]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/auditsc.c
sanitize audit_mq_open()
[net-next-2.6.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
45#include <linux/init.h>
1da177e4 46#include <asm/types.h>
715b49ef 47#include <asm/atomic.h>
73241ccc
AG
48#include <linux/fs.h>
49#include <linux/namei.h>
1da177e4
LT
50#include <linux/mm.h>
51#include <linux/module.h>
01116105 52#include <linux/mount.h>
3ec3b2fb 53#include <linux/socket.h>
20ca73bc 54#include <linux/mqueue.h>
1da177e4
LT
55#include <linux/audit.h>
56#include <linux/personality.h>
57#include <linux/time.h>
5bb289b5 58#include <linux/netlink.h>
f5561964 59#include <linux/compiler.h>
1da177e4 60#include <asm/unistd.h>
8c8570fb 61#include <linux/security.h>
fe7752ba 62#include <linux/list.h>
a6c043a8 63#include <linux/tty.h>
473ae30b 64#include <linux/binfmts.h>
a1f8e7f7 65#include <linux/highmem.h>
f46038ff 66#include <linux/syscalls.h>
74c3cbe3 67#include <linux/inotify.h>
851f7ff5 68#include <linux/capability.h>
1da177e4 69
fe7752ba 70#include "audit.h"
1da177e4 71
1da177e4
LT
72/* AUDIT_NAMES is the number of slots we reserve in the audit_context
73 * for saving names from getname(). */
74#define AUDIT_NAMES 20
75
9c937dcc
AG
76/* Indicates that audit should log the full pathname. */
77#define AUDIT_NAME_FULL -1
78
de6bbd1d
EP
79/* no execve audit message should be longer than this (userspace limits) */
80#define MAX_EXECVE_AUDIT_LEN 7500
81
471a5c7c
AV
82/* number of audit rules */
83int audit_n_rules;
84
e54dc243
AG
85/* determines whether we collect data for signals sent */
86int audit_signals;
87
851f7ff5
EP
88struct audit_cap_data {
89 kernel_cap_t permitted;
90 kernel_cap_t inheritable;
91 union {
92 unsigned int fE; /* effective bit of a file capability */
93 kernel_cap_t effective; /* effective set of a process */
94 };
95};
96
1da177e4
LT
97/* When fs/namei.c:getname() is called, we store the pointer in name and
98 * we don't let putname() free it (instead we free all of the saved
99 * pointers at syscall exit time).
100 *
101 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
102struct audit_names {
103 const char *name;
9c937dcc
AG
104 int name_len; /* number of name's characters to log */
105 unsigned name_put; /* call __putname() for this name */
1da177e4
LT
106 unsigned long ino;
107 dev_t dev;
108 umode_t mode;
109 uid_t uid;
110 gid_t gid;
111 dev_t rdev;
1b50eed9 112 u32 osid;
851f7ff5
EP
113 struct audit_cap_data fcap;
114 unsigned int fcap_ver;
1da177e4
LT
115};
116
117struct audit_aux_data {
118 struct audit_aux_data *next;
119 int type;
120};
121
122#define AUDIT_AUX_IPCPERM 0
123
e54dc243
AG
124/* Number of target pids per aux struct. */
125#define AUDIT_AUX_PIDS 16
126
473ae30b
AV
127struct audit_aux_data_execve {
128 struct audit_aux_data d;
129 int argc;
130 int envc;
bdf4c48a 131 struct mm_struct *mm;
473ae30b
AV
132};
133
db349509
AV
134struct audit_aux_data_fd_pair {
135 struct audit_aux_data d;
136 int fd[2];
137};
138
e54dc243
AG
139struct audit_aux_data_pids {
140 struct audit_aux_data d;
141 pid_t target_pid[AUDIT_AUX_PIDS];
c2a7780e
EP
142 uid_t target_auid[AUDIT_AUX_PIDS];
143 uid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 144 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 145 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 146 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
147 int pid_count;
148};
149
3fc689e9
EP
150struct audit_aux_data_bprm_fcaps {
151 struct audit_aux_data d;
152 struct audit_cap_data fcap;
153 unsigned int fcap_ver;
154 struct audit_cap_data old_pcap;
155 struct audit_cap_data new_pcap;
156};
157
e68b75a0
EP
158struct audit_aux_data_capset {
159 struct audit_aux_data d;
160 pid_t pid;
161 struct audit_cap_data cap;
162};
163
74c3cbe3
AV
164struct audit_tree_refs {
165 struct audit_tree_refs *next;
166 struct audit_chunk *c[31];
167};
168
1da177e4
LT
169/* The per-task audit context. */
170struct audit_context {
d51374ad 171 int dummy; /* must be the first element */
1da177e4
LT
172 int in_syscall; /* 1 if task is in a syscall */
173 enum audit_state state;
174 unsigned int serial; /* serial number for record */
175 struct timespec ctime; /* time of syscall entry */
1da177e4
LT
176 int major; /* syscall number */
177 unsigned long argv[4]; /* syscall arguments */
178 int return_valid; /* return code is valid */
2fd6f58b 179 long return_code;/* syscall return code */
1da177e4
LT
180 int auditable; /* 1 if record should be written */
181 int name_count;
182 struct audit_names names[AUDIT_NAMES];
5adc8a6a 183 char * filterkey; /* key for rule that triggered record */
44707fdf 184 struct path pwd;
1da177e4
LT
185 struct audit_context *previous; /* For nested syscalls */
186 struct audit_aux_data *aux;
e54dc243 187 struct audit_aux_data *aux_pids;
4f6b434f
AV
188 struct sockaddr_storage *sockaddr;
189 size_t sockaddr_len;
1da177e4 190 /* Save things to print about task_struct */
f46038ff 191 pid_t pid, ppid;
1da177e4
LT
192 uid_t uid, euid, suid, fsuid;
193 gid_t gid, egid, sgid, fsgid;
194 unsigned long personality;
2fd6f58b 195 int arch;
1da177e4 196
a5cb013d 197 pid_t target_pid;
c2a7780e
EP
198 uid_t target_auid;
199 uid_t target_uid;
4746ec5b 200 unsigned int target_sessionid;
a5cb013d 201 u32 target_sid;
c2a7780e 202 char target_comm[TASK_COMM_LEN];
a5cb013d 203
74c3cbe3
AV
204 struct audit_tree_refs *trees, *first_trees;
205 int tree_count;
206
f3298dc4
AV
207 int type;
208 union {
209 struct {
210 int nargs;
211 long args[6];
212 } socketcall;
a33e6751
AV
213 struct {
214 uid_t uid;
215 gid_t gid;
216 mode_t mode;
217 u32 osid;
e816f370
AV
218 int has_perm;
219 uid_t perm_uid;
220 gid_t perm_gid;
221 mode_t perm_mode;
222 unsigned long qbytes;
a33e6751 223 } ipc;
7392906e
AV
224 struct {
225 mqd_t mqdes;
226 struct mq_attr mqstat;
227 } mq_getsetattr;
20114f71
AV
228 struct {
229 mqd_t mqdes;
230 int sigev_signo;
231 } mq_notify;
c32c8af4
AV
232 struct {
233 mqd_t mqdes;
234 size_t msg_len;
235 unsigned int msg_prio;
236 struct timespec abs_timeout;
237 } mq_sendrecv;
564f6993
AV
238 struct {
239 int oflag;
240 mode_t mode;
241 struct mq_attr attr;
242 } mq_open;
f3298dc4
AV
243 };
244
1da177e4
LT
245#if AUDIT_DEBUG
246 int put_count;
247 int ino_count;
248#endif
249};
250
55669bfa
AV
251#define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
252static inline int open_arg(int flags, int mask)
253{
254 int n = ACC_MODE(flags);
255 if (flags & (O_TRUNC | O_CREAT))
256 n |= AUDIT_PERM_WRITE;
257 return n & mask;
258}
259
260static int audit_match_perm(struct audit_context *ctx, int mask)
261{
c4bacefb 262 unsigned n;
1a61c88d 263 if (unlikely(!ctx))
264 return 0;
c4bacefb 265 n = ctx->major;
dbda4c0b 266
55669bfa
AV
267 switch (audit_classify_syscall(ctx->arch, n)) {
268 case 0: /* native */
269 if ((mask & AUDIT_PERM_WRITE) &&
270 audit_match_class(AUDIT_CLASS_WRITE, n))
271 return 1;
272 if ((mask & AUDIT_PERM_READ) &&
273 audit_match_class(AUDIT_CLASS_READ, n))
274 return 1;
275 if ((mask & AUDIT_PERM_ATTR) &&
276 audit_match_class(AUDIT_CLASS_CHATTR, n))
277 return 1;
278 return 0;
279 case 1: /* 32bit on biarch */
280 if ((mask & AUDIT_PERM_WRITE) &&
281 audit_match_class(AUDIT_CLASS_WRITE_32, n))
282 return 1;
283 if ((mask & AUDIT_PERM_READ) &&
284 audit_match_class(AUDIT_CLASS_READ_32, n))
285 return 1;
286 if ((mask & AUDIT_PERM_ATTR) &&
287 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
288 return 1;
289 return 0;
290 case 2: /* open */
291 return mask & ACC_MODE(ctx->argv[1]);
292 case 3: /* openat */
293 return mask & ACC_MODE(ctx->argv[2]);
294 case 4: /* socketcall */
295 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
296 case 5: /* execve */
297 return mask & AUDIT_PERM_EXEC;
298 default:
299 return 0;
300 }
301}
302
8b67dca9
AV
303static int audit_match_filetype(struct audit_context *ctx, int which)
304{
305 unsigned index = which & ~S_IFMT;
306 mode_t mode = which & S_IFMT;
1a61c88d 307
308 if (unlikely(!ctx))
309 return 0;
310
8b67dca9
AV
311 if (index >= ctx->name_count)
312 return 0;
313 if (ctx->names[index].ino == -1)
314 return 0;
315 if ((ctx->names[index].mode ^ mode) & S_IFMT)
316 return 0;
317 return 1;
318}
319
74c3cbe3
AV
320/*
321 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
322 * ->first_trees points to its beginning, ->trees - to the current end of data.
323 * ->tree_count is the number of free entries in array pointed to by ->trees.
324 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
325 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
326 * it's going to remain 1-element for almost any setup) until we free context itself.
327 * References in it _are_ dropped - at the same time we free/drop aux stuff.
328 */
329
330#ifdef CONFIG_AUDIT_TREE
331static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
332{
333 struct audit_tree_refs *p = ctx->trees;
334 int left = ctx->tree_count;
335 if (likely(left)) {
336 p->c[--left] = chunk;
337 ctx->tree_count = left;
338 return 1;
339 }
340 if (!p)
341 return 0;
342 p = p->next;
343 if (p) {
344 p->c[30] = chunk;
345 ctx->trees = p;
346 ctx->tree_count = 30;
347 return 1;
348 }
349 return 0;
350}
351
352static int grow_tree_refs(struct audit_context *ctx)
353{
354 struct audit_tree_refs *p = ctx->trees;
355 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
356 if (!ctx->trees) {
357 ctx->trees = p;
358 return 0;
359 }
360 if (p)
361 p->next = ctx->trees;
362 else
363 ctx->first_trees = ctx->trees;
364 ctx->tree_count = 31;
365 return 1;
366}
367#endif
368
369static void unroll_tree_refs(struct audit_context *ctx,
370 struct audit_tree_refs *p, int count)
371{
372#ifdef CONFIG_AUDIT_TREE
373 struct audit_tree_refs *q;
374 int n;
375 if (!p) {
376 /* we started with empty chain */
377 p = ctx->first_trees;
378 count = 31;
379 /* if the very first allocation has failed, nothing to do */
380 if (!p)
381 return;
382 }
383 n = count;
384 for (q = p; q != ctx->trees; q = q->next, n = 31) {
385 while (n--) {
386 audit_put_chunk(q->c[n]);
387 q->c[n] = NULL;
388 }
389 }
390 while (n-- > ctx->tree_count) {
391 audit_put_chunk(q->c[n]);
392 q->c[n] = NULL;
393 }
394 ctx->trees = p;
395 ctx->tree_count = count;
396#endif
397}
398
399static void free_tree_refs(struct audit_context *ctx)
400{
401 struct audit_tree_refs *p, *q;
402 for (p = ctx->first_trees; p; p = q) {
403 q = p->next;
404 kfree(p);
405 }
406}
407
408static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
409{
410#ifdef CONFIG_AUDIT_TREE
411 struct audit_tree_refs *p;
412 int n;
413 if (!tree)
414 return 0;
415 /* full ones */
416 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
417 for (n = 0; n < 31; n++)
418 if (audit_tree_match(p->c[n], tree))
419 return 1;
420 }
421 /* partial */
422 if (p) {
423 for (n = ctx->tree_count; n < 31; n++)
424 if (audit_tree_match(p->c[n], tree))
425 return 1;
426 }
427#endif
428 return 0;
429}
430
f368c07d 431/* Determine if any context name data matches a rule's watch data */
1da177e4
LT
432/* Compare a task_struct with an audit_rule. Return 1 on match, 0
433 * otherwise. */
434static int audit_filter_rules(struct task_struct *tsk,
93315ed6 435 struct audit_krule *rule,
1da177e4 436 struct audit_context *ctx,
f368c07d 437 struct audit_names *name,
1da177e4
LT
438 enum audit_state *state)
439{
c69e8d9c 440 const struct cred *cred = get_task_cred(tsk);
2ad312d2 441 int i, j, need_sid = 1;
3dc7e315
DG
442 u32 sid;
443
1da177e4 444 for (i = 0; i < rule->field_count; i++) {
93315ed6 445 struct audit_field *f = &rule->fields[i];
1da177e4
LT
446 int result = 0;
447
93315ed6 448 switch (f->type) {
1da177e4 449 case AUDIT_PID:
93315ed6 450 result = audit_comparator(tsk->pid, f->op, f->val);
1da177e4 451 break;
3c66251e 452 case AUDIT_PPID:
419c58f1
AV
453 if (ctx) {
454 if (!ctx->ppid)
455 ctx->ppid = sys_getppid();
3c66251e 456 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 457 }
3c66251e 458 break;
1da177e4 459 case AUDIT_UID:
b6dff3ec 460 result = audit_comparator(cred->uid, f->op, f->val);
1da177e4
LT
461 break;
462 case AUDIT_EUID:
b6dff3ec 463 result = audit_comparator(cred->euid, f->op, f->val);
1da177e4
LT
464 break;
465 case AUDIT_SUID:
b6dff3ec 466 result = audit_comparator(cred->suid, f->op, f->val);
1da177e4
LT
467 break;
468 case AUDIT_FSUID:
b6dff3ec 469 result = audit_comparator(cred->fsuid, f->op, f->val);
1da177e4
LT
470 break;
471 case AUDIT_GID:
b6dff3ec 472 result = audit_comparator(cred->gid, f->op, f->val);
1da177e4
LT
473 break;
474 case AUDIT_EGID:
b6dff3ec 475 result = audit_comparator(cred->egid, f->op, f->val);
1da177e4
LT
476 break;
477 case AUDIT_SGID:
b6dff3ec 478 result = audit_comparator(cred->sgid, f->op, f->val);
1da177e4
LT
479 break;
480 case AUDIT_FSGID:
b6dff3ec 481 result = audit_comparator(cred->fsgid, f->op, f->val);
1da177e4
LT
482 break;
483 case AUDIT_PERS:
93315ed6 484 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 485 break;
2fd6f58b 486 case AUDIT_ARCH:
9f8dbe9c 487 if (ctx)
93315ed6 488 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 489 break;
1da177e4
LT
490
491 case AUDIT_EXIT:
492 if (ctx && ctx->return_valid)
93315ed6 493 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
494 break;
495 case AUDIT_SUCCESS:
b01f2cc1 496 if (ctx && ctx->return_valid) {
93315ed6
AG
497 if (f->val)
498 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 499 else
93315ed6 500 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 501 }
1da177e4
LT
502 break;
503 case AUDIT_DEVMAJOR:
f368c07d
AG
504 if (name)
505 result = audit_comparator(MAJOR(name->dev),
506 f->op, f->val);
507 else if (ctx) {
1da177e4 508 for (j = 0; j < ctx->name_count; j++) {
93315ed6 509 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
1da177e4
LT
510 ++result;
511 break;
512 }
513 }
514 }
515 break;
516 case AUDIT_DEVMINOR:
f368c07d
AG
517 if (name)
518 result = audit_comparator(MINOR(name->dev),
519 f->op, f->val);
520 else if (ctx) {
1da177e4 521 for (j = 0; j < ctx->name_count; j++) {
93315ed6 522 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
1da177e4
LT
523 ++result;
524 break;
525 }
526 }
527 }
528 break;
529 case AUDIT_INODE:
f368c07d 530 if (name)
9c937dcc 531 result = (name->ino == f->val);
f368c07d 532 else if (ctx) {
1da177e4 533 for (j = 0; j < ctx->name_count; j++) {
9c937dcc 534 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
1da177e4
LT
535 ++result;
536 break;
537 }
538 }
539 }
540 break;
f368c07d
AG
541 case AUDIT_WATCH:
542 if (name && rule->watch->ino != (unsigned long)-1)
543 result = (name->dev == rule->watch->dev &&
9c937dcc 544 name->ino == rule->watch->ino);
f368c07d 545 break;
74c3cbe3
AV
546 case AUDIT_DIR:
547 if (ctx)
548 result = match_tree_refs(ctx, rule->tree);
549 break;
1da177e4
LT
550 case AUDIT_LOGINUID:
551 result = 0;
552 if (ctx)
bfef93a5 553 result = audit_comparator(tsk->loginuid, f->op, f->val);
1da177e4 554 break;
3a6b9f85
DG
555 case AUDIT_SUBJ_USER:
556 case AUDIT_SUBJ_ROLE:
557 case AUDIT_SUBJ_TYPE:
558 case AUDIT_SUBJ_SEN:
559 case AUDIT_SUBJ_CLR:
3dc7e315
DG
560 /* NOTE: this may return negative values indicating
561 a temporary error. We simply treat this as a
562 match for now to avoid losing information that
563 may be wanted. An error message will also be
564 logged upon error */
04305e4a 565 if (f->lsm_rule) {
2ad312d2 566 if (need_sid) {
2a862b32 567 security_task_getsecid(tsk, &sid);
2ad312d2
SG
568 need_sid = 0;
569 }
d7a96f3a 570 result = security_audit_rule_match(sid, f->type,
3dc7e315 571 f->op,
04305e4a 572 f->lsm_rule,
3dc7e315 573 ctx);
2ad312d2 574 }
3dc7e315 575 break;
6e5a2d1d
DG
576 case AUDIT_OBJ_USER:
577 case AUDIT_OBJ_ROLE:
578 case AUDIT_OBJ_TYPE:
579 case AUDIT_OBJ_LEV_LOW:
580 case AUDIT_OBJ_LEV_HIGH:
581 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
582 also applies here */
04305e4a 583 if (f->lsm_rule) {
6e5a2d1d
DG
584 /* Find files that match */
585 if (name) {
d7a96f3a 586 result = security_audit_rule_match(
6e5a2d1d 587 name->osid, f->type, f->op,
04305e4a 588 f->lsm_rule, ctx);
6e5a2d1d
DG
589 } else if (ctx) {
590 for (j = 0; j < ctx->name_count; j++) {
d7a96f3a 591 if (security_audit_rule_match(
6e5a2d1d
DG
592 ctx->names[j].osid,
593 f->type, f->op,
04305e4a 594 f->lsm_rule, ctx)) {
6e5a2d1d
DG
595 ++result;
596 break;
597 }
598 }
599 }
600 /* Find ipc objects that match */
a33e6751
AV
601 if (!ctx || ctx->type != AUDIT_IPC)
602 break;
603 if (security_audit_rule_match(ctx->ipc.osid,
604 f->type, f->op,
605 f->lsm_rule, ctx))
606 ++result;
6e5a2d1d
DG
607 }
608 break;
1da177e4
LT
609 case AUDIT_ARG0:
610 case AUDIT_ARG1:
611 case AUDIT_ARG2:
612 case AUDIT_ARG3:
613 if (ctx)
93315ed6 614 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 615 break;
5adc8a6a
AG
616 case AUDIT_FILTERKEY:
617 /* ignore this field for filtering */
618 result = 1;
619 break;
55669bfa
AV
620 case AUDIT_PERM:
621 result = audit_match_perm(ctx, f->val);
622 break;
8b67dca9
AV
623 case AUDIT_FILETYPE:
624 result = audit_match_filetype(ctx, f->val);
625 break;
1da177e4
LT
626 }
627
c69e8d9c
DH
628 if (!result) {
629 put_cred(cred);
1da177e4 630 return 0;
c69e8d9c 631 }
1da177e4 632 }
980dfb0d 633 if (rule->filterkey && ctx)
5adc8a6a 634 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
1da177e4
LT
635 switch (rule->action) {
636 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
637 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
638 }
c69e8d9c 639 put_cred(cred);
1da177e4
LT
640 return 1;
641}
642
643/* At process creation time, we can determine if system-call auditing is
644 * completely disabled for this task. Since we only have the task
645 * structure at this point, we can only check uid and gid.
646 */
647static enum audit_state audit_filter_task(struct task_struct *tsk)
648{
649 struct audit_entry *e;
650 enum audit_state state;
651
652 rcu_read_lock();
0f45aa18 653 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f368c07d 654 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
1da177e4
LT
655 rcu_read_unlock();
656 return state;
657 }
658 }
659 rcu_read_unlock();
660 return AUDIT_BUILD_CONTEXT;
661}
662
663/* At syscall entry and exit time, this filter is called if the
664 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 665 * also not high enough that we already know we have to write an audit
b0dd25a8 666 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
667 */
668static enum audit_state audit_filter_syscall(struct task_struct *tsk,
669 struct audit_context *ctx,
670 struct list_head *list)
671{
672 struct audit_entry *e;
c3896495 673 enum audit_state state;
1da177e4 674
351bb722 675 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
676 return AUDIT_DISABLED;
677
1da177e4 678 rcu_read_lock();
c3896495 679 if (!list_empty(list)) {
b63862f4
DK
680 int word = AUDIT_WORD(ctx->major);
681 int bit = AUDIT_BIT(ctx->major);
682
683 list_for_each_entry_rcu(e, list, list) {
f368c07d
AG
684 if ((e->rule.mask[word] & bit) == bit &&
685 audit_filter_rules(tsk, &e->rule, ctx, NULL,
686 &state)) {
687 rcu_read_unlock();
688 return state;
689 }
690 }
691 }
692 rcu_read_unlock();
693 return AUDIT_BUILD_CONTEXT;
694}
695
696/* At syscall exit time, this filter is called if any audit_names[] have been
697 * collected during syscall processing. We only check rules in sublists at hash
698 * buckets applicable to the inode numbers in audit_names[].
699 * Regarding audit_state, same rules apply as for audit_filter_syscall().
700 */
701enum audit_state audit_filter_inodes(struct task_struct *tsk,
702 struct audit_context *ctx)
703{
704 int i;
705 struct audit_entry *e;
706 enum audit_state state;
707
708 if (audit_pid && tsk->tgid == audit_pid)
709 return AUDIT_DISABLED;
710
711 rcu_read_lock();
712 for (i = 0; i < ctx->name_count; i++) {
713 int word = AUDIT_WORD(ctx->major);
714 int bit = AUDIT_BIT(ctx->major);
715 struct audit_names *n = &ctx->names[i];
716 int h = audit_hash_ino((u32)n->ino);
717 struct list_head *list = &audit_inode_hash[h];
718
719 if (list_empty(list))
720 continue;
721
722 list_for_each_entry_rcu(e, list, list) {
723 if ((e->rule.mask[word] & bit) == bit &&
724 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
b63862f4
DK
725 rcu_read_unlock();
726 return state;
727 }
0f45aa18
DW
728 }
729 }
730 rcu_read_unlock();
1da177e4 731 return AUDIT_BUILD_CONTEXT;
0f45aa18
DW
732}
733
f368c07d
AG
734void audit_set_auditable(struct audit_context *ctx)
735{
736 ctx->auditable = 1;
737}
738
1da177e4
LT
739static inline struct audit_context *audit_get_context(struct task_struct *tsk,
740 int return_valid,
741 int return_code)
742{
743 struct audit_context *context = tsk->audit_context;
744
745 if (likely(!context))
746 return NULL;
747 context->return_valid = return_valid;
f701b75e
EP
748
749 /*
750 * we need to fix up the return code in the audit logs if the actual
751 * return codes are later going to be fixed up by the arch specific
752 * signal handlers
753 *
754 * This is actually a test for:
755 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
756 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
757 *
758 * but is faster than a bunch of ||
759 */
760 if (unlikely(return_code <= -ERESTARTSYS) &&
761 (return_code >= -ERESTART_RESTARTBLOCK) &&
762 (return_code != -ENOIOCTLCMD))
763 context->return_code = -EINTR;
764 else
765 context->return_code = return_code;
1da177e4 766
d51374ad 767 if (context->in_syscall && !context->dummy && !context->auditable) {
1da177e4 768 enum audit_state state;
f368c07d 769
0f45aa18 770 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
f368c07d
AG
771 if (state == AUDIT_RECORD_CONTEXT) {
772 context->auditable = 1;
773 goto get_context;
774 }
775
776 state = audit_filter_inodes(tsk, context);
1da177e4
LT
777 if (state == AUDIT_RECORD_CONTEXT)
778 context->auditable = 1;
f368c07d 779
1da177e4
LT
780 }
781
f368c07d 782get_context:
3f2792ff 783
1da177e4
LT
784 tsk->audit_context = NULL;
785 return context;
786}
787
788static inline void audit_free_names(struct audit_context *context)
789{
790 int i;
791
792#if AUDIT_DEBUG == 2
793 if (context->auditable
794 ||context->put_count + context->ino_count != context->name_count) {
73241ccc 795 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1da177e4
LT
796 " name_count=%d put_count=%d"
797 " ino_count=%d [NOT freeing]\n",
73241ccc 798 __FILE__, __LINE__,
1da177e4
LT
799 context->serial, context->major, context->in_syscall,
800 context->name_count, context->put_count,
801 context->ino_count);
8c8570fb 802 for (i = 0; i < context->name_count; i++) {
1da177e4
LT
803 printk(KERN_ERR "names[%d] = %p = %s\n", i,
804 context->names[i].name,
73241ccc 805 context->names[i].name ?: "(null)");
8c8570fb 806 }
1da177e4
LT
807 dump_stack();
808 return;
809 }
810#endif
811#if AUDIT_DEBUG
812 context->put_count = 0;
813 context->ino_count = 0;
814#endif
815
8c8570fb 816 for (i = 0; i < context->name_count; i++) {
9c937dcc 817 if (context->names[i].name && context->names[i].name_put)
1da177e4 818 __putname(context->names[i].name);
8c8570fb 819 }
1da177e4 820 context->name_count = 0;
44707fdf
JB
821 path_put(&context->pwd);
822 context->pwd.dentry = NULL;
823 context->pwd.mnt = NULL;
1da177e4
LT
824}
825
826static inline void audit_free_aux(struct audit_context *context)
827{
828 struct audit_aux_data *aux;
829
830 while ((aux = context->aux)) {
831 context->aux = aux->next;
832 kfree(aux);
833 }
e54dc243
AG
834 while ((aux = context->aux_pids)) {
835 context->aux_pids = aux->next;
836 kfree(aux);
837 }
1da177e4
LT
838}
839
840static inline void audit_zero_context(struct audit_context *context,
841 enum audit_state state)
842{
1da177e4
LT
843 memset(context, 0, sizeof(*context));
844 context->state = state;
1da177e4
LT
845}
846
847static inline struct audit_context *audit_alloc_context(enum audit_state state)
848{
849 struct audit_context *context;
850
851 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
852 return NULL;
853 audit_zero_context(context, state);
854 return context;
855}
856
b0dd25a8
RD
857/**
858 * audit_alloc - allocate an audit context block for a task
859 * @tsk: task
860 *
861 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
862 * if necessary. Doing so turns on system call auditing for the
863 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
864 * needed.
865 */
1da177e4
LT
866int audit_alloc(struct task_struct *tsk)
867{
868 struct audit_context *context;
869 enum audit_state state;
870
b593d384 871 if (likely(!audit_ever_enabled))
1da177e4
LT
872 return 0; /* Return if not auditing. */
873
874 state = audit_filter_task(tsk);
875 if (likely(state == AUDIT_DISABLED))
876 return 0;
877
878 if (!(context = audit_alloc_context(state))) {
879 audit_log_lost("out of memory in audit_alloc");
880 return -ENOMEM;
881 }
882
1da177e4
LT
883 tsk->audit_context = context;
884 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
885 return 0;
886}
887
888static inline void audit_free_context(struct audit_context *context)
889{
890 struct audit_context *previous;
891 int count = 0;
892
893 do {
894 previous = context->previous;
895 if (previous || (count && count < 10)) {
896 ++count;
897 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
898 " freeing multiple contexts (%d)\n",
899 context->serial, context->major,
900 context->name_count, count);
901 }
902 audit_free_names(context);
74c3cbe3
AV
903 unroll_tree_refs(context, NULL, 0);
904 free_tree_refs(context);
1da177e4 905 audit_free_aux(context);
5adc8a6a 906 kfree(context->filterkey);
4f6b434f 907 kfree(context->sockaddr);
1da177e4
LT
908 kfree(context);
909 context = previous;
910 } while (context);
911 if (count >= 10)
912 printk(KERN_ERR "audit: freed %d contexts\n", count);
913}
914
161a09e7 915void audit_log_task_context(struct audit_buffer *ab)
8c8570fb
DK
916{
917 char *ctx = NULL;
c4823bce
AV
918 unsigned len;
919 int error;
920 u32 sid;
921
2a862b32 922 security_task_getsecid(current, &sid);
c4823bce
AV
923 if (!sid)
924 return;
8c8570fb 925
2a862b32 926 error = security_secid_to_secctx(sid, &ctx, &len);
c4823bce
AV
927 if (error) {
928 if (error != -EINVAL)
8c8570fb
DK
929 goto error_path;
930 return;
931 }
932
8c8570fb 933 audit_log_format(ab, " subj=%s", ctx);
2a862b32 934 security_release_secctx(ctx, len);
7306a0b9 935 return;
8c8570fb
DK
936
937error_path:
7306a0b9 938 audit_panic("error in audit_log_task_context");
8c8570fb
DK
939 return;
940}
941
161a09e7
JL
942EXPORT_SYMBOL(audit_log_task_context);
943
e495149b 944static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
219f0817 945{
45d9bb0e
AV
946 char name[sizeof(tsk->comm)];
947 struct mm_struct *mm = tsk->mm;
219f0817
SS
948 struct vm_area_struct *vma;
949
e495149b
AV
950 /* tsk == current */
951
45d9bb0e 952 get_task_comm(name, tsk);
99e45eea
DW
953 audit_log_format(ab, " comm=");
954 audit_log_untrustedstring(ab, name);
219f0817 955
e495149b
AV
956 if (mm) {
957 down_read(&mm->mmap_sem);
958 vma = mm->mmap;
959 while (vma) {
960 if ((vma->vm_flags & VM_EXECUTABLE) &&
961 vma->vm_file) {
962 audit_log_d_path(ab, "exe=",
44707fdf 963 &vma->vm_file->f_path);
e495149b
AV
964 break;
965 }
966 vma = vma->vm_next;
219f0817 967 }
e495149b 968 up_read(&mm->mmap_sem);
219f0817 969 }
e495149b 970 audit_log_task_context(ab);
219f0817
SS
971}
972
e54dc243 973static int audit_log_pid_context(struct audit_context *context, pid_t pid,
4746ec5b
EP
974 uid_t auid, uid_t uid, unsigned int sessionid,
975 u32 sid, char *comm)
e54dc243
AG
976{
977 struct audit_buffer *ab;
2a862b32 978 char *ctx = NULL;
e54dc243
AG
979 u32 len;
980 int rc = 0;
981
982 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
983 if (!ab)
6246ccab 984 return rc;
e54dc243 985
4746ec5b
EP
986 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
987 uid, sessionid);
2a862b32 988 if (security_secid_to_secctx(sid, &ctx, &len)) {
c2a7780e 989 audit_log_format(ab, " obj=(none)");
e54dc243 990 rc = 1;
2a862b32
AD
991 } else {
992 audit_log_format(ab, " obj=%s", ctx);
993 security_release_secctx(ctx, len);
994 }
c2a7780e
EP
995 audit_log_format(ab, " ocomm=");
996 audit_log_untrustedstring(ab, comm);
e54dc243 997 audit_log_end(ab);
e54dc243
AG
998
999 return rc;
1000}
1001
de6bbd1d
EP
1002/*
1003 * to_send and len_sent accounting are very loose estimates. We aren't
1004 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1005 * within about 500 bytes (next page boundry)
1006 *
1007 * why snprintf? an int is up to 12 digits long. if we just assumed when
1008 * logging that a[%d]= was going to be 16 characters long we would be wasting
1009 * space in every audit message. In one 7500 byte message we can log up to
1010 * about 1000 min size arguments. That comes down to about 50% waste of space
1011 * if we didn't do the snprintf to find out how long arg_num_len was.
1012 */
1013static int audit_log_single_execve_arg(struct audit_context *context,
1014 struct audit_buffer **ab,
1015 int arg_num,
1016 size_t *len_sent,
1017 const char __user *p,
1018 char *buf)
bdf4c48a 1019{
de6bbd1d
EP
1020 char arg_num_len_buf[12];
1021 const char __user *tmp_p = p;
1022 /* how many digits are in arg_num? 3 is the length of a=\n */
1023 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3;
1024 size_t len, len_left, to_send;
1025 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1026 unsigned int i, has_cntl = 0, too_long = 0;
1027 int ret;
1028
1029 /* strnlen_user includes the null we don't want to send */
1030 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
bdf4c48a 1031
de6bbd1d
EP
1032 /*
1033 * We just created this mm, if we can't find the strings
1034 * we just copied into it something is _very_ wrong. Similar
1035 * for strings that are too long, we should not have created
1036 * any.
1037 */
b0abcfc1 1038 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
de6bbd1d
EP
1039 WARN_ON(1);
1040 send_sig(SIGKILL, current, 0);
b0abcfc1 1041 return -1;
de6bbd1d 1042 }
040b3a2d 1043
de6bbd1d
EP
1044 /* walk the whole argument looking for non-ascii chars */
1045 do {
1046 if (len_left > MAX_EXECVE_AUDIT_LEN)
1047 to_send = MAX_EXECVE_AUDIT_LEN;
1048 else
1049 to_send = len_left;
1050 ret = copy_from_user(buf, tmp_p, to_send);
bdf4c48a 1051 /*
de6bbd1d
EP
1052 * There is no reason for this copy to be short. We just
1053 * copied them here, and the mm hasn't been exposed to user-
1054 * space yet.
bdf4c48a 1055 */
de6bbd1d 1056 if (ret) {
bdf4c48a
PZ
1057 WARN_ON(1);
1058 send_sig(SIGKILL, current, 0);
b0abcfc1 1059 return -1;
bdf4c48a 1060 }
de6bbd1d
EP
1061 buf[to_send] = '\0';
1062 has_cntl = audit_string_contains_control(buf, to_send);
1063 if (has_cntl) {
1064 /*
1065 * hex messages get logged as 2 bytes, so we can only
1066 * send half as much in each message
1067 */
1068 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
bdf4c48a
PZ
1069 break;
1070 }
de6bbd1d
EP
1071 len_left -= to_send;
1072 tmp_p += to_send;
1073 } while (len_left > 0);
1074
1075 len_left = len;
1076
1077 if (len > max_execve_audit_len)
1078 too_long = 1;
1079
1080 /* rewalk the argument actually logging the message */
1081 for (i = 0; len_left > 0; i++) {
1082 int room_left;
1083
1084 if (len_left > max_execve_audit_len)
1085 to_send = max_execve_audit_len;
1086 else
1087 to_send = len_left;
1088
1089 /* do we have space left to send this argument in this ab? */
1090 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1091 if (has_cntl)
1092 room_left -= (to_send * 2);
1093 else
1094 room_left -= to_send;
1095 if (room_left < 0) {
1096 *len_sent = 0;
1097 audit_log_end(*ab);
1098 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1099 if (!*ab)
1100 return 0;
1101 }
bdf4c48a 1102
bdf4c48a 1103 /*
de6bbd1d
EP
1104 * first record needs to say how long the original string was
1105 * so we can be sure nothing was lost.
1106 */
1107 if ((i == 0) && (too_long))
422b03cf 1108 audit_log_format(*ab, "a%d_len=%zu ", arg_num,
de6bbd1d
EP
1109 has_cntl ? 2*len : len);
1110
1111 /*
1112 * normally arguments are small enough to fit and we already
1113 * filled buf above when we checked for control characters
1114 * so don't bother with another copy_from_user
bdf4c48a 1115 */
de6bbd1d
EP
1116 if (len >= max_execve_audit_len)
1117 ret = copy_from_user(buf, p, to_send);
1118 else
1119 ret = 0;
040b3a2d 1120 if (ret) {
bdf4c48a
PZ
1121 WARN_ON(1);
1122 send_sig(SIGKILL, current, 0);
b0abcfc1 1123 return -1;
bdf4c48a 1124 }
de6bbd1d
EP
1125 buf[to_send] = '\0';
1126
1127 /* actually log it */
1128 audit_log_format(*ab, "a%d", arg_num);
1129 if (too_long)
1130 audit_log_format(*ab, "[%d]", i);
1131 audit_log_format(*ab, "=");
1132 if (has_cntl)
b556f8ad 1133 audit_log_n_hex(*ab, buf, to_send);
de6bbd1d
EP
1134 else
1135 audit_log_format(*ab, "\"%s\"", buf);
1136 audit_log_format(*ab, "\n");
1137
1138 p += to_send;
1139 len_left -= to_send;
1140 *len_sent += arg_num_len;
1141 if (has_cntl)
1142 *len_sent += to_send * 2;
1143 else
1144 *len_sent += to_send;
1145 }
1146 /* include the null we didn't log */
1147 return len + 1;
1148}
1149
1150static void audit_log_execve_info(struct audit_context *context,
1151 struct audit_buffer **ab,
1152 struct audit_aux_data_execve *axi)
1153{
1154 int i;
1155 size_t len, len_sent = 0;
1156 const char __user *p;
1157 char *buf;
bdf4c48a 1158
de6bbd1d
EP
1159 if (axi->mm != current->mm)
1160 return; /* execve failed, no additional info */
1161
1162 p = (const char __user *)axi->mm->arg_start;
bdf4c48a 1163
de6bbd1d
EP
1164 audit_log_format(*ab, "argc=%d ", axi->argc);
1165
1166 /*
1167 * we need some kernel buffer to hold the userspace args. Just
1168 * allocate one big one rather than allocating one of the right size
1169 * for every single argument inside audit_log_single_execve_arg()
1170 * should be <8k allocation so should be pretty safe.
1171 */
1172 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1173 if (!buf) {
1174 audit_panic("out of memory for argv string\n");
1175 return;
bdf4c48a 1176 }
de6bbd1d
EP
1177
1178 for (i = 0; i < axi->argc; i++) {
1179 len = audit_log_single_execve_arg(context, ab, i,
1180 &len_sent, p, buf);
1181 if (len <= 0)
1182 break;
1183 p += len;
1184 }
1185 kfree(buf);
bdf4c48a
PZ
1186}
1187
851f7ff5
EP
1188static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1189{
1190 int i;
1191
1192 audit_log_format(ab, " %s=", prefix);
1193 CAP_FOR_EACH_U32(i) {
1194 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1195 }
1196}
1197
1198static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1199{
1200 kernel_cap_t *perm = &name->fcap.permitted;
1201 kernel_cap_t *inh = &name->fcap.inheritable;
1202 int log = 0;
1203
1204 if (!cap_isclear(*perm)) {
1205 audit_log_cap(ab, "cap_fp", perm);
1206 log = 1;
1207 }
1208 if (!cap_isclear(*inh)) {
1209 audit_log_cap(ab, "cap_fi", inh);
1210 log = 1;
1211 }
1212
1213 if (log)
1214 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1215}
1216
a33e6751 1217static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1218{
1219 struct audit_buffer *ab;
1220 int i;
1221
1222 ab = audit_log_start(context, GFP_KERNEL, context->type);
1223 if (!ab)
1224 return;
1225
1226 switch (context->type) {
1227 case AUDIT_SOCKETCALL: {
1228 int nargs = context->socketcall.nargs;
1229 audit_log_format(ab, "nargs=%d", nargs);
1230 for (i = 0; i < nargs; i++)
1231 audit_log_format(ab, " a%d=%lx", i,
1232 context->socketcall.args[i]);
1233 break; }
a33e6751
AV
1234 case AUDIT_IPC: {
1235 u32 osid = context->ipc.osid;
1236
1237 audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1238 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1239 if (osid) {
1240 char *ctx = NULL;
1241 u32 len;
1242 if (security_secid_to_secctx(osid, &ctx, &len)) {
1243 audit_log_format(ab, " osid=%u", osid);
1244 *call_panic = 1;
1245 } else {
1246 audit_log_format(ab, " obj=%s", ctx);
1247 security_release_secctx(ctx, len);
1248 }
1249 }
e816f370
AV
1250 if (context->ipc.has_perm) {
1251 audit_log_end(ab);
1252 ab = audit_log_start(context, GFP_KERNEL,
1253 AUDIT_IPC_SET_PERM);
1254 audit_log_format(ab,
1255 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1256 context->ipc.qbytes,
1257 context->ipc.perm_uid,
1258 context->ipc.perm_gid,
1259 context->ipc.perm_mode);
1260 if (!ab)
1261 return;
1262 }
a33e6751 1263 break; }
564f6993
AV
1264 case AUDIT_MQ_OPEN: {
1265 audit_log_format(ab,
1266 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1267 "mq_msgsize=%ld mq_curmsgs=%ld",
1268 context->mq_open.oflag, context->mq_open.mode,
1269 context->mq_open.attr.mq_flags,
1270 context->mq_open.attr.mq_maxmsg,
1271 context->mq_open.attr.mq_msgsize,
1272 context->mq_open.attr.mq_curmsgs);
1273 break; }
c32c8af4
AV
1274 case AUDIT_MQ_SENDRECV: {
1275 audit_log_format(ab,
1276 "mqdes=%d msg_len=%zd msg_prio=%u "
1277 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1278 context->mq_sendrecv.mqdes,
1279 context->mq_sendrecv.msg_len,
1280 context->mq_sendrecv.msg_prio,
1281 context->mq_sendrecv.abs_timeout.tv_sec,
1282 context->mq_sendrecv.abs_timeout.tv_nsec);
1283 break; }
20114f71
AV
1284 case AUDIT_MQ_NOTIFY: {
1285 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1286 context->mq_notify.mqdes,
1287 context->mq_notify.sigev_signo);
1288 break; }
7392906e
AV
1289 case AUDIT_MQ_GETSETATTR: {
1290 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1291 audit_log_format(ab,
1292 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1293 "mq_curmsgs=%ld ",
1294 context->mq_getsetattr.mqdes,
1295 attr->mq_flags, attr->mq_maxmsg,
1296 attr->mq_msgsize, attr->mq_curmsgs);
1297 break; }
f3298dc4
AV
1298 }
1299 audit_log_end(ab);
1300}
1301
e495149b 1302static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1303{
c69e8d9c 1304 const struct cred *cred;
9c7aa6aa 1305 int i, call_panic = 0;
1da177e4 1306 struct audit_buffer *ab;
7551ced3 1307 struct audit_aux_data *aux;
a6c043a8 1308 const char *tty;
1da177e4 1309
e495149b 1310 /* tsk == current */
3f2792ff 1311 context->pid = tsk->pid;
419c58f1
AV
1312 if (!context->ppid)
1313 context->ppid = sys_getppid();
c69e8d9c
DH
1314 cred = current_cred();
1315 context->uid = cred->uid;
1316 context->gid = cred->gid;
1317 context->euid = cred->euid;
1318 context->suid = cred->suid;
b6dff3ec 1319 context->fsuid = cred->fsuid;
c69e8d9c
DH
1320 context->egid = cred->egid;
1321 context->sgid = cred->sgid;
b6dff3ec 1322 context->fsgid = cred->fsgid;
3f2792ff 1323 context->personality = tsk->personality;
e495149b
AV
1324
1325 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1326 if (!ab)
1327 return; /* audit_panic has been called */
bccf6ae0
DW
1328 audit_log_format(ab, "arch=%x syscall=%d",
1329 context->arch, context->major);
1da177e4
LT
1330 if (context->personality != PER_LINUX)
1331 audit_log_format(ab, " per=%lx", context->personality);
1332 if (context->return_valid)
9f8dbe9c 1333 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b
DW
1334 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1335 context->return_code);
eb84a20e 1336
dbda4c0b 1337 spin_lock_irq(&tsk->sighand->siglock);
45d9bb0e
AV
1338 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1339 tty = tsk->signal->tty->name;
a6c043a8
SG
1340 else
1341 tty = "(none)";
dbda4c0b
AC
1342 spin_unlock_irq(&tsk->sighand->siglock);
1343
1da177e4
LT
1344 audit_log_format(ab,
1345 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
f46038ff 1346 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
326e9c8b 1347 " euid=%u suid=%u fsuid=%u"
4746ec5b 1348 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1da177e4
LT
1349 context->argv[0],
1350 context->argv[1],
1351 context->argv[2],
1352 context->argv[3],
1353 context->name_count,
f46038ff 1354 context->ppid,
1da177e4 1355 context->pid,
bfef93a5 1356 tsk->loginuid,
1da177e4
LT
1357 context->uid,
1358 context->gid,
1359 context->euid, context->suid, context->fsuid,
4746ec5b
EP
1360 context->egid, context->sgid, context->fsgid, tty,
1361 tsk->sessionid);
eb84a20e 1362
eb84a20e 1363
e495149b 1364 audit_log_task_info(ab, tsk);
5adc8a6a
AG
1365 if (context->filterkey) {
1366 audit_log_format(ab, " key=");
1367 audit_log_untrustedstring(ab, context->filterkey);
1368 } else
1369 audit_log_format(ab, " key=(null)");
1da177e4 1370 audit_log_end(ab);
1da177e4 1371
7551ced3 1372 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1373
e495149b 1374 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1375 if (!ab)
1376 continue; /* audit_panic has been called */
1377
1da177e4 1378 switch (aux->type) {
20ca73bc 1379
473ae30b
AV
1380 case AUDIT_EXECVE: {
1381 struct audit_aux_data_execve *axi = (void *)aux;
de6bbd1d 1382 audit_log_execve_info(context, &ab, axi);
473ae30b 1383 break; }
073115d6 1384
db349509
AV
1385 case AUDIT_FD_PAIR: {
1386 struct audit_aux_data_fd_pair *axs = (void *)aux;
1387 audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1388 break; }
1389
3fc689e9
EP
1390 case AUDIT_BPRM_FCAPS: {
1391 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1392 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1393 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1394 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1395 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1396 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1397 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1398 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1399 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1400 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1401 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1402 break; }
1403
e68b75a0
EP
1404 case AUDIT_CAPSET: {
1405 struct audit_aux_data_capset *axs = (void *)aux;
1406 audit_log_format(ab, "pid=%d", axs->pid);
1407 audit_log_cap(ab, "cap_pi", &axs->cap.inheritable);
1408 audit_log_cap(ab, "cap_pp", &axs->cap.permitted);
1409 audit_log_cap(ab, "cap_pe", &axs->cap.effective);
1410 break; }
1411
1da177e4
LT
1412 }
1413 audit_log_end(ab);
1da177e4
LT
1414 }
1415
f3298dc4 1416 if (context->type)
a33e6751 1417 show_special(context, &call_panic);
f3298dc4 1418
4f6b434f
AV
1419 if (context->sockaddr_len) {
1420 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1421 if (ab) {
1422 audit_log_format(ab, "saddr=");
1423 audit_log_n_hex(ab, (void *)context->sockaddr,
1424 context->sockaddr_len);
1425 audit_log_end(ab);
1426 }
1427 }
1428
e54dc243
AG
1429 for (aux = context->aux_pids; aux; aux = aux->next) {
1430 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1431
1432 for (i = 0; i < axs->pid_count; i++)
1433 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1434 axs->target_auid[i],
1435 axs->target_uid[i],
4746ec5b 1436 axs->target_sessionid[i],
c2a7780e
EP
1437 axs->target_sid[i],
1438 axs->target_comm[i]))
e54dc243 1439 call_panic = 1;
a5cb013d
AV
1440 }
1441
e54dc243
AG
1442 if (context->target_pid &&
1443 audit_log_pid_context(context, context->target_pid,
c2a7780e 1444 context->target_auid, context->target_uid,
4746ec5b 1445 context->target_sessionid,
c2a7780e 1446 context->target_sid, context->target_comm))
e54dc243
AG
1447 call_panic = 1;
1448
44707fdf 1449 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1450 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1451 if (ab) {
44707fdf 1452 audit_log_d_path(ab, "cwd=", &context->pwd);
8f37d47c
DW
1453 audit_log_end(ab);
1454 }
1455 }
1da177e4 1456 for (i = 0; i < context->name_count; i++) {
9c937dcc 1457 struct audit_names *n = &context->names[i];
73241ccc 1458
e495149b 1459 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1da177e4
LT
1460 if (!ab)
1461 continue; /* audit_panic has been called */
8f37d47c 1462
1da177e4 1463 audit_log_format(ab, "item=%d", i);
73241ccc 1464
9c937dcc
AG
1465 if (n->name) {
1466 switch(n->name_len) {
1467 case AUDIT_NAME_FULL:
1468 /* log the full path */
1469 audit_log_format(ab, " name=");
1470 audit_log_untrustedstring(ab, n->name);
1471 break;
1472 case 0:
1473 /* name was specified as a relative path and the
1474 * directory component is the cwd */
44707fdf 1475 audit_log_d_path(ab, " name=", &context->pwd);
9c937dcc
AG
1476 break;
1477 default:
1478 /* log the name's directory component */
1479 audit_log_format(ab, " name=");
b556f8ad
EP
1480 audit_log_n_untrustedstring(ab, n->name,
1481 n->name_len);
9c937dcc
AG
1482 }
1483 } else
1484 audit_log_format(ab, " name=(null)");
1485
1486 if (n->ino != (unsigned long)-1) {
1487 audit_log_format(ab, " inode=%lu"
1488 " dev=%02x:%02x mode=%#o"
1489 " ouid=%u ogid=%u rdev=%02x:%02x",
1490 n->ino,
1491 MAJOR(n->dev),
1492 MINOR(n->dev),
1493 n->mode,
1494 n->uid,
1495 n->gid,
1496 MAJOR(n->rdev),
1497 MINOR(n->rdev));
1498 }
1499 if (n->osid != 0) {
1b50eed9
SG
1500 char *ctx = NULL;
1501 u32 len;
2a862b32 1502 if (security_secid_to_secctx(
9c937dcc
AG
1503 n->osid, &ctx, &len)) {
1504 audit_log_format(ab, " osid=%u", n->osid);
9c7aa6aa 1505 call_panic = 2;
2a862b32 1506 } else {
1b50eed9 1507 audit_log_format(ab, " obj=%s", ctx);
2a862b32
AD
1508 security_release_secctx(ctx, len);
1509 }
8c8570fb
DK
1510 }
1511
851f7ff5
EP
1512 audit_log_fcaps(ab, n);
1513
1da177e4
LT
1514 audit_log_end(ab);
1515 }
c0641f28
EP
1516
1517 /* Send end of event record to help user space know we are finished */
1518 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1519 if (ab)
1520 audit_log_end(ab);
9c7aa6aa
SG
1521 if (call_panic)
1522 audit_panic("error converting sid to string");
1da177e4
LT
1523}
1524
b0dd25a8
RD
1525/**
1526 * audit_free - free a per-task audit context
1527 * @tsk: task whose audit context block to free
1528 *
fa84cb93 1529 * Called from copy_process and do_exit
b0dd25a8 1530 */
1da177e4
LT
1531void audit_free(struct task_struct *tsk)
1532{
1533 struct audit_context *context;
1534
1da177e4 1535 context = audit_get_context(tsk, 0, 0);
1da177e4
LT
1536 if (likely(!context))
1537 return;
1538
1539 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1540 * function (e.g., exit_group), then free context block.
1541 * We use GFP_ATOMIC here because we might be doing this
f5561964 1542 * in the context of the idle thread */
e495149b 1543 /* that can happen only if we are called from do_exit() */
f7056d64 1544 if (context->in_syscall && context->auditable)
e495149b 1545 audit_log_exit(context, tsk);
1da177e4
LT
1546
1547 audit_free_context(context);
1548}
1549
b0dd25a8
RD
1550/**
1551 * audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1552 * @arch: architecture type
1553 * @major: major syscall type (function)
1554 * @a1: additional syscall register 1
1555 * @a2: additional syscall register 2
1556 * @a3: additional syscall register 3
1557 * @a4: additional syscall register 4
1558 *
1559 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1560 * audit context was created when the task was created and the state or
1561 * filters demand the audit context be built. If the state from the
1562 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1563 * then the record will be written at syscall exit time (otherwise, it
1564 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1565 * be written).
1566 */
5411be59 1567void audit_syscall_entry(int arch, int major,
1da177e4
LT
1568 unsigned long a1, unsigned long a2,
1569 unsigned long a3, unsigned long a4)
1570{
5411be59 1571 struct task_struct *tsk = current;
1da177e4
LT
1572 struct audit_context *context = tsk->audit_context;
1573 enum audit_state state;
1574
86a1c34a
RM
1575 if (unlikely(!context))
1576 return;
1da177e4 1577
b0dd25a8
RD
1578 /*
1579 * This happens only on certain architectures that make system
1da177e4
LT
1580 * calls in kernel_thread via the entry.S interface, instead of
1581 * with direct calls. (If you are porting to a new
1582 * architecture, hitting this condition can indicate that you
1583 * got the _exit/_leave calls backward in entry.S.)
1584 *
1585 * i386 no
1586 * x86_64 no
2ef9481e 1587 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1da177e4
LT
1588 *
1589 * This also happens with vm86 emulation in a non-nested manner
1590 * (entries without exits), so this case must be caught.
1591 */
1592 if (context->in_syscall) {
1593 struct audit_context *newctx;
1594
1da177e4
LT
1595#if AUDIT_DEBUG
1596 printk(KERN_ERR
1597 "audit(:%d) pid=%d in syscall=%d;"
1598 " entering syscall=%d\n",
1599 context->serial, tsk->pid, context->major, major);
1600#endif
1601 newctx = audit_alloc_context(context->state);
1602 if (newctx) {
1603 newctx->previous = context;
1604 context = newctx;
1605 tsk->audit_context = newctx;
1606 } else {
1607 /* If we can't alloc a new context, the best we
1608 * can do is to leak memory (any pending putname
1609 * will be lost). The only other alternative is
1610 * to abandon auditing. */
1611 audit_zero_context(context, context->state);
1612 }
1613 }
1614 BUG_ON(context->in_syscall || context->name_count);
1615
1616 if (!audit_enabled)
1617 return;
1618
2fd6f58b 1619 context->arch = arch;
1da177e4
LT
1620 context->major = major;
1621 context->argv[0] = a1;
1622 context->argv[1] = a2;
1623 context->argv[2] = a3;
1624 context->argv[3] = a4;
1625
1626 state = context->state;
d51374ad
AV
1627 context->dummy = !audit_n_rules;
1628 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
0f45aa18 1629 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1da177e4
LT
1630 if (likely(state == AUDIT_DISABLED))
1631 return;
1632
ce625a80 1633 context->serial = 0;
1da177e4
LT
1634 context->ctime = CURRENT_TIME;
1635 context->in_syscall = 1;
1636 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
419c58f1 1637 context->ppid = 0;
1da177e4
LT
1638}
1639
a64e6494
AV
1640void audit_finish_fork(struct task_struct *child)
1641{
1642 struct audit_context *ctx = current->audit_context;
1643 struct audit_context *p = child->audit_context;
1644 if (!p || !ctx || !ctx->auditable)
1645 return;
1646 p->arch = ctx->arch;
1647 p->major = ctx->major;
1648 memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1649 p->ctime = ctx->ctime;
1650 p->dummy = ctx->dummy;
1651 p->auditable = ctx->auditable;
1652 p->in_syscall = ctx->in_syscall;
1653 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1654 p->ppid = current->pid;
1655}
1656
b0dd25a8
RD
1657/**
1658 * audit_syscall_exit - deallocate audit context after a system call
b0dd25a8
RD
1659 * @valid: success/failure flag
1660 * @return_code: syscall return value
1661 *
1662 * Tear down after system call. If the audit context has been marked as
1da177e4
LT
1663 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1664 * filtering, or because some other part of the kernel write an audit
1665 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1666 * free the names stored from getname().
1667 */
5411be59 1668void audit_syscall_exit(int valid, long return_code)
1da177e4 1669{
5411be59 1670 struct task_struct *tsk = current;
1da177e4
LT
1671 struct audit_context *context;
1672
2fd6f58b 1673 context = audit_get_context(tsk, valid, return_code);
1da177e4 1674
1da177e4 1675 if (likely(!context))
97e94c45 1676 return;
1da177e4 1677
f7056d64 1678 if (context->in_syscall && context->auditable)
e495149b 1679 audit_log_exit(context, tsk);
1da177e4
LT
1680
1681 context->in_syscall = 0;
1682 context->auditable = 0;
2fd6f58b 1683
1da177e4
LT
1684 if (context->previous) {
1685 struct audit_context *new_context = context->previous;
1686 context->previous = NULL;
1687 audit_free_context(context);
1688 tsk->audit_context = new_context;
1689 } else {
1690 audit_free_names(context);
74c3cbe3 1691 unroll_tree_refs(context, NULL, 0);
1da177e4 1692 audit_free_aux(context);
e54dc243
AG
1693 context->aux = NULL;
1694 context->aux_pids = NULL;
a5cb013d 1695 context->target_pid = 0;
e54dc243 1696 context->target_sid = 0;
4f6b434f 1697 context->sockaddr_len = 0;
f3298dc4 1698 context->type = 0;
5adc8a6a
AG
1699 kfree(context->filterkey);
1700 context->filterkey = NULL;
1da177e4
LT
1701 tsk->audit_context = context;
1702 }
1da177e4
LT
1703}
1704
74c3cbe3
AV
1705static inline void handle_one(const struct inode *inode)
1706{
1707#ifdef CONFIG_AUDIT_TREE
1708 struct audit_context *context;
1709 struct audit_tree_refs *p;
1710 struct audit_chunk *chunk;
1711 int count;
1712 if (likely(list_empty(&inode->inotify_watches)))
1713 return;
1714 context = current->audit_context;
1715 p = context->trees;
1716 count = context->tree_count;
1717 rcu_read_lock();
1718 chunk = audit_tree_lookup(inode);
1719 rcu_read_unlock();
1720 if (!chunk)
1721 return;
1722 if (likely(put_tree_ref(context, chunk)))
1723 return;
1724 if (unlikely(!grow_tree_refs(context))) {
436c405c 1725 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1726 audit_set_auditable(context);
1727 audit_put_chunk(chunk);
1728 unroll_tree_refs(context, p, count);
1729 return;
1730 }
1731 put_tree_ref(context, chunk);
1732#endif
1733}
1734
1735static void handle_path(const struct dentry *dentry)
1736{
1737#ifdef CONFIG_AUDIT_TREE
1738 struct audit_context *context;
1739 struct audit_tree_refs *p;
1740 const struct dentry *d, *parent;
1741 struct audit_chunk *drop;
1742 unsigned long seq;
1743 int count;
1744
1745 context = current->audit_context;
1746 p = context->trees;
1747 count = context->tree_count;
1748retry:
1749 drop = NULL;
1750 d = dentry;
1751 rcu_read_lock();
1752 seq = read_seqbegin(&rename_lock);
1753 for(;;) {
1754 struct inode *inode = d->d_inode;
1755 if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1756 struct audit_chunk *chunk;
1757 chunk = audit_tree_lookup(inode);
1758 if (chunk) {
1759 if (unlikely(!put_tree_ref(context, chunk))) {
1760 drop = chunk;
1761 break;
1762 }
1763 }
1764 }
1765 parent = d->d_parent;
1766 if (parent == d)
1767 break;
1768 d = parent;
1769 }
1770 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1771 rcu_read_unlock();
1772 if (!drop) {
1773 /* just a race with rename */
1774 unroll_tree_refs(context, p, count);
1775 goto retry;
1776 }
1777 audit_put_chunk(drop);
1778 if (grow_tree_refs(context)) {
1779 /* OK, got more space */
1780 unroll_tree_refs(context, p, count);
1781 goto retry;
1782 }
1783 /* too bad */
1784 printk(KERN_WARNING
436c405c 1785 "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1786 unroll_tree_refs(context, p, count);
1787 audit_set_auditable(context);
1788 return;
1789 }
1790 rcu_read_unlock();
1791#endif
1792}
1793
b0dd25a8
RD
1794/**
1795 * audit_getname - add a name to the list
1796 * @name: name to add
1797 *
1798 * Add a name to the list of audit names for this context.
1799 * Called from fs/namei.c:getname().
1800 */
d8945bb5 1801void __audit_getname(const char *name)
1da177e4
LT
1802{
1803 struct audit_context *context = current->audit_context;
1804
d8945bb5 1805 if (IS_ERR(name) || !name)
1da177e4
LT
1806 return;
1807
1808 if (!context->in_syscall) {
1809#if AUDIT_DEBUG == 2
1810 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1811 __FILE__, __LINE__, context->serial, name);
1812 dump_stack();
1813#endif
1814 return;
1815 }
1816 BUG_ON(context->name_count >= AUDIT_NAMES);
1817 context->names[context->name_count].name = name;
9c937dcc
AG
1818 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1819 context->names[context->name_count].name_put = 1;
1da177e4 1820 context->names[context->name_count].ino = (unsigned long)-1;
e41e8bde 1821 context->names[context->name_count].osid = 0;
1da177e4 1822 ++context->name_count;
44707fdf 1823 if (!context->pwd.dentry) {
8f37d47c 1824 read_lock(&current->fs->lock);
44707fdf
JB
1825 context->pwd = current->fs->pwd;
1826 path_get(&current->fs->pwd);
8f37d47c
DW
1827 read_unlock(&current->fs->lock);
1828 }
9f8dbe9c 1829
1da177e4
LT
1830}
1831
b0dd25a8
RD
1832/* audit_putname - intercept a putname request
1833 * @name: name to intercept and delay for putname
1834 *
1835 * If we have stored the name from getname in the audit context,
1836 * then we delay the putname until syscall exit.
1837 * Called from include/linux/fs.h:putname().
1838 */
1da177e4
LT
1839void audit_putname(const char *name)
1840{
1841 struct audit_context *context = current->audit_context;
1842
1843 BUG_ON(!context);
1844 if (!context->in_syscall) {
1845#if AUDIT_DEBUG == 2
1846 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1847 __FILE__, __LINE__, context->serial, name);
1848 if (context->name_count) {
1849 int i;
1850 for (i = 0; i < context->name_count; i++)
1851 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1852 context->names[i].name,
73241ccc 1853 context->names[i].name ?: "(null)");
1da177e4
LT
1854 }
1855#endif
1856 __putname(name);
1857 }
1858#if AUDIT_DEBUG
1859 else {
1860 ++context->put_count;
1861 if (context->put_count > context->name_count) {
1862 printk(KERN_ERR "%s:%d(:%d): major=%d"
1863 " in_syscall=%d putname(%p) name_count=%d"
1864 " put_count=%d\n",
1865 __FILE__, __LINE__,
1866 context->serial, context->major,
1867 context->in_syscall, name, context->name_count,
1868 context->put_count);
1869 dump_stack();
1870 }
1871 }
1872#endif
1873}
1874
5712e88f
AG
1875static int audit_inc_name_count(struct audit_context *context,
1876 const struct inode *inode)
1877{
1878 if (context->name_count >= AUDIT_NAMES) {
1879 if (inode)
1880 printk(KERN_DEBUG "name_count maxed, losing inode data: "
436c405c 1881 "dev=%02x:%02x, inode=%lu\n",
5712e88f
AG
1882 MAJOR(inode->i_sb->s_dev),
1883 MINOR(inode->i_sb->s_dev),
1884 inode->i_ino);
1885
1886 else
436c405c 1887 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
5712e88f
AG
1888 return 1;
1889 }
1890 context->name_count++;
1891#if AUDIT_DEBUG
1892 context->ino_count++;
1893#endif
1894 return 0;
1895}
1896
851f7ff5
EP
1897
1898static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1899{
1900 struct cpu_vfs_cap_data caps;
1901 int rc;
1902
1903 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1904 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1905 name->fcap.fE = 0;
1906 name->fcap_ver = 0;
1907
1908 if (!dentry)
1909 return 0;
1910
1911 rc = get_vfs_caps_from_disk(dentry, &caps);
1912 if (rc)
1913 return rc;
1914
1915 name->fcap.permitted = caps.permitted;
1916 name->fcap.inheritable = caps.inheritable;
1917 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1918 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1919
1920 return 0;
1921}
1922
1923
3e2efce0 1924/* Copy inode data into an audit_names. */
851f7ff5
EP
1925static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1926 const struct inode *inode)
8c8570fb 1927{
3e2efce0
AG
1928 name->ino = inode->i_ino;
1929 name->dev = inode->i_sb->s_dev;
1930 name->mode = inode->i_mode;
1931 name->uid = inode->i_uid;
1932 name->gid = inode->i_gid;
1933 name->rdev = inode->i_rdev;
2a862b32 1934 security_inode_getsecid(inode, &name->osid);
851f7ff5 1935 audit_copy_fcaps(name, dentry);
8c8570fb
DK
1936}
1937
b0dd25a8
RD
1938/**
1939 * audit_inode - store the inode and device from a lookup
1940 * @name: name being audited
481968f4 1941 * @dentry: dentry being audited
b0dd25a8
RD
1942 *
1943 * Called from fs/namei.c:path_lookup().
1944 */
5a190ae6 1945void __audit_inode(const char *name, const struct dentry *dentry)
1da177e4
LT
1946{
1947 int idx;
1948 struct audit_context *context = current->audit_context;
74c3cbe3 1949 const struct inode *inode = dentry->d_inode;
1da177e4
LT
1950
1951 if (!context->in_syscall)
1952 return;
1953 if (context->name_count
1954 && context->names[context->name_count-1].name
1955 && context->names[context->name_count-1].name == name)
1956 idx = context->name_count - 1;
1957 else if (context->name_count > 1
1958 && context->names[context->name_count-2].name
1959 && context->names[context->name_count-2].name == name)
1960 idx = context->name_count - 2;
1961 else {
1962 /* FIXME: how much do we care about inodes that have no
1963 * associated name? */
5712e88f 1964 if (audit_inc_name_count(context, inode))
1da177e4 1965 return;
5712e88f 1966 idx = context->name_count - 1;
1da177e4 1967 context->names[idx].name = NULL;
1da177e4 1968 }
74c3cbe3 1969 handle_path(dentry);
851f7ff5 1970 audit_copy_inode(&context->names[idx], dentry, inode);
73241ccc
AG
1971}
1972
1973/**
1974 * audit_inode_child - collect inode info for created/removed objects
1975 * @dname: inode's dentry name
481968f4 1976 * @dentry: dentry being audited
73d3ec5a 1977 * @parent: inode of dentry parent
73241ccc
AG
1978 *
1979 * For syscalls that create or remove filesystem objects, audit_inode
1980 * can only collect information for the filesystem object's parent.
1981 * This call updates the audit context with the child's information.
1982 * Syscalls that create a new filesystem object must be hooked after
1983 * the object is created. Syscalls that remove a filesystem object
1984 * must be hooked prior, in order to capture the target inode during
1985 * unsuccessful attempts.
1986 */
5a190ae6 1987void __audit_inode_child(const char *dname, const struct dentry *dentry,
73d3ec5a 1988 const struct inode *parent)
73241ccc
AG
1989{
1990 int idx;
1991 struct audit_context *context = current->audit_context;
5712e88f 1992 const char *found_parent = NULL, *found_child = NULL;
5a190ae6 1993 const struct inode *inode = dentry->d_inode;
9c937dcc 1994 int dirlen = 0;
73241ccc
AG
1995
1996 if (!context->in_syscall)
1997 return;
1998
74c3cbe3
AV
1999 if (inode)
2000 handle_one(inode);
73241ccc 2001 /* determine matching parent */
f368c07d 2002 if (!dname)
5712e88f 2003 goto add_names;
73241ccc 2004
5712e88f
AG
2005 /* parent is more likely, look for it first */
2006 for (idx = 0; idx < context->name_count; idx++) {
2007 struct audit_names *n = &context->names[idx];
f368c07d 2008
5712e88f
AG
2009 if (!n->name)
2010 continue;
2011
2012 if (n->ino == parent->i_ino &&
2013 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2014 n->name_len = dirlen; /* update parent data in place */
2015 found_parent = n->name;
2016 goto add_names;
f368c07d 2017 }
5712e88f 2018 }
73241ccc 2019
5712e88f
AG
2020 /* no matching parent, look for matching child */
2021 for (idx = 0; idx < context->name_count; idx++) {
2022 struct audit_names *n = &context->names[idx];
2023
2024 if (!n->name)
2025 continue;
2026
2027 /* strcmp() is the more likely scenario */
2028 if (!strcmp(dname, n->name) ||
2029 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2030 if (inode)
851f7ff5 2031 audit_copy_inode(n, NULL, inode);
5712e88f
AG
2032 else
2033 n->ino = (unsigned long)-1;
2034 found_child = n->name;
2035 goto add_names;
2036 }
ac9910ce 2037 }
5712e88f
AG
2038
2039add_names:
2040 if (!found_parent) {
2041 if (audit_inc_name_count(context, parent))
ac9910ce 2042 return;
5712e88f
AG
2043 idx = context->name_count - 1;
2044 context->names[idx].name = NULL;
851f7ff5 2045 audit_copy_inode(&context->names[idx], NULL, parent);
73d3ec5a 2046 }
5712e88f
AG
2047
2048 if (!found_child) {
2049 if (audit_inc_name_count(context, inode))
2050 return;
2051 idx = context->name_count - 1;
2052
2053 /* Re-use the name belonging to the slot for a matching parent
2054 * directory. All names for this context are relinquished in
2055 * audit_free_names() */
2056 if (found_parent) {
2057 context->names[idx].name = found_parent;
2058 context->names[idx].name_len = AUDIT_NAME_FULL;
2059 /* don't call __putname() */
2060 context->names[idx].name_put = 0;
2061 } else {
2062 context->names[idx].name = NULL;
2063 }
2064
2065 if (inode)
851f7ff5 2066 audit_copy_inode(&context->names[idx], NULL, inode);
5712e88f
AG
2067 else
2068 context->names[idx].ino = (unsigned long)-1;
2069 }
3e2efce0 2070}
50e437d5 2071EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 2072
b0dd25a8
RD
2073/**
2074 * auditsc_get_stamp - get local copies of audit_context values
2075 * @ctx: audit_context for the task
2076 * @t: timespec to store time recorded in the audit_context
2077 * @serial: serial value that is recorded in the audit_context
2078 *
2079 * Also sets the context as auditable.
2080 */
48887e63 2081int auditsc_get_stamp(struct audit_context *ctx,
bfb4496e 2082 struct timespec *t, unsigned int *serial)
1da177e4 2083{
48887e63
AV
2084 if (!ctx->in_syscall)
2085 return 0;
ce625a80
DW
2086 if (!ctx->serial)
2087 ctx->serial = audit_serial();
bfb4496e
DW
2088 t->tv_sec = ctx->ctime.tv_sec;
2089 t->tv_nsec = ctx->ctime.tv_nsec;
2090 *serial = ctx->serial;
2091 ctx->auditable = 1;
48887e63 2092 return 1;
1da177e4
LT
2093}
2094
4746ec5b
EP
2095/* global counter which is incremented every time something logs in */
2096static atomic_t session_id = ATOMIC_INIT(0);
2097
b0dd25a8
RD
2098/**
2099 * audit_set_loginuid - set a task's audit_context loginuid
2100 * @task: task whose audit context is being modified
2101 * @loginuid: loginuid value
2102 *
2103 * Returns 0.
2104 *
2105 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2106 */
456be6cd 2107int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1da177e4 2108{
4746ec5b 2109 unsigned int sessionid = atomic_inc_return(&session_id);
41757106
SG
2110 struct audit_context *context = task->audit_context;
2111
bfef93a5
AV
2112 if (context && context->in_syscall) {
2113 struct audit_buffer *ab;
2114
2115 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2116 if (ab) {
2117 audit_log_format(ab, "login pid=%d uid=%u "
4746ec5b
EP
2118 "old auid=%u new auid=%u"
2119 " old ses=%u new ses=%u",
c69e8d9c 2120 task->pid, task_uid(task),
4746ec5b
EP
2121 task->loginuid, loginuid,
2122 task->sessionid, sessionid);
bfef93a5 2123 audit_log_end(ab);
c0404993 2124 }
1da177e4 2125 }
4746ec5b 2126 task->sessionid = sessionid;
bfef93a5 2127 task->loginuid = loginuid;
1da177e4
LT
2128 return 0;
2129}
2130
20ca73bc
GW
2131/**
2132 * __audit_mq_open - record audit data for a POSIX MQ open
2133 * @oflag: open flag
2134 * @mode: mode bits
2135 * @u_attr: queue attributes
2136 *
20ca73bc 2137 */
564f6993 2138void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr)
20ca73bc 2139{
20ca73bc
GW
2140 struct audit_context *context = current->audit_context;
2141
564f6993
AV
2142 if (attr)
2143 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2144 else
2145 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2146
564f6993
AV
2147 context->mq_open.oflag = oflag;
2148 context->mq_open.mode = mode;
20ca73bc 2149
564f6993 2150 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2151}
2152
2153/**
c32c8af4 2154 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2155 * @mqdes: MQ descriptor
2156 * @msg_len: Message length
2157 * @msg_prio: Message priority
c32c8af4 2158 * @abs_timeout: Message timeout in absolute time
20ca73bc 2159 *
20ca73bc 2160 */
c32c8af4
AV
2161void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2162 const struct timespec *abs_timeout)
20ca73bc 2163{
20ca73bc 2164 struct audit_context *context = current->audit_context;
c32c8af4 2165 struct timespec *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2166
c32c8af4
AV
2167 if (abs_timeout)
2168 memcpy(p, abs_timeout, sizeof(struct timespec));
2169 else
2170 memset(p, 0, sizeof(struct timespec));
20ca73bc 2171
c32c8af4
AV
2172 context->mq_sendrecv.mqdes = mqdes;
2173 context->mq_sendrecv.msg_len = msg_len;
2174 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2175
c32c8af4 2176 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2177}
2178
2179/**
2180 * __audit_mq_notify - record audit data for a POSIX MQ notify
2181 * @mqdes: MQ descriptor
2182 * @u_notification: Notification event
2183 *
20ca73bc
GW
2184 */
2185
20114f71 2186void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2187{
20ca73bc
GW
2188 struct audit_context *context = current->audit_context;
2189
20114f71
AV
2190 if (notification)
2191 context->mq_notify.sigev_signo = notification->sigev_signo;
2192 else
2193 context->mq_notify.sigev_signo = 0;
20ca73bc 2194
20114f71
AV
2195 context->mq_notify.mqdes = mqdes;
2196 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2197}
2198
2199/**
2200 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2201 * @mqdes: MQ descriptor
2202 * @mqstat: MQ flags
2203 *
20ca73bc 2204 */
7392906e 2205void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2206{
20ca73bc 2207 struct audit_context *context = current->audit_context;
7392906e
AV
2208 context->mq_getsetattr.mqdes = mqdes;
2209 context->mq_getsetattr.mqstat = *mqstat;
2210 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2211}
2212
b0dd25a8 2213/**
073115d6
SG
2214 * audit_ipc_obj - record audit data for ipc object
2215 * @ipcp: ipc permissions
2216 *
073115d6 2217 */
a33e6751 2218void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2219{
073115d6 2220 struct audit_context *context = current->audit_context;
a33e6751
AV
2221 context->ipc.uid = ipcp->uid;
2222 context->ipc.gid = ipcp->gid;
2223 context->ipc.mode = ipcp->mode;
e816f370 2224 context->ipc.has_perm = 0;
a33e6751
AV
2225 security_ipc_getsecid(ipcp, &context->ipc.osid);
2226 context->type = AUDIT_IPC;
073115d6
SG
2227}
2228
2229/**
2230 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2231 * @qbytes: msgq bytes
2232 * @uid: msgq user id
2233 * @gid: msgq group id
2234 * @mode: msgq mode (permissions)
2235 *
e816f370 2236 * Called only after audit_ipc_obj().
b0dd25a8 2237 */
e816f370 2238void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
1da177e4 2239{
1da177e4
LT
2240 struct audit_context *context = current->audit_context;
2241
e816f370
AV
2242 context->ipc.qbytes = qbytes;
2243 context->ipc.perm_uid = uid;
2244 context->ipc.perm_gid = gid;
2245 context->ipc.perm_mode = mode;
2246 context->ipc.has_perm = 1;
1da177e4 2247}
c2f0c7c3 2248
473ae30b
AV
2249int audit_bprm(struct linux_binprm *bprm)
2250{
2251 struct audit_aux_data_execve *ax;
2252 struct audit_context *context = current->audit_context;
473ae30b 2253
5ac3a9c2 2254 if (likely(!audit_enabled || !context || context->dummy))
473ae30b
AV
2255 return 0;
2256
bdf4c48a 2257 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
473ae30b
AV
2258 if (!ax)
2259 return -ENOMEM;
2260
2261 ax->argc = bprm->argc;
2262 ax->envc = bprm->envc;
bdf4c48a 2263 ax->mm = bprm->mm;
473ae30b
AV
2264 ax->d.type = AUDIT_EXECVE;
2265 ax->d.next = context->aux;
2266 context->aux = (void *)ax;
2267 return 0;
2268}
2269
2270
b0dd25a8
RD
2271/**
2272 * audit_socketcall - record audit data for sys_socketcall
2273 * @nargs: number of args
2274 * @args: args array
2275 *
b0dd25a8 2276 */
f3298dc4 2277void audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2278{
3ec3b2fb
DW
2279 struct audit_context *context = current->audit_context;
2280
5ac3a9c2 2281 if (likely(!context || context->dummy))
f3298dc4 2282 return;
3ec3b2fb 2283
f3298dc4
AV
2284 context->type = AUDIT_SOCKETCALL;
2285 context->socketcall.nargs = nargs;
2286 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
3ec3b2fb
DW
2287}
2288
db349509
AV
2289/**
2290 * __audit_fd_pair - record audit data for pipe and socketpair
2291 * @fd1: the first file descriptor
2292 * @fd2: the second file descriptor
2293 *
2294 * Returns 0 for success or NULL context or < 0 on error.
2295 */
2296int __audit_fd_pair(int fd1, int fd2)
2297{
2298 struct audit_context *context = current->audit_context;
2299 struct audit_aux_data_fd_pair *ax;
2300
2301 if (likely(!context)) {
2302 return 0;
2303 }
2304
2305 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2306 if (!ax) {
2307 return -ENOMEM;
2308 }
2309
2310 ax->fd[0] = fd1;
2311 ax->fd[1] = fd2;
2312
2313 ax->d.type = AUDIT_FD_PAIR;
2314 ax->d.next = context->aux;
2315 context->aux = (void *)ax;
2316 return 0;
2317}
2318
b0dd25a8
RD
2319/**
2320 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2321 * @len: data length in user space
2322 * @a: data address in kernel space
2323 *
2324 * Returns 0 for success or NULL context or < 0 on error.
2325 */
3ec3b2fb
DW
2326int audit_sockaddr(int len, void *a)
2327{
3ec3b2fb
DW
2328 struct audit_context *context = current->audit_context;
2329
5ac3a9c2 2330 if (likely(!context || context->dummy))
3ec3b2fb
DW
2331 return 0;
2332
4f6b434f
AV
2333 if (!context->sockaddr) {
2334 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2335 if (!p)
2336 return -ENOMEM;
2337 context->sockaddr = p;
2338 }
3ec3b2fb 2339
4f6b434f
AV
2340 context->sockaddr_len = len;
2341 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2342 return 0;
2343}
2344
a5cb013d
AV
2345void __audit_ptrace(struct task_struct *t)
2346{
2347 struct audit_context *context = current->audit_context;
2348
2349 context->target_pid = t->pid;
c2a7780e 2350 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2351 context->target_uid = task_uid(t);
4746ec5b 2352 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2353 security_task_getsecid(t, &context->target_sid);
c2a7780e 2354 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2355}
2356
b0dd25a8
RD
2357/**
2358 * audit_signal_info - record signal info for shutting down audit subsystem
2359 * @sig: signal value
2360 * @t: task being signaled
2361 *
2362 * If the audit subsystem is being terminated, record the task (pid)
2363 * and uid that is doing that.
2364 */
e54dc243 2365int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2366{
e54dc243
AG
2367 struct audit_aux_data_pids *axp;
2368 struct task_struct *tsk = current;
2369 struct audit_context *ctx = tsk->audit_context;
c69e8d9c 2370 uid_t uid = current_uid(), t_uid = task_uid(t);
e1396065 2371
175fc484 2372 if (audit_pid && t->tgid == audit_pid) {
ee1d3156 2373 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
175fc484 2374 audit_sig_pid = tsk->pid;
bfef93a5
AV
2375 if (tsk->loginuid != -1)
2376 audit_sig_uid = tsk->loginuid;
175fc484 2377 else
c69e8d9c 2378 audit_sig_uid = uid;
2a862b32 2379 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2380 }
2381 if (!audit_signals || audit_dummy_context())
2382 return 0;
c2f0c7c3 2383 }
e54dc243 2384
e54dc243
AG
2385 /* optimize the common case by putting first signal recipient directly
2386 * in audit_context */
2387 if (!ctx->target_pid) {
2388 ctx->target_pid = t->tgid;
c2a7780e 2389 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2390 ctx->target_uid = t_uid;
4746ec5b 2391 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2392 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2393 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2394 return 0;
2395 }
2396
2397 axp = (void *)ctx->aux_pids;
2398 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2399 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2400 if (!axp)
2401 return -ENOMEM;
2402
2403 axp->d.type = AUDIT_OBJ_PID;
2404 axp->d.next = ctx->aux_pids;
2405 ctx->aux_pids = (void *)axp;
2406 }
88ae704c 2407 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243
AG
2408
2409 axp->target_pid[axp->pid_count] = t->tgid;
c2a7780e 2410 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2411 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2412 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2413 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2414 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2415 axp->pid_count++;
2416
2417 return 0;
c2f0c7c3 2418}
0a4ff8c2 2419
3fc689e9
EP
2420/**
2421 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2422 * @bprm: pointer to the bprm being processed
2423 * @new: the proposed new credentials
2424 * @old: the old credentials
3fc689e9
EP
2425 *
2426 * Simply check if the proc already has the caps given by the file and if not
2427 * store the priv escalation info for later auditing at the end of the syscall
2428 *
3fc689e9
EP
2429 * -Eric
2430 */
d84f4f99
DH
2431int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2432 const struct cred *new, const struct cred *old)
3fc689e9
EP
2433{
2434 struct audit_aux_data_bprm_fcaps *ax;
2435 struct audit_context *context = current->audit_context;
2436 struct cpu_vfs_cap_data vcaps;
2437 struct dentry *dentry;
2438
2439 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2440 if (!ax)
d84f4f99 2441 return -ENOMEM;
3fc689e9
EP
2442
2443 ax->d.type = AUDIT_BPRM_FCAPS;
2444 ax->d.next = context->aux;
2445 context->aux = (void *)ax;
2446
2447 dentry = dget(bprm->file->f_dentry);
2448 get_vfs_caps_from_disk(dentry, &vcaps);
2449 dput(dentry);
2450
2451 ax->fcap.permitted = vcaps.permitted;
2452 ax->fcap.inheritable = vcaps.inheritable;
2453 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2454 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2455
d84f4f99
DH
2456 ax->old_pcap.permitted = old->cap_permitted;
2457 ax->old_pcap.inheritable = old->cap_inheritable;
2458 ax->old_pcap.effective = old->cap_effective;
3fc689e9 2459
d84f4f99
DH
2460 ax->new_pcap.permitted = new->cap_permitted;
2461 ax->new_pcap.inheritable = new->cap_inheritable;
2462 ax->new_pcap.effective = new->cap_effective;
2463 return 0;
3fc689e9
EP
2464}
2465
e68b75a0
EP
2466/**
2467 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2468 * @pid: target pid of the capset call
2469 * @new: the new credentials
2470 * @old: the old (current) credentials
e68b75a0
EP
2471 *
2472 * Record the aguments userspace sent to sys_capset for later printing by the
2473 * audit system if applicable
2474 */
d84f4f99
DH
2475int __audit_log_capset(pid_t pid,
2476 const struct cred *new, const struct cred *old)
e68b75a0
EP
2477{
2478 struct audit_aux_data_capset *ax;
2479 struct audit_context *context = current->audit_context;
2480
2481 if (likely(!audit_enabled || !context || context->dummy))
2482 return 0;
2483
2484 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2485 if (!ax)
2486 return -ENOMEM;
2487
2488 ax->d.type = AUDIT_CAPSET;
2489 ax->d.next = context->aux;
2490 context->aux = (void *)ax;
2491
2492 ax->pid = pid;
d84f4f99
DH
2493 ax->cap.effective = new->cap_effective;
2494 ax->cap.inheritable = new->cap_effective;
2495 ax->cap.permitted = new->cap_permitted;
e68b75a0
EP
2496
2497 return 0;
2498}
2499
0a4ff8c2
SG
2500/**
2501 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2502 * @signr: signal value
0a4ff8c2
SG
2503 *
2504 * If a process ends with a core dump, something fishy is going on and we
2505 * should record the event for investigation.
2506 */
2507void audit_core_dumps(long signr)
2508{
2509 struct audit_buffer *ab;
2510 u32 sid;
76aac0e9
DH
2511 uid_t auid = audit_get_loginuid(current), uid;
2512 gid_t gid;
4746ec5b 2513 unsigned int sessionid = audit_get_sessionid(current);
0a4ff8c2
SG
2514
2515 if (!audit_enabled)
2516 return;
2517
2518 if (signr == SIGQUIT) /* don't care for those */
2519 return;
2520
2521 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
76aac0e9 2522 current_uid_gid(&uid, &gid);
4746ec5b 2523 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
76aac0e9 2524 auid, uid, gid, sessionid);
2a862b32 2525 security_task_getsecid(current, &sid);
0a4ff8c2
SG
2526 if (sid) {
2527 char *ctx = NULL;
2528 u32 len;
2529
2a862b32 2530 if (security_secid_to_secctx(sid, &ctx, &len))
0a4ff8c2 2531 audit_log_format(ab, " ssid=%u", sid);
2a862b32 2532 else {
0a4ff8c2 2533 audit_log_format(ab, " subj=%s", ctx);
2a862b32
AD
2534 security_release_secctx(ctx, len);
2535 }
0a4ff8c2
SG
2536 }
2537 audit_log_format(ab, " pid=%d comm=", current->pid);
2538 audit_log_untrustedstring(ab, current->comm);
2539 audit_log_format(ab, " sig=%ld", signr);
2540 audit_log_end(ab);
2541}