]> bbs.cooldavid.org Git - net-next-2.6.git/blame - include/net/sock.h
[IPV4/6]: Check if packet was actually delivered to a raw socket to decide whether...
[net-next-2.6.git] / include / net / sock.h
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40#ifndef _SOCK_H
41#define _SOCK_H
42
43#include <linux/config.h>
44#include <linux/list.h>
45#include <linux/timer.h>
46#include <linux/cache.h>
47#include <linux/module.h>
48#include <linux/netdevice.h>
49#include <linux/skbuff.h> /* struct sk_buff */
50#include <linux/security.h>
51
52#include <linux/filter.h>
53
54#include <asm/atomic.h>
55#include <net/dst.h>
56#include <net/checksum.h>
57
58/*
59 * This structure really needs to be cleaned up.
60 * Most of it is for TCP, and not used by any of
61 * the other protocols.
62 */
63
64/* Define this to get the SOCK_DBG debugging facility. */
65#define SOCK_DEBUGGING
66#ifdef SOCK_DEBUGGING
67#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
68 printk(KERN_DEBUG msg); } while (0)
69#else
70#define SOCK_DEBUG(sk, msg...) do { } while (0)
71#endif
72
73/* This is the per-socket lock. The spinlock provides a synchronization
74 * between user contexts and software interrupt processing, whereas the
75 * mini-semaphore synchronizes multiple users amongst themselves.
76 */
77struct sock_iocb;
78typedef struct {
79 spinlock_t slock;
80 struct sock_iocb *owner;
81 wait_queue_head_t wq;
82} socket_lock_t;
83
84#define sock_lock_init(__sk) \
85do { spin_lock_init(&((__sk)->sk_lock.slock)); \
86 (__sk)->sk_lock.owner = NULL; \
87 init_waitqueue_head(&((__sk)->sk_lock.wq)); \
88} while(0)
89
90struct sock;
91
92/**
4dc3b16b
PP
93 * struct sock_common - minimal network layer representation of sockets
94 * @skc_family: network address family
95 * @skc_state: Connection state
96 * @skc_reuse: %SO_REUSEADDR setting
97 * @skc_bound_dev_if: bound device index if != 0
98 * @skc_node: main hash linkage for various protocol lookup tables
99 * @skc_bind_node: bind hash linkage for various protocol lookup tables
100 * @skc_refcnt: reference count
101 *
102 * This is the minimal network layer representation of sockets, the header
103 * for struct sock and struct tcp_tw_bucket.
1da177e4
LT
104 */
105struct sock_common {
106 unsigned short skc_family;
107 volatile unsigned char skc_state;
108 unsigned char skc_reuse;
109 int skc_bound_dev_if;
110 struct hlist_node skc_node;
111 struct hlist_node skc_bind_node;
112 atomic_t skc_refcnt;
113};
114
115/**
116 * struct sock - network layer representation of sockets
4dc3b16b
PP
117 * @__sk_common: shared layout with tcp_tw_bucket
118 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
119 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
120 * @sk_lock: synchronizer
121 * @sk_rcvbuf: size of receive buffer in bytes
122 * @sk_sleep: sock wait queue
123 * @sk_dst_cache: destination cache
124 * @sk_dst_lock: destination cache lock
125 * @sk_policy: flow policy
126 * @sk_rmem_alloc: receive queue bytes committed
127 * @sk_receive_queue: incoming packets
128 * @sk_wmem_alloc: transmit queue bytes committed
129 * @sk_write_queue: Packet sending queue
130 * @sk_omem_alloc: "o" is "option" or "other"
131 * @sk_wmem_queued: persistent queue size
132 * @sk_forward_alloc: space allocated forward
133 * @sk_allocation: allocation mode
134 * @sk_sndbuf: size of send buffer in bytes
135 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, %SO_OOBINLINE settings
136 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
137 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
138 * @sk_lingertime: %SO_LINGER l_linger setting
139 * @sk_hashent: hash entry in several tables (e.g. tcp_ehash)
140 * @sk_backlog: always used with the per-socket spinlock held
141 * @sk_callback_lock: used with the callbacks in the end of this struct
142 * @sk_error_queue: rarely used
143 * @sk_prot: protocol handlers inside a network family
476e19cf 144 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, IPV6_ADDRFORM for instance)
4dc3b16b
PP
145 * @sk_err: last error
146 * @sk_err_soft: errors that don't cause failure but are the cause of a persistent failure not just 'timed out'
147 * @sk_ack_backlog: current listen backlog
148 * @sk_max_ack_backlog: listen backlog set in listen()
149 * @sk_priority: %SO_PRIORITY setting
150 * @sk_type: socket type (%SOCK_STREAM, etc)
151 * @sk_protocol: which protocol this socket belongs in this network family
152 * @sk_peercred: %SO_PEERCRED setting
153 * @sk_rcvlowat: %SO_RCVLOWAT setting
154 * @sk_rcvtimeo: %SO_RCVTIMEO setting
155 * @sk_sndtimeo: %SO_SNDTIMEO setting
156 * @sk_filter: socket filtering instructions
157 * @sk_protinfo: private area, net family specific, when not using slab
158 * @sk_timer: sock cleanup timer
159 * @sk_stamp: time stamp of last packet received
160 * @sk_socket: Identd and reporting IO signals
161 * @sk_user_data: RPC layer private data
162 * @sk_sndmsg_page: cached page for sendmsg
163 * @sk_sndmsg_off: cached offset for sendmsg
164 * @sk_send_head: front of stuff to transmit
67be2dd1 165 * @sk_security: used by security modules
4dc3b16b
PP
166 * @sk_write_pending: a write to stream socket waits to start
167 * @sk_state_change: callback to indicate change in the state of the sock
168 * @sk_data_ready: callback to indicate there is data to be processed
169 * @sk_write_space: callback to indicate there is bf sending space available
170 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
171 * @sk_backlog_rcv: callback to process the backlog
172 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
1da177e4
LT
173 */
174struct sock {
175 /*
176 * Now struct tcp_tw_bucket also uses sock_common, so please just
177 * don't add nothing before this first member (__sk_common) --acme
178 */
179 struct sock_common __sk_common;
180#define sk_family __sk_common.skc_family
181#define sk_state __sk_common.skc_state
182#define sk_reuse __sk_common.skc_reuse
183#define sk_bound_dev_if __sk_common.skc_bound_dev_if
184#define sk_node __sk_common.skc_node
185#define sk_bind_node __sk_common.skc_bind_node
186#define sk_refcnt __sk_common.skc_refcnt
187 unsigned char sk_shutdown : 2,
188 sk_no_check : 2,
189 sk_userlocks : 4;
190 unsigned char sk_protocol;
191 unsigned short sk_type;
192 int sk_rcvbuf;
193 socket_lock_t sk_lock;
194 wait_queue_head_t *sk_sleep;
195 struct dst_entry *sk_dst_cache;
196 struct xfrm_policy *sk_policy[2];
197 rwlock_t sk_dst_lock;
198 atomic_t sk_rmem_alloc;
199 atomic_t sk_wmem_alloc;
200 atomic_t sk_omem_alloc;
201 struct sk_buff_head sk_receive_queue;
202 struct sk_buff_head sk_write_queue;
203 int sk_wmem_queued;
204 int sk_forward_alloc;
205 unsigned int sk_allocation;
206 int sk_sndbuf;
207 int sk_route_caps;
208 int sk_hashent;
209 unsigned long sk_flags;
210 unsigned long sk_lingertime;
211 /*
212 * The backlog queue is special, it is always used with
213 * the per-socket spinlock held and requires low latency
214 * access. Therefore we special case it's implementation.
215 */
216 struct {
217 struct sk_buff *head;
218 struct sk_buff *tail;
219 } sk_backlog;
220 struct sk_buff_head sk_error_queue;
221 struct proto *sk_prot;
476e19cf 222 struct proto *sk_prot_creator;
1da177e4
LT
223 rwlock_t sk_callback_lock;
224 int sk_err,
225 sk_err_soft;
226 unsigned short sk_ack_backlog;
227 unsigned short sk_max_ack_backlog;
228 __u32 sk_priority;
229 struct ucred sk_peercred;
230 int sk_rcvlowat;
231 long sk_rcvtimeo;
232 long sk_sndtimeo;
233 struct sk_filter *sk_filter;
234 void *sk_protinfo;
235 struct timer_list sk_timer;
236 struct timeval sk_stamp;
237 struct socket *sk_socket;
238 void *sk_user_data;
239 struct page *sk_sndmsg_page;
240 struct sk_buff *sk_send_head;
241 __u32 sk_sndmsg_off;
242 int sk_write_pending;
243 void *sk_security;
244 void (*sk_state_change)(struct sock *sk);
245 void (*sk_data_ready)(struct sock *sk, int bytes);
246 void (*sk_write_space)(struct sock *sk);
247 void (*sk_error_report)(struct sock *sk);
248 int (*sk_backlog_rcv)(struct sock *sk,
249 struct sk_buff *skb);
250 void (*sk_destruct)(struct sock *sk);
251};
252
253/*
254 * Hashed lists helper routines
255 */
256static inline struct sock *__sk_head(struct hlist_head *head)
257{
258 return hlist_entry(head->first, struct sock, sk_node);
259}
260
261static inline struct sock *sk_head(struct hlist_head *head)
262{
263 return hlist_empty(head) ? NULL : __sk_head(head);
264}
265
266static inline struct sock *sk_next(struct sock *sk)
267{
268 return sk->sk_node.next ?
269 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
270}
271
272static inline int sk_unhashed(struct sock *sk)
273{
274 return hlist_unhashed(&sk->sk_node);
275}
276
277static inline int sk_hashed(struct sock *sk)
278{
279 return sk->sk_node.pprev != NULL;
280}
281
282static __inline__ void sk_node_init(struct hlist_node *node)
283{
284 node->pprev = NULL;
285}
286
287static __inline__ void __sk_del_node(struct sock *sk)
288{
289 __hlist_del(&sk->sk_node);
290}
291
292static __inline__ int __sk_del_node_init(struct sock *sk)
293{
294 if (sk_hashed(sk)) {
295 __sk_del_node(sk);
296 sk_node_init(&sk->sk_node);
297 return 1;
298 }
299 return 0;
300}
301
302/* Grab socket reference count. This operation is valid only
303 when sk is ALREADY grabbed f.e. it is found in hash table
304 or a list and the lookup is made under lock preventing hash table
305 modifications.
306 */
307
308static inline void sock_hold(struct sock *sk)
309{
310 atomic_inc(&sk->sk_refcnt);
311}
312
313/* Ungrab socket in the context, which assumes that socket refcnt
314 cannot hit zero, f.e. it is true in context of any socketcall.
315 */
316static inline void __sock_put(struct sock *sk)
317{
318 atomic_dec(&sk->sk_refcnt);
319}
320
321static __inline__ int sk_del_node_init(struct sock *sk)
322{
323 int rc = __sk_del_node_init(sk);
324
325 if (rc) {
326 /* paranoid for a while -acme */
327 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
328 __sock_put(sk);
329 }
330 return rc;
331}
332
333static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
334{
335 hlist_add_head(&sk->sk_node, list);
336}
337
338static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
339{
340 sock_hold(sk);
341 __sk_add_node(sk, list);
342}
343
344static __inline__ void __sk_del_bind_node(struct sock *sk)
345{
346 __hlist_del(&sk->sk_bind_node);
347}
348
349static __inline__ void sk_add_bind_node(struct sock *sk,
350 struct hlist_head *list)
351{
352 hlist_add_head(&sk->sk_bind_node, list);
353}
354
355#define sk_for_each(__sk, node, list) \
356 hlist_for_each_entry(__sk, node, list, sk_node)
357#define sk_for_each_from(__sk, node) \
358 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
359 hlist_for_each_entry_from(__sk, node, sk_node)
360#define sk_for_each_continue(__sk, node) \
361 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
362 hlist_for_each_entry_continue(__sk, node, sk_node)
363#define sk_for_each_safe(__sk, node, tmp, list) \
364 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
365#define sk_for_each_bound(__sk, node, list) \
366 hlist_for_each_entry(__sk, node, list, sk_bind_node)
367
368/* Sock flags */
369enum sock_flags {
370 SOCK_DEAD,
371 SOCK_DONE,
372 SOCK_URGINLINE,
373 SOCK_KEEPOPEN,
374 SOCK_LINGER,
375 SOCK_DESTROY,
376 SOCK_BROADCAST,
377 SOCK_TIMESTAMP,
378 SOCK_ZAPPED,
379 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
380 SOCK_DBG, /* %SO_DEBUG setting */
381 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
382 SOCK_NO_LARGESEND, /* whether to sent large segments or not */
383 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
384 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
385};
386
53b924b3
RB
387static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
388{
389 nsk->sk_flags = osk->sk_flags;
390}
391
1da177e4
LT
392static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
393{
394 __set_bit(flag, &sk->sk_flags);
395}
396
397static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
398{
399 __clear_bit(flag, &sk->sk_flags);
400}
401
402static inline int sock_flag(struct sock *sk, enum sock_flags flag)
403{
404 return test_bit(flag, &sk->sk_flags);
405}
406
407static inline void sk_acceptq_removed(struct sock *sk)
408{
409 sk->sk_ack_backlog--;
410}
411
412static inline void sk_acceptq_added(struct sock *sk)
413{
414 sk->sk_ack_backlog++;
415}
416
417static inline int sk_acceptq_is_full(struct sock *sk)
418{
419 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
420}
421
422/*
423 * Compute minimal free write space needed to queue new packets.
424 */
425static inline int sk_stream_min_wspace(struct sock *sk)
426{
427 return sk->sk_wmem_queued / 2;
428}
429
430static inline int sk_stream_wspace(struct sock *sk)
431{
432 return sk->sk_sndbuf - sk->sk_wmem_queued;
433}
434
435extern void sk_stream_write_space(struct sock *sk);
436
437static inline int sk_stream_memory_free(struct sock *sk)
438{
439 return sk->sk_wmem_queued < sk->sk_sndbuf;
440}
441
442extern void sk_stream_rfree(struct sk_buff *skb);
443
444static inline void sk_stream_set_owner_r(struct sk_buff *skb, struct sock *sk)
445{
446 skb->sk = sk;
447 skb->destructor = sk_stream_rfree;
448 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
449 sk->sk_forward_alloc -= skb->truesize;
450}
451
452static inline void sk_stream_free_skb(struct sock *sk, struct sk_buff *skb)
453{
454 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
455 sk->sk_wmem_queued -= skb->truesize;
456 sk->sk_forward_alloc += skb->truesize;
457 __kfree_skb(skb);
458}
459
460/* The per-socket spinlock must be held here. */
461#define sk_add_backlog(__sk, __skb) \
462do { if (!(__sk)->sk_backlog.tail) { \
463 (__sk)->sk_backlog.head = \
464 (__sk)->sk_backlog.tail = (__skb); \
465 } else { \
466 ((__sk)->sk_backlog.tail)->next = (__skb); \
467 (__sk)->sk_backlog.tail = (__skb); \
468 } \
469 (__skb)->next = NULL; \
470} while(0)
471
472#define sk_wait_event(__sk, __timeo, __condition) \
473({ int rc; \
474 release_sock(__sk); \
475 rc = __condition; \
476 if (!rc) { \
477 *(__timeo) = schedule_timeout(*(__timeo)); \
478 rc = __condition; \
479 } \
480 lock_sock(__sk); \
481 rc; \
482})
483
484extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
485extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
486extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
487extern int sk_stream_error(struct sock *sk, int flags, int err);
488extern void sk_stream_kill_queues(struct sock *sk);
489
490extern int sk_wait_data(struct sock *sk, long *timeo);
491
60236fdd 492struct request_sock_ops;
2e6599cb 493
1da177e4
LT
494/* Networking protocol blocks we attach to sockets.
495 * socket layer -> transport layer interface
496 * transport -> network interface is defined by struct inet_proto
497 */
498struct proto {
499 void (*close)(struct sock *sk,
500 long timeout);
501 int (*connect)(struct sock *sk,
502 struct sockaddr *uaddr,
503 int addr_len);
504 int (*disconnect)(struct sock *sk, int flags);
505
506 struct sock * (*accept) (struct sock *sk, int flags, int *err);
507
508 int (*ioctl)(struct sock *sk, int cmd,
509 unsigned long arg);
510 int (*init)(struct sock *sk);
511 int (*destroy)(struct sock *sk);
512 void (*shutdown)(struct sock *sk, int how);
513 int (*setsockopt)(struct sock *sk, int level,
514 int optname, char __user *optval,
515 int optlen);
516 int (*getsockopt)(struct sock *sk, int level,
517 int optname, char __user *optval,
518 int __user *option);
519 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
520 struct msghdr *msg, size_t len);
521 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
522 struct msghdr *msg,
523 size_t len, int noblock, int flags,
524 int *addr_len);
525 int (*sendpage)(struct sock *sk, struct page *page,
526 int offset, size_t size, int flags);
527 int (*bind)(struct sock *sk,
528 struct sockaddr *uaddr, int addr_len);
529
530 int (*backlog_rcv) (struct sock *sk,
531 struct sk_buff *skb);
532
533 /* Keeping track of sk's, looking them up, and port selection methods. */
534 void (*hash)(struct sock *sk);
535 void (*unhash)(struct sock *sk);
536 int (*get_port)(struct sock *sk, unsigned short snum);
537
538 /* Memory pressure */
539 void (*enter_memory_pressure)(void);
540 atomic_t *memory_allocated; /* Current allocated memory. */
541 atomic_t *sockets_allocated; /* Current number of sockets. */
542 /*
543 * Pressure flag: try to collapse.
544 * Technical note: it is used by multiple contexts non atomically.
545 * All the sk_stream_mem_schedule() is of this nature: accounting
546 * is strict, actions are advisory and have some latency.
547 */
548 int *memory_pressure;
549 int *sysctl_mem;
550 int *sysctl_wmem;
551 int *sysctl_rmem;
552 int max_header;
553
554 kmem_cache_t *slab;
555 unsigned int obj_size;
556
60236fdd 557 struct request_sock_ops *rsk_prot;
2e6599cb 558
1da177e4
LT
559 struct module *owner;
560
561 char name[32];
562
563 struct list_head node;
564
565 struct {
566 int inuse;
567 u8 __pad[SMP_CACHE_BYTES - sizeof(int)];
568 } stats[NR_CPUS];
569};
570
571extern int proto_register(struct proto *prot, int alloc_slab);
572extern void proto_unregister(struct proto *prot);
573
574/* Called with local bh disabled */
575static __inline__ void sock_prot_inc_use(struct proto *prot)
576{
577 prot->stats[smp_processor_id()].inuse++;
578}
579
580static __inline__ void sock_prot_dec_use(struct proto *prot)
581{
582 prot->stats[smp_processor_id()].inuse--;
583}
584
585/* About 10 seconds */
586#define SOCK_DESTROY_TIME (10*HZ)
587
588/* Sockets 0-1023 can't be bound to unless you are superuser */
589#define PROT_SOCK 1024
590
591#define SHUTDOWN_MASK 3
592#define RCV_SHUTDOWN 1
593#define SEND_SHUTDOWN 2
594
595#define SOCK_SNDBUF_LOCK 1
596#define SOCK_RCVBUF_LOCK 2
597#define SOCK_BINDADDR_LOCK 4
598#define SOCK_BINDPORT_LOCK 8
599
600/* sock_iocb: used to kick off async processing of socket ios */
601struct sock_iocb {
602 struct list_head list;
603
604 int flags;
605 int size;
606 struct socket *sock;
607 struct sock *sk;
608 struct scm_cookie *scm;
609 struct msghdr *msg, async_msg;
610 struct iovec async_iov;
611 struct kiocb *kiocb;
612};
613
614static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
615{
616 return (struct sock_iocb *)iocb->private;
617}
618
619static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
620{
621 return si->kiocb;
622}
623
624struct socket_alloc {
625 struct socket socket;
626 struct inode vfs_inode;
627};
628
629static inline struct socket *SOCKET_I(struct inode *inode)
630{
631 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
632}
633
634static inline struct inode *SOCK_INODE(struct socket *socket)
635{
636 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
637}
638
639extern void __sk_stream_mem_reclaim(struct sock *sk);
640extern int sk_stream_mem_schedule(struct sock *sk, int size, int kind);
641
642#define SK_STREAM_MEM_QUANTUM ((int)PAGE_SIZE)
643
644static inline int sk_stream_pages(int amt)
645{
646 return (amt + SK_STREAM_MEM_QUANTUM - 1) / SK_STREAM_MEM_QUANTUM;
647}
648
649static inline void sk_stream_mem_reclaim(struct sock *sk)
650{
651 if (sk->sk_forward_alloc >= SK_STREAM_MEM_QUANTUM)
652 __sk_stream_mem_reclaim(sk);
653}
654
655static inline void sk_stream_writequeue_purge(struct sock *sk)
656{
657 struct sk_buff *skb;
658
659 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
660 sk_stream_free_skb(sk, skb);
661 sk_stream_mem_reclaim(sk);
662}
663
664static inline int sk_stream_rmem_schedule(struct sock *sk, struct sk_buff *skb)
665{
666 return (int)skb->truesize <= sk->sk_forward_alloc ||
667 sk_stream_mem_schedule(sk, skb->truesize, 1);
668}
669
670/* Used by processes to "lock" a socket state, so that
671 * interrupts and bottom half handlers won't change it
672 * from under us. It essentially blocks any incoming
673 * packets, so that we won't get any new data or any
674 * packets that change the state of the socket.
675 *
676 * While locked, BH processing will add new packets to
677 * the backlog queue. This queue is processed by the
678 * owner of the socket lock right before it is released.
679 *
680 * Since ~2.3.5 it is also exclusive sleep lock serializing
681 * accesses from user process context.
682 */
683#define sock_owned_by_user(sk) ((sk)->sk_lock.owner)
684
685extern void FASTCALL(lock_sock(struct sock *sk));
686extern void FASTCALL(release_sock(struct sock *sk));
687
688/* BH context may only use the following locking interface. */
689#define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
690#define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
691
86a76caf
VF
692extern struct sock *sk_alloc(int family,
693 unsigned int __nocast priority,
1da177e4
LT
694 struct proto *prot, int zero_it);
695extern void sk_free(struct sock *sk);
696
697extern struct sk_buff *sock_wmalloc(struct sock *sk,
698 unsigned long size, int force,
86a76caf 699 unsigned int __nocast priority);
1da177e4
LT
700extern struct sk_buff *sock_rmalloc(struct sock *sk,
701 unsigned long size, int force,
86a76caf 702 unsigned int __nocast priority);
1da177e4
LT
703extern void sock_wfree(struct sk_buff *skb);
704extern void sock_rfree(struct sk_buff *skb);
705
706extern int sock_setsockopt(struct socket *sock, int level,
707 int op, char __user *optval,
708 int optlen);
709
710extern int sock_getsockopt(struct socket *sock, int level,
711 int op, char __user *optval,
712 int __user *optlen);
713extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
714 unsigned long size,
715 int noblock,
716 int *errcode);
86a76caf
VF
717extern void *sock_kmalloc(struct sock *sk, int size,
718 unsigned int __nocast priority);
1da177e4
LT
719extern void sock_kfree_s(struct sock *sk, void *mem, int size);
720extern void sk_send_sigurg(struct sock *sk);
721
722/*
723 * Functions to fill in entries in struct proto_ops when a protocol
724 * does not implement a particular function.
725 */
726extern int sock_no_bind(struct socket *,
727 struct sockaddr *, int);
728extern int sock_no_connect(struct socket *,
729 struct sockaddr *, int, int);
730extern int sock_no_socketpair(struct socket *,
731 struct socket *);
732extern int sock_no_accept(struct socket *,
733 struct socket *, int);
734extern int sock_no_getname(struct socket *,
735 struct sockaddr *, int *, int);
736extern unsigned int sock_no_poll(struct file *, struct socket *,
737 struct poll_table_struct *);
738extern int sock_no_ioctl(struct socket *, unsigned int,
739 unsigned long);
740extern int sock_no_listen(struct socket *, int);
741extern int sock_no_shutdown(struct socket *, int);
742extern int sock_no_getsockopt(struct socket *, int , int,
743 char __user *, int __user *);
744extern int sock_no_setsockopt(struct socket *, int, int,
745 char __user *, int);
746extern int sock_no_sendmsg(struct kiocb *, struct socket *,
747 struct msghdr *, size_t);
748extern int sock_no_recvmsg(struct kiocb *, struct socket *,
749 struct msghdr *, size_t, int);
750extern int sock_no_mmap(struct file *file,
751 struct socket *sock,
752 struct vm_area_struct *vma);
753extern ssize_t sock_no_sendpage(struct socket *sock,
754 struct page *page,
755 int offset, size_t size,
756 int flags);
757
758/*
759 * Functions to fill in entries in struct proto_ops when a protocol
760 * uses the inet style.
761 */
762extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
763 char __user *optval, int __user *optlen);
764extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
765 struct msghdr *msg, size_t size, int flags);
766extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
767 char __user *optval, int optlen);
768
769extern void sk_common_release(struct sock *sk);
770
771/*
772 * Default socket callbacks and setup code
773 */
774
775/* Initialise core socket variables */
776extern void sock_init_data(struct socket *sock, struct sock *sk);
777
778/**
779 * sk_filter - run a packet through a socket filter
780 * @sk: sock associated with &sk_buff
781 * @skb: buffer to filter
782 * @needlock: set to 1 if the sock is not locked by caller.
783 *
784 * Run the filter code and then cut skb->data to correct size returned by
785 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
786 * than pkt_len we keep whole skb->data. This is the socket level
787 * wrapper to sk_run_filter. It returns 0 if the packet should
788 * be accepted or -EPERM if the packet should be tossed.
789 *
790 */
791
792static inline int sk_filter(struct sock *sk, struct sk_buff *skb, int needlock)
793{
794 int err;
795
796 err = security_sock_rcv_skb(sk, skb);
797 if (err)
798 return err;
799
800 if (sk->sk_filter) {
801 struct sk_filter *filter;
802
803 if (needlock)
804 bh_lock_sock(sk);
805
806 filter = sk->sk_filter;
807 if (filter) {
808 int pkt_len = sk_run_filter(skb, filter->insns,
809 filter->len);
810 if (!pkt_len)
811 err = -EPERM;
812 else
813 skb_trim(skb, pkt_len);
814 }
815
816 if (needlock)
817 bh_unlock_sock(sk);
818 }
819 return err;
820}
821
822/**
823 * sk_filter_release: Release a socket filter
824 * @sk: socket
825 * @fp: filter to remove
826 *
827 * Remove a filter from a socket and release its resources.
828 */
829
830static inline void sk_filter_release(struct sock *sk, struct sk_filter *fp)
831{
832 unsigned int size = sk_filter_len(fp);
833
834 atomic_sub(size, &sk->sk_omem_alloc);
835
836 if (atomic_dec_and_test(&fp->refcnt))
837 kfree(fp);
838}
839
840static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
841{
842 atomic_inc(&fp->refcnt);
843 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
844}
845
846/*
847 * Socket reference counting postulates.
848 *
849 * * Each user of socket SHOULD hold a reference count.
850 * * Each access point to socket (an hash table bucket, reference from a list,
851 * running timer, skb in flight MUST hold a reference count.
852 * * When reference count hits 0, it means it will never increase back.
853 * * When reference count hits 0, it means that no references from
854 * outside exist to this socket and current process on current CPU
855 * is last user and may/should destroy this socket.
856 * * sk_free is called from any context: process, BH, IRQ. When
857 * it is called, socket has no references from outside -> sk_free
858 * may release descendant resources allocated by the socket, but
859 * to the time when it is called, socket is NOT referenced by any
860 * hash tables, lists etc.
861 * * Packets, delivered from outside (from network or from another process)
862 * and enqueued on receive/error queues SHOULD NOT grab reference count,
863 * when they sit in queue. Otherwise, packets will leak to hole, when
864 * socket is looked up by one cpu and unhasing is made by another CPU.
865 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
866 * (leak to backlog). Packet socket does all the processing inside
867 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
868 * use separate SMP lock, so that they are prone too.
869 */
870
871/* Ungrab socket and destroy it, if it was the last reference. */
872static inline void sock_put(struct sock *sk)
873{
874 if (atomic_dec_and_test(&sk->sk_refcnt))
875 sk_free(sk);
876}
877
878/* Detach socket from process context.
879 * Announce socket dead, detach it from wait queue and inode.
880 * Note that parent inode held reference count on this struct sock,
881 * we do not release it in this function, because protocol
882 * probably wants some additional cleanups or even continuing
883 * to work with this socket (TCP).
884 */
885static inline void sock_orphan(struct sock *sk)
886{
887 write_lock_bh(&sk->sk_callback_lock);
888 sock_set_flag(sk, SOCK_DEAD);
889 sk->sk_socket = NULL;
890 sk->sk_sleep = NULL;
891 write_unlock_bh(&sk->sk_callback_lock);
892}
893
894static inline void sock_graft(struct sock *sk, struct socket *parent)
895{
896 write_lock_bh(&sk->sk_callback_lock);
897 sk->sk_sleep = &parent->wait;
898 parent->sk = sk;
899 sk->sk_socket = parent;
900 write_unlock_bh(&sk->sk_callback_lock);
901}
902
903extern int sock_i_uid(struct sock *sk);
904extern unsigned long sock_i_ino(struct sock *sk);
905
906static inline struct dst_entry *
907__sk_dst_get(struct sock *sk)
908{
909 return sk->sk_dst_cache;
910}
911
912static inline struct dst_entry *
913sk_dst_get(struct sock *sk)
914{
915 struct dst_entry *dst;
916
917 read_lock(&sk->sk_dst_lock);
918 dst = sk->sk_dst_cache;
919 if (dst)
920 dst_hold(dst);
921 read_unlock(&sk->sk_dst_lock);
922 return dst;
923}
924
925static inline void
926__sk_dst_set(struct sock *sk, struct dst_entry *dst)
927{
928 struct dst_entry *old_dst;
929
930 old_dst = sk->sk_dst_cache;
931 sk->sk_dst_cache = dst;
932 dst_release(old_dst);
933}
934
935static inline void
936sk_dst_set(struct sock *sk, struct dst_entry *dst)
937{
938 write_lock(&sk->sk_dst_lock);
939 __sk_dst_set(sk, dst);
940 write_unlock(&sk->sk_dst_lock);
941}
942
943static inline void
944__sk_dst_reset(struct sock *sk)
945{
946 struct dst_entry *old_dst;
947
948 old_dst = sk->sk_dst_cache;
949 sk->sk_dst_cache = NULL;
950 dst_release(old_dst);
951}
952
953static inline void
954sk_dst_reset(struct sock *sk)
955{
956 write_lock(&sk->sk_dst_lock);
957 __sk_dst_reset(sk);
958 write_unlock(&sk->sk_dst_lock);
959}
960
961static inline struct dst_entry *
962__sk_dst_check(struct sock *sk, u32 cookie)
963{
964 struct dst_entry *dst = sk->sk_dst_cache;
965
966 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
967 sk->sk_dst_cache = NULL;
968 dst_release(dst);
969 return NULL;
970 }
971
972 return dst;
973}
974
975static inline struct dst_entry *
976sk_dst_check(struct sock *sk, u32 cookie)
977{
978 struct dst_entry *dst = sk_dst_get(sk);
979
980 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
981 sk_dst_reset(sk);
982 dst_release(dst);
983 return NULL;
984 }
985
986 return dst;
987}
988
989static inline void sk_charge_skb(struct sock *sk, struct sk_buff *skb)
990{
991 sk->sk_wmem_queued += skb->truesize;
992 sk->sk_forward_alloc -= skb->truesize;
993}
994
995static inline int skb_copy_to_page(struct sock *sk, char __user *from,
996 struct sk_buff *skb, struct page *page,
997 int off, int copy)
998{
999 if (skb->ip_summed == CHECKSUM_NONE) {
1000 int err = 0;
1001 unsigned int csum = csum_and_copy_from_user(from,
1002 page_address(page) + off,
1003 copy, 0, &err);
1004 if (err)
1005 return err;
1006 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1007 } else if (copy_from_user(page_address(page) + off, from, copy))
1008 return -EFAULT;
1009
1010 skb->len += copy;
1011 skb->data_len += copy;
1012 skb->truesize += copy;
1013 sk->sk_wmem_queued += copy;
1014 sk->sk_forward_alloc -= copy;
1015 return 0;
1016}
1017
1018/*
1019 * Queue a received datagram if it will fit. Stream and sequenced
1020 * protocols can't normally use this as they need to fit buffers in
1021 * and play with them.
1022 *
1023 * Inlined as it's very short and called for pretty much every
1024 * packet ever received.
1025 */
1026
1027static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1028{
1029 sock_hold(sk);
1030 skb->sk = sk;
1031 skb->destructor = sock_wfree;
1032 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1033}
1034
1035static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1036{
1037 skb->sk = sk;
1038 skb->destructor = sock_rfree;
1039 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1040}
1041
1042extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1043 unsigned long expires);
1044
1045extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1046
1047static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1048{
1049 int err = 0;
1050 int skb_len;
1051
1052 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1053 number of warnings when compiling with -W --ANK
1054 */
1055 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1056 (unsigned)sk->sk_rcvbuf) {
1057 err = -ENOMEM;
1058 goto out;
1059 }
1060
1061 /* It would be deadlock, if sock_queue_rcv_skb is used
1062 with socket lock! We assume that users of this
1063 function are lock free.
1064 */
1065 err = sk_filter(sk, skb, 1);
1066 if (err)
1067 goto out;
1068
1069 skb->dev = NULL;
1070 skb_set_owner_r(skb, sk);
1071
1072 /* Cache the SKB length before we tack it onto the receive
1073 * queue. Once it is added it no longer belongs to us and
1074 * may be freed by other threads of control pulling packets
1075 * from the queue.
1076 */
1077 skb_len = skb->len;
1078
1079 skb_queue_tail(&sk->sk_receive_queue, skb);
1080
1081 if (!sock_flag(sk, SOCK_DEAD))
1082 sk->sk_data_ready(sk, skb_len);
1083out:
1084 return err;
1085}
1086
1087static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
1088{
1089 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1090 number of warnings when compiling with -W --ANK
1091 */
1092 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1093 (unsigned)sk->sk_rcvbuf)
1094 return -ENOMEM;
1095 skb_set_owner_r(skb, sk);
1096 skb_queue_tail(&sk->sk_error_queue, skb);
1097 if (!sock_flag(sk, SOCK_DEAD))
1098 sk->sk_data_ready(sk, skb->len);
1099 return 0;
1100}
1101
1102/*
1103 * Recover an error report and clear atomically
1104 */
1105
1106static inline int sock_error(struct sock *sk)
1107{
1108 int err = xchg(&sk->sk_err, 0);
1109 return -err;
1110}
1111
1112static inline unsigned long sock_wspace(struct sock *sk)
1113{
1114 int amt = 0;
1115
1116 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1117 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1118 if (amt < 0)
1119 amt = 0;
1120 }
1121 return amt;
1122}
1123
1124static inline void sk_wake_async(struct sock *sk, int how, int band)
1125{
1126 if (sk->sk_socket && sk->sk_socket->fasync_list)
1127 sock_wake_async(sk->sk_socket, how, band);
1128}
1129
1130#define SOCK_MIN_SNDBUF 2048
1131#define SOCK_MIN_RCVBUF 256
1132
1133static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1134{
1135 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1136 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued / 2);
1137 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1138 }
1139}
1140
1141static inline struct sk_buff *sk_stream_alloc_pskb(struct sock *sk,
86a76caf
VF
1142 int size, int mem,
1143 unsigned int __nocast gfp)
1da177e4 1144{
c65f7f00
DM
1145 struct sk_buff *skb;
1146 int hdr_len;
1da177e4 1147
c65f7f00
DM
1148 hdr_len = SKB_DATA_ALIGN(sk->sk_prot->max_header);
1149 skb = alloc_skb(size + hdr_len, gfp);
1da177e4
LT
1150 if (skb) {
1151 skb->truesize += mem;
1152 if (sk->sk_forward_alloc >= (int)skb->truesize ||
1153 sk_stream_mem_schedule(sk, skb->truesize, 0)) {
c65f7f00 1154 skb_reserve(skb, hdr_len);
1da177e4
LT
1155 return skb;
1156 }
1157 __kfree_skb(skb);
1158 } else {
1159 sk->sk_prot->enter_memory_pressure();
1160 sk_stream_moderate_sndbuf(sk);
1161 }
1162 return NULL;
1163}
1164
1165static inline struct sk_buff *sk_stream_alloc_skb(struct sock *sk,
86a76caf
VF
1166 int size,
1167 unsigned int __nocast gfp)
1da177e4
LT
1168{
1169 return sk_stream_alloc_pskb(sk, size, 0, gfp);
1170}
1171
1172static inline struct page *sk_stream_alloc_page(struct sock *sk)
1173{
1174 struct page *page = NULL;
1175
1176 if (sk->sk_forward_alloc >= (int)PAGE_SIZE ||
1177 sk_stream_mem_schedule(sk, PAGE_SIZE, 0))
1178 page = alloc_pages(sk->sk_allocation, 0);
1179 else {
1180 sk->sk_prot->enter_memory_pressure();
1181 sk_stream_moderate_sndbuf(sk);
1182 }
1183 return page;
1184}
1185
1186#define sk_stream_for_retrans_queue(skb, sk) \
1187 for (skb = (sk)->sk_write_queue.next; \
1188 (skb != (sk)->sk_send_head) && \
1189 (skb != (struct sk_buff *)&(sk)->sk_write_queue); \
1190 skb = skb->next)
1191
1192/*
1193 * Default write policy as shown to user space via poll/select/SIGIO
1194 */
1195static inline int sock_writeable(const struct sock *sk)
1196{
1197 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf / 2);
1198}
1199
86a76caf 1200static inline unsigned int __nocast gfp_any(void)
1da177e4
LT
1201{
1202 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1203}
1204
1205static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1206{
1207 return noblock ? 0 : sk->sk_rcvtimeo;
1208}
1209
1210static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1211{
1212 return noblock ? 0 : sk->sk_sndtimeo;
1213}
1214
1215static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1216{
1217 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1218}
1219
1220/* Alas, with timeout socket operations are not restartable.
1221 * Compare this to poll().
1222 */
1223static inline int sock_intr_errno(long timeo)
1224{
1225 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1226}
1227
1228static __inline__ void
1229sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1230{
1231 struct timeval *stamp = &skb->stamp;
1232 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1233 /* Race occurred between timestamp enabling and packet
1234 receiving. Fill in the current time for now. */
1235 if (stamp->tv_sec == 0)
1236 do_gettimeofday(stamp);
1237 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP, sizeof(struct timeval),
1238 stamp);
1239 } else
1240 sk->sk_stamp = *stamp;
1241}
1242
1243/**
1244 * sk_eat_skb - Release a skb if it is no longer needed
4dc3b16b
PP
1245 * @sk: socket to eat this skb from
1246 * @skb: socket buffer to eat
1da177e4
LT
1247 *
1248 * This routine must be called with interrupts disabled or with the socket
1249 * locked so that the sk_buff queue operation is ok.
1250*/
1251static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
1252{
1253 __skb_unlink(skb, &sk->sk_receive_queue);
1254 __kfree_skb(skb);
1255}
1256
1257extern void sock_enable_timestamp(struct sock *sk);
1258extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1259
1260/*
1261 * Enable debug/info messages
1262 */
1263
1264#if 0
1265#define NETDEBUG(x) do { } while (0)
1266#define LIMIT_NETDEBUG(x) do {} while(0)
1267#else
1268#define NETDEBUG(x) do { x; } while (0)
1269#define LIMIT_NETDEBUG(x) do { if (net_ratelimit()) { x; } } while(0)
1270#endif
1271
1272/*
1273 * Macros for sleeping on a socket. Use them like this:
1274 *
1275 * SOCK_SLEEP_PRE(sk)
1276 * if (condition)
1277 * schedule();
1278 * SOCK_SLEEP_POST(sk)
1279 *
1280 * N.B. These are now obsolete and were, afaik, only ever used in DECnet
1281 * and when the last use of them in DECnet has gone, I'm intending to
1282 * remove them.
1283 */
1284
1285#define SOCK_SLEEP_PRE(sk) { struct task_struct *tsk = current; \
1286 DECLARE_WAITQUEUE(wait, tsk); \
1287 tsk->state = TASK_INTERRUPTIBLE; \
1288 add_wait_queue((sk)->sk_sleep, &wait); \
1289 release_sock(sk);
1290
1291#define SOCK_SLEEP_POST(sk) tsk->state = TASK_RUNNING; \
1292 remove_wait_queue((sk)->sk_sleep, &wait); \
1293 lock_sock(sk); \
1294 }
1295
1296static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
1297{
1298 if (valbool)
1299 sock_set_flag(sk, bit);
1300 else
1301 sock_reset_flag(sk, bit);
1302}
1303
1304extern __u32 sysctl_wmem_max;
1305extern __u32 sysctl_rmem_max;
1306
1307#ifdef CONFIG_NET
1308int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg);
1309#else
1310static inline int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg)
1311{
1312 return -ENODEV;
1313}
1314#endif
1315
1316#endif /* _SOCK_H */