 context = current->audit_context;
1639 p = context->trees;
1640 count = context->tree_count;
1641retry:
1642 drop = NULL;
1643 d = dentry;
1644 rcu_read_lock();
1645 seq = read_seqbegin(&rename_lock);
1646 for(;;) {
1647 struct inode *inode = d->d_inode;
1648 if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1649 struct audit_chunk *chunk;
1650 chunk = audit_tree_lookup(inode);
1651 if (chunk) {
1652 if (unlikely(!put_tree_ref(context, chunk))) {
1653 drop = chunk;
1654 break;
1655 }
1656 }
1657 }
1658 parent = d->d_parent;
1659 if (parent == d)
1660 break;
1661 d = parent;
1662 }
1663 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1664 rcu_read_unlock();
1665 if (!drop) {
1666 /* just a race with rename */
1667 unroll_tree_refs(context, p, count);
1668 goto retry;
1669 }
1670 audit_put_chunk(drop);
1671 if (grow_tree_refs(context)) {
1672 /* OK, got more space */
1673 unroll_tree_refs(context, p, count);
1674 goto retry;
1675 }
1676 /* too bad */
1677 printk(KERN_WARNING
436c405c 1678 "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1679 unroll_tree_refs(context, p, count);
1680 audit_set_auditable(context);
1681 return;
1682 }
1683 rcu_read_unlock();
1684#endif
1685}
1686
b0dd25a8
RD
1687/**
1688 * audit_getname - add a name to the list
1689 * @name: name to add
1690 *
1691 * Add a name to the list of audit names for this context.
1692 * Called from fs/namei.c:getname().
1693 */
d8945bb5 1694void __audit_getname(const char *name)
1da177e4
LT
1695{
1696 struct audit_context *context = current->audit_context;
1697
d8945bb5 1698 if (IS_ERR(name) || !name)
1da177e4
LT
1699 return;
1700
1701 if (!context->in_syscall) {
1702#if AUDIT_DEBUG == 2
1703 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1704 __FILE__, __LINE__, context->serial, name);
1705 dump_stack();
1706#endif
1707 return;
1708 }
1709 BUG_ON(context->name_count >= AUDIT_NAMES);
1710 context->names[context->name_count].name = name;
9c937dcc
AG
1711 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1712 context->names[context->name_count].name_put = 1;
1da177e4 1713 context->names[context->name_count].ino = (unsigned long)-1;
e41e8bde 1714 context->names[context->name_count].osid = 0;
1da177e4 1715 ++context->name_count;
44707fdf 1716 if (!context->pwd.dentry) {
8f37d47c 1717 read_lock(&current->fs->lock);
44707fdf
JB
1718 context->pwd = current->fs->pwd;
1719 path_get(&current->fs->pwd);
8f37d47c
DW
1720 read_unlock(&current->fs->lock);
1721 }
9f8dbe9c 1722
1da177e4
LT
1723}
1724
b0dd25a8
RD
1725/* audit_putname - intercept a putname request
1726 * @name: name to intercept and delay for putname
1727 *
1728 * If we have stored the name from getname in the audit context,
1729 * then we delay the putname until syscall exit.
1730 * Called from include/linux/fs.h:putname().
1731 */
1da177e4
LT
1732void audit_putname(const char *name)
1733{
1734 struct audit_context *context = current->audit_context;
1735
1736 BUG_ON(!context);
1737 if (!context->in_syscall) {
1738#if AUDIT_DEBUG == 2
1739 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1740 __FILE__, __LINE__, context->serial, name);
1741 if (context->name_count) {
1742 int i;
1743 for (i = 0; i < context->name_count; i++)
1744 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1745 context->names[i].name,
73241ccc 1746 context->names[i].name ?: "(null)");
1da177e4
LT
1747 }
1748#endif
1749 __putname(name);
1750 }
1751#if AUDIT_DEBUG
1752 else {
1753 ++context->put_count;
1754 if (context->put_count > context->name_count) {
1755 printk(KERN_ERR "%s:%d(:%d): major=%d"
1756 " in_syscall=%d putname(%p) name_count=%d"
1757 " put_count=%d\n",
1758 __FILE__, __LINE__,
1759 context->serial, context->major,
1760 context->in_syscall, name, context->name_count,
1761 context->put_count);
1762 dump_stack();
1763 }
1764 }
1765#endif
1766}
1767
5712e88f
AG
1768static int audit_inc_name_count(struct audit_context *context,
1769 const struct inode *inode)
1770{
1771 if (context->name_count >= AUDIT_NAMES) {
1772 if (inode)
1773 printk(KERN_DEBUG "name_count maxed, losing inode data: "
436c405c 1774 "dev=%02x:%02x, inode=%lu\n",
5712e88f
AG
1775 MAJOR(inode->i_sb->s_dev),
1776 MINOR(inode->i_sb->s_dev),
1777 inode->i_ino);
1778
1779 else
436c405c 1780 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
5712e88f
AG
1781 return 1;
1782 }
1783 context->name_count++;
1784#if AUDIT_DEBUG
1785 context->ino_count++;
1786#endif
1787 return 0;
1788}
1789
3e2efce0
AG
1790/* Copy inode data into an audit_names. */
1791static void audit_copy_inode(struct audit_names *name, const struct inode *inode)
8c8570fb 1792{
3e2efce0
AG
1793 name->ino = inode->i_ino;
1794 name->dev = inode->i_sb->s_dev;
1795 name->mode = inode->i_mode;
1796 name->uid = inode->i_uid;
1797 name->gid = inode->i_gid;
1798 name->rdev = inode->i_rdev;
2a862b32 1799 security_inode_getsecid(inode, &name->osid);
8c8570fb
DK
1800}
1801
b0dd25a8
RD
1802/**
1803 * audit_inode - store the inode and device from a lookup
1804 * @name: name being audited
481968f4 1805 * @dentry: dentry being audited
b0dd25a8
RD
1806 *
1807 * Called from fs/namei.c:path_lookup().
1808 */
5a190ae6 1809void __audit_inode(const char *name, const struct dentry *dentry)
1da177e4
LT
1810{
1811 int idx;
1812 struct audit_context *context = current->audit_context;
74c3cbe3 1813 const struct inode *inode = dentry->d_inode;
1da177e4
LT
1814
1815 if (!context->in_syscall)
1816 return;
1817 if (context->name_count
1818 && context->names[context->name_count-1].name
1819 && context->names[context->name_count-1].name == name)
1820 idx = context->name_count - 1;
1821 else if (context->name_count > 1
1822 && context->names[context->name_count-2].name
1823 && context->names[context->name_count-2].name == name)
1824 idx = context->name_count - 2;
1825 else {
1826 /* FIXME: how much do we care about inodes that have no
1827 * associated name? */
5712e88f 1828 if (audit_inc_name_count(context, inode))
1da177e4 1829 return;
5712e88f 1830 idx = context->name_count - 1;
1da177e4 1831 context->names[idx].name = NULL;
1da177e4 1832 }
74c3cbe3 1833 handle_path(dentry);
3e2efce0 1834 audit_copy_inode(&context->names[idx], inode);
73241ccc
AG
1835}
1836
1837/**
1838 * audit_inode_child - collect inode info for created/removed objects
1839 * @dname: inode's dentry name
481968f4 1840 * @dentry: dentry being audited
73d3ec5a 1841 * @parent: inode of dentry parent
73241ccc
AG
1842 *
1843 * For syscalls that create or remove filesystem objects, audit_inode
1844 * can only collect information for the filesystem object's parent.
1845 * This call updates the audit context with the child's information.
1846 * Syscalls that create a new filesystem object must be hooked after
1847 * the object is created. Syscalls that remove a filesystem object
1848 * must be hooked prior, in order to capture the target inode during
1849 * unsuccessful attempts.
1850 */
5a190ae6 1851void __audit_inode_child(const char *dname, const struct dentry *dentry,
73d3ec5a 1852 const struct inode *parent)
73241ccc
AG
1853{
1854 int idx;
1855 struct audit_context *context = current->audit_context;
5712e88f 1856 const char *found_parent = NULL, *found_child = NULL;
5a190ae6 1857 const struct inode *inode = dentry->d_inode;
9c937dcc 1858 int dirlen = 0;
73241ccc
AG
1859
1860 if (!context->in_syscall)
1861 return;
1862
74c3cbe3
AV
1863 if (inode)
1864 handle_one(inode);
73241ccc 1865 /* determine matching parent */
f368c07d 1866 if (!dname)
5712e88f 1867 goto add_names;
73241ccc 1868
5712e88f
AG
1869 /* parent is more likely, look for it first */
1870 for (idx = 0; idx < context->name_count; idx++) {
1871 struct audit_names *n = &context->names[idx];
f368c07d 1872
5712e88f
AG
1873 if (!n->name)
1874 continue;
1875
1876 if (n->ino == parent->i_ino &&
1877 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1878 n->name_len = dirlen; /* update parent data in place */
1879 found_parent = n->name;
1880 goto add_names;
f368c07d 1881 }
5712e88f 1882 }
73241ccc 1883
5712e88f
AG
1884 /* no matching parent, look for matching child */
1885 for (idx = 0; idx < context->name_count; idx++) {
1886 struct audit_names *n = &context->names[idx];
1887
1888 if (!n->name)
1889 continue;
1890
1891 /* strcmp() is the more likely scenario */
1892 if (!strcmp(dname, n->name) ||
1893 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1894 if (inode)
1895 audit_copy_inode(n, inode);
1896 else
1897 n->ino = (unsigned long)-1;
1898 found_child = n->name;
1899 goto add_names;
1900 }
ac9910ce 1901 }
5712e88f
AG
1902
1903add_names:
1904 if (!found_parent) {
1905 if (audit_inc_name_count(context, parent))
ac9910ce 1906 return;
5712e88f
AG
1907 idx = context->name_count - 1;
1908 context->names[idx].name = NULL;
73d3ec5a
AG
1909 audit_copy_inode(&context->names[idx], parent);
1910 }
5712e88f
AG
1911
1912 if (!found_child) {
1913 if (audit_inc_name_count(context, inode))
1914 return;
1915 idx = context->name_count - 1;
1916
1917 /* Re-use the name belonging to the slot for a matching parent
1918 * directory. All names for this context are relinquished in
1919 * audit_free_names() */
1920 if (found_parent) {
1921 context->names[idx].name = found_parent;
1922 context->names[idx].name_len = AUDIT_NAME_FULL;
1923 /* don't call __putname() */
1924 context->names[idx].name_put = 0;
1925 } else {
1926 context->names[idx].name = NULL;
1927 }
1928
1929 if (inode)
1930 audit_copy_inode(&context->names[idx], inode);
1931 else
1932 context->names[idx].ino = (unsigned long)-1;
1933 }
3e2efce0 1934}
50e437d5 1935EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 1936
b0dd25a8
RD
1937/**
1938 * auditsc_get_stamp - get local copies of audit_context values
1939 * @ctx: audit_context for the task
1940 * @t: timespec to store time recorded in the audit_context
1941 * @serial: serial value that is recorded in the audit_context
1942 *
1943 * Also sets the context as auditable.
1944 */
bfb4496e
DW
1945void auditsc_get_stamp(struct audit_context *ctx,
1946 struct timespec *t, unsigned int *serial)
1da177e4 1947{
ce625a80
DW
1948 if (!ctx->serial)
1949 ctx->serial = audit_serial();
bfb4496e
DW
1950 t->tv_sec = ctx->ctime.tv_sec;
1951 t->tv_nsec = ctx->ctime.tv_nsec;
1952 *serial = ctx->serial;
1953 ctx->auditable = 1;
1da177e4
LT
1954}
1955
4746ec5b
EP
1956/* global counter which is incremented every time something logs in */
1957static atomic_t session_id = ATOMIC_INIT(0);
1958
b0dd25a8
RD
1959/**
1960 * audit_set_loginuid - set a task's audit_context loginuid
1961 * @task: task whose audit context is being modified
1962 * @loginuid: loginuid value
1963 *
1964 * Returns 0.
1965 *
1966 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1967 */
456be6cd 1968int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1da177e4 1969{
4746ec5b 1970 unsigned int sessionid = atomic_inc_return(&session_id);
41757106
SG
1971 struct audit_context *context = task->audit_context;
1972
bfef93a5
AV
1973 if (context && context->in_syscall) {
1974 struct audit_buffer *ab;
1975
1976 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1977 if (ab) {
1978 audit_log_format(ab, "login pid=%d uid=%u "
4746ec5b
EP
1979 "old auid=%u new auid=%u"
1980 " old ses=%u new ses=%u",
bfef93a5 1981 task->pid, task->uid,
4746ec5b
EP
1982 task->loginuid, loginuid,
1983 task->sessionid, sessionid);
bfef93a5 1984 audit_log_end(ab);
c0404993 1985 }
1da177e4 1986 }
4746ec5b 1987 task->sessionid = sessionid;
bfef93a5 1988 task->loginuid = loginuid;
1da177e4
LT
1989 return 0;
1990}
1991
20ca73bc
GW
1992/**
1993 * __audit_mq_open - record audit data for a POSIX MQ open
1994 * @oflag: open flag
1995 * @mode: mode bits
1996 * @u_attr: queue attributes
1997 *
1998 * Returns 0 for success or NULL context or < 0 on error.
1999 */
2000int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
2001{
2002 struct audit_aux_data_mq_open *ax;
2003 struct audit_context *context = current->audit_context;
2004
2005 if (!audit_enabled)
2006 return 0;
2007
2008 if (likely(!context))
2009 return 0;
2010
2011 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2012 if (!ax)
2013 return -ENOMEM;
2014
2015 if (u_attr != NULL) {
2016 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
2017 kfree(ax);
2018 return -EFAULT;
2019 }
2020 } else
2021 memset(&ax->attr, 0, sizeof(ax->attr));
2022
2023 ax->oflag = oflag;
2024 ax->mode = mode;
2025
2026 ax->d.type = AUDIT_MQ_OPEN;
2027 ax->d.next = context->aux;
2028 context->aux = (void *)ax;
2029 return 0;
2030}
2031
2032/**
2033 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
2034 * @mqdes: MQ descriptor
2035 * @msg_len: Message length
2036 * @msg_prio: Message priority
1dbe83c3 2037 * @u_abs_timeout: Message timeout in absolute time
20ca73bc
GW
2038 *
2039 * Returns 0 for success or NULL context or < 0 on error.
2040 */
2041int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2042 const struct timespec __user *u_abs_timeout)
2043{
2044 struct audit_aux_data_mq_sendrecv *ax;
2045 struct audit_context *context = current->audit_context;
2046
2047 if (!audit_enabled)
2048 return 0;
2049
2050 if (likely(!context))
2051 return 0;
2052
2053 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2054 if (!ax)
2055 return -ENOMEM;
2056
2057 if (u_abs_timeout != NULL) {
2058 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2059 kfree(ax);
2060 return -EFAULT;
2061 }
2062 } else
2063 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2064
2065 ax->mqdes = mqdes;
2066 ax->msg_len = msg_len;
2067 ax->msg_prio = msg_prio;
2068
2069 ax->d.type = AUDIT_MQ_SENDRECV;
2070 ax->d.next = context->aux;
2071 context->aux = (void *)ax;
2072 return 0;
2073}
2074
2075/**
2076 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
2077 * @mqdes: MQ descriptor
2078 * @msg_len: Message length
1dbe83c3
RD
2079 * @u_msg_prio: Message priority
2080 * @u_abs_timeout: Message timeout in absolute time
20ca73bc
GW
2081 *
2082 * Returns 0 for success or NULL context or < 0 on error.
2083 */
2084int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
2085 unsigned int __user *u_msg_prio,
2086 const struct timespec __user *u_abs_timeout)
2087{
2088 struct audit_aux_data_mq_sendrecv *ax;
2089 struct audit_context *context = current->audit_context;
2090
2091 if (!audit_enabled)
2092 return 0;
2093
2094 if (likely(!context))
2095 return 0;
2096
2097 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2098 if (!ax)
2099 return -ENOMEM;
2100
2101 if (u_msg_prio != NULL) {
2102 if (get_user(ax->msg_prio, u_msg_prio)) {
2103 kfree(ax);
2104 return -EFAULT;
2105 }
2106 } else
2107 ax->msg_prio = 0;
2108
2109 if (u_abs_timeout != NULL) {
2110 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2111 kfree(ax);
2112 return -EFAULT;
2113 }
2114 } else
2115 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2116
2117 ax->mqdes = mqdes;
2118 ax->msg_len = msg_len;
2119
2120 ax->d.type = AUDIT_MQ_SENDRECV;
2121 ax->d.next = context->aux;
2122 context->aux = (void *)ax;
2123 return 0;
2124}
2125
2126/**
2127 * __audit_mq_notify - record audit data for a POSIX MQ notify
2128 * @mqdes: MQ descriptor
2129 * @u_notification: Notification event
2130 *
2131 * Returns 0 for success or NULL context or < 0 on error.
2132 */
2133
2134int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
2135{
2136 struct audit_aux_data_mq_notify *ax;
2137 struct audit_context *context = current->audit_context;
2138
2139 if (!audit_enabled)
2140 return 0;
2141
2142 if (likely(!context))
2143 return 0;
2144
2145 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2146 if (!ax)
2147 return -ENOMEM;
2148
2149 if (u_notification != NULL) {
2150 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
2151 kfree(ax);
2152 return -EFAULT;
2153 }
2154 } else
2155 memset(&ax->notification, 0, sizeof(ax->notification));
2156
2157 ax->mqdes = mqdes;
2158
2159 ax->d.type = AUDIT_MQ_NOTIFY;
2160 ax->d.next = context->aux;
2161 context->aux = (void *)ax;
2162 return 0;
2163}
2164
2165/**
2166 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2167 * @mqdes: MQ descriptor
2168 * @mqstat: MQ flags
2169 *
2170 * Returns 0 for success or NULL context or < 0 on error.
2171 */
2172int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2173{
2174 struct audit_aux_data_mq_getsetattr *ax;
2175 struct audit_context *context = current->audit_context;
2176
2177 if (!audit_enabled)
2178 return 0;
2179
2180 if (likely(!context))
2181 return 0;
2182
2183 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2184 if (!ax)
2185 return -ENOMEM;
2186
2187 ax->mqdes = mqdes;
2188 ax->mqstat = *mqstat;
2189
2190 ax->d.type = AUDIT_MQ_GETSETATTR;
2191 ax->d.next = context->aux;
2192 context->aux = (void *)ax;
2193 return 0;
2194}
2195
b0dd25a8 2196/**
073115d6
SG
2197 * audit_ipc_obj - record audit data for ipc object
2198 * @ipcp: ipc permissions
2199 *
2200 * Returns 0 for success or NULL context or < 0 on error.
2201 */
d8945bb5 2202int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6
SG
2203{
2204 struct audit_aux_data_ipcctl *ax;
2205 struct audit_context *context = current->audit_context;
2206
073115d6
SG
2207 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2208 if (!ax)
2209 return -ENOMEM;
2210
2211 ax->uid = ipcp->uid;
2212 ax->gid = ipcp->gid;
2213 ax->mode = ipcp->mode;
2a862b32 2214 security_ipc_getsecid(ipcp, &ax->osid);
073115d6
SG
2215 ax->d.type = AUDIT_IPC;
2216 ax->d.next = context->aux;
2217 context->aux = (void *)ax;
2218 return 0;
2219}
2220
2221/**
2222 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2223 * @qbytes: msgq bytes
2224 * @uid: msgq user id
2225 * @gid: msgq group id
2226 * @mode: msgq mode (permissions)
2227 *
2228 * Returns 0 for success or NULL context or < 0 on error.
2229 */
d8945bb5 2230int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
1da177e4
LT
2231{
2232 struct audit_aux_data_ipcctl *ax;
2233 struct audit_context *context = current->audit_context;
2234
8c8570fb 2235 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1da177e4
LT
2236 if (!ax)
2237 return -ENOMEM;
2238
2239 ax->qbytes = qbytes;
2240 ax->uid = uid;
2241 ax->gid = gid;
2242 ax->mode = mode;
2243
073115d6 2244 ax->d.type = AUDIT_IPC_SET_PERM;
1da177e4
LT
2245 ax->d.next = context->aux;
2246 context->aux = (void *)ax;
2247 return 0;
2248}
c2f0c7c3 2249
473ae30b
AV
2250int audit_bprm(struct linux_binprm *bprm)
2251{
2252 struct audit_aux_data_execve *ax;
2253 struct audit_context *context = current->audit_context;
473ae30b 2254
5ac3a9c2 2255 if (likely(!audit_enabled || !context || context->dummy))
473ae30b
AV
2256 return 0;
2257
bdf4c48a 2258 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
473ae30b
AV
2259 if (!ax)
2260 return -ENOMEM;
2261
2262 ax->argc = bprm->argc;
2263 ax->envc = bprm->envc;
bdf4c48a 2264 ax->mm = bprm->mm;
473ae30b
AV
2265 ax->d.type = AUDIT_EXECVE;
2266 ax->d.next = context->aux;
2267 context->aux = (void *)ax;
2268 return 0;
2269}
2270
2271
b0dd25a8
RD
2272/**
2273 * audit_socketcall - record audit data for sys_socketcall
2274 * @nargs: number of args
2275 * @args: args array
2276 *
2277 * Returns 0 for success or NULL context or < 0 on error.
2278 */
3ec3b2fb
DW
2279int audit_socketcall(int nargs, unsigned long *args)
2280{
2281 struct audit_aux_data_socketcall *ax;
2282 struct audit_context *context = current->audit_context;
2283
5ac3a9c2 2284 if (likely(!context || context->dummy))
3ec3b2fb
DW
2285 return 0;
2286
2287 ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
2288 if (!ax)
2289 return -ENOMEM;
2290
2291 ax->nargs = nargs;
2292 memcpy(ax->args, args, nargs * sizeof(unsigned long));
2293
2294 ax->d.type = AUDIT_SOCKETCALL;
2295 ax->d.next = context->aux;
2296 context->aux = (void *)ax;
2297 return 0;
2298}
2299
db349509
AV
2300/**
2301 * __audit_fd_pair - record audit data for pipe and socketpair
2302 * @fd1: the first file descriptor
2303 * @fd2: the second file descriptor
2304 *
2305 * Returns 0 for success or NULL context or < 0 on error.
2306 */
2307int __audit_fd_pair(int fd1, int fd2)
2308{
2309 struct audit_context *context = current->audit_context;
2310 struct audit_aux_data_fd_pair *ax;
2311
2312 if (likely(!context)) {
2313 return 0;
2314 }
2315
2316 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2317 if (!ax) {
2318 return -ENOMEM;
2319 }
2320
2321 ax->fd[0] = fd1;
2322 ax->fd[1] = fd2;
2323
2324 ax->d.type = AUDIT_FD_PAIR;
2325 ax->d.next = context->aux;
2326 context->aux = (void *)ax;
2327 return 0;
2328}
2329
b0dd25a8
RD
2330/**
2331 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2332 * @len: data length in user space
2333 * @a: data address in kernel space
2334 *
2335 * Returns 0 for success or NULL context or < 0 on error.
2336 */
3ec3b2fb
DW
2337int audit_sockaddr(int len, void *a)
2338{
2339 struct audit_aux_data_sockaddr *ax;
2340 struct audit_context *context = current->audit_context;
2341
5ac3a9c2 2342 if (likely(!context || context->dummy))
3ec3b2fb
DW
2343 return 0;
2344
2345 ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
2346 if (!ax)
2347 return -ENOMEM;
2348
2349 ax->len = len;
2350 memcpy(ax->a, a, len);
2351
2352 ax->d.type = AUDIT_SOCKADDR;
2353 ax->d.next = context->aux;
2354 context->aux = (void *)ax;
2355 return 0;
2356}
2357
a5cb013d
AV
2358void __audit_ptrace(struct task_struct *t)
2359{
2360 struct audit_context *context = current->audit_context;
2361
2362 context->target_pid = t->pid;
c2a7780e
EP
2363 context->target_auid = audit_get_loginuid(t);
2364 context->target_uid = t->uid;
4746ec5b 2365 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2366 security_task_getsecid(t, &context->target_sid);
c2a7780e 2367 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2368}
2369
b0dd25a8
RD
2370/**
2371 * audit_signal_info - record signal info for shutting down audit subsystem
2372 * @sig: signal value
2373 * @t: task being signaled
2374 *
2375 * If the audit subsystem is being terminated, record the task (pid)
2376 * and uid that is doing that.
2377 */
e54dc243 2378int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2379{
e54dc243
AG
2380 struct audit_aux_data_pids *axp;
2381 struct task_struct *tsk = current;
2382 struct audit_context *ctx = tsk->audit_context;
e1396065 2383
175fc484 2384 if (audit_pid && t->tgid == audit_pid) {
ee1d3156 2385 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
175fc484 2386 audit_sig_pid = tsk->pid;
bfef93a5
AV
2387 if (tsk->loginuid != -1)
2388 audit_sig_uid = tsk->loginuid;
175fc484
AV
2389 else
2390 audit_sig_uid = tsk->uid;
2a862b32 2391 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2392 }
2393 if (!audit_signals || audit_dummy_context())
2394 return 0;
c2f0c7c3 2395 }
e54dc243 2396
e54dc243
AG
2397 /* optimize the common case by putting first signal recipient directly
2398 * in audit_context */
2399 if (!ctx->target_pid) {
2400 ctx->target_pid = t->tgid;
c2a7780e
EP
2401 ctx->target_auid = audit_get_loginuid(t);
2402 ctx->target_uid = t->uid;
4746ec5b 2403 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2404 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2405 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2406 return 0;
2407 }
2408
2409 axp = (void *)ctx->aux_pids;
2410 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2411 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2412 if (!axp)
2413 return -ENOMEM;
2414
2415 axp->d.type = AUDIT_OBJ_PID;
2416 axp->d.next = ctx->aux_pids;
2417 ctx->aux_pids = (void *)axp;
2418 }
88ae704c 2419 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243
AG
2420
2421 axp->target_pid[axp->pid_count] = t->tgid;
c2a7780e
EP
2422 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2423 axp->target_uid[axp->pid_count] = t->uid;
4746ec5b 2424 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2425 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2426 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2427 axp->pid_count++;
2428
2429 return 0;
c2f0c7c3 2430}
0a4ff8c2
SG
2431
2432/**
2433 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2434 * @signr: signal value
0a4ff8c2
SG
2435 *
2436 * If a process ends with a core dump, something fishy is going on and we
2437 * should record the event for investigation.
2438 */
2439void audit_core_dumps(long signr)
2440{
2441 struct audit_buffer *ab;
2442 u32 sid;
4746ec5b
EP
2443 uid_t auid = audit_get_loginuid(current);
2444 unsigned int sessionid = audit_get_sessionid(current);
0a4ff8c2
SG
2445
2446 if (!audit_enabled)
2447 return;
2448
2449 if (signr == SIGQUIT) /* don't care for those */
2450 return;
2451
2452 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
4746ec5b
EP
2453 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2454 auid, current->uid, current->gid, sessionid);
2a862b32 2455 security_task_getsecid(current, &sid);
0a4ff8c2
SG
2456 if (sid) {
2457 char *ctx = NULL;
2458 u32 len;
2459
2a862b32 2460 if (security_secid_to_secctx(sid, &ctx, &len))
0a4ff8c2 2461 audit_log_format(ab, " ssid=%u", sid);
2a862b32 2462 else {
0a4ff8c2 2463 audit_log_format(ab, " subj=%s", ctx);
2a862b32
AD
2464 security_release_secctx(ctx, len);
2465 }
0a4ff8c2
SG
2466 }
2467 audit_log_format(ab, " pid=%d comm=", current->pid);
2468 audit_log_untrustedstring(ab, current->comm);
2469 audit_log_format(ab, " sig=%ld", signr);
2470 audit_log_end(ab);
2471}