]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/auditsc.c
[AUDIT] add session id to audit messages
[net-next-2.6.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
45#include <linux/init.h>
1da177e4 46#include <asm/types.h>
715b49ef 47#include <asm/atomic.h>
73241ccc
AG
48#include <linux/fs.h>
49#include <linux/namei.h>
1da177e4
LT
50#include <linux/mm.h>
51#include <linux/module.h>
01116105 52#include <linux/mount.h>
3ec3b2fb 53#include <linux/socket.h>
20ca73bc 54#include <linux/mqueue.h>
1da177e4
LT
55#include <linux/audit.h>
56#include <linux/personality.h>
57#include <linux/time.h>
5bb289b5 58#include <linux/netlink.h>
f5561964 59#include <linux/compiler.h>
1da177e4 60#include <asm/unistd.h>
8c8570fb 61#include <linux/security.h>
fe7752ba 62#include <linux/list.h>
a6c043a8 63#include <linux/tty.h>
3dc7e315 64#include <linux/selinux.h>
473ae30b 65#include <linux/binfmts.h>
a1f8e7f7 66#include <linux/highmem.h>
f46038ff 67#include <linux/syscalls.h>
74c3cbe3 68#include <linux/inotify.h>
1da177e4 69
fe7752ba 70#include "audit.h"
1da177e4 71
fe7752ba 72extern struct list_head audit_filter_list[];
1da177e4 73
1da177e4
LT
74/* AUDIT_NAMES is the number of slots we reserve in the audit_context
75 * for saving names from getname(). */
76#define AUDIT_NAMES 20
77
9c937dcc
AG
78/* Indicates that audit should log the full pathname. */
79#define AUDIT_NAME_FULL -1
80
471a5c7c
AV
81/* number of audit rules */
82int audit_n_rules;
83
e54dc243
AG
84/* determines whether we collect data for signals sent */
85int audit_signals;
86
1da177e4
LT
87/* When fs/namei.c:getname() is called, we store the pointer in name and
88 * we don't let putname() free it (instead we free all of the saved
89 * pointers at syscall exit time).
90 *
91 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
92struct audit_names {
93 const char *name;
9c937dcc
AG
94 int name_len; /* number of name's characters to log */
95 unsigned name_put; /* call __putname() for this name */
1da177e4
LT
96 unsigned long ino;
97 dev_t dev;
98 umode_t mode;
99 uid_t uid;
100 gid_t gid;
101 dev_t rdev;
1b50eed9 102 u32 osid;
1da177e4
LT
103};
104
105struct audit_aux_data {
106 struct audit_aux_data *next;
107 int type;
108};
109
110#define AUDIT_AUX_IPCPERM 0
111
e54dc243
AG
112/* Number of target pids per aux struct. */
113#define AUDIT_AUX_PIDS 16
114
20ca73bc
GW
115struct audit_aux_data_mq_open {
116 struct audit_aux_data d;
117 int oflag;
118 mode_t mode;
119 struct mq_attr attr;
120};
121
122struct audit_aux_data_mq_sendrecv {
123 struct audit_aux_data d;
124 mqd_t mqdes;
125 size_t msg_len;
126 unsigned int msg_prio;
127 struct timespec abs_timeout;
128};
129
130struct audit_aux_data_mq_notify {
131 struct audit_aux_data d;
132 mqd_t mqdes;
133 struct sigevent notification;
134};
135
136struct audit_aux_data_mq_getsetattr {
137 struct audit_aux_data d;
138 mqd_t mqdes;
139 struct mq_attr mqstat;
140};
141
1da177e4
LT
142struct audit_aux_data_ipcctl {
143 struct audit_aux_data d;
144 struct ipc_perm p;
145 unsigned long qbytes;
146 uid_t uid;
147 gid_t gid;
148 mode_t mode;
9c7aa6aa 149 u32 osid;
1da177e4
LT
150};
151
473ae30b
AV
152struct audit_aux_data_execve {
153 struct audit_aux_data d;
154 int argc;
155 int envc;
bdf4c48a 156 struct mm_struct *mm;
473ae30b
AV
157};
158
3ec3b2fb
DW
159struct audit_aux_data_socketcall {
160 struct audit_aux_data d;
161 int nargs;
162 unsigned long args[0];
163};
164
165struct audit_aux_data_sockaddr {
166 struct audit_aux_data d;
167 int len;
168 char a[0];
169};
170
db349509
AV
171struct audit_aux_data_fd_pair {
172 struct audit_aux_data d;
173 int fd[2];
174};
175
e54dc243
AG
176struct audit_aux_data_pids {
177 struct audit_aux_data d;
178 pid_t target_pid[AUDIT_AUX_PIDS];
c2a7780e
EP
179 uid_t target_auid[AUDIT_AUX_PIDS];
180 uid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 181 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 182 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 183 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
184 int pid_count;
185};
186
74c3cbe3
AV
187struct audit_tree_refs {
188 struct audit_tree_refs *next;
189 struct audit_chunk *c[31];
190};
191
1da177e4
LT
192/* The per-task audit context. */
193struct audit_context {
d51374ad 194 int dummy; /* must be the first element */
1da177e4
LT
195 int in_syscall; /* 1 if task is in a syscall */
196 enum audit_state state;
197 unsigned int serial; /* serial number for record */
198 struct timespec ctime; /* time of syscall entry */
1da177e4
LT
199 int major; /* syscall number */
200 unsigned long argv[4]; /* syscall arguments */
201 int return_valid; /* return code is valid */
2fd6f58b 202 long return_code;/* syscall return code */
1da177e4
LT
203 int auditable; /* 1 if record should be written */
204 int name_count;
205 struct audit_names names[AUDIT_NAMES];
5adc8a6a 206 char * filterkey; /* key for rule that triggered record */
8f37d47c
DW
207 struct dentry * pwd;
208 struct vfsmount * pwdmnt;
1da177e4
LT
209 struct audit_context *previous; /* For nested syscalls */
210 struct audit_aux_data *aux;
e54dc243 211 struct audit_aux_data *aux_pids;
1da177e4
LT
212
213 /* Save things to print about task_struct */
f46038ff 214 pid_t pid, ppid;
1da177e4
LT
215 uid_t uid, euid, suid, fsuid;
216 gid_t gid, egid, sgid, fsgid;
217 unsigned long personality;
2fd6f58b 218 int arch;
1da177e4 219
a5cb013d 220 pid_t target_pid;
c2a7780e
EP
221 uid_t target_auid;
222 uid_t target_uid;
4746ec5b 223 unsigned int target_sessionid;
a5cb013d 224 u32 target_sid;
c2a7780e 225 char target_comm[TASK_COMM_LEN];
a5cb013d 226
74c3cbe3
AV
227 struct audit_tree_refs *trees, *first_trees;
228 int tree_count;
229
1da177e4
LT
230#if AUDIT_DEBUG
231 int put_count;
232 int ino_count;
233#endif
234};
235
55669bfa
AV
236#define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
237static inline int open_arg(int flags, int mask)
238{
239 int n = ACC_MODE(flags);
240 if (flags & (O_TRUNC | O_CREAT))
241 n |= AUDIT_PERM_WRITE;
242 return n & mask;
243}
244
245static int audit_match_perm(struct audit_context *ctx, int mask)
246{
247 unsigned n = ctx->major;
248 switch (audit_classify_syscall(ctx->arch, n)) {
249 case 0: /* native */
250 if ((mask & AUDIT_PERM_WRITE) &&
251 audit_match_class(AUDIT_CLASS_WRITE, n))
252 return 1;
253 if ((mask & AUDIT_PERM_READ) &&
254 audit_match_class(AUDIT_CLASS_READ, n))
255 return 1;
256 if ((mask & AUDIT_PERM_ATTR) &&
257 audit_match_class(AUDIT_CLASS_CHATTR, n))
258 return 1;
259 return 0;
260 case 1: /* 32bit on biarch */
261 if ((mask & AUDIT_PERM_WRITE) &&
262 audit_match_class(AUDIT_CLASS_WRITE_32, n))
263 return 1;
264 if ((mask & AUDIT_PERM_READ) &&
265 audit_match_class(AUDIT_CLASS_READ_32, n))
266 return 1;
267 if ((mask & AUDIT_PERM_ATTR) &&
268 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
269 return 1;
270 return 0;
271 case 2: /* open */
272 return mask & ACC_MODE(ctx->argv[1]);
273 case 3: /* openat */
274 return mask & ACC_MODE(ctx->argv[2]);
275 case 4: /* socketcall */
276 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
277 case 5: /* execve */
278 return mask & AUDIT_PERM_EXEC;
279 default:
280 return 0;
281 }
282}
283
74c3cbe3
AV
284/*
285 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
286 * ->first_trees points to its beginning, ->trees - to the current end of data.
287 * ->tree_count is the number of free entries in array pointed to by ->trees.
288 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
289 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
290 * it's going to remain 1-element for almost any setup) until we free context itself.
291 * References in it _are_ dropped - at the same time we free/drop aux stuff.
292 */
293
294#ifdef CONFIG_AUDIT_TREE
295static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
296{
297 struct audit_tree_refs *p = ctx->trees;
298 int left = ctx->tree_count;
299 if (likely(left)) {
300 p->c[--left] = chunk;
301 ctx->tree_count = left;
302 return 1;
303 }
304 if (!p)
305 return 0;
306 p = p->next;
307 if (p) {
308 p->c[30] = chunk;
309 ctx->trees = p;
310 ctx->tree_count = 30;
311 return 1;
312 }
313 return 0;
314}
315
316static int grow_tree_refs(struct audit_context *ctx)
317{
318 struct audit_tree_refs *p = ctx->trees;
319 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
320 if (!ctx->trees) {
321 ctx->trees = p;
322 return 0;
323 }
324 if (p)
325 p->next = ctx->trees;
326 else
327 ctx->first_trees = ctx->trees;
328 ctx->tree_count = 31;
329 return 1;
330}
331#endif
332
333static void unroll_tree_refs(struct audit_context *ctx,
334 struct audit_tree_refs *p, int count)
335{
336#ifdef CONFIG_AUDIT_TREE
337 struct audit_tree_refs *q;
338 int n;
339 if (!p) {
340 /* we started with empty chain */
341 p = ctx->first_trees;
342 count = 31;
343 /* if the very first allocation has failed, nothing to do */
344 if (!p)
345 return;
346 }
347 n = count;
348 for (q = p; q != ctx->trees; q = q->next, n = 31) {
349 while (n--) {
350 audit_put_chunk(q->c[n]);
351 q->c[n] = NULL;
352 }
353 }
354 while (n-- > ctx->tree_count) {
355 audit_put_chunk(q->c[n]);
356 q->c[n] = NULL;
357 }
358 ctx->trees = p;
359 ctx->tree_count = count;
360#endif
361}
362
363static void free_tree_refs(struct audit_context *ctx)
364{
365 struct audit_tree_refs *p, *q;
366 for (p = ctx->first_trees; p; p = q) {
367 q = p->next;
368 kfree(p);
369 }
370}
371
372static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
373{
374#ifdef CONFIG_AUDIT_TREE
375 struct audit_tree_refs *p;
376 int n;
377 if (!tree)
378 return 0;
379 /* full ones */
380 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
381 for (n = 0; n < 31; n++)
382 if (audit_tree_match(p->c[n], tree))
383 return 1;
384 }
385 /* partial */
386 if (p) {
387 for (n = ctx->tree_count; n < 31; n++)
388 if (audit_tree_match(p->c[n], tree))
389 return 1;
390 }
391#endif
392 return 0;
393}
394
f368c07d 395/* Determine if any context name data matches a rule's watch data */
1da177e4
LT
396/* Compare a task_struct with an audit_rule. Return 1 on match, 0
397 * otherwise. */
398static int audit_filter_rules(struct task_struct *tsk,
93315ed6 399 struct audit_krule *rule,
1da177e4 400 struct audit_context *ctx,
f368c07d 401 struct audit_names *name,
1da177e4
LT
402 enum audit_state *state)
403{
2ad312d2 404 int i, j, need_sid = 1;
3dc7e315
DG
405 u32 sid;
406
1da177e4 407 for (i = 0; i < rule->field_count; i++) {
93315ed6 408 struct audit_field *f = &rule->fields[i];
1da177e4
LT
409 int result = 0;
410
93315ed6 411 switch (f->type) {
1da177e4 412 case AUDIT_PID:
93315ed6 413 result = audit_comparator(tsk->pid, f->op, f->val);
1da177e4 414 break;
3c66251e 415 case AUDIT_PPID:
419c58f1
AV
416 if (ctx) {
417 if (!ctx->ppid)
418 ctx->ppid = sys_getppid();
3c66251e 419 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 420 }
3c66251e 421 break;
1da177e4 422 case AUDIT_UID:
93315ed6 423 result = audit_comparator(tsk->uid, f->op, f->val);
1da177e4
LT
424 break;
425 case AUDIT_EUID:
93315ed6 426 result = audit_comparator(tsk->euid, f->op, f->val);
1da177e4
LT
427 break;
428 case AUDIT_SUID:
93315ed6 429 result = audit_comparator(tsk->suid, f->op, f->val);
1da177e4
LT
430 break;
431 case AUDIT_FSUID:
93315ed6 432 result = audit_comparator(tsk->fsuid, f->op, f->val);
1da177e4
LT
433 break;
434 case AUDIT_GID:
93315ed6 435 result = audit_comparator(tsk->gid, f->op, f->val);
1da177e4
LT
436 break;
437 case AUDIT_EGID:
93315ed6 438 result = audit_comparator(tsk->egid, f->op, f->val);
1da177e4
LT
439 break;
440 case AUDIT_SGID:
93315ed6 441 result = audit_comparator(tsk->sgid, f->op, f->val);
1da177e4
LT
442 break;
443 case AUDIT_FSGID:
93315ed6 444 result = audit_comparator(tsk->fsgid, f->op, f->val);
1da177e4
LT
445 break;
446 case AUDIT_PERS:
93315ed6 447 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 448 break;
2fd6f58b 449 case AUDIT_ARCH:
9f8dbe9c 450 if (ctx)
93315ed6 451 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 452 break;
1da177e4
LT
453
454 case AUDIT_EXIT:
455 if (ctx && ctx->return_valid)
93315ed6 456 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
457 break;
458 case AUDIT_SUCCESS:
b01f2cc1 459 if (ctx && ctx->return_valid) {
93315ed6
AG
460 if (f->val)
461 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 462 else
93315ed6 463 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 464 }
1da177e4
LT
465 break;
466 case AUDIT_DEVMAJOR:
f368c07d
AG
467 if (name)
468 result = audit_comparator(MAJOR(name->dev),
469 f->op, f->val);
470 else if (ctx) {
1da177e4 471 for (j = 0; j < ctx->name_count; j++) {
93315ed6 472 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
1da177e4
LT
473 ++result;
474 break;
475 }
476 }
477 }
478 break;
479 case AUDIT_DEVMINOR:
f368c07d
AG
480 if (name)
481 result = audit_comparator(MINOR(name->dev),
482 f->op, f->val);
483 else if (ctx) {
1da177e4 484 for (j = 0; j < ctx->name_count; j++) {
93315ed6 485 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
1da177e4
LT
486 ++result;
487 break;
488 }
489 }
490 }
491 break;
492 case AUDIT_INODE:
f368c07d 493 if (name)
9c937dcc 494 result = (name->ino == f->val);
f368c07d 495 else if (ctx) {
1da177e4 496 for (j = 0; j < ctx->name_count; j++) {
9c937dcc 497 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
1da177e4
LT
498 ++result;
499 break;
500 }
501 }
502 }
503 break;
f368c07d
AG
504 case AUDIT_WATCH:
505 if (name && rule->watch->ino != (unsigned long)-1)
506 result = (name->dev == rule->watch->dev &&
9c937dcc 507 name->ino == rule->watch->ino);
f368c07d 508 break;
74c3cbe3
AV
509 case AUDIT_DIR:
510 if (ctx)
511 result = match_tree_refs(ctx, rule->tree);
512 break;
1da177e4
LT
513 case AUDIT_LOGINUID:
514 result = 0;
515 if (ctx)
bfef93a5 516 result = audit_comparator(tsk->loginuid, f->op, f->val);
1da177e4 517 break;
3a6b9f85
DG
518 case AUDIT_SUBJ_USER:
519 case AUDIT_SUBJ_ROLE:
520 case AUDIT_SUBJ_TYPE:
521 case AUDIT_SUBJ_SEN:
522 case AUDIT_SUBJ_CLR:
3dc7e315
DG
523 /* NOTE: this may return negative values indicating
524 a temporary error. We simply treat this as a
525 match for now to avoid losing information that
526 may be wanted. An error message will also be
527 logged upon error */
2ad312d2
SG
528 if (f->se_rule) {
529 if (need_sid) {
62bac018 530 selinux_get_task_sid(tsk, &sid);
2ad312d2
SG
531 need_sid = 0;
532 }
3dc7e315
DG
533 result = selinux_audit_rule_match(sid, f->type,
534 f->op,
535 f->se_rule,
536 ctx);
2ad312d2 537 }
3dc7e315 538 break;
6e5a2d1d
DG
539 case AUDIT_OBJ_USER:
540 case AUDIT_OBJ_ROLE:
541 case AUDIT_OBJ_TYPE:
542 case AUDIT_OBJ_LEV_LOW:
543 case AUDIT_OBJ_LEV_HIGH:
544 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
545 also applies here */
546 if (f->se_rule) {
547 /* Find files that match */
548 if (name) {
549 result = selinux_audit_rule_match(
550 name->osid, f->type, f->op,
551 f->se_rule, ctx);
552 } else if (ctx) {
553 for (j = 0; j < ctx->name_count; j++) {
554 if (selinux_audit_rule_match(
555 ctx->names[j].osid,
556 f->type, f->op,
557 f->se_rule, ctx)) {
558 ++result;
559 break;
560 }
561 }
562 }
563 /* Find ipc objects that match */
564 if (ctx) {
565 struct audit_aux_data *aux;
566 for (aux = ctx->aux; aux;
567 aux = aux->next) {
568 if (aux->type == AUDIT_IPC) {
569 struct audit_aux_data_ipcctl *axi = (void *)aux;
570 if (selinux_audit_rule_match(axi->osid, f->type, f->op, f->se_rule, ctx)) {
571 ++result;
572 break;
573 }
574 }
575 }
576 }
577 }
578 break;
1da177e4
LT
579 case AUDIT_ARG0:
580 case AUDIT_ARG1:
581 case AUDIT_ARG2:
582 case AUDIT_ARG3:
583 if (ctx)
93315ed6 584 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 585 break;
5adc8a6a
AG
586 case AUDIT_FILTERKEY:
587 /* ignore this field for filtering */
588 result = 1;
589 break;
55669bfa
AV
590 case AUDIT_PERM:
591 result = audit_match_perm(ctx, f->val);
592 break;
1da177e4
LT
593 }
594
1da177e4
LT
595 if (!result)
596 return 0;
597 }
5adc8a6a
AG
598 if (rule->filterkey)
599 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
1da177e4
LT
600 switch (rule->action) {
601 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
602 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
603 }
604 return 1;
605}
606
607/* At process creation time, we can determine if system-call auditing is
608 * completely disabled for this task. Since we only have the task
609 * structure at this point, we can only check uid and gid.
610 */
611static enum audit_state audit_filter_task(struct task_struct *tsk)
612{
613 struct audit_entry *e;
614 enum audit_state state;
615
616 rcu_read_lock();
0f45aa18 617 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f368c07d 618 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
1da177e4
LT
619 rcu_read_unlock();
620 return state;
621 }
622 }
623 rcu_read_unlock();
624 return AUDIT_BUILD_CONTEXT;
625}
626
627/* At syscall entry and exit time, this filter is called if the
628 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 629 * also not high enough that we already know we have to write an audit
b0dd25a8 630 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
631 */
632static enum audit_state audit_filter_syscall(struct task_struct *tsk,
633 struct audit_context *ctx,
634 struct list_head *list)
635{
636 struct audit_entry *e;
c3896495 637 enum audit_state state;
1da177e4 638
351bb722 639 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
640 return AUDIT_DISABLED;
641
1da177e4 642 rcu_read_lock();
c3896495 643 if (!list_empty(list)) {
b63862f4
DK
644 int word = AUDIT_WORD(ctx->major);
645 int bit = AUDIT_BIT(ctx->major);
646
647 list_for_each_entry_rcu(e, list, list) {
f368c07d
AG
648 if ((e->rule.mask[word] & bit) == bit &&
649 audit_filter_rules(tsk, &e->rule, ctx, NULL,
650 &state)) {
651 rcu_read_unlock();
652 return state;
653 }
654 }
655 }
656 rcu_read_unlock();
657 return AUDIT_BUILD_CONTEXT;
658}
659
660/* At syscall exit time, this filter is called if any audit_names[] have been
661 * collected during syscall processing. We only check rules in sublists at hash
662 * buckets applicable to the inode numbers in audit_names[].
663 * Regarding audit_state, same rules apply as for audit_filter_syscall().
664 */
665enum audit_state audit_filter_inodes(struct task_struct *tsk,
666 struct audit_context *ctx)
667{
668 int i;
669 struct audit_entry *e;
670 enum audit_state state;
671
672 if (audit_pid && tsk->tgid == audit_pid)
673 return AUDIT_DISABLED;
674
675 rcu_read_lock();
676 for (i = 0; i < ctx->name_count; i++) {
677 int word = AUDIT_WORD(ctx->major);
678 int bit = AUDIT_BIT(ctx->major);
679 struct audit_names *n = &ctx->names[i];
680 int h = audit_hash_ino((u32)n->ino);
681 struct list_head *list = &audit_inode_hash[h];
682
683 if (list_empty(list))
684 continue;
685
686 list_for_each_entry_rcu(e, list, list) {
687 if ((e->rule.mask[word] & bit) == bit &&
688 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
b63862f4
DK
689 rcu_read_unlock();
690 return state;
691 }
0f45aa18
DW
692 }
693 }
694 rcu_read_unlock();
1da177e4 695 return AUDIT_BUILD_CONTEXT;
0f45aa18
DW
696}
697
f368c07d
AG
698void audit_set_auditable(struct audit_context *ctx)
699{
700 ctx->auditable = 1;
701}
702
1da177e4
LT
703static inline struct audit_context *audit_get_context(struct task_struct *tsk,
704 int return_valid,
705 int return_code)
706{
707 struct audit_context *context = tsk->audit_context;
708
709 if (likely(!context))
710 return NULL;
711 context->return_valid = return_valid;
f701b75e
EP
712
713 /*
714 * we need to fix up the return code in the audit logs if the actual
715 * return codes are later going to be fixed up by the arch specific
716 * signal handlers
717 *
718 * This is actually a test for:
719 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
720 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
721 *
722 * but is faster than a bunch of ||
723 */
724 if (unlikely(return_code <= -ERESTARTSYS) &&
725 (return_code >= -ERESTART_RESTARTBLOCK) &&
726 (return_code != -ENOIOCTLCMD))
727 context->return_code = -EINTR;
728 else
729 context->return_code = return_code;
1da177e4 730
d51374ad 731 if (context->in_syscall && !context->dummy && !context->auditable) {
1da177e4 732 enum audit_state state;
f368c07d 733
0f45aa18 734 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
f368c07d
AG
735 if (state == AUDIT_RECORD_CONTEXT) {
736 context->auditable = 1;
737 goto get_context;
738 }
739
740 state = audit_filter_inodes(tsk, context);
1da177e4
LT
741 if (state == AUDIT_RECORD_CONTEXT)
742 context->auditable = 1;
f368c07d 743
1da177e4
LT
744 }
745
f368c07d 746get_context:
3f2792ff 747
1da177e4
LT
748 tsk->audit_context = NULL;
749 return context;
750}
751
752static inline void audit_free_names(struct audit_context *context)
753{
754 int i;
755
756#if AUDIT_DEBUG == 2
757 if (context->auditable
758 ||context->put_count + context->ino_count != context->name_count) {
73241ccc 759 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1da177e4
LT
760 " name_count=%d put_count=%d"
761 " ino_count=%d [NOT freeing]\n",
73241ccc 762 __FILE__, __LINE__,
1da177e4
LT
763 context->serial, context->major, context->in_syscall,
764 context->name_count, context->put_count,
765 context->ino_count);
8c8570fb 766 for (i = 0; i < context->name_count; i++) {
1da177e4
LT
767 printk(KERN_ERR "names[%d] = %p = %s\n", i,
768 context->names[i].name,
73241ccc 769 context->names[i].name ?: "(null)");
8c8570fb 770 }
1da177e4
LT
771 dump_stack();
772 return;
773 }
774#endif
775#if AUDIT_DEBUG
776 context->put_count = 0;
777 context->ino_count = 0;
778#endif
779
8c8570fb 780 for (i = 0; i < context->name_count; i++) {
9c937dcc 781 if (context->names[i].name && context->names[i].name_put)
1da177e4 782 __putname(context->names[i].name);
8c8570fb 783 }
1da177e4 784 context->name_count = 0;
8f37d47c
DW
785 if (context->pwd)
786 dput(context->pwd);
787 if (context->pwdmnt)
788 mntput(context->pwdmnt);
789 context->pwd = NULL;
790 context->pwdmnt = NULL;
1da177e4
LT
791}
792
793static inline void audit_free_aux(struct audit_context *context)
794{
795 struct audit_aux_data *aux;
796
797 while ((aux = context->aux)) {
798 context->aux = aux->next;
799 kfree(aux);
800 }
e54dc243
AG
801 while ((aux = context->aux_pids)) {
802 context->aux_pids = aux->next;
803 kfree(aux);
804 }
1da177e4
LT
805}
806
807static inline void audit_zero_context(struct audit_context *context,
808 enum audit_state state)
809{
1da177e4
LT
810 memset(context, 0, sizeof(*context));
811 context->state = state;
1da177e4
LT
812}
813
814static inline struct audit_context *audit_alloc_context(enum audit_state state)
815{
816 struct audit_context *context;
817
818 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
819 return NULL;
820 audit_zero_context(context, state);
821 return context;
822}
823
b0dd25a8
RD
824/**
825 * audit_alloc - allocate an audit context block for a task
826 * @tsk: task
827 *
828 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
829 * if necessary. Doing so turns on system call auditing for the
830 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
831 * needed.
832 */
1da177e4
LT
833int audit_alloc(struct task_struct *tsk)
834{
835 struct audit_context *context;
836 enum audit_state state;
837
838 if (likely(!audit_enabled))
839 return 0; /* Return if not auditing. */
840
841 state = audit_filter_task(tsk);
842 if (likely(state == AUDIT_DISABLED))
843 return 0;
844
845 if (!(context = audit_alloc_context(state))) {
846 audit_log_lost("out of memory in audit_alloc");
847 return -ENOMEM;
848 }
849
1da177e4
LT
850 tsk->audit_context = context;
851 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
852 return 0;
853}
854
855static inline void audit_free_context(struct audit_context *context)
856{
857 struct audit_context *previous;
858 int count = 0;
859
860 do {
861 previous = context->previous;
862 if (previous || (count && count < 10)) {
863 ++count;
864 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
865 " freeing multiple contexts (%d)\n",
866 context->serial, context->major,
867 context->name_count, count);
868 }
869 audit_free_names(context);
74c3cbe3
AV
870 unroll_tree_refs(context, NULL, 0);
871 free_tree_refs(context);
1da177e4 872 audit_free_aux(context);
5adc8a6a 873 kfree(context->filterkey);
1da177e4
LT
874 kfree(context);
875 context = previous;
876 } while (context);
877 if (count >= 10)
878 printk(KERN_ERR "audit: freed %d contexts\n", count);
879}
880
161a09e7 881void audit_log_task_context(struct audit_buffer *ab)
8c8570fb
DK
882{
883 char *ctx = NULL;
c4823bce
AV
884 unsigned len;
885 int error;
886 u32 sid;
887
888 selinux_get_task_sid(current, &sid);
889 if (!sid)
890 return;
8c8570fb 891
c4823bce
AV
892 error = selinux_sid_to_string(sid, &ctx, &len);
893 if (error) {
894 if (error != -EINVAL)
8c8570fb
DK
895 goto error_path;
896 return;
897 }
898
8c8570fb 899 audit_log_format(ab, " subj=%s", ctx);
c4823bce 900 kfree(ctx);
7306a0b9 901 return;
8c8570fb
DK
902
903error_path:
7306a0b9 904 audit_panic("error in audit_log_task_context");
8c8570fb
DK
905 return;
906}
907
161a09e7
JL
908EXPORT_SYMBOL(audit_log_task_context);
909
e495149b 910static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
219f0817 911{
45d9bb0e
AV
912 char name[sizeof(tsk->comm)];
913 struct mm_struct *mm = tsk->mm;
219f0817
SS
914 struct vm_area_struct *vma;
915
e495149b
AV
916 /* tsk == current */
917
45d9bb0e 918 get_task_comm(name, tsk);
99e45eea
DW
919 audit_log_format(ab, " comm=");
920 audit_log_untrustedstring(ab, name);
219f0817 921
e495149b
AV
922 if (mm) {
923 down_read(&mm->mmap_sem);
924 vma = mm->mmap;
925 while (vma) {
926 if ((vma->vm_flags & VM_EXECUTABLE) &&
927 vma->vm_file) {
928 audit_log_d_path(ab, "exe=",
a7a005fd
JS
929 vma->vm_file->f_path.dentry,
930 vma->vm_file->f_path.mnt);
e495149b
AV
931 break;
932 }
933 vma = vma->vm_next;
219f0817 934 }
e495149b 935 up_read(&mm->mmap_sem);
219f0817 936 }
e495149b 937 audit_log_task_context(ab);
219f0817
SS
938}
939
e54dc243 940static int audit_log_pid_context(struct audit_context *context, pid_t pid,
4746ec5b
EP
941 uid_t auid, uid_t uid, unsigned int sessionid,
942 u32 sid, char *comm)
e54dc243
AG
943{
944 struct audit_buffer *ab;
945 char *s = NULL;
946 u32 len;
947 int rc = 0;
948
949 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
950 if (!ab)
951 return 1;
952
4746ec5b
EP
953 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
954 uid, sessionid);
e54dc243 955 if (selinux_sid_to_string(sid, &s, &len)) {
c2a7780e 956 audit_log_format(ab, " obj=(none)");
e54dc243
AG
957 rc = 1;
958 } else
c2a7780e
EP
959 audit_log_format(ab, " obj=%s", s);
960 audit_log_format(ab, " ocomm=");
961 audit_log_untrustedstring(ab, comm);
e54dc243
AG
962 audit_log_end(ab);
963 kfree(s);
964
965 return rc;
966}
967
bdf4c48a
PZ
968static void audit_log_execve_info(struct audit_buffer *ab,
969 struct audit_aux_data_execve *axi)
970{
971 int i;
972 long len, ret;
040b3a2d 973 const char __user *p;
bdf4c48a
PZ
974 char *buf;
975
976 if (axi->mm != current->mm)
977 return; /* execve failed, no additional info */
978
040b3a2d
PZ
979 p = (const char __user *)axi->mm->arg_start;
980
bdf4c48a 981 for (i = 0; i < axi->argc; i++, p += len) {
b6a2fea3 982 len = strnlen_user(p, MAX_ARG_STRLEN);
bdf4c48a
PZ
983 /*
984 * We just created this mm, if we can't find the strings
985 * we just copied into it something is _very_ wrong. Similar
986 * for strings that are too long, we should not have created
987 * any.
988 */
989 if (!len || len > MAX_ARG_STRLEN) {
990 WARN_ON(1);
991 send_sig(SIGKILL, current, 0);
992 }
993
994 buf = kmalloc(len, GFP_KERNEL);
995 if (!buf) {
996 audit_panic("out of memory for argv string\n");
997 break;
998 }
999
1000 ret = copy_from_user(buf, p, len);
1001 /*
1002 * There is no reason for this copy to be short. We just
1003 * copied them here, and the mm hasn't been exposed to user-
1004 * space yet.
1005 */
040b3a2d 1006 if (ret) {
bdf4c48a
PZ
1007 WARN_ON(1);
1008 send_sig(SIGKILL, current, 0);
1009 }
1010
1011 audit_log_format(ab, "a%d=", i);
1012 audit_log_untrustedstring(ab, buf);
1013 audit_log_format(ab, "\n");
1014
1015 kfree(buf);
1016 }
1017}
1018
e495149b 1019static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1020{
9c7aa6aa 1021 int i, call_panic = 0;
1da177e4 1022 struct audit_buffer *ab;
7551ced3 1023 struct audit_aux_data *aux;
a6c043a8 1024 const char *tty;
1da177e4 1025
e495149b 1026 /* tsk == current */
3f2792ff 1027 context->pid = tsk->pid;
419c58f1
AV
1028 if (!context->ppid)
1029 context->ppid = sys_getppid();
3f2792ff
AV
1030 context->uid = tsk->uid;
1031 context->gid = tsk->gid;
1032 context->euid = tsk->euid;
1033 context->suid = tsk->suid;
1034 context->fsuid = tsk->fsuid;
1035 context->egid = tsk->egid;
1036 context->sgid = tsk->sgid;
1037 context->fsgid = tsk->fsgid;
1038 context->personality = tsk->personality;
e495149b
AV
1039
1040 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1041 if (!ab)
1042 return; /* audit_panic has been called */
bccf6ae0
DW
1043 audit_log_format(ab, "arch=%x syscall=%d",
1044 context->arch, context->major);
1da177e4
LT
1045 if (context->personality != PER_LINUX)
1046 audit_log_format(ab, " per=%lx", context->personality);
1047 if (context->return_valid)
9f8dbe9c 1048 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b
DW
1049 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1050 context->return_code);
eb84a20e
AC
1051
1052 mutex_lock(&tty_mutex);
24ec839c 1053 read_lock(&tasklist_lock);
45d9bb0e
AV
1054 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1055 tty = tsk->signal->tty->name;
a6c043a8
SG
1056 else
1057 tty = "(none)";
24ec839c 1058 read_unlock(&tasklist_lock);
1da177e4
LT
1059 audit_log_format(ab,
1060 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
f46038ff 1061 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
326e9c8b 1062 " euid=%u suid=%u fsuid=%u"
4746ec5b 1063 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1da177e4
LT
1064 context->argv[0],
1065 context->argv[1],
1066 context->argv[2],
1067 context->argv[3],
1068 context->name_count,
f46038ff 1069 context->ppid,
1da177e4 1070 context->pid,
bfef93a5 1071 tsk->loginuid,
1da177e4
LT
1072 context->uid,
1073 context->gid,
1074 context->euid, context->suid, context->fsuid,
4746ec5b
EP
1075 context->egid, context->sgid, context->fsgid, tty,
1076 tsk->sessionid);
eb84a20e
AC
1077
1078 mutex_unlock(&tty_mutex);
1079
e495149b 1080 audit_log_task_info(ab, tsk);
5adc8a6a
AG
1081 if (context->filterkey) {
1082 audit_log_format(ab, " key=");
1083 audit_log_untrustedstring(ab, context->filterkey);
1084 } else
1085 audit_log_format(ab, " key=(null)");
1da177e4 1086 audit_log_end(ab);
1da177e4 1087
7551ced3 1088 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1089
e495149b 1090 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1091 if (!ab)
1092 continue; /* audit_panic has been called */
1093
1da177e4 1094 switch (aux->type) {
20ca73bc
GW
1095 case AUDIT_MQ_OPEN: {
1096 struct audit_aux_data_mq_open *axi = (void *)aux;
1097 audit_log_format(ab,
1098 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1099 "mq_msgsize=%ld mq_curmsgs=%ld",
1100 axi->oflag, axi->mode, axi->attr.mq_flags,
1101 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
1102 axi->attr.mq_curmsgs);
1103 break; }
1104
1105 case AUDIT_MQ_SENDRECV: {
1106 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
1107 audit_log_format(ab,
1108 "mqdes=%d msg_len=%zd msg_prio=%u "
1109 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1110 axi->mqdes, axi->msg_len, axi->msg_prio,
1111 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
1112 break; }
1113
1114 case AUDIT_MQ_NOTIFY: {
1115 struct audit_aux_data_mq_notify *axi = (void *)aux;
1116 audit_log_format(ab,
1117 "mqdes=%d sigev_signo=%d",
1118 axi->mqdes,
1119 axi->notification.sigev_signo);
1120 break; }
1121
1122 case AUDIT_MQ_GETSETATTR: {
1123 struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
1124 audit_log_format(ab,
1125 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1126 "mq_curmsgs=%ld ",
1127 axi->mqdes,
1128 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
1129 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
1130 break; }
1131
c0404993 1132 case AUDIT_IPC: {
1da177e4
LT
1133 struct audit_aux_data_ipcctl *axi = (void *)aux;
1134 audit_log_format(ab,
5b9a4262 1135 "ouid=%u ogid=%u mode=%#o",
ac03221a 1136 axi->uid, axi->gid, axi->mode);
9c7aa6aa
SG
1137 if (axi->osid != 0) {
1138 char *ctx = NULL;
1139 u32 len;
1a70cd40 1140 if (selinux_sid_to_string(
9c7aa6aa 1141 axi->osid, &ctx, &len)) {
ce29b682 1142 audit_log_format(ab, " osid=%u",
9c7aa6aa
SG
1143 axi->osid);
1144 call_panic = 1;
1145 } else
1146 audit_log_format(ab, " obj=%s", ctx);
1147 kfree(ctx);
1148 }
3ec3b2fb
DW
1149 break; }
1150
073115d6
SG
1151 case AUDIT_IPC_SET_PERM: {
1152 struct audit_aux_data_ipcctl *axi = (void *)aux;
1153 audit_log_format(ab,
5b9a4262 1154 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
073115d6 1155 axi->qbytes, axi->uid, axi->gid, axi->mode);
073115d6 1156 break; }
ac03221a 1157
473ae30b
AV
1158 case AUDIT_EXECVE: {
1159 struct audit_aux_data_execve *axi = (void *)aux;
bdf4c48a 1160 audit_log_execve_info(ab, axi);
473ae30b 1161 break; }
073115d6 1162
3ec3b2fb
DW
1163 case AUDIT_SOCKETCALL: {
1164 int i;
1165 struct audit_aux_data_socketcall *axs = (void *)aux;
1166 audit_log_format(ab, "nargs=%d", axs->nargs);
1167 for (i=0; i<axs->nargs; i++)
1168 audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
1169 break; }
1170
1171 case AUDIT_SOCKADDR: {
1172 struct audit_aux_data_sockaddr *axs = (void *)aux;
1173
1174 audit_log_format(ab, "saddr=");
1175 audit_log_hex(ab, axs->a, axs->len);
1176 break; }
01116105 1177
db349509
AV
1178 case AUDIT_FD_PAIR: {
1179 struct audit_aux_data_fd_pair *axs = (void *)aux;
1180 audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1181 break; }
1182
1da177e4
LT
1183 }
1184 audit_log_end(ab);
1da177e4
LT
1185 }
1186
e54dc243
AG
1187 for (aux = context->aux_pids; aux; aux = aux->next) {
1188 struct audit_aux_data_pids *axs = (void *)aux;
1189 int i;
1190
1191 for (i = 0; i < axs->pid_count; i++)
1192 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1193 axs->target_auid[i],
1194 axs->target_uid[i],
4746ec5b 1195 axs->target_sessionid[i],
c2a7780e
EP
1196 axs->target_sid[i],
1197 axs->target_comm[i]))
e54dc243 1198 call_panic = 1;
a5cb013d
AV
1199 }
1200
e54dc243
AG
1201 if (context->target_pid &&
1202 audit_log_pid_context(context, context->target_pid,
c2a7780e 1203 context->target_auid, context->target_uid,
4746ec5b 1204 context->target_sessionid,
c2a7780e 1205 context->target_sid, context->target_comm))
e54dc243
AG
1206 call_panic = 1;
1207
8f37d47c 1208 if (context->pwd && context->pwdmnt) {
e495149b 1209 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c
DW
1210 if (ab) {
1211 audit_log_d_path(ab, "cwd=", context->pwd, context->pwdmnt);
1212 audit_log_end(ab);
1213 }
1214 }
1da177e4 1215 for (i = 0; i < context->name_count; i++) {
9c937dcc 1216 struct audit_names *n = &context->names[i];
73241ccc 1217
e495149b 1218 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1da177e4
LT
1219 if (!ab)
1220 continue; /* audit_panic has been called */
8f37d47c 1221
1da177e4 1222 audit_log_format(ab, "item=%d", i);
73241ccc 1223
9c937dcc
AG
1224 if (n->name) {
1225 switch(n->name_len) {
1226 case AUDIT_NAME_FULL:
1227 /* log the full path */
1228 audit_log_format(ab, " name=");
1229 audit_log_untrustedstring(ab, n->name);
1230 break;
1231 case 0:
1232 /* name was specified as a relative path and the
1233 * directory component is the cwd */
1234 audit_log_d_path(ab, " name=", context->pwd,
1235 context->pwdmnt);
1236 break;
1237 default:
1238 /* log the name's directory component */
1239 audit_log_format(ab, " name=");
1240 audit_log_n_untrustedstring(ab, n->name_len,
1241 n->name);
1242 }
1243 } else
1244 audit_log_format(ab, " name=(null)");
1245
1246 if (n->ino != (unsigned long)-1) {
1247 audit_log_format(ab, " inode=%lu"
1248 " dev=%02x:%02x mode=%#o"
1249 " ouid=%u ogid=%u rdev=%02x:%02x",
1250 n->ino,
1251 MAJOR(n->dev),
1252 MINOR(n->dev),
1253 n->mode,
1254 n->uid,
1255 n->gid,
1256 MAJOR(n->rdev),
1257 MINOR(n->rdev));
1258 }
1259 if (n->osid != 0) {
1b50eed9
SG
1260 char *ctx = NULL;
1261 u32 len;
1a70cd40 1262 if (selinux_sid_to_string(
9c937dcc
AG
1263 n->osid, &ctx, &len)) {
1264 audit_log_format(ab, " osid=%u", n->osid);
9c7aa6aa 1265 call_panic = 2;
1b50eed9
SG
1266 } else
1267 audit_log_format(ab, " obj=%s", ctx);
1268 kfree(ctx);
8c8570fb
DK
1269 }
1270
1da177e4
LT
1271 audit_log_end(ab);
1272 }
9c7aa6aa
SG
1273 if (call_panic)
1274 audit_panic("error converting sid to string");
1da177e4
LT
1275}
1276
b0dd25a8
RD
1277/**
1278 * audit_free - free a per-task audit context
1279 * @tsk: task whose audit context block to free
1280 *
fa84cb93 1281 * Called from copy_process and do_exit
b0dd25a8 1282 */
1da177e4
LT
1283void audit_free(struct task_struct *tsk)
1284{
1285 struct audit_context *context;
1286
1da177e4 1287 context = audit_get_context(tsk, 0, 0);
1da177e4
LT
1288 if (likely(!context))
1289 return;
1290
1291 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1292 * function (e.g., exit_group), then free context block.
1293 * We use GFP_ATOMIC here because we might be doing this
f5561964 1294 * in the context of the idle thread */
e495149b 1295 /* that can happen only if we are called from do_exit() */
f7056d64 1296 if (context->in_syscall && context->auditable)
e495149b 1297 audit_log_exit(context, tsk);
1da177e4
LT
1298
1299 audit_free_context(context);
1300}
1301
b0dd25a8
RD
1302/**
1303 * audit_syscall_entry - fill in an audit record at syscall entry
1304 * @tsk: task being audited
1305 * @arch: architecture type
1306 * @major: major syscall type (function)
1307 * @a1: additional syscall register 1
1308 * @a2: additional syscall register 2
1309 * @a3: additional syscall register 3
1310 * @a4: additional syscall register 4
1311 *
1312 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1313 * audit context was created when the task was created and the state or
1314 * filters demand the audit context be built. If the state from the
1315 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1316 * then the record will be written at syscall exit time (otherwise, it
1317 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1318 * be written).
1319 */
5411be59 1320void audit_syscall_entry(int arch, int major,
1da177e4
LT
1321 unsigned long a1, unsigned long a2,
1322 unsigned long a3, unsigned long a4)
1323{
5411be59 1324 struct task_struct *tsk = current;
1da177e4
LT
1325 struct audit_context *context = tsk->audit_context;
1326 enum audit_state state;
1327
1328 BUG_ON(!context);
1329
b0dd25a8
RD
1330 /*
1331 * This happens only on certain architectures that make system
1da177e4
LT
1332 * calls in kernel_thread via the entry.S interface, instead of
1333 * with direct calls. (If you are porting to a new
1334 * architecture, hitting this condition can indicate that you
1335 * got the _exit/_leave calls backward in entry.S.)
1336 *
1337 * i386 no
1338 * x86_64 no
2ef9481e 1339 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1da177e4
LT
1340 *
1341 * This also happens with vm86 emulation in a non-nested manner
1342 * (entries without exits), so this case must be caught.
1343 */
1344 if (context->in_syscall) {
1345 struct audit_context *newctx;
1346
1da177e4
LT
1347#if AUDIT_DEBUG
1348 printk(KERN_ERR
1349 "audit(:%d) pid=%d in syscall=%d;"
1350 " entering syscall=%d\n",
1351 context->serial, tsk->pid, context->major, major);
1352#endif
1353 newctx = audit_alloc_context(context->state);
1354 if (newctx) {
1355 newctx->previous = context;
1356 context = newctx;
1357 tsk->audit_context = newctx;
1358 } else {
1359 /* If we can't alloc a new context, the best we
1360 * can do is to leak memory (any pending putname
1361 * will be lost). The only other alternative is
1362 * to abandon auditing. */
1363 audit_zero_context(context, context->state);
1364 }
1365 }
1366 BUG_ON(context->in_syscall || context->name_count);
1367
1368 if (!audit_enabled)
1369 return;
1370
2fd6f58b 1371 context->arch = arch;
1da177e4
LT
1372 context->major = major;
1373 context->argv[0] = a1;
1374 context->argv[1] = a2;
1375 context->argv[2] = a3;
1376 context->argv[3] = a4;
1377
1378 state = context->state;
d51374ad
AV
1379 context->dummy = !audit_n_rules;
1380 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
0f45aa18 1381 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1da177e4
LT
1382 if (likely(state == AUDIT_DISABLED))
1383 return;
1384
ce625a80 1385 context->serial = 0;
1da177e4
LT
1386 context->ctime = CURRENT_TIME;
1387 context->in_syscall = 1;
1388 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
419c58f1 1389 context->ppid = 0;
1da177e4
LT
1390}
1391
b0dd25a8
RD
1392/**
1393 * audit_syscall_exit - deallocate audit context after a system call
1394 * @tsk: task being audited
1395 * @valid: success/failure flag
1396 * @return_code: syscall return value
1397 *
1398 * Tear down after system call. If the audit context has been marked as
1da177e4
LT
1399 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1400 * filtering, or because some other part of the kernel write an audit
1401 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1402 * free the names stored from getname().
1403 */
5411be59 1404void audit_syscall_exit(int valid, long return_code)
1da177e4 1405{
5411be59 1406 struct task_struct *tsk = current;
1da177e4
LT
1407 struct audit_context *context;
1408
2fd6f58b 1409 context = audit_get_context(tsk, valid, return_code);
1da177e4 1410
1da177e4 1411 if (likely(!context))
97e94c45 1412 return;
1da177e4 1413
f7056d64 1414 if (context->in_syscall && context->auditable)
e495149b 1415 audit_log_exit(context, tsk);
1da177e4
LT
1416
1417 context->in_syscall = 0;
1418 context->auditable = 0;
2fd6f58b 1419
1da177e4
LT
1420 if (context->previous) {
1421 struct audit_context *new_context = context->previous;
1422 context->previous = NULL;
1423 audit_free_context(context);
1424 tsk->audit_context = new_context;
1425 } else {
1426 audit_free_names(context);
74c3cbe3 1427 unroll_tree_refs(context, NULL, 0);
1da177e4 1428 audit_free_aux(context);
e54dc243
AG
1429 context->aux = NULL;
1430 context->aux_pids = NULL;
a5cb013d 1431 context->target_pid = 0;
e54dc243 1432 context->target_sid = 0;
5adc8a6a
AG
1433 kfree(context->filterkey);
1434 context->filterkey = NULL;
1da177e4
LT
1435 tsk->audit_context = context;
1436 }
1da177e4
LT
1437}
1438
74c3cbe3
AV
1439static inline void handle_one(const struct inode *inode)
1440{
1441#ifdef CONFIG_AUDIT_TREE
1442 struct audit_context *context;
1443 struct audit_tree_refs *p;
1444 struct audit_chunk *chunk;
1445 int count;
1446 if (likely(list_empty(&inode->inotify_watches)))
1447 return;
1448 context = current->audit_context;
1449 p = context->trees;
1450 count = context->tree_count;
1451 rcu_read_lock();
1452 chunk = audit_tree_lookup(inode);
1453 rcu_read_unlock();
1454 if (!chunk)
1455 return;
1456 if (likely(put_tree_ref(context, chunk)))
1457 return;
1458 if (unlikely(!grow_tree_refs(context))) {
1459 printk(KERN_WARNING "out of memory, audit has lost a tree reference");
1460 audit_set_auditable(context);
1461 audit_put_chunk(chunk);
1462 unroll_tree_refs(context, p, count);
1463 return;
1464 }
1465 put_tree_ref(context, chunk);
1466#endif
1467}
1468
1469static void handle_path(const struct dentry *dentry)
1470{
1471#ifdef CONFIG_AUDIT_TREE
1472 struct audit_context *context;
1473 struct audit_tree_refs *p;
1474 const struct dentry *d, *parent;
1475 struct audit_chunk *drop;
1476 unsigned long seq;
1477 int count;
1478
1479 context = current->audit_context;
1480 p = context->trees;
1481 count = context->tree_count;
1482retry:
1483 drop = NULL;
1484 d = dentry;
1485 rcu_read_lock();
1486 seq = read_seqbegin(&rename_lock);
1487 for(;;) {
1488 struct inode *inode = d->d_inode;
1489 if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1490 struct audit_chunk *chunk;
1491 chunk = audit_tree_lookup(inode);
1492 if (chunk) {
1493 if (unlikely(!put_tree_ref(context, chunk))) {
1494 drop = chunk;
1495 break;
1496 }
1497 }
1498 }
1499 parent = d->d_parent;
1500 if (parent == d)
1501 break;
1502 d = parent;
1503 }
1504 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1505 rcu_read_unlock();
1506 if (!drop) {
1507 /* just a race with rename */
1508 unroll_tree_refs(context, p, count);
1509 goto retry;
1510 }
1511 audit_put_chunk(drop);
1512 if (grow_tree_refs(context)) {
1513 /* OK, got more space */
1514 unroll_tree_refs(context, p, count);
1515 goto retry;
1516 }
1517 /* too bad */
1518 printk(KERN_WARNING
1519 "out of memory, audit has lost a tree reference");
1520 unroll_tree_refs(context, p, count);
1521 audit_set_auditable(context);
1522 return;
1523 }
1524 rcu_read_unlock();
1525#endif
1526}
1527
b0dd25a8
RD
1528/**
1529 * audit_getname - add a name to the list
1530 * @name: name to add
1531 *
1532 * Add a name to the list of audit names for this context.
1533 * Called from fs/namei.c:getname().
1534 */
d8945bb5 1535void __audit_getname(const char *name)
1da177e4
LT
1536{
1537 struct audit_context *context = current->audit_context;
1538
d8945bb5 1539 if (IS_ERR(name) || !name)
1da177e4
LT
1540 return;
1541
1542 if (!context->in_syscall) {
1543#if AUDIT_DEBUG == 2
1544 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1545 __FILE__, __LINE__, context->serial, name);
1546 dump_stack();
1547#endif
1548 return;
1549 }
1550 BUG_ON(context->name_count >= AUDIT_NAMES);
1551 context->names[context->name_count].name = name;
9c937dcc
AG
1552 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1553 context->names[context->name_count].name_put = 1;
1da177e4 1554 context->names[context->name_count].ino = (unsigned long)-1;
e41e8bde 1555 context->names[context->name_count].osid = 0;
1da177e4 1556 ++context->name_count;
8f37d47c
DW
1557 if (!context->pwd) {
1558 read_lock(&current->fs->lock);
1559 context->pwd = dget(current->fs->pwd);
1560 context->pwdmnt = mntget(current->fs->pwdmnt);
1561 read_unlock(&current->fs->lock);
1562 }
9f8dbe9c 1563
1da177e4
LT
1564}
1565
b0dd25a8
RD
1566/* audit_putname - intercept a putname request
1567 * @name: name to intercept and delay for putname
1568 *
1569 * If we have stored the name from getname in the audit context,
1570 * then we delay the putname until syscall exit.
1571 * Called from include/linux/fs.h:putname().
1572 */
1da177e4
LT
1573void audit_putname(const char *name)
1574{
1575 struct audit_context *context = current->audit_context;
1576
1577 BUG_ON(!context);
1578 if (!context->in_syscall) {
1579#if AUDIT_DEBUG == 2
1580 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1581 __FILE__, __LINE__, context->serial, name);
1582 if (context->name_count) {
1583 int i;
1584 for (i = 0; i < context->name_count; i++)
1585 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1586 context->names[i].name,
73241ccc 1587 context->names[i].name ?: "(null)");
1da177e4
LT
1588 }
1589#endif
1590 __putname(name);
1591 }
1592#if AUDIT_DEBUG
1593 else {
1594 ++context->put_count;
1595 if (context->put_count > context->name_count) {
1596 printk(KERN_ERR "%s:%d(:%d): major=%d"
1597 " in_syscall=%d putname(%p) name_count=%d"
1598 " put_count=%d\n",
1599 __FILE__, __LINE__,
1600 context->serial, context->major,
1601 context->in_syscall, name, context->name_count,
1602 context->put_count);
1603 dump_stack();
1604 }
1605 }
1606#endif
1607}
1608
5712e88f
AG
1609static int audit_inc_name_count(struct audit_context *context,
1610 const struct inode *inode)
1611{
1612 if (context->name_count >= AUDIT_NAMES) {
1613 if (inode)
1614 printk(KERN_DEBUG "name_count maxed, losing inode data: "
1615 "dev=%02x:%02x, inode=%lu",
1616 MAJOR(inode->i_sb->s_dev),
1617 MINOR(inode->i_sb->s_dev),
1618 inode->i_ino);
1619
1620 else
1621 printk(KERN_DEBUG "name_count maxed, losing inode data");
1622 return 1;
1623 }
1624 context->name_count++;
1625#if AUDIT_DEBUG
1626 context->ino_count++;
1627#endif
1628 return 0;
1629}
1630
3e2efce0
AG
1631/* Copy inode data into an audit_names. */
1632static void audit_copy_inode(struct audit_names *name, const struct inode *inode)
8c8570fb 1633{
3e2efce0
AG
1634 name->ino = inode->i_ino;
1635 name->dev = inode->i_sb->s_dev;
1636 name->mode = inode->i_mode;
1637 name->uid = inode->i_uid;
1638 name->gid = inode->i_gid;
1639 name->rdev = inode->i_rdev;
1640 selinux_get_inode_sid(inode, &name->osid);
8c8570fb
DK
1641}
1642
b0dd25a8
RD
1643/**
1644 * audit_inode - store the inode and device from a lookup
1645 * @name: name being audited
481968f4 1646 * @dentry: dentry being audited
b0dd25a8
RD
1647 *
1648 * Called from fs/namei.c:path_lookup().
1649 */
5a190ae6 1650void __audit_inode(const char *name, const struct dentry *dentry)
1da177e4
LT
1651{
1652 int idx;
1653 struct audit_context *context = current->audit_context;
74c3cbe3 1654 const struct inode *inode = dentry->d_inode;
1da177e4
LT
1655
1656 if (!context->in_syscall)
1657 return;
1658 if (context->name_count
1659 && context->names[context->name_count-1].name
1660 && context->names[context->name_count-1].name == name)
1661 idx = context->name_count - 1;
1662 else if (context->name_count > 1
1663 && context->names[context->name_count-2].name
1664 && context->names[context->name_count-2].name == name)
1665 idx = context->name_count - 2;
1666 else {
1667 /* FIXME: how much do we care about inodes that have no
1668 * associated name? */
5712e88f 1669 if (audit_inc_name_count(context, inode))
1da177e4 1670 return;
5712e88f 1671 idx = context->name_count - 1;
1da177e4 1672 context->names[idx].name = NULL;
1da177e4 1673 }
74c3cbe3 1674 handle_path(dentry);
3e2efce0 1675 audit_copy_inode(&context->names[idx], inode);
73241ccc
AG
1676}
1677
1678/**
1679 * audit_inode_child - collect inode info for created/removed objects
1680 * @dname: inode's dentry name
481968f4 1681 * @dentry: dentry being audited
73d3ec5a 1682 * @parent: inode of dentry parent
73241ccc
AG
1683 *
1684 * For syscalls that create or remove filesystem objects, audit_inode
1685 * can only collect information for the filesystem object's parent.
1686 * This call updates the audit context with the child's information.
1687 * Syscalls that create a new filesystem object must be hooked after
1688 * the object is created. Syscalls that remove a filesystem object
1689 * must be hooked prior, in order to capture the target inode during
1690 * unsuccessful attempts.
1691 */
5a190ae6 1692void __audit_inode_child(const char *dname, const struct dentry *dentry,
73d3ec5a 1693 const struct inode *parent)
73241ccc
AG
1694{
1695 int idx;
1696 struct audit_context *context = current->audit_context;
5712e88f 1697 const char *found_parent = NULL, *found_child = NULL;
5a190ae6 1698 const struct inode *inode = dentry->d_inode;
9c937dcc 1699 int dirlen = 0;
73241ccc
AG
1700
1701 if (!context->in_syscall)
1702 return;
1703
74c3cbe3
AV
1704 if (inode)
1705 handle_one(inode);
73241ccc 1706 /* determine matching parent */
f368c07d 1707 if (!dname)
5712e88f 1708 goto add_names;
73241ccc 1709
5712e88f
AG
1710 /* parent is more likely, look for it first */
1711 for (idx = 0; idx < context->name_count; idx++) {
1712 struct audit_names *n = &context->names[idx];
f368c07d 1713
5712e88f
AG
1714 if (!n->name)
1715 continue;
1716
1717 if (n->ino == parent->i_ino &&
1718 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1719 n->name_len = dirlen; /* update parent data in place */
1720 found_parent = n->name;
1721 goto add_names;
f368c07d 1722 }
5712e88f 1723 }
73241ccc 1724
5712e88f
AG
1725 /* no matching parent, look for matching child */
1726 for (idx = 0; idx < context->name_count; idx++) {
1727 struct audit_names *n = &context->names[idx];
1728
1729 if (!n->name)
1730 continue;
1731
1732 /* strcmp() is the more likely scenario */
1733 if (!strcmp(dname, n->name) ||
1734 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1735 if (inode)
1736 audit_copy_inode(n, inode);
1737 else
1738 n->ino = (unsigned long)-1;
1739 found_child = n->name;
1740 goto add_names;
1741 }
ac9910ce 1742 }
5712e88f
AG
1743
1744add_names:
1745 if (!found_parent) {
1746 if (audit_inc_name_count(context, parent))
ac9910ce 1747 return;
5712e88f
AG
1748 idx = context->name_count - 1;
1749 context->names[idx].name = NULL;
73d3ec5a
AG
1750 audit_copy_inode(&context->names[idx], parent);
1751 }
5712e88f
AG
1752
1753 if (!found_child) {
1754 if (audit_inc_name_count(context, inode))
1755 return;
1756 idx = context->name_count - 1;
1757
1758 /* Re-use the name belonging to the slot for a matching parent
1759 * directory. All names for this context are relinquished in
1760 * audit_free_names() */
1761 if (found_parent) {
1762 context->names[idx].name = found_parent;
1763 context->names[idx].name_len = AUDIT_NAME_FULL;
1764 /* don't call __putname() */
1765 context->names[idx].name_put = 0;
1766 } else {
1767 context->names[idx].name = NULL;
1768 }
1769
1770 if (inode)
1771 audit_copy_inode(&context->names[idx], inode);
1772 else
1773 context->names[idx].ino = (unsigned long)-1;
1774 }
3e2efce0 1775}
50e437d5 1776EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 1777
b0dd25a8
RD
1778/**
1779 * auditsc_get_stamp - get local copies of audit_context values
1780 * @ctx: audit_context for the task
1781 * @t: timespec to store time recorded in the audit_context
1782 * @serial: serial value that is recorded in the audit_context
1783 *
1784 * Also sets the context as auditable.
1785 */
bfb4496e
DW
1786void auditsc_get_stamp(struct audit_context *ctx,
1787 struct timespec *t, unsigned int *serial)
1da177e4 1788{
ce625a80
DW
1789 if (!ctx->serial)
1790 ctx->serial = audit_serial();
bfb4496e
DW
1791 t->tv_sec = ctx->ctime.tv_sec;
1792 t->tv_nsec = ctx->ctime.tv_nsec;
1793 *serial = ctx->serial;
1794 ctx->auditable = 1;
1da177e4
LT
1795}
1796
4746ec5b
EP
1797/* global counter which is incremented every time something logs in */
1798static atomic_t session_id = ATOMIC_INIT(0);
1799
b0dd25a8
RD
1800/**
1801 * audit_set_loginuid - set a task's audit_context loginuid
1802 * @task: task whose audit context is being modified
1803 * @loginuid: loginuid value
1804 *
1805 * Returns 0.
1806 *
1807 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1808 */
456be6cd 1809int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1da177e4 1810{
4746ec5b 1811 unsigned int sessionid = atomic_inc_return(&session_id);
41757106
SG
1812 struct audit_context *context = task->audit_context;
1813
bfef93a5
AV
1814 if (context && context->in_syscall) {
1815 struct audit_buffer *ab;
1816
1817 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1818 if (ab) {
1819 audit_log_format(ab, "login pid=%d uid=%u "
4746ec5b
EP
1820 "old auid=%u new auid=%u"
1821 " old ses=%u new ses=%u",
bfef93a5 1822 task->pid, task->uid,
4746ec5b
EP
1823 task->loginuid, loginuid,
1824 task->sessionid, sessionid);
bfef93a5 1825 audit_log_end(ab);
c0404993 1826 }
1da177e4 1827 }
4746ec5b 1828 task->sessionid = sessionid;
bfef93a5 1829 task->loginuid = loginuid;
1da177e4
LT
1830 return 0;
1831}
1832
20ca73bc
GW
1833/**
1834 * __audit_mq_open - record audit data for a POSIX MQ open
1835 * @oflag: open flag
1836 * @mode: mode bits
1837 * @u_attr: queue attributes
1838 *
1839 * Returns 0 for success or NULL context or < 0 on error.
1840 */
1841int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
1842{
1843 struct audit_aux_data_mq_open *ax;
1844 struct audit_context *context = current->audit_context;
1845
1846 if (!audit_enabled)
1847 return 0;
1848
1849 if (likely(!context))
1850 return 0;
1851
1852 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1853 if (!ax)
1854 return -ENOMEM;
1855
1856 if (u_attr != NULL) {
1857 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
1858 kfree(ax);
1859 return -EFAULT;
1860 }
1861 } else
1862 memset(&ax->attr, 0, sizeof(ax->attr));
1863
1864 ax->oflag = oflag;
1865 ax->mode = mode;
1866
1867 ax->d.type = AUDIT_MQ_OPEN;
1868 ax->d.next = context->aux;
1869 context->aux = (void *)ax;
1870 return 0;
1871}
1872
1873/**
1874 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
1875 * @mqdes: MQ descriptor
1876 * @msg_len: Message length
1877 * @msg_prio: Message priority
1dbe83c3 1878 * @u_abs_timeout: Message timeout in absolute time
20ca73bc
GW
1879 *
1880 * Returns 0 for success or NULL context or < 0 on error.
1881 */
1882int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
1883 const struct timespec __user *u_abs_timeout)
1884{
1885 struct audit_aux_data_mq_sendrecv *ax;
1886 struct audit_context *context = current->audit_context;
1887
1888 if (!audit_enabled)
1889 return 0;
1890
1891 if (likely(!context))
1892 return 0;
1893
1894 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1895 if (!ax)
1896 return -ENOMEM;
1897
1898 if (u_abs_timeout != NULL) {
1899 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1900 kfree(ax);
1901 return -EFAULT;
1902 }
1903 } else
1904 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1905
1906 ax->mqdes = mqdes;
1907 ax->msg_len = msg_len;
1908 ax->msg_prio = msg_prio;
1909
1910 ax->d.type = AUDIT_MQ_SENDRECV;
1911 ax->d.next = context->aux;
1912 context->aux = (void *)ax;
1913 return 0;
1914}
1915
1916/**
1917 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
1918 * @mqdes: MQ descriptor
1919 * @msg_len: Message length
1dbe83c3
RD
1920 * @u_msg_prio: Message priority
1921 * @u_abs_timeout: Message timeout in absolute time
20ca73bc
GW
1922 *
1923 * Returns 0 for success or NULL context or < 0 on error.
1924 */
1925int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
1926 unsigned int __user *u_msg_prio,
1927 const struct timespec __user *u_abs_timeout)
1928{
1929 struct audit_aux_data_mq_sendrecv *ax;
1930 struct audit_context *context = current->audit_context;
1931
1932 if (!audit_enabled)
1933 return 0;
1934
1935 if (likely(!context))
1936 return 0;
1937
1938 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1939 if (!ax)
1940 return -ENOMEM;
1941
1942 if (u_msg_prio != NULL) {
1943 if (get_user(ax->msg_prio, u_msg_prio)) {
1944 kfree(ax);
1945 return -EFAULT;
1946 }
1947 } else
1948 ax->msg_prio = 0;
1949
1950 if (u_abs_timeout != NULL) {
1951 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1952 kfree(ax);
1953 return -EFAULT;
1954 }
1955 } else
1956 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1957
1958 ax->mqdes = mqdes;
1959 ax->msg_len = msg_len;
1960
1961 ax->d.type = AUDIT_MQ_SENDRECV;
1962 ax->d.next = context->aux;
1963 context->aux = (void *)ax;
1964 return 0;
1965}
1966
1967/**
1968 * __audit_mq_notify - record audit data for a POSIX MQ notify
1969 * @mqdes: MQ descriptor
1970 * @u_notification: Notification event
1971 *
1972 * Returns 0 for success or NULL context or < 0 on error.
1973 */
1974
1975int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
1976{
1977 struct audit_aux_data_mq_notify *ax;
1978 struct audit_context *context = current->audit_context;
1979
1980 if (!audit_enabled)
1981 return 0;
1982
1983 if (likely(!context))
1984 return 0;
1985
1986 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1987 if (!ax)
1988 return -ENOMEM;
1989
1990 if (u_notification != NULL) {
1991 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
1992 kfree(ax);
1993 return -EFAULT;
1994 }
1995 } else
1996 memset(&ax->notification, 0, sizeof(ax->notification));
1997
1998 ax->mqdes = mqdes;
1999
2000 ax->d.type = AUDIT_MQ_NOTIFY;
2001 ax->d.next = context->aux;
2002 context->aux = (void *)ax;
2003 return 0;
2004}
2005
2006/**
2007 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2008 * @mqdes: MQ descriptor
2009 * @mqstat: MQ flags
2010 *
2011 * Returns 0 for success or NULL context or < 0 on error.
2012 */
2013int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2014{
2015 struct audit_aux_data_mq_getsetattr *ax;
2016 struct audit_context *context = current->audit_context;
2017
2018 if (!audit_enabled)
2019 return 0;
2020
2021 if (likely(!context))
2022 return 0;
2023
2024 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2025 if (!ax)
2026 return -ENOMEM;
2027
2028 ax->mqdes = mqdes;
2029 ax->mqstat = *mqstat;
2030
2031 ax->d.type = AUDIT_MQ_GETSETATTR;
2032 ax->d.next = context->aux;
2033 context->aux = (void *)ax;
2034 return 0;
2035}
2036
b0dd25a8 2037/**
073115d6
SG
2038 * audit_ipc_obj - record audit data for ipc object
2039 * @ipcp: ipc permissions
2040 *
2041 * Returns 0 for success or NULL context or < 0 on error.
2042 */
d8945bb5 2043int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6
SG
2044{
2045 struct audit_aux_data_ipcctl *ax;
2046 struct audit_context *context = current->audit_context;
2047
073115d6
SG
2048 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2049 if (!ax)
2050 return -ENOMEM;
2051
2052 ax->uid = ipcp->uid;
2053 ax->gid = ipcp->gid;
2054 ax->mode = ipcp->mode;
2055 selinux_get_ipc_sid(ipcp, &ax->osid);
2056
2057 ax->d.type = AUDIT_IPC;
2058 ax->d.next = context->aux;
2059 context->aux = (void *)ax;
2060 return 0;
2061}
2062
2063/**
2064 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2065 * @qbytes: msgq bytes
2066 * @uid: msgq user id
2067 * @gid: msgq group id
2068 * @mode: msgq mode (permissions)
2069 *
2070 * Returns 0 for success or NULL context or < 0 on error.
2071 */
d8945bb5 2072int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
1da177e4
LT
2073{
2074 struct audit_aux_data_ipcctl *ax;
2075 struct audit_context *context = current->audit_context;
2076
8c8570fb 2077 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1da177e4
LT
2078 if (!ax)
2079 return -ENOMEM;
2080
2081 ax->qbytes = qbytes;
2082 ax->uid = uid;
2083 ax->gid = gid;
2084 ax->mode = mode;
2085
073115d6 2086 ax->d.type = AUDIT_IPC_SET_PERM;
1da177e4
LT
2087 ax->d.next = context->aux;
2088 context->aux = (void *)ax;
2089 return 0;
2090}
c2f0c7c3 2091
bdf4c48a
PZ
2092int audit_argv_kb = 32;
2093
473ae30b
AV
2094int audit_bprm(struct linux_binprm *bprm)
2095{
2096 struct audit_aux_data_execve *ax;
2097 struct audit_context *context = current->audit_context;
473ae30b 2098
5ac3a9c2 2099 if (likely(!audit_enabled || !context || context->dummy))
473ae30b
AV
2100 return 0;
2101
bdf4c48a
PZ
2102 /*
2103 * Even though the stack code doesn't limit the arg+env size any more,
2104 * the audit code requires that _all_ arguments be logged in a single
2105 * netlink skb. Hence cap it :-(
2106 */
2107 if (bprm->argv_len > (audit_argv_kb << 10))
2108 return -E2BIG;
2109
2110 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
473ae30b
AV
2111 if (!ax)
2112 return -ENOMEM;
2113
2114 ax->argc = bprm->argc;
2115 ax->envc = bprm->envc;
bdf4c48a 2116 ax->mm = bprm->mm;
473ae30b
AV
2117 ax->d.type = AUDIT_EXECVE;
2118 ax->d.next = context->aux;
2119 context->aux = (void *)ax;
2120 return 0;
2121}
2122
2123
b0dd25a8
RD
2124/**
2125 * audit_socketcall - record audit data for sys_socketcall
2126 * @nargs: number of args
2127 * @args: args array
2128 *
2129 * Returns 0 for success or NULL context or < 0 on error.
2130 */
3ec3b2fb
DW
2131int audit_socketcall(int nargs, unsigned long *args)
2132{
2133 struct audit_aux_data_socketcall *ax;
2134 struct audit_context *context = current->audit_context;
2135
5ac3a9c2 2136 if (likely(!context || context->dummy))
3ec3b2fb
DW
2137 return 0;
2138
2139 ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
2140 if (!ax)
2141 return -ENOMEM;
2142
2143 ax->nargs = nargs;
2144 memcpy(ax->args, args, nargs * sizeof(unsigned long));
2145
2146 ax->d.type = AUDIT_SOCKETCALL;
2147 ax->d.next = context->aux;
2148 context->aux = (void *)ax;
2149 return 0;
2150}
2151
db349509
AV
2152/**
2153 * __audit_fd_pair - record audit data for pipe and socketpair
2154 * @fd1: the first file descriptor
2155 * @fd2: the second file descriptor
2156 *
2157 * Returns 0 for success or NULL context or < 0 on error.
2158 */
2159int __audit_fd_pair(int fd1, int fd2)
2160{
2161 struct audit_context *context = current->audit_context;
2162 struct audit_aux_data_fd_pair *ax;
2163
2164 if (likely(!context)) {
2165 return 0;
2166 }
2167
2168 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2169 if (!ax) {
2170 return -ENOMEM;
2171 }
2172
2173 ax->fd[0] = fd1;
2174 ax->fd[1] = fd2;
2175
2176 ax->d.type = AUDIT_FD_PAIR;
2177 ax->d.next = context->aux;
2178 context->aux = (void *)ax;
2179 return 0;
2180}
2181
b0dd25a8
RD
2182/**
2183 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2184 * @len: data length in user space
2185 * @a: data address in kernel space
2186 *
2187 * Returns 0 for success or NULL context or < 0 on error.
2188 */
3ec3b2fb
DW
2189int audit_sockaddr(int len, void *a)
2190{
2191 struct audit_aux_data_sockaddr *ax;
2192 struct audit_context *context = current->audit_context;
2193
5ac3a9c2 2194 if (likely(!context || context->dummy))
3ec3b2fb
DW
2195 return 0;
2196
2197 ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
2198 if (!ax)
2199 return -ENOMEM;
2200
2201 ax->len = len;
2202 memcpy(ax->a, a, len);
2203
2204 ax->d.type = AUDIT_SOCKADDR;
2205 ax->d.next = context->aux;
2206 context->aux = (void *)ax;
2207 return 0;
2208}
2209
a5cb013d
AV
2210void __audit_ptrace(struct task_struct *t)
2211{
2212 struct audit_context *context = current->audit_context;
2213
2214 context->target_pid = t->pid;
c2a7780e
EP
2215 context->target_auid = audit_get_loginuid(t);
2216 context->target_uid = t->uid;
4746ec5b 2217 context->target_sessionid = audit_get_sessionid(t);
a5cb013d 2218 selinux_get_task_sid(t, &context->target_sid);
c2a7780e 2219 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2220}
2221
b0dd25a8
RD
2222/**
2223 * audit_signal_info - record signal info for shutting down audit subsystem
2224 * @sig: signal value
2225 * @t: task being signaled
2226 *
2227 * If the audit subsystem is being terminated, record the task (pid)
2228 * and uid that is doing that.
2229 */
e54dc243 2230int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2231{
e54dc243
AG
2232 struct audit_aux_data_pids *axp;
2233 struct task_struct *tsk = current;
2234 struct audit_context *ctx = tsk->audit_context;
c2f0c7c3
SG
2235 extern pid_t audit_sig_pid;
2236 extern uid_t audit_sig_uid;
e1396065
AV
2237 extern u32 audit_sig_sid;
2238
175fc484
AV
2239 if (audit_pid && t->tgid == audit_pid) {
2240 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1) {
2241 audit_sig_pid = tsk->pid;
bfef93a5
AV
2242 if (tsk->loginuid != -1)
2243 audit_sig_uid = tsk->loginuid;
175fc484
AV
2244 else
2245 audit_sig_uid = tsk->uid;
2246 selinux_get_task_sid(tsk, &audit_sig_sid);
2247 }
2248 if (!audit_signals || audit_dummy_context())
2249 return 0;
c2f0c7c3 2250 }
e54dc243 2251
e54dc243
AG
2252 /* optimize the common case by putting first signal recipient directly
2253 * in audit_context */
2254 if (!ctx->target_pid) {
2255 ctx->target_pid = t->tgid;
c2a7780e
EP
2256 ctx->target_auid = audit_get_loginuid(t);
2257 ctx->target_uid = t->uid;
4746ec5b 2258 ctx->target_sessionid = audit_get_sessionid(t);
e54dc243 2259 selinux_get_task_sid(t, &ctx->target_sid);
c2a7780e 2260 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2261 return 0;
2262 }
2263
2264 axp = (void *)ctx->aux_pids;
2265 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2266 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2267 if (!axp)
2268 return -ENOMEM;
2269
2270 axp->d.type = AUDIT_OBJ_PID;
2271 axp->d.next = ctx->aux_pids;
2272 ctx->aux_pids = (void *)axp;
2273 }
88ae704c 2274 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243
AG
2275
2276 axp->target_pid[axp->pid_count] = t->tgid;
c2a7780e
EP
2277 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2278 axp->target_uid[axp->pid_count] = t->uid;
4746ec5b 2279 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
e54dc243 2280 selinux_get_task_sid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2281 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2282 axp->pid_count++;
2283
2284 return 0;
c2f0c7c3 2285}
0a4ff8c2
SG
2286
2287/**
2288 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2289 * @signr: signal value
0a4ff8c2
SG
2290 *
2291 * If a process ends with a core dump, something fishy is going on and we
2292 * should record the event for investigation.
2293 */
2294void audit_core_dumps(long signr)
2295{
2296 struct audit_buffer *ab;
2297 u32 sid;
4746ec5b
EP
2298 uid_t auid = audit_get_loginuid(current);
2299 unsigned int sessionid = audit_get_sessionid(current);
0a4ff8c2
SG
2300
2301 if (!audit_enabled)
2302 return;
2303
2304 if (signr == SIGQUIT) /* don't care for those */
2305 return;
2306
2307 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
4746ec5b
EP
2308 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2309 auid, current->uid, current->gid, sessionid);
0a4ff8c2
SG
2310 selinux_get_task_sid(current, &sid);
2311 if (sid) {
2312 char *ctx = NULL;
2313 u32 len;
2314
2315 if (selinux_sid_to_string(sid, &ctx, &len))
2316 audit_log_format(ab, " ssid=%u", sid);
2317 else
2318 audit_log_format(ab, " subj=%s", ctx);
2319 kfree(ctx);
2320 }
2321 audit_log_format(ab, " pid=%d comm=", current->pid);
2322 audit_log_untrustedstring(ab, current->comm);
2323 audit_log_format(ab, " sig=%ld", signr);
2324 audit_log_end(ab);
2325}