]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/auditsc.c
CRED: Constify the kernel_cap_t arguments to the capset LSM hooks
[net-next-2.6.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
45#include <linux/init.h>
1da177e4 46#include <asm/types.h>
715b49ef 47#include <asm/atomic.h>
73241ccc
AG
48#include <linux/fs.h>
49#include <linux/namei.h>
1da177e4
LT
50#include <linux/mm.h>
51#include <linux/module.h>
01116105 52#include <linux/mount.h>
3ec3b2fb 53#include <linux/socket.h>
20ca73bc 54#include <linux/mqueue.h>
1da177e4
LT
55#include <linux/audit.h>
56#include <linux/personality.h>
57#include <linux/time.h>
5bb289b5 58#include <linux/netlink.h>
f5561964 59#include <linux/compiler.h>
1da177e4 60#include <asm/unistd.h>
8c8570fb 61#include <linux/security.h>
fe7752ba 62#include <linux/list.h>
a6c043a8 63#include <linux/tty.h>
473ae30b 64#include <linux/binfmts.h>
a1f8e7f7 65#include <linux/highmem.h>
f46038ff 66#include <linux/syscalls.h>
74c3cbe3 67#include <linux/inotify.h>
851f7ff5 68#include <linux/capability.h>
1da177e4 69
fe7752ba 70#include "audit.h"
1da177e4 71
1da177e4
LT
72/* AUDIT_NAMES is the number of slots we reserve in the audit_context
73 * for saving names from getname(). */
74#define AUDIT_NAMES 20
75
9c937dcc
AG
76/* Indicates that audit should log the full pathname. */
77#define AUDIT_NAME_FULL -1
78
de6bbd1d
EP
79/* no execve audit message should be longer than this (userspace limits) */
80#define MAX_EXECVE_AUDIT_LEN 7500
81
471a5c7c
AV
82/* number of audit rules */
83int audit_n_rules;
84
e54dc243
AG
85/* determines whether we collect data for signals sent */
86int audit_signals;
87
851f7ff5
EP
88struct audit_cap_data {
89 kernel_cap_t permitted;
90 kernel_cap_t inheritable;
91 union {
92 unsigned int fE; /* effective bit of a file capability */
93 kernel_cap_t effective; /* effective set of a process */
94 };
95};
96
1da177e4
LT
97/* When fs/namei.c:getname() is called, we store the pointer in name and
98 * we don't let putname() free it (instead we free all of the saved
99 * pointers at syscall exit time).
100 *
101 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
102struct audit_names {
103 const char *name;
9c937dcc
AG
104 int name_len; /* number of name's characters to log */
105 unsigned name_put; /* call __putname() for this name */
1da177e4
LT
106 unsigned long ino;
107 dev_t dev;
108 umode_t mode;
109 uid_t uid;
110 gid_t gid;
111 dev_t rdev;
1b50eed9 112 u32 osid;
851f7ff5
EP
113 struct audit_cap_data fcap;
114 unsigned int fcap_ver;
1da177e4
LT
115};
116
117struct audit_aux_data {
118 struct audit_aux_data *next;
119 int type;
120};
121
122#define AUDIT_AUX_IPCPERM 0
123
e54dc243
AG
124/* Number of target pids per aux struct. */
125#define AUDIT_AUX_PIDS 16
126
20ca73bc
GW
127struct audit_aux_data_mq_open {
128 struct audit_aux_data d;
129 int oflag;
130 mode_t mode;
131 struct mq_attr attr;
132};
133
134struct audit_aux_data_mq_sendrecv {
135 struct audit_aux_data d;
136 mqd_t mqdes;
137 size_t msg_len;
138 unsigned int msg_prio;
139 struct timespec abs_timeout;
140};
141
142struct audit_aux_data_mq_notify {
143 struct audit_aux_data d;
144 mqd_t mqdes;
145 struct sigevent notification;
146};
147
148struct audit_aux_data_mq_getsetattr {
149 struct audit_aux_data d;
150 mqd_t mqdes;
151 struct mq_attr mqstat;
152};
153
1da177e4
LT
154struct audit_aux_data_ipcctl {
155 struct audit_aux_data d;
156 struct ipc_perm p;
157 unsigned long qbytes;
158 uid_t uid;
159 gid_t gid;
160 mode_t mode;
9c7aa6aa 161 u32 osid;
1da177e4
LT
162};
163
473ae30b
AV
164struct audit_aux_data_execve {
165 struct audit_aux_data d;
166 int argc;
167 int envc;
bdf4c48a 168 struct mm_struct *mm;
473ae30b
AV
169};
170
3ec3b2fb
DW
171struct audit_aux_data_socketcall {
172 struct audit_aux_data d;
173 int nargs;
174 unsigned long args[0];
175};
176
177struct audit_aux_data_sockaddr {
178 struct audit_aux_data d;
179 int len;
180 char a[0];
181};
182
db349509
AV
183struct audit_aux_data_fd_pair {
184 struct audit_aux_data d;
185 int fd[2];
186};
187
e54dc243
AG
188struct audit_aux_data_pids {
189 struct audit_aux_data d;
190 pid_t target_pid[AUDIT_AUX_PIDS];
c2a7780e
EP
191 uid_t target_auid[AUDIT_AUX_PIDS];
192 uid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 193 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 194 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 195 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
196 int pid_count;
197};
198
3fc689e9
EP
199struct audit_aux_data_bprm_fcaps {
200 struct audit_aux_data d;
201 struct audit_cap_data fcap;
202 unsigned int fcap_ver;
203 struct audit_cap_data old_pcap;
204 struct audit_cap_data new_pcap;
205};
206
e68b75a0
EP
207struct audit_aux_data_capset {
208 struct audit_aux_data d;
209 pid_t pid;
210 struct audit_cap_data cap;
211};
212
74c3cbe3
AV
213struct audit_tree_refs {
214 struct audit_tree_refs *next;
215 struct audit_chunk *c[31];
216};
217
1da177e4
LT
218/* The per-task audit context. */
219struct audit_context {
d51374ad 220 int dummy; /* must be the first element */
1da177e4
LT
221 int in_syscall; /* 1 if task is in a syscall */
222 enum audit_state state;
223 unsigned int serial; /* serial number for record */
224 struct timespec ctime; /* time of syscall entry */
1da177e4
LT
225 int major; /* syscall number */
226 unsigned long argv[4]; /* syscall arguments */
227 int return_valid; /* return code is valid */
2fd6f58b 228 long return_code;/* syscall return code */
1da177e4
LT
229 int auditable; /* 1 if record should be written */
230 int name_count;
231 struct audit_names names[AUDIT_NAMES];
5adc8a6a 232 char * filterkey; /* key for rule that triggered record */
44707fdf 233 struct path pwd;
1da177e4
LT
234 struct audit_context *previous; /* For nested syscalls */
235 struct audit_aux_data *aux;
e54dc243 236 struct audit_aux_data *aux_pids;
1da177e4
LT
237
238 /* Save things to print about task_struct */
f46038ff 239 pid_t pid, ppid;
1da177e4
LT
240 uid_t uid, euid, suid, fsuid;
241 gid_t gid, egid, sgid, fsgid;
242 unsigned long personality;
2fd6f58b 243 int arch;
1da177e4 244
a5cb013d 245 pid_t target_pid;
c2a7780e
EP
246 uid_t target_auid;
247 uid_t target_uid;
4746ec5b 248 unsigned int target_sessionid;
a5cb013d 249 u32 target_sid;
c2a7780e 250 char target_comm[TASK_COMM_LEN];
a5cb013d 251
74c3cbe3
AV
252 struct audit_tree_refs *trees, *first_trees;
253 int tree_count;
254
1da177e4
LT
255#if AUDIT_DEBUG
256 int put_count;
257 int ino_count;
258#endif
259};
260
55669bfa
AV
261#define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
262static inline int open_arg(int flags, int mask)
263{
264 int n = ACC_MODE(flags);
265 if (flags & (O_TRUNC | O_CREAT))
266 n |= AUDIT_PERM_WRITE;
267 return n & mask;
268}
269
270static int audit_match_perm(struct audit_context *ctx, int mask)
271{
c4bacefb 272 unsigned n;
1a61c88d 273 if (unlikely(!ctx))
274 return 0;
c4bacefb 275 n = ctx->major;
dbda4c0b 276
55669bfa
AV
277 switch (audit_classify_syscall(ctx->arch, n)) {
278 case 0: /* native */
279 if ((mask & AUDIT_PERM_WRITE) &&
280 audit_match_class(AUDIT_CLASS_WRITE, n))
281 return 1;
282 if ((mask & AUDIT_PERM_READ) &&
283 audit_match_class(AUDIT_CLASS_READ, n))
284 return 1;
285 if ((mask & AUDIT_PERM_ATTR) &&
286 audit_match_class(AUDIT_CLASS_CHATTR, n))
287 return 1;
288 return 0;
289 case 1: /* 32bit on biarch */
290 if ((mask & AUDIT_PERM_WRITE) &&
291 audit_match_class(AUDIT_CLASS_WRITE_32, n))
292 return 1;
293 if ((mask & AUDIT_PERM_READ) &&
294 audit_match_class(AUDIT_CLASS_READ_32, n))
295 return 1;
296 if ((mask & AUDIT_PERM_ATTR) &&
297 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
298 return 1;
299 return 0;
300 case 2: /* open */
301 return mask & ACC_MODE(ctx->argv[1]);
302 case 3: /* openat */
303 return mask & ACC_MODE(ctx->argv[2]);
304 case 4: /* socketcall */
305 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
306 case 5: /* execve */
307 return mask & AUDIT_PERM_EXEC;
308 default:
309 return 0;
310 }
311}
312
8b67dca9
AV
313static int audit_match_filetype(struct audit_context *ctx, int which)
314{
315 unsigned index = which & ~S_IFMT;
316 mode_t mode = which & S_IFMT;
1a61c88d 317
318 if (unlikely(!ctx))
319 return 0;
320
8b67dca9
AV
321 if (index >= ctx->name_count)
322 return 0;
323 if (ctx->names[index].ino == -1)
324 return 0;
325 if ((ctx->names[index].mode ^ mode) & S_IFMT)
326 return 0;
327 return 1;
328}
329
74c3cbe3
AV
330/*
331 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
332 * ->first_trees points to its beginning, ->trees - to the current end of data.
333 * ->tree_count is the number of free entries in array pointed to by ->trees.
334 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
335 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
336 * it's going to remain 1-element for almost any setup) until we free context itself.
337 * References in it _are_ dropped - at the same time we free/drop aux stuff.
338 */
339
340#ifdef CONFIG_AUDIT_TREE
341static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
342{
343 struct audit_tree_refs *p = ctx->trees;
344 int left = ctx->tree_count;
345 if (likely(left)) {
346 p->c[--left] = chunk;
347 ctx->tree_count = left;
348 return 1;
349 }
350 if (!p)
351 return 0;
352 p = p->next;
353 if (p) {
354 p->c[30] = chunk;
355 ctx->trees = p;
356 ctx->tree_count = 30;
357 return 1;
358 }
359 return 0;
360}
361
362static int grow_tree_refs(struct audit_context *ctx)
363{
364 struct audit_tree_refs *p = ctx->trees;
365 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
366 if (!ctx->trees) {
367 ctx->trees = p;
368 return 0;
369 }
370 if (p)
371 p->next = ctx->trees;
372 else
373 ctx->first_trees = ctx->trees;
374 ctx->tree_count = 31;
375 return 1;
376}
377#endif
378
379static void unroll_tree_refs(struct audit_context *ctx,
380 struct audit_tree_refs *p, int count)
381{
382#ifdef CONFIG_AUDIT_TREE
383 struct audit_tree_refs *q;
384 int n;
385 if (!p) {
386 /* we started with empty chain */
387 p = ctx->first_trees;
388 count = 31;
389 /* if the very first allocation has failed, nothing to do */
390 if (!p)
391 return;
392 }
393 n = count;
394 for (q = p; q != ctx->trees; q = q->next, n = 31) {
395 while (n--) {
396 audit_put_chunk(q->c[n]);
397 q->c[n] = NULL;
398 }
399 }
400 while (n-- > ctx->tree_count) {
401 audit_put_chunk(q->c[n]);
402 q->c[n] = NULL;
403 }
404 ctx->trees = p;
405 ctx->tree_count = count;
406#endif
407}
408
409static void free_tree_refs(struct audit_context *ctx)
410{
411 struct audit_tree_refs *p, *q;
412 for (p = ctx->first_trees; p; p = q) {
413 q = p->next;
414 kfree(p);
415 }
416}
417
418static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
419{
420#ifdef CONFIG_AUDIT_TREE
421 struct audit_tree_refs *p;
422 int n;
423 if (!tree)
424 return 0;
425 /* full ones */
426 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
427 for (n = 0; n < 31; n++)
428 if (audit_tree_match(p->c[n], tree))
429 return 1;
430 }
431 /* partial */
432 if (p) {
433 for (n = ctx->tree_count; n < 31; n++)
434 if (audit_tree_match(p->c[n], tree))
435 return 1;
436 }
437#endif
438 return 0;
439}
440
f368c07d 441/* Determine if any context name data matches a rule's watch data */
1da177e4
LT
442/* Compare a task_struct with an audit_rule. Return 1 on match, 0
443 * otherwise. */
444static int audit_filter_rules(struct task_struct *tsk,
93315ed6 445 struct audit_krule *rule,
1da177e4 446 struct audit_context *ctx,
f368c07d 447 struct audit_names *name,
1da177e4
LT
448 enum audit_state *state)
449{
2ad312d2 450 int i, j, need_sid = 1;
3dc7e315
DG
451 u32 sid;
452
1da177e4 453 for (i = 0; i < rule->field_count; i++) {
93315ed6 454 struct audit_field *f = &rule->fields[i];
1da177e4
LT
455 int result = 0;
456
93315ed6 457 switch (f->type) {
1da177e4 458 case AUDIT_PID:
93315ed6 459 result = audit_comparator(tsk->pid, f->op, f->val);
1da177e4 460 break;
3c66251e 461 case AUDIT_PPID:
419c58f1
AV
462 if (ctx) {
463 if (!ctx->ppid)
464 ctx->ppid = sys_getppid();
3c66251e 465 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 466 }
3c66251e 467 break;
1da177e4 468 case AUDIT_UID:
93315ed6 469 result = audit_comparator(tsk->uid, f->op, f->val);
1da177e4
LT
470 break;
471 case AUDIT_EUID:
93315ed6 472 result = audit_comparator(tsk->euid, f->op, f->val);
1da177e4
LT
473 break;
474 case AUDIT_SUID:
93315ed6 475 result = audit_comparator(tsk->suid, f->op, f->val);
1da177e4
LT
476 break;
477 case AUDIT_FSUID:
93315ed6 478 result = audit_comparator(tsk->fsuid, f->op, f->val);
1da177e4
LT
479 break;
480 case AUDIT_GID:
93315ed6 481 result = audit_comparator(tsk->gid, f->op, f->val);
1da177e4
LT
482 break;
483 case AUDIT_EGID:
93315ed6 484 result = audit_comparator(tsk->egid, f->op, f->val);
1da177e4
LT
485 break;
486 case AUDIT_SGID:
93315ed6 487 result = audit_comparator(tsk->sgid, f->op, f->val);
1da177e4
LT
488 break;
489 case AUDIT_FSGID:
93315ed6 490 result = audit_comparator(tsk->fsgid, f->op, f->val);
1da177e4
LT
491 break;
492 case AUDIT_PERS:
93315ed6 493 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 494 break;
2fd6f58b 495 case AUDIT_ARCH:
9f8dbe9c 496 if (ctx)
93315ed6 497 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 498 break;
1da177e4
LT
499
500 case AUDIT_EXIT:
501 if (ctx && ctx->return_valid)
93315ed6 502 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
503 break;
504 case AUDIT_SUCCESS:
b01f2cc1 505 if (ctx && ctx->return_valid) {
93315ed6
AG
506 if (f->val)
507 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 508 else
93315ed6 509 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 510 }
1da177e4
LT
511 break;
512 case AUDIT_DEVMAJOR:
f368c07d
AG
513 if (name)
514 result = audit_comparator(MAJOR(name->dev),
515 f->op, f->val);
516 else if (ctx) {
1da177e4 517 for (j = 0; j < ctx->name_count; j++) {
93315ed6 518 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
1da177e4
LT
519 ++result;
520 break;
521 }
522 }
523 }
524 break;
525 case AUDIT_DEVMINOR:
f368c07d
AG
526 if (name)
527 result = audit_comparator(MINOR(name->dev),
528 f->op, f->val);
529 else if (ctx) {
1da177e4 530 for (j = 0; j < ctx->name_count; j++) {
93315ed6 531 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
1da177e4
LT
532 ++result;
533 break;
534 }
535 }
536 }
537 break;
538 case AUDIT_INODE:
f368c07d 539 if (name)
9c937dcc 540 result = (name->ino == f->val);
f368c07d 541 else if (ctx) {
1da177e4 542 for (j = 0; j < ctx->name_count; j++) {
9c937dcc 543 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
1da177e4
LT
544 ++result;
545 break;
546 }
547 }
548 }
549 break;
f368c07d
AG
550 case AUDIT_WATCH:
551 if (name && rule->watch->ino != (unsigned long)-1)
552 result = (name->dev == rule->watch->dev &&
9c937dcc 553 name->ino == rule->watch->ino);
f368c07d 554 break;
74c3cbe3
AV
555 case AUDIT_DIR:
556 if (ctx)
557 result = match_tree_refs(ctx, rule->tree);
558 break;
1da177e4
LT
559 case AUDIT_LOGINUID:
560 result = 0;
561 if (ctx)
bfef93a5 562 result = audit_comparator(tsk->loginuid, f->op, f->val);
1da177e4 563 break;
3a6b9f85
DG
564 case AUDIT_SUBJ_USER:
565 case AUDIT_SUBJ_ROLE:
566 case AUDIT_SUBJ_TYPE:
567 case AUDIT_SUBJ_SEN:
568 case AUDIT_SUBJ_CLR:
3dc7e315
DG
569 /* NOTE: this may return negative values indicating
570 a temporary error. We simply treat this as a
571 match for now to avoid losing information that
572 may be wanted. An error message will also be
573 logged upon error */
04305e4a 574 if (f->lsm_rule) {
2ad312d2 575 if (need_sid) {
2a862b32 576 security_task_getsecid(tsk, &sid);
2ad312d2
SG
577 need_sid = 0;
578 }
d7a96f3a 579 result = security_audit_rule_match(sid, f->type,
3dc7e315 580 f->op,
04305e4a 581 f->lsm_rule,
3dc7e315 582 ctx);
2ad312d2 583 }
3dc7e315 584 break;
6e5a2d1d
DG
585 case AUDIT_OBJ_USER:
586 case AUDIT_OBJ_ROLE:
587 case AUDIT_OBJ_TYPE:
588 case AUDIT_OBJ_LEV_LOW:
589 case AUDIT_OBJ_LEV_HIGH:
590 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
591 also applies here */
04305e4a 592 if (f->lsm_rule) {
6e5a2d1d
DG
593 /* Find files that match */
594 if (name) {
d7a96f3a 595 result = security_audit_rule_match(
6e5a2d1d 596 name->osid, f->type, f->op,
04305e4a 597 f->lsm_rule, ctx);
6e5a2d1d
DG
598 } else if (ctx) {
599 for (j = 0; j < ctx->name_count; j++) {
d7a96f3a 600 if (security_audit_rule_match(
6e5a2d1d
DG
601 ctx->names[j].osid,
602 f->type, f->op,
04305e4a 603 f->lsm_rule, ctx)) {
6e5a2d1d
DG
604 ++result;
605 break;
606 }
607 }
608 }
609 /* Find ipc objects that match */
610 if (ctx) {
611 struct audit_aux_data *aux;
612 for (aux = ctx->aux; aux;
613 aux = aux->next) {
614 if (aux->type == AUDIT_IPC) {
615 struct audit_aux_data_ipcctl *axi = (void *)aux;
04305e4a 616 if (security_audit_rule_match(axi->osid, f->type, f->op, f->lsm_rule, ctx)) {
6e5a2d1d
DG
617 ++result;
618 break;
619 }
620 }
621 }
622 }
623 }
624 break;
1da177e4
LT
625 case AUDIT_ARG0:
626 case AUDIT_ARG1:
627 case AUDIT_ARG2:
628 case AUDIT_ARG3:
629 if (ctx)
93315ed6 630 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 631 break;
5adc8a6a
AG
632 case AUDIT_FILTERKEY:
633 /* ignore this field for filtering */
634 result = 1;
635 break;
55669bfa
AV
636 case AUDIT_PERM:
637 result = audit_match_perm(ctx, f->val);
638 break;
8b67dca9
AV
639 case AUDIT_FILETYPE:
640 result = audit_match_filetype(ctx, f->val);
641 break;
1da177e4
LT
642 }
643
1da177e4
LT
644 if (!result)
645 return 0;
646 }
980dfb0d 647 if (rule->filterkey && ctx)
5adc8a6a 648 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
1da177e4
LT
649 switch (rule->action) {
650 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
651 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
652 }
653 return 1;
654}
655
656/* At process creation time, we can determine if system-call auditing is
657 * completely disabled for this task. Since we only have the task
658 * structure at this point, we can only check uid and gid.
659 */
660static enum audit_state audit_filter_task(struct task_struct *tsk)
661{
662 struct audit_entry *e;
663 enum audit_state state;
664
665 rcu_read_lock();
0f45aa18 666 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f368c07d 667 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
1da177e4
LT
668 rcu_read_unlock();
669 return state;
670 }
671 }
672 rcu_read_unlock();
673 return AUDIT_BUILD_CONTEXT;
674}
675
676/* At syscall entry and exit time, this filter is called if the
677 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 678 * also not high enough that we already know we have to write an audit
b0dd25a8 679 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
680 */
681static enum audit_state audit_filter_syscall(struct task_struct *tsk,
682 struct audit_context *ctx,
683 struct list_head *list)
684{
685 struct audit_entry *e;
c3896495 686 enum audit_state state;
1da177e4 687
351bb722 688 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
689 return AUDIT_DISABLED;
690
1da177e4 691 rcu_read_lock();
c3896495 692 if (!list_empty(list)) {
b63862f4
DK
693 int word = AUDIT_WORD(ctx->major);
694 int bit = AUDIT_BIT(ctx->major);
695
696 list_for_each_entry_rcu(e, list, list) {
f368c07d
AG
697 if ((e->rule.mask[word] & bit) == bit &&
698 audit_filter_rules(tsk, &e->rule, ctx, NULL,
699 &state)) {
700 rcu_read_unlock();
701 return state;
702 }
703 }
704 }
705 rcu_read_unlock();
706 return AUDIT_BUILD_CONTEXT;
707}
708
709/* At syscall exit time, this filter is called if any audit_names[] have been
710 * collected during syscall processing. We only check rules in sublists at hash
711 * buckets applicable to the inode numbers in audit_names[].
712 * Regarding audit_state, same rules apply as for audit_filter_syscall().
713 */
714enum audit_state audit_filter_inodes(struct task_struct *tsk,
715 struct audit_context *ctx)
716{
717 int i;
718 struct audit_entry *e;
719 enum audit_state state;
720
721 if (audit_pid && tsk->tgid == audit_pid)
722 return AUDIT_DISABLED;
723
724 rcu_read_lock();
725 for (i = 0; i < ctx->name_count; i++) {
726 int word = AUDIT_WORD(ctx->major);
727 int bit = AUDIT_BIT(ctx->major);
728 struct audit_names *n = &ctx->names[i];
729 int h = audit_hash_ino((u32)n->ino);
730 struct list_head *list = &audit_inode_hash[h];
731
732 if (list_empty(list))
733 continue;
734
735 list_for_each_entry_rcu(e, list, list) {
736 if ((e->rule.mask[word] & bit) == bit &&
737 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
b63862f4
DK
738 rcu_read_unlock();
739 return state;
740 }
0f45aa18
DW
741 }
742 }
743 rcu_read_unlock();
1da177e4 744 return AUDIT_BUILD_CONTEXT;
0f45aa18
DW
745}
746
f368c07d
AG
747void audit_set_auditable(struct audit_context *ctx)
748{
749 ctx->auditable = 1;
750}
751
1da177e4
LT
752static inline struct audit_context *audit_get_context(struct task_struct *tsk,
753 int return_valid,
754 int return_code)
755{
756 struct audit_context *context = tsk->audit_context;
757
758 if (likely(!context))
759 return NULL;
760 context->return_valid = return_valid;
f701b75e
EP
761
762 /*
763 * we need to fix up the return code in the audit logs if the actual
764 * return codes are later going to be fixed up by the arch specific
765 * signal handlers
766 *
767 * This is actually a test for:
768 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
769 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
770 *
771 * but is faster than a bunch of ||
772 */
773 if (unlikely(return_code <= -ERESTARTSYS) &&
774 (return_code >= -ERESTART_RESTARTBLOCK) &&
775 (return_code != -ENOIOCTLCMD))
776 context->return_code = -EINTR;
777 else
778 context->return_code = return_code;
1da177e4 779
d51374ad 780 if (context->in_syscall && !context->dummy && !context->auditable) {
1da177e4 781 enum audit_state state;
f368c07d 782
0f45aa18 783 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
f368c07d
AG
784 if (state == AUDIT_RECORD_CONTEXT) {
785 context->auditable = 1;
786 goto get_context;
787 }
788
789 state = audit_filter_inodes(tsk, context);
1da177e4
LT
790 if (state == AUDIT_RECORD_CONTEXT)
791 context->auditable = 1;
f368c07d 792
1da177e4
LT
793 }
794
f368c07d 795get_context:
3f2792ff 796
1da177e4
LT
797 tsk->audit_context = NULL;
798 return context;
799}
800
801static inline void audit_free_names(struct audit_context *context)
802{
803 int i;
804
805#if AUDIT_DEBUG == 2
806 if (context->auditable
807 ||context->put_count + context->ino_count != context->name_count) {
73241ccc 808 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1da177e4
LT
809 " name_count=%d put_count=%d"
810 " ino_count=%d [NOT freeing]\n",
73241ccc 811 __FILE__, __LINE__,
1da177e4
LT
812 context->serial, context->major, context->in_syscall,
813 context->name_count, context->put_count,
814 context->ino_count);
8c8570fb 815 for (i = 0; i < context->name_count; i++) {
1da177e4
LT
816 printk(KERN_ERR "names[%d] = %p = %s\n", i,
817 context->names[i].name,
73241ccc 818 context->names[i].name ?: "(null)");
8c8570fb 819 }
1da177e4
LT
820 dump_stack();
821 return;
822 }
823#endif
824#if AUDIT_DEBUG
825 context->put_count = 0;
826 context->ino_count = 0;
827#endif
828
8c8570fb 829 for (i = 0; i < context->name_count; i++) {
9c937dcc 830 if (context->names[i].name && context->names[i].name_put)
1da177e4 831 __putname(context->names[i].name);
8c8570fb 832 }
1da177e4 833 context->name_count = 0;
44707fdf
JB
834 path_put(&context->pwd);
835 context->pwd.dentry = NULL;
836 context->pwd.mnt = NULL;
1da177e4
LT
837}
838
839static inline void audit_free_aux(struct audit_context *context)
840{
841 struct audit_aux_data *aux;
842
843 while ((aux = context->aux)) {
844 context->aux = aux->next;
845 kfree(aux);
846 }
e54dc243
AG
847 while ((aux = context->aux_pids)) {
848 context->aux_pids = aux->next;
849 kfree(aux);
850 }
1da177e4
LT
851}
852
853static inline void audit_zero_context(struct audit_context *context,
854 enum audit_state state)
855{
1da177e4
LT
856 memset(context, 0, sizeof(*context));
857 context->state = state;
1da177e4
LT
858}
859
860static inline struct audit_context *audit_alloc_context(enum audit_state state)
861{
862 struct audit_context *context;
863
864 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
865 return NULL;
866 audit_zero_context(context, state);
867 return context;
868}
869
b0dd25a8
RD
870/**
871 * audit_alloc - allocate an audit context block for a task
872 * @tsk: task
873 *
874 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
875 * if necessary. Doing so turns on system call auditing for the
876 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
877 * needed.
878 */
1da177e4
LT
879int audit_alloc(struct task_struct *tsk)
880{
881 struct audit_context *context;
882 enum audit_state state;
883
b593d384 884 if (likely(!audit_ever_enabled))
1da177e4
LT
885 return 0; /* Return if not auditing. */
886
887 state = audit_filter_task(tsk);
888 if (likely(state == AUDIT_DISABLED))
889 return 0;
890
891 if (!(context = audit_alloc_context(state))) {
892 audit_log_lost("out of memory in audit_alloc");
893 return -ENOMEM;
894 }
895
1da177e4
LT
896 tsk->audit_context = context;
897 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
898 return 0;
899}
900
901static inline void audit_free_context(struct audit_context *context)
902{
903 struct audit_context *previous;
904 int count = 0;
905
906 do {
907 previous = context->previous;
908 if (previous || (count && count < 10)) {
909 ++count;
910 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
911 " freeing multiple contexts (%d)\n",
912 context->serial, context->major,
913 context->name_count, count);
914 }
915 audit_free_names(context);
74c3cbe3
AV
916 unroll_tree_refs(context, NULL, 0);
917 free_tree_refs(context);
1da177e4 918 audit_free_aux(context);
5adc8a6a 919 kfree(context->filterkey);
1da177e4
LT
920 kfree(context);
921 context = previous;
922 } while (context);
923 if (count >= 10)
924 printk(KERN_ERR "audit: freed %d contexts\n", count);
925}
926
161a09e7 927void audit_log_task_context(struct audit_buffer *ab)
8c8570fb
DK
928{
929 char *ctx = NULL;
c4823bce
AV
930 unsigned len;
931 int error;
932 u32 sid;
933
2a862b32 934 security_task_getsecid(current, &sid);
c4823bce
AV
935 if (!sid)
936 return;
8c8570fb 937
2a862b32 938 error = security_secid_to_secctx(sid, &ctx, &len);
c4823bce
AV
939 if (error) {
940 if (error != -EINVAL)
8c8570fb
DK
941 goto error_path;
942 return;
943 }
944
8c8570fb 945 audit_log_format(ab, " subj=%s", ctx);
2a862b32 946 security_release_secctx(ctx, len);
7306a0b9 947 return;
8c8570fb
DK
948
949error_path:
7306a0b9 950 audit_panic("error in audit_log_task_context");
8c8570fb
DK
951 return;
952}
953
161a09e7
JL
954EXPORT_SYMBOL(audit_log_task_context);
955
e495149b 956static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
219f0817 957{
45d9bb0e
AV
958 char name[sizeof(tsk->comm)];
959 struct mm_struct *mm = tsk->mm;
219f0817
SS
960 struct vm_area_struct *vma;
961
e495149b
AV
962 /* tsk == current */
963
45d9bb0e 964 get_task_comm(name, tsk);
99e45eea
DW
965 audit_log_format(ab, " comm=");
966 audit_log_untrustedstring(ab, name);
219f0817 967
e495149b
AV
968 if (mm) {
969 down_read(&mm->mmap_sem);
970 vma = mm->mmap;
971 while (vma) {
972 if ((vma->vm_flags & VM_EXECUTABLE) &&
973 vma->vm_file) {
974 audit_log_d_path(ab, "exe=",
44707fdf 975 &vma->vm_file->f_path);
e495149b
AV
976 break;
977 }
978 vma = vma->vm_next;
219f0817 979 }
e495149b 980 up_read(&mm->mmap_sem);
219f0817 981 }
e495149b 982 audit_log_task_context(ab);
219f0817
SS
983}
984
e54dc243 985static int audit_log_pid_context(struct audit_context *context, pid_t pid,
4746ec5b
EP
986 uid_t auid, uid_t uid, unsigned int sessionid,
987 u32 sid, char *comm)
e54dc243
AG
988{
989 struct audit_buffer *ab;
2a862b32 990 char *ctx = NULL;
e54dc243
AG
991 u32 len;
992 int rc = 0;
993
994 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
995 if (!ab)
6246ccab 996 return rc;
e54dc243 997
4746ec5b
EP
998 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
999 uid, sessionid);
2a862b32 1000 if (security_secid_to_secctx(sid, &ctx, &len)) {
c2a7780e 1001 audit_log_format(ab, " obj=(none)");
e54dc243 1002 rc = 1;
2a862b32
AD
1003 } else {
1004 audit_log_format(ab, " obj=%s", ctx);
1005 security_release_secctx(ctx, len);
1006 }
c2a7780e
EP
1007 audit_log_format(ab, " ocomm=");
1008 audit_log_untrustedstring(ab, comm);
e54dc243 1009 audit_log_end(ab);
e54dc243
AG
1010
1011 return rc;
1012}
1013
de6bbd1d
EP
1014/*
1015 * to_send and len_sent accounting are very loose estimates. We aren't
1016 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1017 * within about 500 bytes (next page boundry)
1018 *
1019 * why snprintf? an int is up to 12 digits long. if we just assumed when
1020 * logging that a[%d]= was going to be 16 characters long we would be wasting
1021 * space in every audit message. In one 7500 byte message we can log up to
1022 * about 1000 min size arguments. That comes down to about 50% waste of space
1023 * if we didn't do the snprintf to find out how long arg_num_len was.
1024 */
1025static int audit_log_single_execve_arg(struct audit_context *context,
1026 struct audit_buffer **ab,
1027 int arg_num,
1028 size_t *len_sent,
1029 const char __user *p,
1030 char *buf)
bdf4c48a 1031{
de6bbd1d
EP
1032 char arg_num_len_buf[12];
1033 const char __user *tmp_p = p;
1034 /* how many digits are in arg_num? 3 is the length of a=\n */
1035 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3;
1036 size_t len, len_left, to_send;
1037 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1038 unsigned int i, has_cntl = 0, too_long = 0;
1039 int ret;
1040
1041 /* strnlen_user includes the null we don't want to send */
1042 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
bdf4c48a 1043
de6bbd1d
EP
1044 /*
1045 * We just created this mm, if we can't find the strings
1046 * we just copied into it something is _very_ wrong. Similar
1047 * for strings that are too long, we should not have created
1048 * any.
1049 */
b0abcfc1 1050 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
de6bbd1d
EP
1051 WARN_ON(1);
1052 send_sig(SIGKILL, current, 0);
b0abcfc1 1053 return -1;
de6bbd1d 1054 }
040b3a2d 1055
de6bbd1d
EP
1056 /* walk the whole argument looking for non-ascii chars */
1057 do {
1058 if (len_left > MAX_EXECVE_AUDIT_LEN)
1059 to_send = MAX_EXECVE_AUDIT_LEN;
1060 else
1061 to_send = len_left;
1062 ret = copy_from_user(buf, tmp_p, to_send);
bdf4c48a 1063 /*
de6bbd1d
EP
1064 * There is no reason for this copy to be short. We just
1065 * copied them here, and the mm hasn't been exposed to user-
1066 * space yet.
bdf4c48a 1067 */
de6bbd1d 1068 if (ret) {
bdf4c48a
PZ
1069 WARN_ON(1);
1070 send_sig(SIGKILL, current, 0);
b0abcfc1 1071 return -1;
bdf4c48a 1072 }
de6bbd1d
EP
1073 buf[to_send] = '\0';
1074 has_cntl = audit_string_contains_control(buf, to_send);
1075 if (has_cntl) {
1076 /*
1077 * hex messages get logged as 2 bytes, so we can only
1078 * send half as much in each message
1079 */
1080 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
bdf4c48a
PZ
1081 break;
1082 }
de6bbd1d
EP
1083 len_left -= to_send;
1084 tmp_p += to_send;
1085 } while (len_left > 0);
1086
1087 len_left = len;
1088
1089 if (len > max_execve_audit_len)
1090 too_long = 1;
1091
1092 /* rewalk the argument actually logging the message */
1093 for (i = 0; len_left > 0; i++) {
1094 int room_left;
1095
1096 if (len_left > max_execve_audit_len)
1097 to_send = max_execve_audit_len;
1098 else
1099 to_send = len_left;
1100
1101 /* do we have space left to send this argument in this ab? */
1102 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1103 if (has_cntl)
1104 room_left -= (to_send * 2);
1105 else
1106 room_left -= to_send;
1107 if (room_left < 0) {
1108 *len_sent = 0;
1109 audit_log_end(*ab);
1110 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1111 if (!*ab)
1112 return 0;
1113 }
bdf4c48a 1114
bdf4c48a 1115 /*
de6bbd1d
EP
1116 * first record needs to say how long the original string was
1117 * so we can be sure nothing was lost.
1118 */
1119 if ((i == 0) && (too_long))
422b03cf 1120 audit_log_format(*ab, "a%d_len=%zu ", arg_num,
de6bbd1d
EP
1121 has_cntl ? 2*len : len);
1122
1123 /*
1124 * normally arguments are small enough to fit and we already
1125 * filled buf above when we checked for control characters
1126 * so don't bother with another copy_from_user
bdf4c48a 1127 */
de6bbd1d
EP
1128 if (len >= max_execve_audit_len)
1129 ret = copy_from_user(buf, p, to_send);
1130 else
1131 ret = 0;
040b3a2d 1132 if (ret) {
bdf4c48a
PZ
1133 WARN_ON(1);
1134 send_sig(SIGKILL, current, 0);
b0abcfc1 1135 return -1;
bdf4c48a 1136 }
de6bbd1d
EP
1137 buf[to_send] = '\0';
1138
1139 /* actually log it */
1140 audit_log_format(*ab, "a%d", arg_num);
1141 if (too_long)
1142 audit_log_format(*ab, "[%d]", i);
1143 audit_log_format(*ab, "=");
1144 if (has_cntl)
b556f8ad 1145 audit_log_n_hex(*ab, buf, to_send);
de6bbd1d
EP
1146 else
1147 audit_log_format(*ab, "\"%s\"", buf);
1148 audit_log_format(*ab, "\n");
1149
1150 p += to_send;
1151 len_left -= to_send;
1152 *len_sent += arg_num_len;
1153 if (has_cntl)
1154 *len_sent += to_send * 2;
1155 else
1156 *len_sent += to_send;
1157 }
1158 /* include the null we didn't log */
1159 return len + 1;
1160}
1161
1162static void audit_log_execve_info(struct audit_context *context,
1163 struct audit_buffer **ab,
1164 struct audit_aux_data_execve *axi)
1165{
1166 int i;
1167 size_t len, len_sent = 0;
1168 const char __user *p;
1169 char *buf;
bdf4c48a 1170
de6bbd1d
EP
1171 if (axi->mm != current->mm)
1172 return; /* execve failed, no additional info */
1173
1174 p = (const char __user *)axi->mm->arg_start;
bdf4c48a 1175
de6bbd1d
EP
1176 audit_log_format(*ab, "argc=%d ", axi->argc);
1177
1178 /*
1179 * we need some kernel buffer to hold the userspace args. Just
1180 * allocate one big one rather than allocating one of the right size
1181 * for every single argument inside audit_log_single_execve_arg()
1182 * should be <8k allocation so should be pretty safe.
1183 */
1184 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1185 if (!buf) {
1186 audit_panic("out of memory for argv string\n");
1187 return;
bdf4c48a 1188 }
de6bbd1d
EP
1189
1190 for (i = 0; i < axi->argc; i++) {
1191 len = audit_log_single_execve_arg(context, ab, i,
1192 &len_sent, p, buf);
1193 if (len <= 0)
1194 break;
1195 p += len;
1196 }
1197 kfree(buf);
bdf4c48a
PZ
1198}
1199
851f7ff5
EP
1200static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1201{
1202 int i;
1203
1204 audit_log_format(ab, " %s=", prefix);
1205 CAP_FOR_EACH_U32(i) {
1206 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1207 }
1208}
1209
1210static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1211{
1212 kernel_cap_t *perm = &name->fcap.permitted;
1213 kernel_cap_t *inh = &name->fcap.inheritable;
1214 int log = 0;
1215
1216 if (!cap_isclear(*perm)) {
1217 audit_log_cap(ab, "cap_fp", perm);
1218 log = 1;
1219 }
1220 if (!cap_isclear(*inh)) {
1221 audit_log_cap(ab, "cap_fi", inh);
1222 log = 1;
1223 }
1224
1225 if (log)
1226 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1227}
1228
e495149b 1229static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1230{
9c7aa6aa 1231 int i, call_panic = 0;
1da177e4 1232 struct audit_buffer *ab;
7551ced3 1233 struct audit_aux_data *aux;
a6c043a8 1234 const char *tty;
1da177e4 1235
e495149b 1236 /* tsk == current */
3f2792ff 1237 context->pid = tsk->pid;
419c58f1
AV
1238 if (!context->ppid)
1239 context->ppid = sys_getppid();
3f2792ff
AV
1240 context->uid = tsk->uid;
1241 context->gid = tsk->gid;
1242 context->euid = tsk->euid;
1243 context->suid = tsk->suid;
1244 context->fsuid = tsk->fsuid;
1245 context->egid = tsk->egid;
1246 context->sgid = tsk->sgid;
1247 context->fsgid = tsk->fsgid;
1248 context->personality = tsk->personality;
e495149b
AV
1249
1250 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1251 if (!ab)
1252 return; /* audit_panic has been called */
bccf6ae0
DW
1253 audit_log_format(ab, "arch=%x syscall=%d",
1254 context->arch, context->major);
1da177e4
LT
1255 if (context->personality != PER_LINUX)
1256 audit_log_format(ab, " per=%lx", context->personality);
1257 if (context->return_valid)
9f8dbe9c 1258 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b
DW
1259 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1260 context->return_code);
eb84a20e 1261
dbda4c0b 1262 spin_lock_irq(&tsk->sighand->siglock);
45d9bb0e
AV
1263 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1264 tty = tsk->signal->tty->name;
a6c043a8
SG
1265 else
1266 tty = "(none)";
dbda4c0b
AC
1267 spin_unlock_irq(&tsk->sighand->siglock);
1268
1da177e4
LT
1269 audit_log_format(ab,
1270 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
f46038ff 1271 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
326e9c8b 1272 " euid=%u suid=%u fsuid=%u"
4746ec5b 1273 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1da177e4
LT
1274 context->argv[0],
1275 context->argv[1],
1276 context->argv[2],
1277 context->argv[3],
1278 context->name_count,
f46038ff 1279 context->ppid,
1da177e4 1280 context->pid,
bfef93a5 1281 tsk->loginuid,
1da177e4
LT
1282 context->uid,
1283 context->gid,
1284 context->euid, context->suid, context->fsuid,
4746ec5b
EP
1285 context->egid, context->sgid, context->fsgid, tty,
1286 tsk->sessionid);
eb84a20e 1287
eb84a20e 1288
e495149b 1289 audit_log_task_info(ab, tsk);
5adc8a6a
AG
1290 if (context->filterkey) {
1291 audit_log_format(ab, " key=");
1292 audit_log_untrustedstring(ab, context->filterkey);
1293 } else
1294 audit_log_format(ab, " key=(null)");
1da177e4 1295 audit_log_end(ab);
1da177e4 1296
7551ced3 1297 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1298
e495149b 1299 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1300 if (!ab)
1301 continue; /* audit_panic has been called */
1302
1da177e4 1303 switch (aux->type) {
20ca73bc
GW
1304 case AUDIT_MQ_OPEN: {
1305 struct audit_aux_data_mq_open *axi = (void *)aux;
1306 audit_log_format(ab,
1307 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1308 "mq_msgsize=%ld mq_curmsgs=%ld",
1309 axi->oflag, axi->mode, axi->attr.mq_flags,
1310 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
1311 axi->attr.mq_curmsgs);
1312 break; }
1313
1314 case AUDIT_MQ_SENDRECV: {
1315 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
1316 audit_log_format(ab,
1317 "mqdes=%d msg_len=%zd msg_prio=%u "
1318 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1319 axi->mqdes, axi->msg_len, axi->msg_prio,
1320 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
1321 break; }
1322
1323 case AUDIT_MQ_NOTIFY: {
1324 struct audit_aux_data_mq_notify *axi = (void *)aux;
1325 audit_log_format(ab,
1326 "mqdes=%d sigev_signo=%d",
1327 axi->mqdes,
1328 axi->notification.sigev_signo);
1329 break; }
1330
1331 case AUDIT_MQ_GETSETATTR: {
1332 struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
1333 audit_log_format(ab,
1334 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1335 "mq_curmsgs=%ld ",
1336 axi->mqdes,
1337 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
1338 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
1339 break; }
1340
c0404993 1341 case AUDIT_IPC: {
1da177e4
LT
1342 struct audit_aux_data_ipcctl *axi = (void *)aux;
1343 audit_log_format(ab,
5b9a4262 1344 "ouid=%u ogid=%u mode=%#o",
ac03221a 1345 axi->uid, axi->gid, axi->mode);
9c7aa6aa
SG
1346 if (axi->osid != 0) {
1347 char *ctx = NULL;
1348 u32 len;
2a862b32 1349 if (security_secid_to_secctx(
9c7aa6aa 1350 axi->osid, &ctx, &len)) {
ce29b682 1351 audit_log_format(ab, " osid=%u",
9c7aa6aa
SG
1352 axi->osid);
1353 call_panic = 1;
2a862b32 1354 } else {
9c7aa6aa 1355 audit_log_format(ab, " obj=%s", ctx);
2a862b32
AD
1356 security_release_secctx(ctx, len);
1357 }
9c7aa6aa 1358 }
3ec3b2fb
DW
1359 break; }
1360
073115d6
SG
1361 case AUDIT_IPC_SET_PERM: {
1362 struct audit_aux_data_ipcctl *axi = (void *)aux;
1363 audit_log_format(ab,
5b9a4262 1364 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
073115d6 1365 axi->qbytes, axi->uid, axi->gid, axi->mode);
073115d6 1366 break; }
ac03221a 1367
473ae30b
AV
1368 case AUDIT_EXECVE: {
1369 struct audit_aux_data_execve *axi = (void *)aux;
de6bbd1d 1370 audit_log_execve_info(context, &ab, axi);
473ae30b 1371 break; }
073115d6 1372
3ec3b2fb 1373 case AUDIT_SOCKETCALL: {
3ec3b2fb
DW
1374 struct audit_aux_data_socketcall *axs = (void *)aux;
1375 audit_log_format(ab, "nargs=%d", axs->nargs);
1376 for (i=0; i<axs->nargs; i++)
1377 audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
1378 break; }
1379
1380 case AUDIT_SOCKADDR: {
1381 struct audit_aux_data_sockaddr *axs = (void *)aux;
1382
1383 audit_log_format(ab, "saddr=");
b556f8ad 1384 audit_log_n_hex(ab, axs->a, axs->len);
3ec3b2fb 1385 break; }
01116105 1386
db349509
AV
1387 case AUDIT_FD_PAIR: {
1388 struct audit_aux_data_fd_pair *axs = (void *)aux;
1389 audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1390 break; }
1391
3fc689e9
EP
1392 case AUDIT_BPRM_FCAPS: {
1393 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1394 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1395 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1396 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1397 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1398 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1399 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1400 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1401 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1402 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1403 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1404 break; }
1405
e68b75a0
EP
1406 case AUDIT_CAPSET: {
1407 struct audit_aux_data_capset *axs = (void *)aux;
1408 audit_log_format(ab, "pid=%d", axs->pid);
1409 audit_log_cap(ab, "cap_pi", &axs->cap.inheritable);
1410 audit_log_cap(ab, "cap_pp", &axs->cap.permitted);
1411 audit_log_cap(ab, "cap_pe", &axs->cap.effective);
1412 break; }
1413
1da177e4
LT
1414 }
1415 audit_log_end(ab);
1da177e4
LT
1416 }
1417
e54dc243
AG
1418 for (aux = context->aux_pids; aux; aux = aux->next) {
1419 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1420
1421 for (i = 0; i < axs->pid_count; i++)
1422 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1423 axs->target_auid[i],
1424 axs->target_uid[i],
4746ec5b 1425 axs->target_sessionid[i],
c2a7780e
EP
1426 axs->target_sid[i],
1427 axs->target_comm[i]))
e54dc243 1428 call_panic = 1;
a5cb013d
AV
1429 }
1430
e54dc243
AG
1431 if (context->target_pid &&
1432 audit_log_pid_context(context, context->target_pid,
c2a7780e 1433 context->target_auid, context->target_uid,
4746ec5b 1434 context->target_sessionid,
c2a7780e 1435 context->target_sid, context->target_comm))
e54dc243
AG
1436 call_panic = 1;
1437
44707fdf 1438 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1439 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1440 if (ab) {
44707fdf 1441 audit_log_d_path(ab, "cwd=", &context->pwd);
8f37d47c
DW
1442 audit_log_end(ab);
1443 }
1444 }
1da177e4 1445 for (i = 0; i < context->name_count; i++) {
9c937dcc 1446 struct audit_names *n = &context->names[i];
73241ccc 1447
e495149b 1448 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1da177e4
LT
1449 if (!ab)
1450 continue; /* audit_panic has been called */
8f37d47c 1451
1da177e4 1452 audit_log_format(ab, "item=%d", i);
73241ccc 1453
9c937dcc
AG
1454 if (n->name) {
1455 switch(n->name_len) {
1456 case AUDIT_NAME_FULL:
1457 /* log the full path */
1458 audit_log_format(ab, " name=");
1459 audit_log_untrustedstring(ab, n->name);
1460 break;
1461 case 0:
1462 /* name was specified as a relative path and the
1463 * directory component is the cwd */
44707fdf 1464 audit_log_d_path(ab, " name=", &context->pwd);
9c937dcc
AG
1465 break;
1466 default:
1467 /* log the name's directory component */
1468 audit_log_format(ab, " name=");
b556f8ad
EP
1469 audit_log_n_untrustedstring(ab, n->name,
1470 n->name_len);
9c937dcc
AG
1471 }
1472 } else
1473 audit_log_format(ab, " name=(null)");
1474
1475 if (n->ino != (unsigned long)-1) {
1476 audit_log_format(ab, " inode=%lu"
1477 " dev=%02x:%02x mode=%#o"
1478 " ouid=%u ogid=%u rdev=%02x:%02x",
1479 n->ino,
1480 MAJOR(n->dev),
1481 MINOR(n->dev),
1482 n->mode,
1483 n->uid,
1484 n->gid,
1485 MAJOR(n->rdev),
1486 MINOR(n->rdev));
1487 }
1488 if (n->osid != 0) {
1b50eed9
SG
1489 char *ctx = NULL;
1490 u32 len;
2a862b32 1491 if (security_secid_to_secctx(
9c937dcc
AG
1492 n->osid, &ctx, &len)) {
1493 audit_log_format(ab, " osid=%u", n->osid);
9c7aa6aa 1494 call_panic = 2;
2a862b32 1495 } else {
1b50eed9 1496 audit_log_format(ab, " obj=%s", ctx);
2a862b32
AD
1497 security_release_secctx(ctx, len);
1498 }
8c8570fb
DK
1499 }
1500
851f7ff5
EP
1501 audit_log_fcaps(ab, n);
1502
1da177e4
LT
1503 audit_log_end(ab);
1504 }
c0641f28
EP
1505
1506 /* Send end of event record to help user space know we are finished */
1507 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1508 if (ab)
1509 audit_log_end(ab);
9c7aa6aa
SG
1510 if (call_panic)
1511 audit_panic("error converting sid to string");
1da177e4
LT
1512}
1513
b0dd25a8
RD
1514/**
1515 * audit_free - free a per-task audit context
1516 * @tsk: task whose audit context block to free
1517 *
fa84cb93 1518 * Called from copy_process and do_exit
b0dd25a8 1519 */
1da177e4
LT
1520void audit_free(struct task_struct *tsk)
1521{
1522 struct audit_context *context;
1523
1da177e4 1524 context = audit_get_context(tsk, 0, 0);
1da177e4
LT
1525 if (likely(!context))
1526 return;
1527
1528 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1529 * function (e.g., exit_group), then free context block.
1530 * We use GFP_ATOMIC here because we might be doing this
f5561964 1531 * in the context of the idle thread */
e495149b 1532 /* that can happen only if we are called from do_exit() */
f7056d64 1533 if (context->in_syscall && context->auditable)
e495149b 1534 audit_log_exit(context, tsk);
1da177e4
LT
1535
1536 audit_free_context(context);
1537}
1538
b0dd25a8
RD
1539/**
1540 * audit_syscall_entry - fill in an audit record at syscall entry
1541 * @tsk: task being audited
1542 * @arch: architecture type
1543 * @major: major syscall type (function)
1544 * @a1: additional syscall register 1
1545 * @a2: additional syscall register 2
1546 * @a3: additional syscall register 3
1547 * @a4: additional syscall register 4
1548 *
1549 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1550 * audit context was created when the task was created and the state or
1551 * filters demand the audit context be built. If the state from the
1552 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1553 * then the record will be written at syscall exit time (otherwise, it
1554 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1555 * be written).
1556 */
5411be59 1557void audit_syscall_entry(int arch, int major,
1da177e4
LT
1558 unsigned long a1, unsigned long a2,
1559 unsigned long a3, unsigned long a4)
1560{
5411be59 1561 struct task_struct *tsk = current;
1da177e4
LT
1562 struct audit_context *context = tsk->audit_context;
1563 enum audit_state state;
1564
86a1c34a
RM
1565 if (unlikely(!context))
1566 return;
1da177e4 1567
b0dd25a8
RD
1568 /*
1569 * This happens only on certain architectures that make system
1da177e4
LT
1570 * calls in kernel_thread via the entry.S interface, instead of
1571 * with direct calls. (If you are porting to a new
1572 * architecture, hitting this condition can indicate that you
1573 * got the _exit/_leave calls backward in entry.S.)
1574 *
1575 * i386 no
1576 * x86_64 no
2ef9481e 1577 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1da177e4
LT
1578 *
1579 * This also happens with vm86 emulation in a non-nested manner
1580 * (entries without exits), so this case must be caught.
1581 */
1582 if (context->in_syscall) {
1583 struct audit_context *newctx;
1584
1da177e4
LT
1585#if AUDIT_DEBUG
1586 printk(KERN_ERR
1587 "audit(:%d) pid=%d in syscall=%d;"
1588 " entering syscall=%d\n",
1589 context->serial, tsk->pid, context->major, major);
1590#endif
1591 newctx = audit_alloc_context(context->state);
1592 if (newctx) {
1593 newctx->previous = context;
1594 context = newctx;
1595 tsk->audit_context = newctx;
1596 } else {
1597 /* If we can't alloc a new context, the best we
1598 * can do is to leak memory (any pending putname
1599 * will be lost). The only other alternative is
1600 * to abandon auditing. */
1601 audit_zero_context(context, context->state);
1602 }
1603 }
1604 BUG_ON(context->in_syscall || context->name_count);
1605
1606 if (!audit_enabled)
1607 return;
1608
2fd6f58b 1609 context->arch = arch;
1da177e4
LT
1610 context->major = major;
1611 context->argv[0] = a1;
1612 context->argv[1] = a2;
1613 context->argv[2] = a3;
1614 context->argv[3] = a4;
1615
1616 state = context->state;
d51374ad
AV
1617 context->dummy = !audit_n_rules;
1618 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
0f45aa18 1619 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1da177e4
LT
1620 if (likely(state == AUDIT_DISABLED))
1621 return;
1622
ce625a80 1623 context->serial = 0;
1da177e4
LT
1624 context->ctime = CURRENT_TIME;
1625 context->in_syscall = 1;
1626 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
419c58f1 1627 context->ppid = 0;
1da177e4
LT
1628}
1629
b0dd25a8
RD
1630/**
1631 * audit_syscall_exit - deallocate audit context after a system call
1632 * @tsk: task being audited
1633 * @valid: success/failure flag
1634 * @return_code: syscall return value
1635 *
1636 * Tear down after system call. If the audit context has been marked as
1da177e4
LT
1637 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1638 * filtering, or because some other part of the kernel write an audit
1639 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1640 * free the names stored from getname().
1641 */
5411be59 1642void audit_syscall_exit(int valid, long return_code)
1da177e4 1643{
5411be59 1644 struct task_struct *tsk = current;
1da177e4
LT
1645 struct audit_context *context;
1646
2fd6f58b 1647 context = audit_get_context(tsk, valid, return_code);
1da177e4 1648
1da177e4 1649 if (likely(!context))
97e94c45 1650 return;
1da177e4 1651
f7056d64 1652 if (context->in_syscall && context->auditable)
e495149b 1653 audit_log_exit(context, tsk);
1da177e4
LT
1654
1655 context->in_syscall = 0;
1656 context->auditable = 0;
2fd6f58b 1657
1da177e4
LT
1658 if (context->previous) {
1659 struct audit_context *new_context = context->previous;
1660 context->previous = NULL;
1661 audit_free_context(context);
1662 tsk->audit_context = new_context;
1663 } else {
1664 audit_free_names(context);
74c3cbe3 1665 unroll_tree_refs(context, NULL, 0);
1da177e4 1666 audit_free_aux(context);
e54dc243
AG
1667 context->aux = NULL;
1668 context->aux_pids = NULL;
a5cb013d 1669 context->target_pid = 0;
e54dc243 1670 context->target_sid = 0;
5adc8a6a
AG
1671 kfree(context->filterkey);
1672 context->filterkey = NULL;
1da177e4
LT
1673 tsk->audit_context = context;
1674 }
1da177e4
LT
1675}
1676
74c3cbe3
AV
1677static inline void handle_one(const struct inode *inode)
1678{
1679#ifdef CONFIG_AUDIT_TREE
1680 struct audit_context *context;
1681 struct audit_tree_refs *p;
1682 struct audit_chunk *chunk;
1683 int count;
1684 if (likely(list_empty(&inode->inotify_watches)))
1685 return;
1686 context = current->audit_context;
1687 p = context->trees;
1688 count = context->tree_count;
1689 rcu_read_lock();
1690 chunk = audit_tree_lookup(inode);
1691 rcu_read_unlock();
1692 if (!chunk)
1693 return;
1694 if (likely(put_tree_ref(context, chunk)))
1695 return;
1696 if (unlikely(!grow_tree_refs(context))) {
436c405c 1697 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1698 audit_set_auditable(context);
1699 audit_put_chunk(chunk);
1700 unroll_tree_refs(context, p, count);
1701 return;
1702 }
1703 put_tree_ref(context, chunk);
1704#endif
1705}
1706
1707static void handle_path(const struct dentry *dentry)
1708{
1709#ifdef CONFIG_AUDIT_TREE
1710 struct audit_context *context;
1711 struct audit_tree_refs *p;
1712 const struct dentry *d, *parent;
1713 struct audit_chunk *drop;
1714 unsigned long seq;
1715 int count;
1716
1717 context = current->audit_context;
1718 p = context->trees;
1719 count = context->tree_count;
1720retry:
1721 drop = NULL;
1722 d = dentry;
1723 rcu_read_lock();
1724 seq = read_seqbegin(&rename_lock);
1725 for(;;) {
1726 struct inode *inode = d->d_inode;
1727 if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1728 struct audit_chunk *chunk;
1729 chunk = audit_tree_lookup(inode);
1730 if (chunk) {
1731 if (unlikely(!put_tree_ref(context, chunk))) {
1732 drop = chunk;
1733 break;
1734 }
1735 }
1736 }
1737 parent = d->d_parent;
1738 if (parent == d)
1739 break;
1740 d = parent;
1741 }
1742 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1743 rcu_read_unlock();
1744 if (!drop) {
1745 /* just a race with rename */
1746 unroll_tree_refs(context, p, count);
1747 goto retry;
1748 }
1749 audit_put_chunk(drop);
1750 if (grow_tree_refs(context)) {
1751 /* OK, got more space */
1752 unroll_tree_refs(context, p, count);
1753 goto retry;
1754 }
1755 /* too bad */
1756 printk(KERN_WARNING
436c405c 1757 "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1758 unroll_tree_refs(context, p, count);
1759 audit_set_auditable(context);
1760 return;
1761 }
1762 rcu_read_unlock();
1763#endif
1764}
1765
b0dd25a8
RD
1766/**
1767 * audit_getname - add a name to the list
1768 * @name: name to add
1769 *
1770 * Add a name to the list of audit names for this context.
1771 * Called from fs/namei.c:getname().
1772 */
d8945bb5 1773void __audit_getname(const char *name)
1da177e4
LT
1774{
1775 struct audit_context *context = current->audit_context;
1776
d8945bb5 1777 if (IS_ERR(name) || !name)
1da177e4
LT
1778 return;
1779
1780 if (!context->in_syscall) {
1781#if AUDIT_DEBUG == 2
1782 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1783 __FILE__, __LINE__, context->serial, name);
1784 dump_stack();
1785#endif
1786 return;
1787 }
1788 BUG_ON(context->name_count >= AUDIT_NAMES);
1789 context->names[context->name_count].name = name;
9c937dcc
AG
1790 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1791 context->names[context->name_count].name_put = 1;
1da177e4 1792 context->names[context->name_count].ino = (unsigned long)-1;
e41e8bde 1793 context->names[context->name_count].osid = 0;
1da177e4 1794 ++context->name_count;
44707fdf 1795 if (!context->pwd.dentry) {
8f37d47c 1796 read_lock(&current->fs->lock);
44707fdf
JB
1797 context->pwd = current->fs->pwd;
1798 path_get(&current->fs->pwd);
8f37d47c
DW
1799 read_unlock(&current->fs->lock);
1800 }
9f8dbe9c 1801
1da177e4
LT
1802}
1803
b0dd25a8
RD
1804/* audit_putname - intercept a putname request
1805 * @name: name to intercept and delay for putname
1806 *
1807 * If we have stored the name from getname in the audit context,
1808 * then we delay the putname until syscall exit.
1809 * Called from include/linux/fs.h:putname().
1810 */
1da177e4
LT
1811void audit_putname(const char *name)
1812{
1813 struct audit_context *context = current->audit_context;
1814
1815 BUG_ON(!context);
1816 if (!context->in_syscall) {
1817#if AUDIT_DEBUG == 2
1818 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1819 __FILE__, __LINE__, context->serial, name);
1820 if (context->name_count) {
1821 int i;
1822 for (i = 0; i < context->name_count; i++)
1823 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1824 context->names[i].name,
73241ccc 1825 context->names[i].name ?: "(null)");
1da177e4
LT
1826 }
1827#endif
1828 __putname(name);
1829 }
1830#if AUDIT_DEBUG
1831 else {
1832 ++context->put_count;
1833 if (context->put_count > context->name_count) {
1834 printk(KERN_ERR "%s:%d(:%d): major=%d"
1835 " in_syscall=%d putname(%p) name_count=%d"
1836 " put_count=%d\n",
1837 __FILE__, __LINE__,
1838 context->serial, context->major,
1839 context->in_syscall, name, context->name_count,
1840 context->put_count);
1841 dump_stack();
1842 }
1843 }
1844#endif
1845}
1846
5712e88f
AG
1847static int audit_inc_name_count(struct audit_context *context,
1848 const struct inode *inode)
1849{
1850 if (context->name_count >= AUDIT_NAMES) {
1851 if (inode)
1852 printk(KERN_DEBUG "name_count maxed, losing inode data: "
436c405c 1853 "dev=%02x:%02x, inode=%lu\n",
5712e88f
AG
1854 MAJOR(inode->i_sb->s_dev),
1855 MINOR(inode->i_sb->s_dev),
1856 inode->i_ino);
1857
1858 else
436c405c 1859 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
5712e88f
AG
1860 return 1;
1861 }
1862 context->name_count++;
1863#if AUDIT_DEBUG
1864 context->ino_count++;
1865#endif
1866 return 0;
1867}
1868
851f7ff5
EP
1869
1870static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1871{
1872 struct cpu_vfs_cap_data caps;
1873 int rc;
1874
1875 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1876 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1877 name->fcap.fE = 0;
1878 name->fcap_ver = 0;
1879
1880 if (!dentry)
1881 return 0;
1882
1883 rc = get_vfs_caps_from_disk(dentry, &caps);
1884 if (rc)
1885 return rc;
1886
1887 name->fcap.permitted = caps.permitted;
1888 name->fcap.inheritable = caps.inheritable;
1889 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1890 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1891
1892 return 0;
1893}
1894
1895
3e2efce0 1896/* Copy inode data into an audit_names. */
851f7ff5
EP
1897static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1898 const struct inode *inode)
8c8570fb 1899{
3e2efce0
AG
1900 name->ino = inode->i_ino;
1901 name->dev = inode->i_sb->s_dev;
1902 name->mode = inode->i_mode;
1903 name->uid = inode->i_uid;
1904 name->gid = inode->i_gid;
1905 name->rdev = inode->i_rdev;
2a862b32 1906 security_inode_getsecid(inode, &name->osid);
851f7ff5 1907 audit_copy_fcaps(name, dentry);
8c8570fb
DK
1908}
1909
b0dd25a8
RD
1910/**
1911 * audit_inode - store the inode and device from a lookup
1912 * @name: name being audited
481968f4 1913 * @dentry: dentry being audited
b0dd25a8
RD
1914 *
1915 * Called from fs/namei.c:path_lookup().
1916 */
5a190ae6 1917void __audit_inode(const char *name, const struct dentry *dentry)
1da177e4
LT
1918{
1919 int idx;
1920 struct audit_context *context = current->audit_context;
74c3cbe3 1921 const struct inode *inode = dentry->d_inode;
1da177e4
LT
1922
1923 if (!context->in_syscall)
1924 return;
1925 if (context->name_count
1926 && context->names[context->name_count-1].name
1927 && context->names[context->name_count-1].name == name)
1928 idx = context->name_count - 1;
1929 else if (context->name_count > 1
1930 && context->names[context->name_count-2].name
1931 && context->names[context->name_count-2].name == name)
1932 idx = context->name_count - 2;
1933 else {
1934 /* FIXME: how much do we care about inodes that have no
1935 * associated name? */
5712e88f 1936 if (audit_inc_name_count(context, inode))
1da177e4 1937 return;
5712e88f 1938 idx = context->name_count - 1;
1da177e4 1939 context->names[idx].name = NULL;
1da177e4 1940 }
74c3cbe3 1941 handle_path(dentry);
851f7ff5 1942 audit_copy_inode(&context->names[idx], dentry, inode);
73241ccc
AG
1943}
1944
1945/**
1946 * audit_inode_child - collect inode info for created/removed objects
1947 * @dname: inode's dentry name
481968f4 1948 * @dentry: dentry being audited
73d3ec5a 1949 * @parent: inode of dentry parent
73241ccc
AG
1950 *
1951 * For syscalls that create or remove filesystem objects, audit_inode
1952 * can only collect information for the filesystem object's parent.
1953 * This call updates the audit context with the child's information.
1954 * Syscalls that create a new filesystem object must be hooked after
1955 * the object is created. Syscalls that remove a filesystem object
1956 * must be hooked prior, in order to capture the target inode during
1957 * unsuccessful attempts.
1958 */
5a190ae6 1959void __audit_inode_child(const char *dname, const struct dentry *dentry,
73d3ec5a 1960 const struct inode *parent)
73241ccc
AG
1961{
1962 int idx;
1963 struct audit_context *context = current->audit_context;
5712e88f 1964 const char *found_parent = NULL, *found_child = NULL;
5a190ae6 1965 const struct inode *inode = dentry->d_inode;
9c937dcc 1966 int dirlen = 0;
73241ccc
AG
1967
1968 if (!context->in_syscall)
1969 return;
1970
74c3cbe3
AV
1971 if (inode)
1972 handle_one(inode);
73241ccc 1973 /* determine matching parent */
f368c07d 1974 if (!dname)
5712e88f 1975 goto add_names;
73241ccc 1976
5712e88f
AG
1977 /* parent is more likely, look for it first */
1978 for (idx = 0; idx < context->name_count; idx++) {
1979 struct audit_names *n = &context->names[idx];
f368c07d 1980
5712e88f
AG
1981 if (!n->name)
1982 continue;
1983
1984 if (n->ino == parent->i_ino &&
1985 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1986 n->name_len = dirlen; /* update parent data in place */
1987 found_parent = n->name;
1988 goto add_names;
f368c07d 1989 }
5712e88f 1990 }
73241ccc 1991
5712e88f
AG
1992 /* no matching parent, look for matching child */
1993 for (idx = 0; idx < context->name_count; idx++) {
1994 struct audit_names *n = &context->names[idx];
1995
1996 if (!n->name)
1997 continue;
1998
1999 /* strcmp() is the more likely scenario */
2000 if (!strcmp(dname, n->name) ||
2001 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2002 if (inode)
851f7ff5 2003 audit_copy_inode(n, NULL, inode);
5712e88f
AG
2004 else
2005 n->ino = (unsigned long)-1;
2006 found_child = n->name;
2007 goto add_names;
2008 }
ac9910ce 2009 }
5712e88f
AG
2010
2011add_names:
2012 if (!found_parent) {
2013 if (audit_inc_name_count(context, parent))
ac9910ce 2014 return;
5712e88f
AG
2015 idx = context->name_count - 1;
2016 context->names[idx].name = NULL;
851f7ff5 2017 audit_copy_inode(&context->names[idx], NULL, parent);
73d3ec5a 2018 }
5712e88f
AG
2019
2020 if (!found_child) {
2021 if (audit_inc_name_count(context, inode))
2022 return;
2023 idx = context->name_count - 1;
2024
2025 /* Re-use the name belonging to the slot for a matching parent
2026 * directory. All names for this context are relinquished in
2027 * audit_free_names() */
2028 if (found_parent) {
2029 context->names[idx].name = found_parent;
2030 context->names[idx].name_len = AUDIT_NAME_FULL;
2031 /* don't call __putname() */
2032 context->names[idx].name_put = 0;
2033 } else {
2034 context->names[idx].name = NULL;
2035 }
2036
2037 if (inode)
851f7ff5 2038 audit_copy_inode(&context->names[idx], NULL, inode);
5712e88f
AG
2039 else
2040 context->names[idx].ino = (unsigned long)-1;
2041 }
3e2efce0 2042}
50e437d5 2043EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 2044
b0dd25a8
RD
2045/**
2046 * auditsc_get_stamp - get local copies of audit_context values
2047 * @ctx: audit_context for the task
2048 * @t: timespec to store time recorded in the audit_context
2049 * @serial: serial value that is recorded in the audit_context
2050 *
2051 * Also sets the context as auditable.
2052 */
bfb4496e
DW
2053void auditsc_get_stamp(struct audit_context *ctx,
2054 struct timespec *t, unsigned int *serial)
1da177e4 2055{
ce625a80
DW
2056 if (!ctx->serial)
2057 ctx->serial = audit_serial();
bfb4496e
DW
2058 t->tv_sec = ctx->ctime.tv_sec;
2059 t->tv_nsec = ctx->ctime.tv_nsec;
2060 *serial = ctx->serial;
2061 ctx->auditable = 1;
1da177e4
LT
2062}
2063
4746ec5b
EP
2064/* global counter which is incremented every time something logs in */
2065static atomic_t session_id = ATOMIC_INIT(0);
2066
b0dd25a8
RD
2067/**
2068 * audit_set_loginuid - set a task's audit_context loginuid
2069 * @task: task whose audit context is being modified
2070 * @loginuid: loginuid value
2071 *
2072 * Returns 0.
2073 *
2074 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2075 */
456be6cd 2076int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1da177e4 2077{
4746ec5b 2078 unsigned int sessionid = atomic_inc_return(&session_id);
41757106
SG
2079 struct audit_context *context = task->audit_context;
2080
bfef93a5
AV
2081 if (context && context->in_syscall) {
2082 struct audit_buffer *ab;
2083
2084 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2085 if (ab) {
2086 audit_log_format(ab, "login pid=%d uid=%u "
4746ec5b
EP
2087 "old auid=%u new auid=%u"
2088 " old ses=%u new ses=%u",
bfef93a5 2089 task->pid, task->uid,
4746ec5b
EP
2090 task->loginuid, loginuid,
2091 task->sessionid, sessionid);
bfef93a5 2092 audit_log_end(ab);
c0404993 2093 }
1da177e4 2094 }
4746ec5b 2095 task->sessionid = sessionid;
bfef93a5 2096 task->loginuid = loginuid;
1da177e4
LT
2097 return 0;
2098}
2099
20ca73bc
GW
2100/**
2101 * __audit_mq_open - record audit data for a POSIX MQ open
2102 * @oflag: open flag
2103 * @mode: mode bits
2104 * @u_attr: queue attributes
2105 *
2106 * Returns 0 for success or NULL context or < 0 on error.
2107 */
2108int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
2109{
2110 struct audit_aux_data_mq_open *ax;
2111 struct audit_context *context = current->audit_context;
2112
2113 if (!audit_enabled)
2114 return 0;
2115
2116 if (likely(!context))
2117 return 0;
2118
2119 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2120 if (!ax)
2121 return -ENOMEM;
2122
2123 if (u_attr != NULL) {
2124 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
2125 kfree(ax);
2126 return -EFAULT;
2127 }
2128 } else
2129 memset(&ax->attr, 0, sizeof(ax->attr));
2130
2131 ax->oflag = oflag;
2132 ax->mode = mode;
2133
2134 ax->d.type = AUDIT_MQ_OPEN;
2135 ax->d.next = context->aux;
2136 context->aux = (void *)ax;
2137 return 0;
2138}
2139
2140/**
2141 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
2142 * @mqdes: MQ descriptor
2143 * @msg_len: Message length
2144 * @msg_prio: Message priority
1dbe83c3 2145 * @u_abs_timeout: Message timeout in absolute time
20ca73bc
GW
2146 *
2147 * Returns 0 for success or NULL context or < 0 on error.
2148 */
2149int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2150 const struct timespec __user *u_abs_timeout)
2151{
2152 struct audit_aux_data_mq_sendrecv *ax;
2153 struct audit_context *context = current->audit_context;
2154
2155 if (!audit_enabled)
2156 return 0;
2157
2158 if (likely(!context))
2159 return 0;
2160
2161 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2162 if (!ax)
2163 return -ENOMEM;
2164
2165 if (u_abs_timeout != NULL) {
2166 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2167 kfree(ax);
2168 return -EFAULT;
2169 }
2170 } else
2171 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2172
2173 ax->mqdes = mqdes;
2174 ax->msg_len = msg_len;
2175 ax->msg_prio = msg_prio;
2176
2177 ax->d.type = AUDIT_MQ_SENDRECV;
2178 ax->d.next = context->aux;
2179 context->aux = (void *)ax;
2180 return 0;
2181}
2182
2183/**
2184 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
2185 * @mqdes: MQ descriptor
2186 * @msg_len: Message length
1dbe83c3
RD
2187 * @u_msg_prio: Message priority
2188 * @u_abs_timeout: Message timeout in absolute time
20ca73bc
GW
2189 *
2190 * Returns 0 for success or NULL context or < 0 on error.
2191 */
2192int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
2193 unsigned int __user *u_msg_prio,
2194 const struct timespec __user *u_abs_timeout)
2195{
2196 struct audit_aux_data_mq_sendrecv *ax;
2197 struct audit_context *context = current->audit_context;
2198
2199 if (!audit_enabled)
2200 return 0;
2201
2202 if (likely(!context))
2203 return 0;
2204
2205 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2206 if (!ax)
2207 return -ENOMEM;
2208
2209 if (u_msg_prio != NULL) {
2210 if (get_user(ax->msg_prio, u_msg_prio)) {
2211 kfree(ax);
2212 return -EFAULT;
2213 }
2214 } else
2215 ax->msg_prio = 0;
2216
2217 if (u_abs_timeout != NULL) {
2218 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2219 kfree(ax);
2220 return -EFAULT;
2221 }
2222 } else
2223 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2224
2225 ax->mqdes = mqdes;
2226 ax->msg_len = msg_len;
2227
2228 ax->d.type = AUDIT_MQ_SENDRECV;
2229 ax->d.next = context->aux;
2230 context->aux = (void *)ax;
2231 return 0;
2232}
2233
2234/**
2235 * __audit_mq_notify - record audit data for a POSIX MQ notify
2236 * @mqdes: MQ descriptor
2237 * @u_notification: Notification event
2238 *
2239 * Returns 0 for success or NULL context or < 0 on error.
2240 */
2241
2242int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
2243{
2244 struct audit_aux_data_mq_notify *ax;
2245 struct audit_context *context = current->audit_context;
2246
2247 if (!audit_enabled)
2248 return 0;
2249
2250 if (likely(!context))
2251 return 0;
2252
2253 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2254 if (!ax)
2255 return -ENOMEM;
2256
2257 if (u_notification != NULL) {
2258 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
2259 kfree(ax);
2260 return -EFAULT;
2261 }
2262 } else
2263 memset(&ax->notification, 0, sizeof(ax->notification));
2264
2265 ax->mqdes = mqdes;
2266
2267 ax->d.type = AUDIT_MQ_NOTIFY;
2268 ax->d.next = context->aux;
2269 context->aux = (void *)ax;
2270 return 0;
2271}
2272
2273/**
2274 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2275 * @mqdes: MQ descriptor
2276 * @mqstat: MQ flags
2277 *
2278 * Returns 0 for success or NULL context or < 0 on error.
2279 */
2280int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2281{
2282 struct audit_aux_data_mq_getsetattr *ax;
2283 struct audit_context *context = current->audit_context;
2284
2285 if (!audit_enabled)
2286 return 0;
2287
2288 if (likely(!context))
2289 return 0;
2290
2291 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2292 if (!ax)
2293 return -ENOMEM;
2294
2295 ax->mqdes = mqdes;
2296 ax->mqstat = *mqstat;
2297
2298 ax->d.type = AUDIT_MQ_GETSETATTR;
2299 ax->d.next = context->aux;
2300 context->aux = (void *)ax;
2301 return 0;
2302}
2303
b0dd25a8 2304/**
073115d6
SG
2305 * audit_ipc_obj - record audit data for ipc object
2306 * @ipcp: ipc permissions
2307 *
2308 * Returns 0 for success or NULL context or < 0 on error.
2309 */
d8945bb5 2310int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6
SG
2311{
2312 struct audit_aux_data_ipcctl *ax;
2313 struct audit_context *context = current->audit_context;
2314
073115d6
SG
2315 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2316 if (!ax)
2317 return -ENOMEM;
2318
2319 ax->uid = ipcp->uid;
2320 ax->gid = ipcp->gid;
2321 ax->mode = ipcp->mode;
2a862b32 2322 security_ipc_getsecid(ipcp, &ax->osid);
073115d6
SG
2323 ax->d.type = AUDIT_IPC;
2324 ax->d.next = context->aux;
2325 context->aux = (void *)ax;
2326 return 0;
2327}
2328
2329/**
2330 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2331 * @qbytes: msgq bytes
2332 * @uid: msgq user id
2333 * @gid: msgq group id
2334 * @mode: msgq mode (permissions)
2335 *
2336 * Returns 0 for success or NULL context or < 0 on error.
2337 */
d8945bb5 2338int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
1da177e4
LT
2339{
2340 struct audit_aux_data_ipcctl *ax;
2341 struct audit_context *context = current->audit_context;
2342
8c8570fb 2343 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1da177e4
LT
2344 if (!ax)
2345 return -ENOMEM;
2346
2347 ax->qbytes = qbytes;
2348 ax->uid = uid;
2349 ax->gid = gid;
2350 ax->mode = mode;
2351
073115d6 2352 ax->d.type = AUDIT_IPC_SET_PERM;
1da177e4
LT
2353 ax->d.next = context->aux;
2354 context->aux = (void *)ax;
2355 return 0;
2356}
c2f0c7c3 2357
473ae30b
AV
2358int audit_bprm(struct linux_binprm *bprm)
2359{
2360 struct audit_aux_data_execve *ax;
2361 struct audit_context *context = current->audit_context;
473ae30b 2362
5ac3a9c2 2363 if (likely(!audit_enabled || !context || context->dummy))
473ae30b
AV
2364 return 0;
2365
bdf4c48a 2366 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
473ae30b
AV
2367 if (!ax)
2368 return -ENOMEM;
2369
2370 ax->argc = bprm->argc;
2371 ax->envc = bprm->envc;
bdf4c48a 2372 ax->mm = bprm->mm;
473ae30b
AV
2373 ax->d.type = AUDIT_EXECVE;
2374 ax->d.next = context->aux;
2375 context->aux = (void *)ax;
2376 return 0;
2377}
2378
2379
b0dd25a8
RD
2380/**
2381 * audit_socketcall - record audit data for sys_socketcall
2382 * @nargs: number of args
2383 * @args: args array
2384 *
2385 * Returns 0 for success or NULL context or < 0 on error.
2386 */
3ec3b2fb
DW
2387int audit_socketcall(int nargs, unsigned long *args)
2388{
2389 struct audit_aux_data_socketcall *ax;
2390 struct audit_context *context = current->audit_context;
2391
5ac3a9c2 2392 if (likely(!context || context->dummy))
3ec3b2fb
DW
2393 return 0;
2394
2395 ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
2396 if (!ax)
2397 return -ENOMEM;
2398
2399 ax->nargs = nargs;
2400 memcpy(ax->args, args, nargs * sizeof(unsigned long));
2401
2402 ax->d.type = AUDIT_SOCKETCALL;
2403 ax->d.next = context->aux;
2404 context->aux = (void *)ax;
2405 return 0;
2406}
2407
db349509
AV
2408/**
2409 * __audit_fd_pair - record audit data for pipe and socketpair
2410 * @fd1: the first file descriptor
2411 * @fd2: the second file descriptor
2412 *
2413 * Returns 0 for success or NULL context or < 0 on error.
2414 */
2415int __audit_fd_pair(int fd1, int fd2)
2416{
2417 struct audit_context *context = current->audit_context;
2418 struct audit_aux_data_fd_pair *ax;
2419
2420 if (likely(!context)) {
2421 return 0;
2422 }
2423
2424 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2425 if (!ax) {
2426 return -ENOMEM;
2427 }
2428
2429 ax->fd[0] = fd1;
2430 ax->fd[1] = fd2;
2431
2432 ax->d.type = AUDIT_FD_PAIR;
2433 ax->d.next = context->aux;
2434 context->aux = (void *)ax;
2435 return 0;
2436}
2437
b0dd25a8
RD
2438/**
2439 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2440 * @len: data length in user space
2441 * @a: data address in kernel space
2442 *
2443 * Returns 0 for success or NULL context or < 0 on error.
2444 */
3ec3b2fb
DW
2445int audit_sockaddr(int len, void *a)
2446{
2447 struct audit_aux_data_sockaddr *ax;
2448 struct audit_context *context = current->audit_context;
2449
5ac3a9c2 2450 if (likely(!context || context->dummy))
3ec3b2fb
DW
2451 return 0;
2452
2453 ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
2454 if (!ax)
2455 return -ENOMEM;
2456
2457 ax->len = len;
2458 memcpy(ax->a, a, len);
2459
2460 ax->d.type = AUDIT_SOCKADDR;
2461 ax->d.next = context->aux;
2462 context->aux = (void *)ax;
2463 return 0;
2464}
2465
a5cb013d
AV
2466void __audit_ptrace(struct task_struct *t)
2467{
2468 struct audit_context *context = current->audit_context;
2469
2470 context->target_pid = t->pid;
c2a7780e
EP
2471 context->target_auid = audit_get_loginuid(t);
2472 context->target_uid = t->uid;
4746ec5b 2473 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2474 security_task_getsecid(t, &context->target_sid);
c2a7780e 2475 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2476}
2477
b0dd25a8
RD
2478/**
2479 * audit_signal_info - record signal info for shutting down audit subsystem
2480 * @sig: signal value
2481 * @t: task being signaled
2482 *
2483 * If the audit subsystem is being terminated, record the task (pid)
2484 * and uid that is doing that.
2485 */
e54dc243 2486int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2487{
e54dc243
AG
2488 struct audit_aux_data_pids *axp;
2489 struct task_struct *tsk = current;
2490 struct audit_context *ctx = tsk->audit_context;
e1396065 2491
175fc484 2492 if (audit_pid && t->tgid == audit_pid) {
ee1d3156 2493 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
175fc484 2494 audit_sig_pid = tsk->pid;
bfef93a5
AV
2495 if (tsk->loginuid != -1)
2496 audit_sig_uid = tsk->loginuid;
175fc484
AV
2497 else
2498 audit_sig_uid = tsk->uid;
2a862b32 2499 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2500 }
2501 if (!audit_signals || audit_dummy_context())
2502 return 0;
c2f0c7c3 2503 }
e54dc243 2504
e54dc243
AG
2505 /* optimize the common case by putting first signal recipient directly
2506 * in audit_context */
2507 if (!ctx->target_pid) {
2508 ctx->target_pid = t->tgid;
c2a7780e
EP
2509 ctx->target_auid = audit_get_loginuid(t);
2510 ctx->target_uid = t->uid;
4746ec5b 2511 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2512 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2513 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2514 return 0;
2515 }
2516
2517 axp = (void *)ctx->aux_pids;
2518 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2519 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2520 if (!axp)
2521 return -ENOMEM;
2522
2523 axp->d.type = AUDIT_OBJ_PID;
2524 axp->d.next = ctx->aux_pids;
2525 ctx->aux_pids = (void *)axp;
2526 }
88ae704c 2527 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243
AG
2528
2529 axp->target_pid[axp->pid_count] = t->tgid;
c2a7780e
EP
2530 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2531 axp->target_uid[axp->pid_count] = t->uid;
4746ec5b 2532 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2533 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2534 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2535 axp->pid_count++;
2536
2537 return 0;
c2f0c7c3 2538}
0a4ff8c2 2539
3fc689e9
EP
2540/**
2541 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2542 * @bprm pointer to the bprm being processed
2543 * @caps the caps read from the disk
2544 *
2545 * Simply check if the proc already has the caps given by the file and if not
2546 * store the priv escalation info for later auditing at the end of the syscall
2547 *
2548 * this can fail and we don't care. See the note in audit.h for
2549 * audit_log_bprm_fcaps() for my explaination....
2550 *
2551 * -Eric
2552 */
2553void __audit_log_bprm_fcaps(struct linux_binprm *bprm, kernel_cap_t *pP, kernel_cap_t *pE)
2554{
2555 struct audit_aux_data_bprm_fcaps *ax;
2556 struct audit_context *context = current->audit_context;
2557 struct cpu_vfs_cap_data vcaps;
2558 struct dentry *dentry;
2559
2560 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2561 if (!ax)
2562 return;
2563
2564 ax->d.type = AUDIT_BPRM_FCAPS;
2565 ax->d.next = context->aux;
2566 context->aux = (void *)ax;
2567
2568 dentry = dget(bprm->file->f_dentry);
2569 get_vfs_caps_from_disk(dentry, &vcaps);
2570 dput(dentry);
2571
2572 ax->fcap.permitted = vcaps.permitted;
2573 ax->fcap.inheritable = vcaps.inheritable;
2574 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2575 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2576
2577 ax->old_pcap.permitted = *pP;
2578 ax->old_pcap.inheritable = current->cap_inheritable;
2579 ax->old_pcap.effective = *pE;
2580
2581 ax->new_pcap.permitted = current->cap_permitted;
2582 ax->new_pcap.inheritable = current->cap_inheritable;
2583 ax->new_pcap.effective = current->cap_effective;
2584}
2585
e68b75a0
EP
2586/**
2587 * __audit_log_capset - store information about the arguments to the capset syscall
2588 * @pid target pid of the capset call
2589 * @eff effective cap set
2590 * @inh inheritible cap set
2591 * @perm permited cap set
2592 *
2593 * Record the aguments userspace sent to sys_capset for later printing by the
2594 * audit system if applicable
2595 */
2596int __audit_log_capset(pid_t pid, kernel_cap_t *eff, kernel_cap_t *inh, kernel_cap_t *perm)
2597{
2598 struct audit_aux_data_capset *ax;
2599 struct audit_context *context = current->audit_context;
2600
2601 if (likely(!audit_enabled || !context || context->dummy))
2602 return 0;
2603
2604 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2605 if (!ax)
2606 return -ENOMEM;
2607
2608 ax->d.type = AUDIT_CAPSET;
2609 ax->d.next = context->aux;
2610 context->aux = (void *)ax;
2611
2612 ax->pid = pid;
2613 ax->cap.effective = *eff;
2614 ax->cap.inheritable = *eff;
2615 ax->cap.permitted = *perm;
2616
2617 return 0;
2618}
2619
0a4ff8c2
SG
2620/**
2621 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2622 * @signr: signal value
0a4ff8c2
SG
2623 *
2624 * If a process ends with a core dump, something fishy is going on and we
2625 * should record the event for investigation.
2626 */
2627void audit_core_dumps(long signr)
2628{
2629 struct audit_buffer *ab;
2630 u32 sid;
76aac0e9
DH
2631 uid_t auid = audit_get_loginuid(current), uid;
2632 gid_t gid;
4746ec5b 2633 unsigned int sessionid = audit_get_sessionid(current);
0a4ff8c2
SG
2634
2635 if (!audit_enabled)
2636 return;
2637
2638 if (signr == SIGQUIT) /* don't care for those */
2639 return;
2640
2641 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
76aac0e9 2642 current_uid_gid(&uid, &gid);
4746ec5b 2643 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
76aac0e9 2644 auid, uid, gid, sessionid);
2a862b32 2645 security_task_getsecid(current, &sid);
0a4ff8c2
SG
2646 if (sid) {
2647 char *ctx = NULL;
2648 u32 len;
2649
2a862b32 2650 if (security_secid_to_secctx(sid, &ctx, &len))
0a4ff8c2 2651 audit_log_format(ab, " ssid=%u", sid);
2a862b32 2652 else {
0a4ff8c2 2653 audit_log_format(ab, " subj=%s", ctx);
2a862b32
AD
2654 security_release_secctx(ctx, len);
2655 }
0a4ff8c2
SG
2656 }
2657 audit_log_format(ab, " pid=%d comm=", current->pid);
2658 audit_log_untrustedstring(ab, current->comm);
2659 audit_log_format(ab, " sig=%ld", signr);
2660 audit_log_end(ab);
2661}