]> bbs.cooldavid.org Git - net-next-2.6.git/blame - include/rdma/ib_verbs.h
Net: ceph: Makefile: remove deprecated kbuild goal definitions
[net-next-2.6.git] / include / rdma / ib_verbs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
1da177e4
LT
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
9b513090
RC
44#include <linux/mm.h>
45#include <linux/dma-mapping.h>
459d6e2a 46#include <linux/kref.h>
bfb3ea12
DB
47#include <linux/list.h>
48#include <linux/rwsem.h>
87ae9afd 49#include <linux/scatterlist.h>
e2773c06 50
1da177e4 51#include <asm/atomic.h>
e2773c06 52#include <asm/uaccess.h>
1da177e4
LT
53
54union ib_gid {
55 u8 raw[16];
56 struct {
97f52eb4
SH
57 __be64 subnet_prefix;
58 __be64 interface_id;
1da177e4
LT
59 } global;
60};
61
07ebafba
TT
62enum rdma_node_type {
63 /* IB values map to NodeInfo:NodeType. */
64 RDMA_NODE_IB_CA = 1,
65 RDMA_NODE_IB_SWITCH,
66 RDMA_NODE_IB_ROUTER,
67 RDMA_NODE_RNIC
1da177e4
LT
68};
69
07ebafba
TT
70enum rdma_transport_type {
71 RDMA_TRANSPORT_IB,
72 RDMA_TRANSPORT_IWARP
73};
74
75enum rdma_transport_type
76rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
77
a3f5adaf
EC
78enum rdma_link_layer {
79 IB_LINK_LAYER_UNSPECIFIED,
80 IB_LINK_LAYER_INFINIBAND,
81 IB_LINK_LAYER_ETHERNET,
82};
83
1da177e4
LT
84enum ib_device_cap_flags {
85 IB_DEVICE_RESIZE_MAX_WR = 1,
86 IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
87 IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
88 IB_DEVICE_RAW_MULTI = (1<<3),
89 IB_DEVICE_AUTO_PATH_MIG = (1<<4),
90 IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
91 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
92 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
93 IB_DEVICE_SHUTDOWN_PORT = (1<<8),
94 IB_DEVICE_INIT_TYPE = (1<<9),
95 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
96 IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
97 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
98 IB_DEVICE_SRQ_RESIZE = (1<<13),
99 IB_DEVICE_N_NOTIFY_CQ = (1<<14),
96f15c03 100 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15),
0f39cf3d 101 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
e0605d91
EC
102 IB_DEVICE_MEM_WINDOW = (1<<17),
103 /*
104 * Devices should set IB_DEVICE_UD_IP_SUM if they support
105 * insertion of UDP and TCP checksum on outgoing UD IPoIB
106 * messages and can verify the validity of checksum for
107 * incoming messages. Setting this flag implies that the
108 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
109 */
110 IB_DEVICE_UD_IP_CSUM = (1<<18),
c93570f2 111 IB_DEVICE_UD_TSO = (1<<19),
00f7ec36 112 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21),
47ee1b9f 113 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
1da177e4
LT
114};
115
116enum ib_atomic_cap {
117 IB_ATOMIC_NONE,
118 IB_ATOMIC_HCA,
119 IB_ATOMIC_GLOB
120};
121
122struct ib_device_attr {
123 u64 fw_ver;
97f52eb4 124 __be64 sys_image_guid;
1da177e4
LT
125 u64 max_mr_size;
126 u64 page_size_cap;
127 u32 vendor_id;
128 u32 vendor_part_id;
129 u32 hw_ver;
130 int max_qp;
131 int max_qp_wr;
132 int device_cap_flags;
133 int max_sge;
134 int max_sge_rd;
135 int max_cq;
136 int max_cqe;
137 int max_mr;
138 int max_pd;
139 int max_qp_rd_atom;
140 int max_ee_rd_atom;
141 int max_res_rd_atom;
142 int max_qp_init_rd_atom;
143 int max_ee_init_rd_atom;
144 enum ib_atomic_cap atomic_cap;
5e80ba8f 145 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
146 int max_ee;
147 int max_rdd;
148 int max_mw;
149 int max_raw_ipv6_qp;
150 int max_raw_ethy_qp;
151 int max_mcast_grp;
152 int max_mcast_qp_attach;
153 int max_total_mcast_qp_attach;
154 int max_ah;
155 int max_fmr;
156 int max_map_per_fmr;
157 int max_srq;
158 int max_srq_wr;
159 int max_srq_sge;
00f7ec36 160 unsigned int max_fast_reg_page_list_len;
1da177e4
LT
161 u16 max_pkeys;
162 u8 local_ca_ack_delay;
163};
164
165enum ib_mtu {
166 IB_MTU_256 = 1,
167 IB_MTU_512 = 2,
168 IB_MTU_1024 = 3,
169 IB_MTU_2048 = 4,
170 IB_MTU_4096 = 5
171};
172
173static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
174{
175 switch (mtu) {
176 case IB_MTU_256: return 256;
177 case IB_MTU_512: return 512;
178 case IB_MTU_1024: return 1024;
179 case IB_MTU_2048: return 2048;
180 case IB_MTU_4096: return 4096;
181 default: return -1;
182 }
183}
184
185enum ib_port_state {
186 IB_PORT_NOP = 0,
187 IB_PORT_DOWN = 1,
188 IB_PORT_INIT = 2,
189 IB_PORT_ARMED = 3,
190 IB_PORT_ACTIVE = 4,
191 IB_PORT_ACTIVE_DEFER = 5
192};
193
194enum ib_port_cap_flags {
195 IB_PORT_SM = 1 << 1,
196 IB_PORT_NOTICE_SUP = 1 << 2,
197 IB_PORT_TRAP_SUP = 1 << 3,
198 IB_PORT_OPT_IPD_SUP = 1 << 4,
199 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
200 IB_PORT_SL_MAP_SUP = 1 << 6,
201 IB_PORT_MKEY_NVRAM = 1 << 7,
202 IB_PORT_PKEY_NVRAM = 1 << 8,
203 IB_PORT_LED_INFO_SUP = 1 << 9,
204 IB_PORT_SM_DISABLED = 1 << 10,
205 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
206 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
207 IB_PORT_CM_SUP = 1 << 16,
208 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
209 IB_PORT_REINIT_SUP = 1 << 18,
210 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
211 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
212 IB_PORT_DR_NOTICE_SUP = 1 << 21,
213 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
214 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
215 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
216 IB_PORT_CLIENT_REG_SUP = 1 << 25
217};
218
219enum ib_port_width {
220 IB_WIDTH_1X = 1,
221 IB_WIDTH_4X = 2,
222 IB_WIDTH_8X = 4,
223 IB_WIDTH_12X = 8
224};
225
226static inline int ib_width_enum_to_int(enum ib_port_width width)
227{
228 switch (width) {
229 case IB_WIDTH_1X: return 1;
230 case IB_WIDTH_4X: return 4;
231 case IB_WIDTH_8X: return 8;
232 case IB_WIDTH_12X: return 12;
233 default: return -1;
234 }
235}
236
7f624d02
SW
237struct ib_protocol_stats {
238 /* TBD... */
239};
240
241struct iw_protocol_stats {
242 u64 ipInReceives;
243 u64 ipInHdrErrors;
244 u64 ipInTooBigErrors;
245 u64 ipInNoRoutes;
246 u64 ipInAddrErrors;
247 u64 ipInUnknownProtos;
248 u64 ipInTruncatedPkts;
249 u64 ipInDiscards;
250 u64 ipInDelivers;
251 u64 ipOutForwDatagrams;
252 u64 ipOutRequests;
253 u64 ipOutDiscards;
254 u64 ipOutNoRoutes;
255 u64 ipReasmTimeout;
256 u64 ipReasmReqds;
257 u64 ipReasmOKs;
258 u64 ipReasmFails;
259 u64 ipFragOKs;
260 u64 ipFragFails;
261 u64 ipFragCreates;
262 u64 ipInMcastPkts;
263 u64 ipOutMcastPkts;
264 u64 ipInBcastPkts;
265 u64 ipOutBcastPkts;
266
267 u64 tcpRtoAlgorithm;
268 u64 tcpRtoMin;
269 u64 tcpRtoMax;
270 u64 tcpMaxConn;
271 u64 tcpActiveOpens;
272 u64 tcpPassiveOpens;
273 u64 tcpAttemptFails;
274 u64 tcpEstabResets;
275 u64 tcpCurrEstab;
276 u64 tcpInSegs;
277 u64 tcpOutSegs;
278 u64 tcpRetransSegs;
279 u64 tcpInErrs;
280 u64 tcpOutRsts;
281};
282
283union rdma_protocol_stats {
284 struct ib_protocol_stats ib;
285 struct iw_protocol_stats iw;
286};
287
1da177e4
LT
288struct ib_port_attr {
289 enum ib_port_state state;
290 enum ib_mtu max_mtu;
291 enum ib_mtu active_mtu;
292 int gid_tbl_len;
293 u32 port_cap_flags;
294 u32 max_msg_sz;
295 u32 bad_pkey_cntr;
296 u32 qkey_viol_cntr;
297 u16 pkey_tbl_len;
298 u16 lid;
299 u16 sm_lid;
300 u8 lmc;
301 u8 max_vl_num;
302 u8 sm_sl;
303 u8 subnet_timeout;
304 u8 init_type_reply;
305 u8 active_width;
306 u8 active_speed;
307 u8 phys_state;
308};
309
310enum ib_device_modify_flags {
c5bcbbb9
RD
311 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
312 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
313};
314
315struct ib_device_modify {
316 u64 sys_image_guid;
c5bcbbb9 317 char node_desc[64];
1da177e4
LT
318};
319
320enum ib_port_modify_flags {
321 IB_PORT_SHUTDOWN = 1,
322 IB_PORT_INIT_TYPE = (1<<2),
323 IB_PORT_RESET_QKEY_CNTR = (1<<3)
324};
325
326struct ib_port_modify {
327 u32 set_port_cap_mask;
328 u32 clr_port_cap_mask;
329 u8 init_type;
330};
331
332enum ib_event_type {
333 IB_EVENT_CQ_ERR,
334 IB_EVENT_QP_FATAL,
335 IB_EVENT_QP_REQ_ERR,
336 IB_EVENT_QP_ACCESS_ERR,
337 IB_EVENT_COMM_EST,
338 IB_EVENT_SQ_DRAINED,
339 IB_EVENT_PATH_MIG,
340 IB_EVENT_PATH_MIG_ERR,
341 IB_EVENT_DEVICE_FATAL,
342 IB_EVENT_PORT_ACTIVE,
343 IB_EVENT_PORT_ERR,
344 IB_EVENT_LID_CHANGE,
345 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
346 IB_EVENT_SM_CHANGE,
347 IB_EVENT_SRQ_ERR,
348 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a
LA
349 IB_EVENT_QP_LAST_WQE_REACHED,
350 IB_EVENT_CLIENT_REREGISTER
1da177e4
LT
351};
352
353struct ib_event {
354 struct ib_device *device;
355 union {
356 struct ib_cq *cq;
357 struct ib_qp *qp;
d41fcc67 358 struct ib_srq *srq;
1da177e4
LT
359 u8 port_num;
360 } element;
361 enum ib_event_type event;
362};
363
364struct ib_event_handler {
365 struct ib_device *device;
366 void (*handler)(struct ib_event_handler *, struct ib_event *);
367 struct list_head list;
368};
369
370#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
371 do { \
372 (_ptr)->device = _device; \
373 (_ptr)->handler = _handler; \
374 INIT_LIST_HEAD(&(_ptr)->list); \
375 } while (0)
376
377struct ib_global_route {
378 union ib_gid dgid;
379 u32 flow_label;
380 u8 sgid_index;
381 u8 hop_limit;
382 u8 traffic_class;
383};
384
513789ed 385struct ib_grh {
97f52eb4
SH
386 __be32 version_tclass_flow;
387 __be16 paylen;
513789ed
HR
388 u8 next_hdr;
389 u8 hop_limit;
390 union ib_gid sgid;
391 union ib_gid dgid;
392};
393
1da177e4
LT
394enum {
395 IB_MULTICAST_QPN = 0xffffff
396};
397
f3a7c66b 398#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
97f52eb4 399
1da177e4
LT
400enum ib_ah_flags {
401 IB_AH_GRH = 1
402};
403
bf6a9e31
JM
404enum ib_rate {
405 IB_RATE_PORT_CURRENT = 0,
406 IB_RATE_2_5_GBPS = 2,
407 IB_RATE_5_GBPS = 5,
408 IB_RATE_10_GBPS = 3,
409 IB_RATE_20_GBPS = 6,
410 IB_RATE_30_GBPS = 4,
411 IB_RATE_40_GBPS = 7,
412 IB_RATE_60_GBPS = 8,
413 IB_RATE_80_GBPS = 9,
414 IB_RATE_120_GBPS = 10
415};
416
417/**
418 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
419 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
420 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
421 * @rate: rate to convert.
422 */
423int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
424
425/**
426 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
427 * enum.
428 * @mult: multiple to convert.
429 */
430enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
431
1da177e4
LT
432struct ib_ah_attr {
433 struct ib_global_route grh;
434 u16 dlid;
435 u8 sl;
436 u8 src_path_bits;
437 u8 static_rate;
438 u8 ah_flags;
439 u8 port_num;
440};
441
442enum ib_wc_status {
443 IB_WC_SUCCESS,
444 IB_WC_LOC_LEN_ERR,
445 IB_WC_LOC_QP_OP_ERR,
446 IB_WC_LOC_EEC_OP_ERR,
447 IB_WC_LOC_PROT_ERR,
448 IB_WC_WR_FLUSH_ERR,
449 IB_WC_MW_BIND_ERR,
450 IB_WC_BAD_RESP_ERR,
451 IB_WC_LOC_ACCESS_ERR,
452 IB_WC_REM_INV_REQ_ERR,
453 IB_WC_REM_ACCESS_ERR,
454 IB_WC_REM_OP_ERR,
455 IB_WC_RETRY_EXC_ERR,
456 IB_WC_RNR_RETRY_EXC_ERR,
457 IB_WC_LOC_RDD_VIOL_ERR,
458 IB_WC_REM_INV_RD_REQ_ERR,
459 IB_WC_REM_ABORT_ERR,
460 IB_WC_INV_EECN_ERR,
461 IB_WC_INV_EEC_STATE_ERR,
462 IB_WC_FATAL_ERR,
463 IB_WC_RESP_TIMEOUT_ERR,
464 IB_WC_GENERAL_ERR
465};
466
467enum ib_wc_opcode {
468 IB_WC_SEND,
469 IB_WC_RDMA_WRITE,
470 IB_WC_RDMA_READ,
471 IB_WC_COMP_SWAP,
472 IB_WC_FETCH_ADD,
473 IB_WC_BIND_MW,
c93570f2 474 IB_WC_LSO,
00f7ec36
SW
475 IB_WC_LOCAL_INV,
476 IB_WC_FAST_REG_MR,
5e80ba8f
VS
477 IB_WC_MASKED_COMP_SWAP,
478 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
479/*
480 * Set value of IB_WC_RECV so consumers can test if a completion is a
481 * receive by testing (opcode & IB_WC_RECV).
482 */
483 IB_WC_RECV = 1 << 7,
484 IB_WC_RECV_RDMA_WITH_IMM
485};
486
487enum ib_wc_flags {
488 IB_WC_GRH = 1,
00f7ec36
SW
489 IB_WC_WITH_IMM = (1<<1),
490 IB_WC_WITH_INVALIDATE = (1<<2),
1da177e4
LT
491};
492
493struct ib_wc {
494 u64 wr_id;
495 enum ib_wc_status status;
496 enum ib_wc_opcode opcode;
497 u32 vendor_err;
498 u32 byte_len;
062dbb69 499 struct ib_qp *qp;
00f7ec36
SW
500 union {
501 __be32 imm_data;
502 u32 invalidate_rkey;
503 } ex;
1da177e4
LT
504 u32 src_qp;
505 int wc_flags;
506 u16 pkey_index;
507 u16 slid;
508 u8 sl;
509 u8 dlid_path_bits;
510 u8 port_num; /* valid only for DR SMPs on switches */
e0605d91 511 int csum_ok;
1da177e4
LT
512};
513
ed23a727
RD
514enum ib_cq_notify_flags {
515 IB_CQ_SOLICITED = 1 << 0,
516 IB_CQ_NEXT_COMP = 1 << 1,
517 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
518 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
519};
520
d41fcc67
RD
521enum ib_srq_attr_mask {
522 IB_SRQ_MAX_WR = 1 << 0,
523 IB_SRQ_LIMIT = 1 << 1,
524};
525
526struct ib_srq_attr {
527 u32 max_wr;
528 u32 max_sge;
529 u32 srq_limit;
530};
531
532struct ib_srq_init_attr {
533 void (*event_handler)(struct ib_event *, void *);
534 void *srq_context;
535 struct ib_srq_attr attr;
536};
537
1da177e4
LT
538struct ib_qp_cap {
539 u32 max_send_wr;
540 u32 max_recv_wr;
541 u32 max_send_sge;
542 u32 max_recv_sge;
543 u32 max_inline_data;
544};
545
546enum ib_sig_type {
547 IB_SIGNAL_ALL_WR,
548 IB_SIGNAL_REQ_WR
549};
550
551enum ib_qp_type {
552 /*
553 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
554 * here (and in that order) since the MAD layer uses them as
555 * indices into a 2-entry table.
556 */
557 IB_QPT_SMI,
558 IB_QPT_GSI,
559
560 IB_QPT_RC,
561 IB_QPT_UC,
562 IB_QPT_UD,
563 IB_QPT_RAW_IPV6,
a2ebf07a 564 IB_QPT_RAW_ETHERTYPE
1da177e4
LT
565};
566
b846f25a 567enum ib_qp_create_flags {
47ee1b9f
RL
568 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
569 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
b846f25a
EC
570};
571
1da177e4
LT
572struct ib_qp_init_attr {
573 void (*event_handler)(struct ib_event *, void *);
574 void *qp_context;
575 struct ib_cq *send_cq;
576 struct ib_cq *recv_cq;
577 struct ib_srq *srq;
578 struct ib_qp_cap cap;
579 enum ib_sig_type sq_sig_type;
580 enum ib_qp_type qp_type;
b846f25a 581 enum ib_qp_create_flags create_flags;
1da177e4
LT
582 u8 port_num; /* special QP types only */
583};
584
585enum ib_rnr_timeout {
586 IB_RNR_TIMER_655_36 = 0,
587 IB_RNR_TIMER_000_01 = 1,
588 IB_RNR_TIMER_000_02 = 2,
589 IB_RNR_TIMER_000_03 = 3,
590 IB_RNR_TIMER_000_04 = 4,
591 IB_RNR_TIMER_000_06 = 5,
592 IB_RNR_TIMER_000_08 = 6,
593 IB_RNR_TIMER_000_12 = 7,
594 IB_RNR_TIMER_000_16 = 8,
595 IB_RNR_TIMER_000_24 = 9,
596 IB_RNR_TIMER_000_32 = 10,
597 IB_RNR_TIMER_000_48 = 11,
598 IB_RNR_TIMER_000_64 = 12,
599 IB_RNR_TIMER_000_96 = 13,
600 IB_RNR_TIMER_001_28 = 14,
601 IB_RNR_TIMER_001_92 = 15,
602 IB_RNR_TIMER_002_56 = 16,
603 IB_RNR_TIMER_003_84 = 17,
604 IB_RNR_TIMER_005_12 = 18,
605 IB_RNR_TIMER_007_68 = 19,
606 IB_RNR_TIMER_010_24 = 20,
607 IB_RNR_TIMER_015_36 = 21,
608 IB_RNR_TIMER_020_48 = 22,
609 IB_RNR_TIMER_030_72 = 23,
610 IB_RNR_TIMER_040_96 = 24,
611 IB_RNR_TIMER_061_44 = 25,
612 IB_RNR_TIMER_081_92 = 26,
613 IB_RNR_TIMER_122_88 = 27,
614 IB_RNR_TIMER_163_84 = 28,
615 IB_RNR_TIMER_245_76 = 29,
616 IB_RNR_TIMER_327_68 = 30,
617 IB_RNR_TIMER_491_52 = 31
618};
619
620enum ib_qp_attr_mask {
621 IB_QP_STATE = 1,
622 IB_QP_CUR_STATE = (1<<1),
623 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
624 IB_QP_ACCESS_FLAGS = (1<<3),
625 IB_QP_PKEY_INDEX = (1<<4),
626 IB_QP_PORT = (1<<5),
627 IB_QP_QKEY = (1<<6),
628 IB_QP_AV = (1<<7),
629 IB_QP_PATH_MTU = (1<<8),
630 IB_QP_TIMEOUT = (1<<9),
631 IB_QP_RETRY_CNT = (1<<10),
632 IB_QP_RNR_RETRY = (1<<11),
633 IB_QP_RQ_PSN = (1<<12),
634 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
635 IB_QP_ALT_PATH = (1<<14),
636 IB_QP_MIN_RNR_TIMER = (1<<15),
637 IB_QP_SQ_PSN = (1<<16),
638 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
639 IB_QP_PATH_MIG_STATE = (1<<18),
640 IB_QP_CAP = (1<<19),
641 IB_QP_DEST_QPN = (1<<20)
642};
643
644enum ib_qp_state {
645 IB_QPS_RESET,
646 IB_QPS_INIT,
647 IB_QPS_RTR,
648 IB_QPS_RTS,
649 IB_QPS_SQD,
650 IB_QPS_SQE,
651 IB_QPS_ERR
652};
653
654enum ib_mig_state {
655 IB_MIG_MIGRATED,
656 IB_MIG_REARM,
657 IB_MIG_ARMED
658};
659
660struct ib_qp_attr {
661 enum ib_qp_state qp_state;
662 enum ib_qp_state cur_qp_state;
663 enum ib_mtu path_mtu;
664 enum ib_mig_state path_mig_state;
665 u32 qkey;
666 u32 rq_psn;
667 u32 sq_psn;
668 u32 dest_qp_num;
669 int qp_access_flags;
670 struct ib_qp_cap cap;
671 struct ib_ah_attr ah_attr;
672 struct ib_ah_attr alt_ah_attr;
673 u16 pkey_index;
674 u16 alt_pkey_index;
675 u8 en_sqd_async_notify;
676 u8 sq_draining;
677 u8 max_rd_atomic;
678 u8 max_dest_rd_atomic;
679 u8 min_rnr_timer;
680 u8 port_num;
681 u8 timeout;
682 u8 retry_cnt;
683 u8 rnr_retry;
684 u8 alt_port_num;
685 u8 alt_timeout;
686};
687
688enum ib_wr_opcode {
689 IB_WR_RDMA_WRITE,
690 IB_WR_RDMA_WRITE_WITH_IMM,
691 IB_WR_SEND,
692 IB_WR_SEND_WITH_IMM,
693 IB_WR_RDMA_READ,
694 IB_WR_ATOMIC_CMP_AND_SWP,
c93570f2 695 IB_WR_ATOMIC_FETCH_AND_ADD,
0f39cf3d
RD
696 IB_WR_LSO,
697 IB_WR_SEND_WITH_INV,
00f7ec36
SW
698 IB_WR_RDMA_READ_WITH_INV,
699 IB_WR_LOCAL_INV,
700 IB_WR_FAST_REG_MR,
5e80ba8f
VS
701 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
702 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1da177e4
LT
703};
704
705enum ib_send_flags {
706 IB_SEND_FENCE = 1,
707 IB_SEND_SIGNALED = (1<<1),
708 IB_SEND_SOLICITED = (1<<2),
e0605d91
EC
709 IB_SEND_INLINE = (1<<3),
710 IB_SEND_IP_CSUM = (1<<4)
1da177e4
LT
711};
712
713struct ib_sge {
714 u64 addr;
715 u32 length;
716 u32 lkey;
717};
718
00f7ec36
SW
719struct ib_fast_reg_page_list {
720 struct ib_device *device;
721 u64 *page_list;
722 unsigned int max_page_list_len;
723};
724
1da177e4
LT
725struct ib_send_wr {
726 struct ib_send_wr *next;
727 u64 wr_id;
728 struct ib_sge *sg_list;
729 int num_sge;
730 enum ib_wr_opcode opcode;
731 int send_flags;
0f39cf3d
RD
732 union {
733 __be32 imm_data;
734 u32 invalidate_rkey;
735 } ex;
1da177e4
LT
736 union {
737 struct {
738 u64 remote_addr;
739 u32 rkey;
740 } rdma;
741 struct {
742 u64 remote_addr;
743 u64 compare_add;
744 u64 swap;
5e80ba8f
VS
745 u64 compare_add_mask;
746 u64 swap_mask;
1da177e4
LT
747 u32 rkey;
748 } atomic;
749 struct {
750 struct ib_ah *ah;
c93570f2
EC
751 void *header;
752 int hlen;
753 int mss;
1da177e4
LT
754 u32 remote_qpn;
755 u32 remote_qkey;
1da177e4
LT
756 u16 pkey_index; /* valid for GSI only */
757 u8 port_num; /* valid for DR SMPs on switch only */
758 } ud;
00f7ec36
SW
759 struct {
760 u64 iova_start;
761 struct ib_fast_reg_page_list *page_list;
762 unsigned int page_shift;
763 unsigned int page_list_len;
764 u32 length;
765 int access_flags;
766 u32 rkey;
767 } fast_reg;
1da177e4
LT
768 } wr;
769};
770
771struct ib_recv_wr {
772 struct ib_recv_wr *next;
773 u64 wr_id;
774 struct ib_sge *sg_list;
775 int num_sge;
776};
777
778enum ib_access_flags {
779 IB_ACCESS_LOCAL_WRITE = 1,
780 IB_ACCESS_REMOTE_WRITE = (1<<1),
781 IB_ACCESS_REMOTE_READ = (1<<2),
782 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
783 IB_ACCESS_MW_BIND = (1<<4)
784};
785
786struct ib_phys_buf {
787 u64 addr;
788 u64 size;
789};
790
791struct ib_mr_attr {
792 struct ib_pd *pd;
793 u64 device_virt_addr;
794 u64 size;
795 int mr_access_flags;
796 u32 lkey;
797 u32 rkey;
798};
799
800enum ib_mr_rereg_flags {
801 IB_MR_REREG_TRANS = 1,
802 IB_MR_REREG_PD = (1<<1),
803 IB_MR_REREG_ACCESS = (1<<2)
804};
805
806struct ib_mw_bind {
807 struct ib_mr *mr;
808 u64 wr_id;
809 u64 addr;
810 u32 length;
811 int send_flags;
812 int mw_access_flags;
813};
814
815struct ib_fmr_attr {
816 int max_pages;
817 int max_maps;
d36f34aa 818 u8 page_shift;
1da177e4
LT
819};
820
e2773c06
RD
821struct ib_ucontext {
822 struct ib_device *device;
823 struct list_head pd_list;
824 struct list_head mr_list;
825 struct list_head mw_list;
826 struct list_head cq_list;
827 struct list_head qp_list;
828 struct list_head srq_list;
829 struct list_head ah_list;
f7c6a7b5 830 int closing;
e2773c06
RD
831};
832
833struct ib_uobject {
834 u64 user_handle; /* handle given to us by userspace */
835 struct ib_ucontext *context; /* associated user context */
9ead190b 836 void *object; /* containing object */
e2773c06 837 struct list_head list; /* link to context's list */
b3d636b0 838 int id; /* index into kernel idr */
9ead190b
RD
839 struct kref ref;
840 struct rw_semaphore mutex; /* protects .live */
841 int live;
e2773c06
RD
842};
843
e2773c06
RD
844struct ib_udata {
845 void __user *inbuf;
846 void __user *outbuf;
847 size_t inlen;
848 size_t outlen;
849};
850
1da177e4 851struct ib_pd {
e2773c06
RD
852 struct ib_device *device;
853 struct ib_uobject *uobject;
854 atomic_t usecnt; /* count all resources */
1da177e4
LT
855};
856
857struct ib_ah {
858 struct ib_device *device;
859 struct ib_pd *pd;
e2773c06 860 struct ib_uobject *uobject;
1da177e4
LT
861};
862
863typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
864
865struct ib_cq {
e2773c06
RD
866 struct ib_device *device;
867 struct ib_uobject *uobject;
868 ib_comp_handler comp_handler;
869 void (*event_handler)(struct ib_event *, void *);
4deccd6d 870 void *cq_context;
e2773c06
RD
871 int cqe;
872 atomic_t usecnt; /* count number of work queues */
1da177e4
LT
873};
874
875struct ib_srq {
d41fcc67
RD
876 struct ib_device *device;
877 struct ib_pd *pd;
878 struct ib_uobject *uobject;
879 void (*event_handler)(struct ib_event *, void *);
880 void *srq_context;
1da177e4
LT
881 atomic_t usecnt;
882};
883
884struct ib_qp {
885 struct ib_device *device;
886 struct ib_pd *pd;
887 struct ib_cq *send_cq;
888 struct ib_cq *recv_cq;
889 struct ib_srq *srq;
e2773c06 890 struct ib_uobject *uobject;
1da177e4
LT
891 void (*event_handler)(struct ib_event *, void *);
892 void *qp_context;
893 u32 qp_num;
894 enum ib_qp_type qp_type;
895};
896
897struct ib_mr {
e2773c06
RD
898 struct ib_device *device;
899 struct ib_pd *pd;
900 struct ib_uobject *uobject;
901 u32 lkey;
902 u32 rkey;
903 atomic_t usecnt; /* count number of MWs */
1da177e4
LT
904};
905
906struct ib_mw {
907 struct ib_device *device;
908 struct ib_pd *pd;
e2773c06 909 struct ib_uobject *uobject;
1da177e4
LT
910 u32 rkey;
911};
912
913struct ib_fmr {
914 struct ib_device *device;
915 struct ib_pd *pd;
916 struct list_head list;
917 u32 lkey;
918 u32 rkey;
919};
920
921struct ib_mad;
922struct ib_grh;
923
924enum ib_process_mad_flags {
925 IB_MAD_IGNORE_MKEY = 1,
926 IB_MAD_IGNORE_BKEY = 2,
927 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
928};
929
930enum ib_mad_result {
931 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
932 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
933 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
934 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
935};
936
937#define IB_DEVICE_NAME_MAX 64
938
939struct ib_cache {
940 rwlock_t lock;
941 struct ib_event_handler event_handler;
942 struct ib_pkey_cache **pkey_cache;
943 struct ib_gid_cache **gid_cache;
6fb9cdbf 944 u8 *lmc_cache;
1da177e4
LT
945};
946
9b513090
RC
947struct ib_dma_mapping_ops {
948 int (*mapping_error)(struct ib_device *dev,
949 u64 dma_addr);
950 u64 (*map_single)(struct ib_device *dev,
951 void *ptr, size_t size,
952 enum dma_data_direction direction);
953 void (*unmap_single)(struct ib_device *dev,
954 u64 addr, size_t size,
955 enum dma_data_direction direction);
956 u64 (*map_page)(struct ib_device *dev,
957 struct page *page, unsigned long offset,
958 size_t size,
959 enum dma_data_direction direction);
960 void (*unmap_page)(struct ib_device *dev,
961 u64 addr, size_t size,
962 enum dma_data_direction direction);
963 int (*map_sg)(struct ib_device *dev,
964 struct scatterlist *sg, int nents,
965 enum dma_data_direction direction);
966 void (*unmap_sg)(struct ib_device *dev,
967 struct scatterlist *sg, int nents,
968 enum dma_data_direction direction);
969 u64 (*dma_address)(struct ib_device *dev,
970 struct scatterlist *sg);
971 unsigned int (*dma_len)(struct ib_device *dev,
972 struct scatterlist *sg);
973 void (*sync_single_for_cpu)(struct ib_device *dev,
974 u64 dma_handle,
975 size_t size,
4deccd6d 976 enum dma_data_direction dir);
9b513090
RC
977 void (*sync_single_for_device)(struct ib_device *dev,
978 u64 dma_handle,
979 size_t size,
980 enum dma_data_direction dir);
981 void *(*alloc_coherent)(struct ib_device *dev,
982 size_t size,
983 u64 *dma_handle,
984 gfp_t flag);
985 void (*free_coherent)(struct ib_device *dev,
986 size_t size, void *cpu_addr,
987 u64 dma_handle);
988};
989
07ebafba
TT
990struct iw_cm_verbs;
991
1da177e4
LT
992struct ib_device {
993 struct device *dma_device;
994
995 char name[IB_DEVICE_NAME_MAX];
996
997 struct list_head event_handler_list;
998 spinlock_t event_handler_lock;
999
17a55f79 1000 spinlock_t client_data_lock;
1da177e4
LT
1001 struct list_head core_list;
1002 struct list_head client_data_list;
1da177e4
LT
1003
1004 struct ib_cache cache;
5eb620c8
YE
1005 int *pkey_tbl_len;
1006 int *gid_tbl_len;
1da177e4 1007
f4fd0b22
MT
1008 int num_comp_vectors;
1009
07ebafba
TT
1010 struct iw_cm_verbs *iwcm;
1011
7f624d02
SW
1012 int (*get_protocol_stats)(struct ib_device *device,
1013 union rdma_protocol_stats *stats);
1da177e4
LT
1014 int (*query_device)(struct ib_device *device,
1015 struct ib_device_attr *device_attr);
1016 int (*query_port)(struct ib_device *device,
1017 u8 port_num,
1018 struct ib_port_attr *port_attr);
a3f5adaf
EC
1019 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1020 u8 port_num);
1da177e4
LT
1021 int (*query_gid)(struct ib_device *device,
1022 u8 port_num, int index,
1023 union ib_gid *gid);
1024 int (*query_pkey)(struct ib_device *device,
1025 u8 port_num, u16 index, u16 *pkey);
1026 int (*modify_device)(struct ib_device *device,
1027 int device_modify_mask,
1028 struct ib_device_modify *device_modify);
1029 int (*modify_port)(struct ib_device *device,
1030 u8 port_num, int port_modify_mask,
1031 struct ib_port_modify *port_modify);
e2773c06
RD
1032 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1033 struct ib_udata *udata);
1034 int (*dealloc_ucontext)(struct ib_ucontext *context);
1035 int (*mmap)(struct ib_ucontext *context,
1036 struct vm_area_struct *vma);
1037 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1038 struct ib_ucontext *context,
1039 struct ib_udata *udata);
1da177e4
LT
1040 int (*dealloc_pd)(struct ib_pd *pd);
1041 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1042 struct ib_ah_attr *ah_attr);
1043 int (*modify_ah)(struct ib_ah *ah,
1044 struct ib_ah_attr *ah_attr);
1045 int (*query_ah)(struct ib_ah *ah,
1046 struct ib_ah_attr *ah_attr);
1047 int (*destroy_ah)(struct ib_ah *ah);
d41fcc67
RD
1048 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1049 struct ib_srq_init_attr *srq_init_attr,
1050 struct ib_udata *udata);
1051 int (*modify_srq)(struct ib_srq *srq,
1052 struct ib_srq_attr *srq_attr,
9bc57e2d
RC
1053 enum ib_srq_attr_mask srq_attr_mask,
1054 struct ib_udata *udata);
d41fcc67
RD
1055 int (*query_srq)(struct ib_srq *srq,
1056 struct ib_srq_attr *srq_attr);
1057 int (*destroy_srq)(struct ib_srq *srq);
1058 int (*post_srq_recv)(struct ib_srq *srq,
1059 struct ib_recv_wr *recv_wr,
1060 struct ib_recv_wr **bad_recv_wr);
1da177e4 1061 struct ib_qp * (*create_qp)(struct ib_pd *pd,
e2773c06
RD
1062 struct ib_qp_init_attr *qp_init_attr,
1063 struct ib_udata *udata);
1da177e4
LT
1064 int (*modify_qp)(struct ib_qp *qp,
1065 struct ib_qp_attr *qp_attr,
9bc57e2d
RC
1066 int qp_attr_mask,
1067 struct ib_udata *udata);
1da177e4
LT
1068 int (*query_qp)(struct ib_qp *qp,
1069 struct ib_qp_attr *qp_attr,
1070 int qp_attr_mask,
1071 struct ib_qp_init_attr *qp_init_attr);
1072 int (*destroy_qp)(struct ib_qp *qp);
1073 int (*post_send)(struct ib_qp *qp,
1074 struct ib_send_wr *send_wr,
1075 struct ib_send_wr **bad_send_wr);
1076 int (*post_recv)(struct ib_qp *qp,
1077 struct ib_recv_wr *recv_wr,
1078 struct ib_recv_wr **bad_recv_wr);
e2773c06 1079 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe,
f4fd0b22 1080 int comp_vector,
e2773c06
RD
1081 struct ib_ucontext *context,
1082 struct ib_udata *udata);
2dd57162
EC
1083 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1084 u16 cq_period);
1da177e4 1085 int (*destroy_cq)(struct ib_cq *cq);
33b9b3ee
RD
1086 int (*resize_cq)(struct ib_cq *cq, int cqe,
1087 struct ib_udata *udata);
1da177e4
LT
1088 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1089 struct ib_wc *wc);
1090 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1091 int (*req_notify_cq)(struct ib_cq *cq,
ed23a727 1092 enum ib_cq_notify_flags flags);
1da177e4
LT
1093 int (*req_ncomp_notif)(struct ib_cq *cq,
1094 int wc_cnt);
1095 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1096 int mr_access_flags);
1097 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd,
1098 struct ib_phys_buf *phys_buf_array,
1099 int num_phys_buf,
1100 int mr_access_flags,
1101 u64 *iova_start);
e2773c06 1102 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
f7c6a7b5
RD
1103 u64 start, u64 length,
1104 u64 virt_addr,
e2773c06
RD
1105 int mr_access_flags,
1106 struct ib_udata *udata);
1da177e4
LT
1107 int (*query_mr)(struct ib_mr *mr,
1108 struct ib_mr_attr *mr_attr);
1109 int (*dereg_mr)(struct ib_mr *mr);
00f7ec36
SW
1110 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd,
1111 int max_page_list_len);
1112 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1113 int page_list_len);
1114 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1da177e4
LT
1115 int (*rereg_phys_mr)(struct ib_mr *mr,
1116 int mr_rereg_mask,
1117 struct ib_pd *pd,
1118 struct ib_phys_buf *phys_buf_array,
1119 int num_phys_buf,
1120 int mr_access_flags,
1121 u64 *iova_start);
1122 struct ib_mw * (*alloc_mw)(struct ib_pd *pd);
1123 int (*bind_mw)(struct ib_qp *qp,
1124 struct ib_mw *mw,
1125 struct ib_mw_bind *mw_bind);
1126 int (*dealloc_mw)(struct ib_mw *mw);
1127 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1128 int mr_access_flags,
1129 struct ib_fmr_attr *fmr_attr);
1130 int (*map_phys_fmr)(struct ib_fmr *fmr,
1131 u64 *page_list, int list_len,
1132 u64 iova);
1133 int (*unmap_fmr)(struct list_head *fmr_list);
1134 int (*dealloc_fmr)(struct ib_fmr *fmr);
1135 int (*attach_mcast)(struct ib_qp *qp,
1136 union ib_gid *gid,
1137 u16 lid);
1138 int (*detach_mcast)(struct ib_qp *qp,
1139 union ib_gid *gid,
1140 u16 lid);
1141 int (*process_mad)(struct ib_device *device,
1142 int process_mad_flags,
1143 u8 port_num,
1144 struct ib_wc *in_wc,
1145 struct ib_grh *in_grh,
1146 struct ib_mad *in_mad,
1147 struct ib_mad *out_mad);
1148
9b513090
RC
1149 struct ib_dma_mapping_ops *dma_ops;
1150
e2773c06 1151 struct module *owner;
f4e91eb4 1152 struct device dev;
35be0681 1153 struct kobject *ports_parent;
1da177e4
LT
1154 struct list_head port_list;
1155
1156 enum {
1157 IB_DEV_UNINITIALIZED,
1158 IB_DEV_REGISTERED,
1159 IB_DEV_UNREGISTERED
1160 } reg_state;
1161
274c0891 1162 int uverbs_abi_ver;
17a55f79 1163 u64 uverbs_cmd_mask;
274c0891 1164
c5bcbbb9 1165 char node_desc[64];
cf311cd4 1166 __be64 node_guid;
96f15c03 1167 u32 local_dma_lkey;
1da177e4
LT
1168 u8 node_type;
1169 u8 phys_port_cnt;
1170};
1171
1172struct ib_client {
1173 char *name;
1174 void (*add) (struct ib_device *);
1175 void (*remove)(struct ib_device *);
1176
1177 struct list_head list;
1178};
1179
1180struct ib_device *ib_alloc_device(size_t size);
1181void ib_dealloc_device(struct ib_device *device);
1182
9a6edb60
RC
1183int ib_register_device(struct ib_device *device,
1184 int (*port_callback)(struct ib_device *,
1185 u8, struct kobject *));
1da177e4
LT
1186void ib_unregister_device(struct ib_device *device);
1187
1188int ib_register_client (struct ib_client *client);
1189void ib_unregister_client(struct ib_client *client);
1190
1191void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1192void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1193 void *data);
1194
e2773c06
RD
1195static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1196{
1197 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1198}
1199
1200static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1201{
1202 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1203}
1204
8a51866f
RD
1205/**
1206 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1207 * contains all required attributes and no attributes not allowed for
1208 * the given QP state transition.
1209 * @cur_state: Current QP state
1210 * @next_state: Next QP state
1211 * @type: QP type
1212 * @mask: Mask of supplied QP attributes
1213 *
1214 * This function is a helper function that a low-level driver's
1215 * modify_qp method can use to validate the consumer's input. It
1216 * checks that cur_state and next_state are valid QP states, that a
1217 * transition from cur_state to next_state is allowed by the IB spec,
1218 * and that the attribute mask supplied is allowed for the transition.
1219 */
1220int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1221 enum ib_qp_type type, enum ib_qp_attr_mask mask);
1222
1da177e4
LT
1223int ib_register_event_handler (struct ib_event_handler *event_handler);
1224int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1225void ib_dispatch_event(struct ib_event *event);
1226
1227int ib_query_device(struct ib_device *device,
1228 struct ib_device_attr *device_attr);
1229
1230int ib_query_port(struct ib_device *device,
1231 u8 port_num, struct ib_port_attr *port_attr);
1232
a3f5adaf
EC
1233enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1234 u8 port_num);
1235
1da177e4
LT
1236int ib_query_gid(struct ib_device *device,
1237 u8 port_num, int index, union ib_gid *gid);
1238
1239int ib_query_pkey(struct ib_device *device,
1240 u8 port_num, u16 index, u16 *pkey);
1241
1242int ib_modify_device(struct ib_device *device,
1243 int device_modify_mask,
1244 struct ib_device_modify *device_modify);
1245
1246int ib_modify_port(struct ib_device *device,
1247 u8 port_num, int port_modify_mask,
1248 struct ib_port_modify *port_modify);
1249
5eb620c8
YE
1250int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1251 u8 *port_num, u16 *index);
1252
1253int ib_find_pkey(struct ib_device *device,
1254 u8 port_num, u16 pkey, u16 *index);
1255
1da177e4
LT
1256/**
1257 * ib_alloc_pd - Allocates an unused protection domain.
1258 * @device: The device on which to allocate the protection domain.
1259 *
1260 * A protection domain object provides an association between QPs, shared
1261 * receive queues, address handles, memory regions, and memory windows.
1262 */
1263struct ib_pd *ib_alloc_pd(struct ib_device *device);
1264
1265/**
1266 * ib_dealloc_pd - Deallocates a protection domain.
1267 * @pd: The protection domain to deallocate.
1268 */
1269int ib_dealloc_pd(struct ib_pd *pd);
1270
1271/**
1272 * ib_create_ah - Creates an address handle for the given address vector.
1273 * @pd: The protection domain associated with the address handle.
1274 * @ah_attr: The attributes of the address vector.
1275 *
1276 * The address handle is used to reference a local or global destination
1277 * in all UD QP post sends.
1278 */
1279struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
1280
4e00d694
SH
1281/**
1282 * ib_init_ah_from_wc - Initializes address handle attributes from a
1283 * work completion.
1284 * @device: Device on which the received message arrived.
1285 * @port_num: Port on which the received message arrived.
1286 * @wc: Work completion associated with the received message.
1287 * @grh: References the received global route header. This parameter is
1288 * ignored unless the work completion indicates that the GRH is valid.
1289 * @ah_attr: Returned attributes that can be used when creating an address
1290 * handle for replying to the message.
1291 */
1292int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1293 struct ib_grh *grh, struct ib_ah_attr *ah_attr);
1294
513789ed
HR
1295/**
1296 * ib_create_ah_from_wc - Creates an address handle associated with the
1297 * sender of the specified work completion.
1298 * @pd: The protection domain associated with the address handle.
1299 * @wc: Work completion information associated with a received message.
1300 * @grh: References the received global route header. This parameter is
1301 * ignored unless the work completion indicates that the GRH is valid.
1302 * @port_num: The outbound port number to associate with the address.
1303 *
1304 * The address handle is used to reference a local or global destination
1305 * in all UD QP post sends.
1306 */
1307struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1308 struct ib_grh *grh, u8 port_num);
1309
1da177e4
LT
1310/**
1311 * ib_modify_ah - Modifies the address vector associated with an address
1312 * handle.
1313 * @ah: The address handle to modify.
1314 * @ah_attr: The new address vector attributes to associate with the
1315 * address handle.
1316 */
1317int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1318
1319/**
1320 * ib_query_ah - Queries the address vector associated with an address
1321 * handle.
1322 * @ah: The address handle to query.
1323 * @ah_attr: The address vector attributes associated with the address
1324 * handle.
1325 */
1326int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1327
1328/**
1329 * ib_destroy_ah - Destroys an address handle.
1330 * @ah: The address handle to destroy.
1331 */
1332int ib_destroy_ah(struct ib_ah *ah);
1333
d41fcc67
RD
1334/**
1335 * ib_create_srq - Creates a SRQ associated with the specified protection
1336 * domain.
1337 * @pd: The protection domain associated with the SRQ.
abb6e9ba
DB
1338 * @srq_init_attr: A list of initial attributes required to create the
1339 * SRQ. If SRQ creation succeeds, then the attributes are updated to
1340 * the actual capabilities of the created SRQ.
d41fcc67
RD
1341 *
1342 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1343 * requested size of the SRQ, and set to the actual values allocated
1344 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
1345 * will always be at least as large as the requested values.
1346 */
1347struct ib_srq *ib_create_srq(struct ib_pd *pd,
1348 struct ib_srq_init_attr *srq_init_attr);
1349
1350/**
1351 * ib_modify_srq - Modifies the attributes for the specified SRQ.
1352 * @srq: The SRQ to modify.
1353 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
1354 * the current values of selected SRQ attributes are returned.
1355 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1356 * are being modified.
1357 *
1358 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1359 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1360 * the number of receives queued drops below the limit.
1361 */
1362int ib_modify_srq(struct ib_srq *srq,
1363 struct ib_srq_attr *srq_attr,
1364 enum ib_srq_attr_mask srq_attr_mask);
1365
1366/**
1367 * ib_query_srq - Returns the attribute list and current values for the
1368 * specified SRQ.
1369 * @srq: The SRQ to query.
1370 * @srq_attr: The attributes of the specified SRQ.
1371 */
1372int ib_query_srq(struct ib_srq *srq,
1373 struct ib_srq_attr *srq_attr);
1374
1375/**
1376 * ib_destroy_srq - Destroys the specified SRQ.
1377 * @srq: The SRQ to destroy.
1378 */
1379int ib_destroy_srq(struct ib_srq *srq);
1380
1381/**
1382 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1383 * @srq: The SRQ to post the work request on.
1384 * @recv_wr: A list of work requests to post on the receive queue.
1385 * @bad_recv_wr: On an immediate failure, this parameter will reference
1386 * the work request that failed to be posted on the QP.
1387 */
1388static inline int ib_post_srq_recv(struct ib_srq *srq,
1389 struct ib_recv_wr *recv_wr,
1390 struct ib_recv_wr **bad_recv_wr)
1391{
1392 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
1393}
1394
1da177e4
LT
1395/**
1396 * ib_create_qp - Creates a QP associated with the specified protection
1397 * domain.
1398 * @pd: The protection domain associated with the QP.
abb6e9ba
DB
1399 * @qp_init_attr: A list of initial attributes required to create the
1400 * QP. If QP creation succeeds, then the attributes are updated to
1401 * the actual capabilities of the created QP.
1da177e4
LT
1402 */
1403struct ib_qp *ib_create_qp(struct ib_pd *pd,
1404 struct ib_qp_init_attr *qp_init_attr);
1405
1406/**
1407 * ib_modify_qp - Modifies the attributes for the specified QP and then
1408 * transitions the QP to the given state.
1409 * @qp: The QP to modify.
1410 * @qp_attr: On input, specifies the QP attributes to modify. On output,
1411 * the current values of selected QP attributes are returned.
1412 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1413 * are being modified.
1414 */
1415int ib_modify_qp(struct ib_qp *qp,
1416 struct ib_qp_attr *qp_attr,
1417 int qp_attr_mask);
1418
1419/**
1420 * ib_query_qp - Returns the attribute list and current values for the
1421 * specified QP.
1422 * @qp: The QP to query.
1423 * @qp_attr: The attributes of the specified QP.
1424 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1425 * @qp_init_attr: Additional attributes of the selected QP.
1426 *
1427 * The qp_attr_mask may be used to limit the query to gathering only the
1428 * selected attributes.
1429 */
1430int ib_query_qp(struct ib_qp *qp,
1431 struct ib_qp_attr *qp_attr,
1432 int qp_attr_mask,
1433 struct ib_qp_init_attr *qp_init_attr);
1434
1435/**
1436 * ib_destroy_qp - Destroys the specified QP.
1437 * @qp: The QP to destroy.
1438 */
1439int ib_destroy_qp(struct ib_qp *qp);
1440
1441/**
1442 * ib_post_send - Posts a list of work requests to the send queue of
1443 * the specified QP.
1444 * @qp: The QP to post the work request on.
1445 * @send_wr: A list of work requests to post on the send queue.
1446 * @bad_send_wr: On an immediate failure, this parameter will reference
1447 * the work request that failed to be posted on the QP.
55464d46
BVA
1448 *
1449 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
1450 * error is returned, the QP state shall not be affected,
1451 * ib_post_send() will return an immediate error after queueing any
1452 * earlier work requests in the list.
1da177e4
LT
1453 */
1454static inline int ib_post_send(struct ib_qp *qp,
1455 struct ib_send_wr *send_wr,
1456 struct ib_send_wr **bad_send_wr)
1457{
1458 return qp->device->post_send(qp, send_wr, bad_send_wr);
1459}
1460
1461/**
1462 * ib_post_recv - Posts a list of work requests to the receive queue of
1463 * the specified QP.
1464 * @qp: The QP to post the work request on.
1465 * @recv_wr: A list of work requests to post on the receive queue.
1466 * @bad_recv_wr: On an immediate failure, this parameter will reference
1467 * the work request that failed to be posted on the QP.
1468 */
1469static inline int ib_post_recv(struct ib_qp *qp,
1470 struct ib_recv_wr *recv_wr,
1471 struct ib_recv_wr **bad_recv_wr)
1472{
1473 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
1474}
1475
1476/**
1477 * ib_create_cq - Creates a CQ on the specified device.
1478 * @device: The device on which to create the CQ.
1479 * @comp_handler: A user-specified callback that is invoked when a
1480 * completion event occurs on the CQ.
1481 * @event_handler: A user-specified callback that is invoked when an
1482 * asynchronous event not associated with a completion occurs on the CQ.
1483 * @cq_context: Context associated with the CQ returned to the user via
1484 * the associated completion and event handlers.
1485 * @cqe: The minimum size of the CQ.
f4fd0b22
MT
1486 * @comp_vector - Completion vector used to signal completion events.
1487 * Must be >= 0 and < context->num_comp_vectors.
1da177e4
LT
1488 *
1489 * Users can examine the cq structure to determine the actual CQ size.
1490 */
1491struct ib_cq *ib_create_cq(struct ib_device *device,
1492 ib_comp_handler comp_handler,
1493 void (*event_handler)(struct ib_event *, void *),
f4fd0b22 1494 void *cq_context, int cqe, int comp_vector);
1da177e4
LT
1495
1496/**
1497 * ib_resize_cq - Modifies the capacity of the CQ.
1498 * @cq: The CQ to resize.
1499 * @cqe: The minimum size of the CQ.
1500 *
1501 * Users can examine the cq structure to determine the actual CQ size.
1502 */
1503int ib_resize_cq(struct ib_cq *cq, int cqe);
1504
2dd57162
EC
1505/**
1506 * ib_modify_cq - Modifies moderation params of the CQ
1507 * @cq: The CQ to modify.
1508 * @cq_count: number of CQEs that will trigger an event
1509 * @cq_period: max period of time in usec before triggering an event
1510 *
1511 */
1512int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
1513
1da177e4
LT
1514/**
1515 * ib_destroy_cq - Destroys the specified CQ.
1516 * @cq: The CQ to destroy.
1517 */
1518int ib_destroy_cq(struct ib_cq *cq);
1519
1520/**
1521 * ib_poll_cq - poll a CQ for completion(s)
1522 * @cq:the CQ being polled
1523 * @num_entries:maximum number of completions to return
1524 * @wc:array of at least @num_entries &struct ib_wc where completions
1525 * will be returned
1526 *
1527 * Poll a CQ for (possibly multiple) completions. If the return value
1528 * is < 0, an error occurred. If the return value is >= 0, it is the
1529 * number of completions returned. If the return value is
1530 * non-negative and < num_entries, then the CQ was emptied.
1531 */
1532static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
1533 struct ib_wc *wc)
1534{
1535 return cq->device->poll_cq(cq, num_entries, wc);
1536}
1537
1538/**
1539 * ib_peek_cq - Returns the number of unreaped completions currently
1540 * on the specified CQ.
1541 * @cq: The CQ to peek.
1542 * @wc_cnt: A minimum number of unreaped completions to check for.
1543 *
1544 * If the number of unreaped completions is greater than or equal to wc_cnt,
1545 * this function returns wc_cnt, otherwise, it returns the actual number of
1546 * unreaped completions.
1547 */
1548int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
1549
1550/**
1551 * ib_req_notify_cq - Request completion notification on a CQ.
1552 * @cq: The CQ to generate an event for.
ed23a727
RD
1553 * @flags:
1554 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
1555 * to request an event on the next solicited event or next work
1556 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
1557 * may also be |ed in to request a hint about missed events, as
1558 * described below.
1559 *
1560 * Return Value:
1561 * < 0 means an error occurred while requesting notification
1562 * == 0 means notification was requested successfully, and if
1563 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
1564 * were missed and it is safe to wait for another event. In
1565 * this case is it guaranteed that any work completions added
1566 * to the CQ since the last CQ poll will trigger a completion
1567 * notification event.
1568 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
1569 * in. It means that the consumer must poll the CQ again to
1570 * make sure it is empty to avoid missing an event because of a
1571 * race between requesting notification and an entry being
1572 * added to the CQ. This return value means it is possible
1573 * (but not guaranteed) that a work completion has been added
1574 * to the CQ since the last poll without triggering a
1575 * completion notification event.
1da177e4
LT
1576 */
1577static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 1578 enum ib_cq_notify_flags flags)
1da177e4 1579{
ed23a727 1580 return cq->device->req_notify_cq(cq, flags);
1da177e4
LT
1581}
1582
1583/**
1584 * ib_req_ncomp_notif - Request completion notification when there are
1585 * at least the specified number of unreaped completions on the CQ.
1586 * @cq: The CQ to generate an event for.
1587 * @wc_cnt: The number of unreaped completions that should be on the
1588 * CQ before an event is generated.
1589 */
1590static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
1591{
1592 return cq->device->req_ncomp_notif ?
1593 cq->device->req_ncomp_notif(cq, wc_cnt) :
1594 -ENOSYS;
1595}
1596
1597/**
1598 * ib_get_dma_mr - Returns a memory region for system memory that is
1599 * usable for DMA.
1600 * @pd: The protection domain associated with the memory region.
1601 * @mr_access_flags: Specifies the memory access rights.
9b513090
RC
1602 *
1603 * Note that the ib_dma_*() functions defined below must be used
1604 * to create/destroy addresses used with the Lkey or Rkey returned
1605 * by ib_get_dma_mr().
1da177e4
LT
1606 */
1607struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
1608
9b513090
RC
1609/**
1610 * ib_dma_mapping_error - check a DMA addr for error
1611 * @dev: The device for which the dma_addr was created
1612 * @dma_addr: The DMA address to check
1613 */
1614static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
1615{
d1998ef3
BC
1616 if (dev->dma_ops)
1617 return dev->dma_ops->mapping_error(dev, dma_addr);
8d8bb39b 1618 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
1619}
1620
1621/**
1622 * ib_dma_map_single - Map a kernel virtual address to DMA address
1623 * @dev: The device for which the dma_addr is to be created
1624 * @cpu_addr: The kernel virtual address
1625 * @size: The size of the region in bytes
1626 * @direction: The direction of the DMA
1627 */
1628static inline u64 ib_dma_map_single(struct ib_device *dev,
1629 void *cpu_addr, size_t size,
1630 enum dma_data_direction direction)
1631{
d1998ef3
BC
1632 if (dev->dma_ops)
1633 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
1634 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
1635}
1636
1637/**
1638 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
1639 * @dev: The device for which the DMA address was created
1640 * @addr: The DMA address
1641 * @size: The size of the region in bytes
1642 * @direction: The direction of the DMA
1643 */
1644static inline void ib_dma_unmap_single(struct ib_device *dev,
1645 u64 addr, size_t size,
1646 enum dma_data_direction direction)
1647{
d1998ef3
BC
1648 if (dev->dma_ops)
1649 dev->dma_ops->unmap_single(dev, addr, size, direction);
1650 else
9b513090
RC
1651 dma_unmap_single(dev->dma_device, addr, size, direction);
1652}
1653
cb9fbc5c
AK
1654static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
1655 void *cpu_addr, size_t size,
1656 enum dma_data_direction direction,
1657 struct dma_attrs *attrs)
1658{
1659 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
1660 direction, attrs);
1661}
1662
1663static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
1664 u64 addr, size_t size,
1665 enum dma_data_direction direction,
1666 struct dma_attrs *attrs)
1667{
1668 return dma_unmap_single_attrs(dev->dma_device, addr, size,
1669 direction, attrs);
1670}
1671
9b513090
RC
1672/**
1673 * ib_dma_map_page - Map a physical page to DMA address
1674 * @dev: The device for which the dma_addr is to be created
1675 * @page: The page to be mapped
1676 * @offset: The offset within the page
1677 * @size: The size of the region in bytes
1678 * @direction: The direction of the DMA
1679 */
1680static inline u64 ib_dma_map_page(struct ib_device *dev,
1681 struct page *page,
1682 unsigned long offset,
1683 size_t size,
1684 enum dma_data_direction direction)
1685{
d1998ef3
BC
1686 if (dev->dma_ops)
1687 return dev->dma_ops->map_page(dev, page, offset, size, direction);
1688 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
1689}
1690
1691/**
1692 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
1693 * @dev: The device for which the DMA address was created
1694 * @addr: The DMA address
1695 * @size: The size of the region in bytes
1696 * @direction: The direction of the DMA
1697 */
1698static inline void ib_dma_unmap_page(struct ib_device *dev,
1699 u64 addr, size_t size,
1700 enum dma_data_direction direction)
1701{
d1998ef3
BC
1702 if (dev->dma_ops)
1703 dev->dma_ops->unmap_page(dev, addr, size, direction);
1704 else
9b513090
RC
1705 dma_unmap_page(dev->dma_device, addr, size, direction);
1706}
1707
1708/**
1709 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
1710 * @dev: The device for which the DMA addresses are to be created
1711 * @sg: The array of scatter/gather entries
1712 * @nents: The number of scatter/gather entries
1713 * @direction: The direction of the DMA
1714 */
1715static inline int ib_dma_map_sg(struct ib_device *dev,
1716 struct scatterlist *sg, int nents,
1717 enum dma_data_direction direction)
1718{
d1998ef3
BC
1719 if (dev->dma_ops)
1720 return dev->dma_ops->map_sg(dev, sg, nents, direction);
1721 return dma_map_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
1722}
1723
1724/**
1725 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
1726 * @dev: The device for which the DMA addresses were created
1727 * @sg: The array of scatter/gather entries
1728 * @nents: The number of scatter/gather entries
1729 * @direction: The direction of the DMA
1730 */
1731static inline void ib_dma_unmap_sg(struct ib_device *dev,
1732 struct scatterlist *sg, int nents,
1733 enum dma_data_direction direction)
1734{
d1998ef3
BC
1735 if (dev->dma_ops)
1736 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
1737 else
9b513090
RC
1738 dma_unmap_sg(dev->dma_device, sg, nents, direction);
1739}
1740
cb9fbc5c
AK
1741static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
1742 struct scatterlist *sg, int nents,
1743 enum dma_data_direction direction,
1744 struct dma_attrs *attrs)
1745{
1746 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1747}
1748
1749static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
1750 struct scatterlist *sg, int nents,
1751 enum dma_data_direction direction,
1752 struct dma_attrs *attrs)
1753{
1754 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1755}
9b513090
RC
1756/**
1757 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
1758 * @dev: The device for which the DMA addresses were created
1759 * @sg: The scatter/gather entry
1760 */
1761static inline u64 ib_sg_dma_address(struct ib_device *dev,
1762 struct scatterlist *sg)
1763{
d1998ef3
BC
1764 if (dev->dma_ops)
1765 return dev->dma_ops->dma_address(dev, sg);
1766 return sg_dma_address(sg);
9b513090
RC
1767}
1768
1769/**
1770 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
1771 * @dev: The device for which the DMA addresses were created
1772 * @sg: The scatter/gather entry
1773 */
1774static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
1775 struct scatterlist *sg)
1776{
d1998ef3
BC
1777 if (dev->dma_ops)
1778 return dev->dma_ops->dma_len(dev, sg);
1779 return sg_dma_len(sg);
9b513090
RC
1780}
1781
1782/**
1783 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
1784 * @dev: The device for which the DMA address was created
1785 * @addr: The DMA address
1786 * @size: The size of the region in bytes
1787 * @dir: The direction of the DMA
1788 */
1789static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
1790 u64 addr,
1791 size_t size,
1792 enum dma_data_direction dir)
1793{
d1998ef3
BC
1794 if (dev->dma_ops)
1795 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
1796 else
9b513090
RC
1797 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
1798}
1799
1800/**
1801 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
1802 * @dev: The device for which the DMA address was created
1803 * @addr: The DMA address
1804 * @size: The size of the region in bytes
1805 * @dir: The direction of the DMA
1806 */
1807static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
1808 u64 addr,
1809 size_t size,
1810 enum dma_data_direction dir)
1811{
d1998ef3
BC
1812 if (dev->dma_ops)
1813 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
1814 else
9b513090
RC
1815 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
1816}
1817
1818/**
1819 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
1820 * @dev: The device for which the DMA address is requested
1821 * @size: The size of the region to allocate in bytes
1822 * @dma_handle: A pointer for returning the DMA address of the region
1823 * @flag: memory allocator flags
1824 */
1825static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
1826 size_t size,
1827 u64 *dma_handle,
1828 gfp_t flag)
1829{
d1998ef3
BC
1830 if (dev->dma_ops)
1831 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
c59a3da1
RD
1832 else {
1833 dma_addr_t handle;
1834 void *ret;
1835
1836 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
1837 *dma_handle = handle;
1838 return ret;
1839 }
9b513090
RC
1840}
1841
1842/**
1843 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
1844 * @dev: The device for which the DMA addresses were allocated
1845 * @size: The size of the region
1846 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
1847 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
1848 */
1849static inline void ib_dma_free_coherent(struct ib_device *dev,
1850 size_t size, void *cpu_addr,
1851 u64 dma_handle)
1852{
d1998ef3
BC
1853 if (dev->dma_ops)
1854 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
1855 else
9b513090
RC
1856 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
1857}
1858
1da177e4
LT
1859/**
1860 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
1861 * by an HCA.
1862 * @pd: The protection domain associated assigned to the registered region.
1863 * @phys_buf_array: Specifies a list of physical buffers to use in the
1864 * memory region.
1865 * @num_phys_buf: Specifies the size of the phys_buf_array.
1866 * @mr_access_flags: Specifies the memory access rights.
1867 * @iova_start: The offset of the region's starting I/O virtual address.
1868 */
1869struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
1870 struct ib_phys_buf *phys_buf_array,
1871 int num_phys_buf,
1872 int mr_access_flags,
1873 u64 *iova_start);
1874
1875/**
1876 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
1877 * Conceptually, this call performs the functions deregister memory region
1878 * followed by register physical memory region. Where possible,
1879 * resources are reused instead of deallocated and reallocated.
1880 * @mr: The memory region to modify.
1881 * @mr_rereg_mask: A bit-mask used to indicate which of the following
1882 * properties of the memory region are being modified.
1883 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
1884 * the new protection domain to associated with the memory region,
1885 * otherwise, this parameter is ignored.
1886 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1887 * field specifies a list of physical buffers to use in the new
1888 * translation, otherwise, this parameter is ignored.
1889 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1890 * field specifies the size of the phys_buf_array, otherwise, this
1891 * parameter is ignored.
1892 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
1893 * field specifies the new memory access rights, otherwise, this
1894 * parameter is ignored.
1895 * @iova_start: The offset of the region's starting I/O virtual address.
1896 */
1897int ib_rereg_phys_mr(struct ib_mr *mr,
1898 int mr_rereg_mask,
1899 struct ib_pd *pd,
1900 struct ib_phys_buf *phys_buf_array,
1901 int num_phys_buf,
1902 int mr_access_flags,
1903 u64 *iova_start);
1904
1905/**
1906 * ib_query_mr - Retrieves information about a specific memory region.
1907 * @mr: The memory region to retrieve information about.
1908 * @mr_attr: The attributes of the specified memory region.
1909 */
1910int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
1911
1912/**
1913 * ib_dereg_mr - Deregisters a memory region and removes it from the
1914 * HCA translation table.
1915 * @mr: The memory region to deregister.
1916 */
1917int ib_dereg_mr(struct ib_mr *mr);
1918
00f7ec36
SW
1919/**
1920 * ib_alloc_fast_reg_mr - Allocates memory region usable with the
1921 * IB_WR_FAST_REG_MR send work request.
1922 * @pd: The protection domain associated with the region.
1923 * @max_page_list_len: requested max physical buffer list length to be
1924 * used with fast register work requests for this MR.
1925 */
1926struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
1927
1928/**
1929 * ib_alloc_fast_reg_page_list - Allocates a page list array
1930 * @device - ib device pointer.
1931 * @page_list_len - size of the page list array to be allocated.
1932 *
1933 * This allocates and returns a struct ib_fast_reg_page_list * and a
1934 * page_list array that is at least page_list_len in size. The actual
1935 * size is returned in max_page_list_len. The caller is responsible
1936 * for initializing the contents of the page_list array before posting
1937 * a send work request with the IB_WC_FAST_REG_MR opcode.
1938 *
1939 * The page_list array entries must be translated using one of the
1940 * ib_dma_*() functions just like the addresses passed to
1941 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct
1942 * ib_fast_reg_page_list must not be modified by the caller until the
1943 * IB_WC_FAST_REG_MR work request completes.
1944 */
1945struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
1946 struct ib_device *device, int page_list_len);
1947
1948/**
1949 * ib_free_fast_reg_page_list - Deallocates a previously allocated
1950 * page list array.
1951 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
1952 */
1953void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
1954
1955/**
1956 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
1957 * R_Key and L_Key.
1958 * @mr - struct ib_mr pointer to be updated.
1959 * @newkey - new key to be used.
1960 */
1961static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
1962{
1963 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
1964 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
1965}
1966
1da177e4
LT
1967/**
1968 * ib_alloc_mw - Allocates a memory window.
1969 * @pd: The protection domain associated with the memory window.
1970 */
1971struct ib_mw *ib_alloc_mw(struct ib_pd *pd);
1972
1973/**
1974 * ib_bind_mw - Posts a work request to the send queue of the specified
1975 * QP, which binds the memory window to the given address range and
1976 * remote access attributes.
1977 * @qp: QP to post the bind work request on.
1978 * @mw: The memory window to bind.
1979 * @mw_bind: Specifies information about the memory window, including
1980 * its address range, remote access rights, and associated memory region.
1981 */
1982static inline int ib_bind_mw(struct ib_qp *qp,
1983 struct ib_mw *mw,
1984 struct ib_mw_bind *mw_bind)
1985{
1986 /* XXX reference counting in corresponding MR? */
1987 return mw->device->bind_mw ?
1988 mw->device->bind_mw(qp, mw, mw_bind) :
1989 -ENOSYS;
1990}
1991
1992/**
1993 * ib_dealloc_mw - Deallocates a memory window.
1994 * @mw: The memory window to deallocate.
1995 */
1996int ib_dealloc_mw(struct ib_mw *mw);
1997
1998/**
1999 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2000 * @pd: The protection domain associated with the unmapped region.
2001 * @mr_access_flags: Specifies the memory access rights.
2002 * @fmr_attr: Attributes of the unmapped region.
2003 *
2004 * A fast memory region must be mapped before it can be used as part of
2005 * a work request.
2006 */
2007struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2008 int mr_access_flags,
2009 struct ib_fmr_attr *fmr_attr);
2010
2011/**
2012 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2013 * @fmr: The fast memory region to associate with the pages.
2014 * @page_list: An array of physical pages to map to the fast memory region.
2015 * @list_len: The number of pages in page_list.
2016 * @iova: The I/O virtual address to use with the mapped region.
2017 */
2018static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2019 u64 *page_list, int list_len,
2020 u64 iova)
2021{
2022 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2023}
2024
2025/**
2026 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2027 * @fmr_list: A linked list of fast memory regions to unmap.
2028 */
2029int ib_unmap_fmr(struct list_head *fmr_list);
2030
2031/**
2032 * ib_dealloc_fmr - Deallocates a fast memory region.
2033 * @fmr: The fast memory region to deallocate.
2034 */
2035int ib_dealloc_fmr(struct ib_fmr *fmr);
2036
2037/**
2038 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2039 * @qp: QP to attach to the multicast group. The QP must be type
2040 * IB_QPT_UD.
2041 * @gid: Multicast group GID.
2042 * @lid: Multicast group LID in host byte order.
2043 *
2044 * In order to send and receive multicast packets, subnet
2045 * administration must have created the multicast group and configured
2046 * the fabric appropriately. The port associated with the specified
2047 * QP must also be a member of the multicast group.
2048 */
2049int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2050
2051/**
2052 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2053 * @qp: QP to detach from the multicast group.
2054 * @gid: Multicast group GID.
2055 * @lid: Multicast group LID in host byte order.
2056 */
2057int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2058
2059#endif /* IB_VERBS_H */