]> bbs.cooldavid.org Git - net-next-2.6.git/blame - include/linux/uwb.h
uwb: remove unused beacon group join/leave events
[net-next-2.6.git] / include / linux / uwb.h
CommitLineData
34e95e41
IPG
1/*
2 * Ultra Wide Band
3 * UWB API
4 *
5 * Copyright (C) 2005-2006 Intel Corporation
6 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License version
10 * 2 as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20 * 02110-1301, USA.
21 *
22 *
23 * FIXME: doc: overview of the API, different parts and pointers
24 */
25
26#ifndef __LINUX__UWB_H__
27#define __LINUX__UWB_H__
28
29#include <linux/limits.h>
30#include <linux/device.h>
31#include <linux/mutex.h>
32#include <linux/timer.h>
fec1a593 33#include <linux/wait.h>
34e95e41
IPG
34#include <linux/workqueue.h>
35#include <linux/uwb/spec.h>
36
37struct uwb_dev;
38struct uwb_beca_e;
39struct uwb_rc;
40struct uwb_rsv;
41struct uwb_dbg;
42
43/**
44 * struct uwb_dev - a UWB Device
45 * @rc: UWB Radio Controller that discovered the device (kind of its
46 * parent).
47 * @bce: a beacon cache entry for this device; or NULL if the device
48 * is a local radio controller.
49 * @mac_addr: the EUI-48 address of this device.
50 * @dev_addr: the current DevAddr used by this device.
51 * @beacon_slot: the slot number the beacon is using.
52 * @streams: bitmap of streams allocated to reservations targeted at
53 * this device. For an RC, this is the streams allocated for
54 * reservations targeted at DevAddrs.
55 *
56 * A UWB device may either by a neighbor or part of a local radio
57 * controller.
58 */
59struct uwb_dev {
60 struct mutex mutex;
61 struct list_head list_node;
62 struct device dev;
63 struct uwb_rc *rc; /* radio controller */
64 struct uwb_beca_e *bce; /* Beacon Cache Entry */
65
66 struct uwb_mac_addr mac_addr;
67 struct uwb_dev_addr dev_addr;
68 int beacon_slot;
69 DECLARE_BITMAP(streams, UWB_NUM_STREAMS);
70};
71#define to_uwb_dev(d) container_of(d, struct uwb_dev, dev)
72
73/**
74 * UWB HWA/WHCI Radio Control {Command|Event} Block context IDs
75 *
76 * RC[CE]Bs have a 'context ID' field that matches the command with
77 * the event received to confirm it.
78 *
79 * Maximum number of context IDs
80 */
81enum { UWB_RC_CTX_MAX = 256 };
82
83
84/** Notification chain head for UWB generated events to listeners */
85struct uwb_notifs_chain {
86 struct list_head list;
87 struct mutex mutex;
88};
89
fec1a593
SP
90/* Beacon cache list */
91struct uwb_beca {
92 struct list_head list;
93 size_t entries;
94 struct mutex mutex;
95};
96
97/* Event handling thread. */
98struct uwbd {
99 int pid;
100 struct task_struct *task;
101 wait_queue_head_t wq;
102 struct list_head event_list;
103 spinlock_t event_list_lock;
104};
105
34e95e41
IPG
106/**
107 * struct uwb_mas_bm - a bitmap of all MAS in a superframe
108 * @bm: a bitmap of length #UWB_NUM_MAS
109 */
110struct uwb_mas_bm {
111 DECLARE_BITMAP(bm, UWB_NUM_MAS);
112};
113
114/**
115 * uwb_rsv_state - UWB Reservation state.
116 *
117 * NONE - reservation is not active (no DRP IE being transmitted).
118 *
119 * Owner reservation states:
120 *
121 * INITIATED - owner has sent an initial DRP request.
122 * PENDING - target responded with pending Reason Code.
123 * MODIFIED - reservation manager is modifying an established
124 * reservation with a different MAS allocation.
125 * ESTABLISHED - the reservation has been successfully negotiated.
126 *
127 * Target reservation states:
128 *
129 * DENIED - request is denied.
130 * ACCEPTED - request is accepted.
131 * PENDING - PAL has yet to make a decision to whether to accept or
132 * deny.
133 *
134 * FIXME: further target states TBD.
135 */
136enum uwb_rsv_state {
137 UWB_RSV_STATE_NONE,
138 UWB_RSV_STATE_O_INITIATED,
139 UWB_RSV_STATE_O_PENDING,
140 UWB_RSV_STATE_O_MODIFIED,
141 UWB_RSV_STATE_O_ESTABLISHED,
142 UWB_RSV_STATE_T_ACCEPTED,
143 UWB_RSV_STATE_T_DENIED,
144 UWB_RSV_STATE_T_PENDING,
145
146 UWB_RSV_STATE_LAST,
147};
148
149enum uwb_rsv_target_type {
150 UWB_RSV_TARGET_DEV,
151 UWB_RSV_TARGET_DEVADDR,
152};
153
154/**
155 * struct uwb_rsv_target - the target of a reservation.
156 *
157 * Reservations unicast and targeted at a single device
158 * (UWB_RSV_TARGET_DEV); or (e.g., in the case of WUSB) targeted at a
159 * specific (private) DevAddr (UWB_RSV_TARGET_DEVADDR).
160 */
161struct uwb_rsv_target {
162 enum uwb_rsv_target_type type;
163 union {
164 struct uwb_dev *dev;
165 struct uwb_dev_addr devaddr;
166 };
167};
168
169/*
170 * Number of streams reserved for reservations targeted at DevAddrs.
171 */
172#define UWB_NUM_GLOBAL_STREAMS 1
173
174typedef void (*uwb_rsv_cb_f)(struct uwb_rsv *rsv);
175
176/**
177 * struct uwb_rsv - a DRP reservation
178 *
179 * Data structure management:
180 *
181 * @rc: the radio controller this reservation is for
182 * (as target or owner)
183 * @rc_node: a list node for the RC
184 * @pal_node: a list node for the PAL
185 *
186 * Owner and target parameters:
187 *
188 * @owner: the UWB device owning this reservation
189 * @target: the target UWB device
190 * @type: reservation type
191 *
192 * Owner parameters:
193 *
194 * @max_mas: maxiumum number of MAS
195 * @min_mas: minimum number of MAS
196 * @sparsity: owner selected sparsity
197 * @is_multicast: true iff multicast
198 *
199 * @callback: callback function when the reservation completes
200 * @pal_priv: private data for the PAL making the reservation
201 *
202 * Reservation status:
203 *
204 * @status: negotiation status
205 * @stream: stream index allocated for this reservation
206 * @mas: reserved MAS
207 * @drp_ie: the DRP IE
208 * @ie_valid: true iff the DRP IE matches the reservation parameters
209 *
210 * DRP reservations are uniquely identified by the owner, target and
211 * stream index. However, when using a DevAddr as a target (e.g., for
212 * a WUSB cluster reservation) the responses may be received from
213 * devices with different DevAddrs. In this case, reservations are
214 * uniquely identified by just the stream index. A number of stream
215 * indexes (UWB_NUM_GLOBAL_STREAMS) are reserved for this.
216 */
217struct uwb_rsv {
218 struct uwb_rc *rc;
219 struct list_head rc_node;
220 struct list_head pal_node;
cae1c114 221 struct kref kref;
34e95e41
IPG
222
223 struct uwb_dev *owner;
224 struct uwb_rsv_target target;
225 enum uwb_drp_type type;
226 int max_mas;
227 int min_mas;
228 int sparsity;
229 bool is_multicast;
230
231 uwb_rsv_cb_f callback;
232 void *pal_priv;
233
234 enum uwb_rsv_state state;
235 u8 stream;
236 struct uwb_mas_bm mas;
237 struct uwb_ie_drp *drp_ie;
238 bool ie_valid;
239 struct timer_list timer;
240 bool expired;
241};
242
243static const
244struct uwb_mas_bm uwb_mas_bm_zero = { .bm = { 0 } };
245
246static inline void uwb_mas_bm_copy_le(void *dst, const struct uwb_mas_bm *mas)
247{
248 bitmap_copy_le(dst, mas->bm, UWB_NUM_MAS);
249}
250
251/**
252 * struct uwb_drp_avail - a radio controller's view of MAS usage
253 * @global: MAS unused by neighbors (excluding reservations targetted
254 * or owned by the local radio controller) or the beaon period
255 * @local: MAS unused by local established reservations
256 * @pending: MAS unused by local pending reservations
257 * @ie: DRP Availability IE to be included in the beacon
258 * @ie_valid: true iff @ie is valid and does not need to regenerated from
259 * @global and @local
260 *
261 * Each radio controller maintains a view of MAS usage or
262 * availability. MAS available for a new reservation are determined
263 * from the intersection of @global, @local, and @pending.
264 *
265 * The radio controller must transmit a DRP Availability IE that's the
266 * intersection of @global and @local.
267 *
268 * A set bit indicates the MAS is unused and available.
269 *
270 * rc->rsvs_mutex should be held before accessing this data structure.
271 *
272 * [ECMA-368] section 17.4.3.
273 */
274struct uwb_drp_avail {
275 DECLARE_BITMAP(global, UWB_NUM_MAS);
276 DECLARE_BITMAP(local, UWB_NUM_MAS);
277 DECLARE_BITMAP(pending, UWB_NUM_MAS);
278 struct uwb_ie_drp_avail ie;
279 bool ie_valid;
280};
281
282
283const char *uwb_rsv_state_str(enum uwb_rsv_state state);
284const char *uwb_rsv_type_str(enum uwb_drp_type type);
285
286struct uwb_rsv *uwb_rsv_create(struct uwb_rc *rc, uwb_rsv_cb_f cb,
287 void *pal_priv);
288void uwb_rsv_destroy(struct uwb_rsv *rsv);
289
290int uwb_rsv_establish(struct uwb_rsv *rsv);
291int uwb_rsv_modify(struct uwb_rsv *rsv,
292 int max_mas, int min_mas, int sparsity);
293void uwb_rsv_terminate(struct uwb_rsv *rsv);
294
295void uwb_rsv_accept(struct uwb_rsv *rsv, uwb_rsv_cb_f cb, void *pal_priv);
296
297/**
298 * Radio Control Interface instance
299 *
300 *
301 * Life cycle rules: those of the UWB Device.
302 *
303 * @index: an index number for this radio controller, as used in the
304 * device name.
305 * @version: version of protocol supported by this device
306 * @priv: Backend implementation; rw with uwb_dev.dev.sem taken.
307 * @cmd: Backend implementation to execute commands; rw and call
308 * only with uwb_dev.dev.sem taken.
309 * @reset: Hardware reset of radio controller and any PAL controllers.
310 * @filter: Backend implementation to manipulate data to and from device
311 * to be compliant to specification assumed by driver (WHCI
312 * 0.95).
313 *
314 * uwb_dev.dev.mutex is used to execute commands and update
315 * the corresponding structures; can't use a spinlock
316 * because rc->cmd() can sleep.
317 * @ies: This is a dynamically allocated array cacheing the
318 * IEs (settable by the host) that the beacon of this
319 * radio controller is currently sending.
320 *
321 * In reality, we store here the full command we set to
322 * the radio controller (which is basically a command
323 * prefix followed by all the IEs the beacon currently
324 * contains). This way we don't have to realloc and
325 * memcpy when setting it.
326 *
327 * We set this up in uwb_rc_ie_setup(), where we alloc
328 * this struct, call get_ie() [so we know which IEs are
329 * currently being sent, if any].
330 *
331 * @ies_capacity:Amount of space (in bytes) allocated in @ies. The
332 * amount used is given by sizeof(*ies) plus ies->wIELength
333 * (which is a little endian quantity all the time).
334 * @ies_mutex: protect the IE cache
335 * @dbg: information for the debug interface
336 */
337struct uwb_rc {
338 struct uwb_dev uwb_dev;
339 int index;
340 u16 version;
341
342 struct module *owner;
343 void *priv;
344 int (*start)(struct uwb_rc *rc);
345 void (*stop)(struct uwb_rc *rc);
346 int (*cmd)(struct uwb_rc *, const struct uwb_rccb *, size_t);
347 int (*reset)(struct uwb_rc *rc);
348 int (*filter_cmd)(struct uwb_rc *, struct uwb_rccb **, size_t *);
349 int (*filter_event)(struct uwb_rc *, struct uwb_rceb **, const size_t,
350 size_t *, size_t *);
351
352 spinlock_t neh_lock; /* protects neh_* and ctx_* */
353 struct list_head neh_list; /* Open NE handles */
354 unsigned long ctx_bm[UWB_RC_CTX_MAX / 8 / sizeof(unsigned long)];
355 u8 ctx_roll;
356
357 int beaconing; /* Beaconing state [channel number] */
6fae35f9 358 int beaconing_forced;
34e95e41
IPG
359 int scanning;
360 enum uwb_scan_type scan_type:3;
361 unsigned ready:1;
362 struct uwb_notifs_chain notifs_chain;
fec1a593
SP
363 struct uwb_beca uwb_beca;
364
365 struct uwbd uwbd;
34e95e41
IPG
366
367 struct uwb_drp_avail drp_avail;
368 struct list_head reservations;
369 struct mutex rsvs_mutex;
370 struct workqueue_struct *rsv_workq;
371 struct work_struct rsv_update_work;
372
373 struct mutex ies_mutex;
374 struct uwb_rc_cmd_set_ie *ies;
375 size_t ies_capacity;
376
34e95e41 377 struct list_head pals;
6fae35f9 378 int active_pals;
34e95e41
IPG
379
380 struct uwb_dbg *dbg;
381};
382
383
384/**
385 * struct uwb_pal - a UWB PAL
6fae35f9 386 * @name: descriptive name for this PAL (wusbhc, wlp, etc.).
b60066c1
DV
387 * @device: a device for the PAL. Used to link the PAL and the radio
388 * controller in sysfs.
6fae35f9
DV
389 * @rc: the radio controller the PAL uses.
390 * @channel_changed: called when the channel used by the radio changes.
391 * A channel of -1 means the channel has been stopped.
34e95e41
IPG
392 * @new_rsv: called when a peer requests a reservation (may be NULL if
393 * the PAL cannot accept reservation requests).
6fae35f9
DV
394 * @channel: channel being used by the PAL; 0 if the PAL isn't using
395 * the radio; -1 if the PAL wishes to use the radio but
396 * cannot.
34e95e41
IPG
397 *
398 * A Protocol Adaptation Layer (PAL) is a user of the WiMedia UWB
399 * radio platform (e.g., WUSB, WLP or Bluetooth UWB AMP).
400 *
401 * The PALs using a radio controller must register themselves to
402 * permit the UWB stack to coordinate usage of the radio between the
403 * various PALs or to allow PALs to response to certain requests from
404 * peers.
405 *
406 * A struct uwb_pal should be embedded in a containing structure
407 * belonging to the PAL and initialized with uwb_pal_init()). Fields
408 * should be set appropriately by the PAL before registering the PAL
409 * with uwb_pal_register().
410 */
411struct uwb_pal {
412 struct list_head node;
b60066c1
DV
413 const char *name;
414 struct device *device;
6fae35f9
DV
415 struct uwb_rc *rc;
416
417 void (*channel_changed)(struct uwb_pal *pal, int channel);
e17be2b2 418 void (*new_rsv)(struct uwb_pal *pal, struct uwb_rsv *rsv);
6fae35f9
DV
419
420 int channel;
34e95e41
IPG
421};
422
423void uwb_pal_init(struct uwb_pal *pal);
6fae35f9
DV
424int uwb_pal_register(struct uwb_pal *pal);
425void uwb_pal_unregister(struct uwb_pal *pal);
426
427int uwb_radio_start(struct uwb_pal *pal);
428void uwb_radio_stop(struct uwb_pal *pal);
34e95e41
IPG
429
430/*
431 * General public API
432 *
433 * This API can be used by UWB device drivers or by those implementing
434 * UWB Radio Controllers
435 */
436struct uwb_dev *uwb_dev_get_by_devaddr(struct uwb_rc *rc,
437 const struct uwb_dev_addr *devaddr);
438struct uwb_dev *uwb_dev_get_by_rc(struct uwb_dev *, struct uwb_rc *);
439static inline void uwb_dev_get(struct uwb_dev *uwb_dev)
440{
441 get_device(&uwb_dev->dev);
442}
443static inline void uwb_dev_put(struct uwb_dev *uwb_dev)
444{
445 put_device(&uwb_dev->dev);
446}
447struct uwb_dev *uwb_dev_try_get(struct uwb_rc *rc, struct uwb_dev *uwb_dev);
448
449/**
450 * Callback function for 'uwb_{dev,rc}_foreach()'.
451 *
452 * @dev: Linux device instance
453 * 'uwb_dev = container_of(dev, struct uwb_dev, dev)'
454 * @priv: Data passed by the caller to 'uwb_{dev,rc}_foreach()'.
455 *
456 * @returns: 0 to continue the iterations, any other val to stop
457 * iterating and return the value to the caller of
458 * _foreach().
459 */
460typedef int (*uwb_dev_for_each_f)(struct device *dev, void *priv);
461int uwb_dev_for_each(struct uwb_rc *rc, uwb_dev_for_each_f func, void *priv);
462
463struct uwb_rc *uwb_rc_alloc(void);
464struct uwb_rc *uwb_rc_get_by_dev(const struct uwb_dev_addr *);
465struct uwb_rc *uwb_rc_get_by_grandpa(const struct device *);
466void uwb_rc_put(struct uwb_rc *rc);
467
468typedef void (*uwb_rc_cmd_cb_f)(struct uwb_rc *rc, void *arg,
469 struct uwb_rceb *reply, ssize_t reply_size);
470
471int uwb_rc_cmd_async(struct uwb_rc *rc, const char *cmd_name,
472 struct uwb_rccb *cmd, size_t cmd_size,
473 u8 expected_type, u16 expected_event,
474 uwb_rc_cmd_cb_f cb, void *arg);
475ssize_t uwb_rc_cmd(struct uwb_rc *rc, const char *cmd_name,
476 struct uwb_rccb *cmd, size_t cmd_size,
477 struct uwb_rceb *reply, size_t reply_size);
478ssize_t uwb_rc_vcmd(struct uwb_rc *rc, const char *cmd_name,
479 struct uwb_rccb *cmd, size_t cmd_size,
480 u8 expected_type, u16 expected_event,
481 struct uwb_rceb **preply);
34e95e41
IPG
482
483size_t __uwb_addr_print(char *, size_t, const unsigned char *, int);
484
485int uwb_rc_dev_addr_set(struct uwb_rc *, const struct uwb_dev_addr *);
486int uwb_rc_dev_addr_get(struct uwb_rc *, struct uwb_dev_addr *);
487int uwb_rc_mac_addr_set(struct uwb_rc *, const struct uwb_mac_addr *);
488int uwb_rc_mac_addr_get(struct uwb_rc *, struct uwb_mac_addr *);
489int __uwb_mac_addr_assigned_check(struct device *, void *);
490int __uwb_dev_addr_assigned_check(struct device *, void *);
491
492/* Print in @buf a pretty repr of @addr */
493static inline size_t uwb_dev_addr_print(char *buf, size_t buf_size,
494 const struct uwb_dev_addr *addr)
495{
496 return __uwb_addr_print(buf, buf_size, addr->data, 0);
497}
498
499/* Print in @buf a pretty repr of @addr */
500static inline size_t uwb_mac_addr_print(char *buf, size_t buf_size,
501 const struct uwb_mac_addr *addr)
502{
503 return __uwb_addr_print(buf, buf_size, addr->data, 1);
504}
505
506/* @returns 0 if device addresses @addr2 and @addr1 are equal */
507static inline int uwb_dev_addr_cmp(const struct uwb_dev_addr *addr1,
508 const struct uwb_dev_addr *addr2)
509{
510 return memcmp(addr1, addr2, sizeof(*addr1));
511}
512
513/* @returns 0 if MAC addresses @addr2 and @addr1 are equal */
514static inline int uwb_mac_addr_cmp(const struct uwb_mac_addr *addr1,
515 const struct uwb_mac_addr *addr2)
516{
517 return memcmp(addr1, addr2, sizeof(*addr1));
518}
519
520/* @returns !0 if a MAC @addr is a broadcast address */
521static inline int uwb_mac_addr_bcast(const struct uwb_mac_addr *addr)
522{
523 struct uwb_mac_addr bcast = {
524 .data = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }
525 };
526 return !uwb_mac_addr_cmp(addr, &bcast);
527}
528
529/* @returns !0 if a MAC @addr is all zeroes*/
530static inline int uwb_mac_addr_unset(const struct uwb_mac_addr *addr)
531{
532 struct uwb_mac_addr unset = {
533 .data = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
534 };
535 return !uwb_mac_addr_cmp(addr, &unset);
536}
537
538/* @returns !0 if the address is in use. */
539static inline unsigned __uwb_dev_addr_assigned(struct uwb_rc *rc,
540 struct uwb_dev_addr *addr)
541{
542 return uwb_dev_for_each(rc, __uwb_dev_addr_assigned_check, addr);
543}
544
545/*
546 * UWB Radio Controller API
547 *
548 * This API is used (in addition to the general API) to implement UWB
549 * Radio Controllers.
550 */
551void uwb_rc_init(struct uwb_rc *);
552int uwb_rc_add(struct uwb_rc *, struct device *dev, void *rc_priv);
553void uwb_rc_rm(struct uwb_rc *);
554void uwb_rc_neh_grok(struct uwb_rc *, void *, size_t);
555void uwb_rc_neh_error(struct uwb_rc *, int);
556void uwb_rc_reset_all(struct uwb_rc *rc);
307ba6dd
DV
557void uwb_rc_pre_reset(struct uwb_rc *rc);
558void uwb_rc_post_reset(struct uwb_rc *rc);
34e95e41
IPG
559
560/**
561 * uwb_rsv_is_owner - is the owner of this reservation the RC?
562 * @rsv: the reservation
563 */
564static inline bool uwb_rsv_is_owner(struct uwb_rsv *rsv)
565{
566 return rsv->owner == &rsv->rc->uwb_dev;
567}
568
569/**
0996e638
DV
570 * enum uwb_notifs - UWB events that can be passed to any listeners
571 * @UWB_NOTIF_ONAIR: a new neighbour has joined the beacon group.
572 * @UWB_NOTIF_OFFAIR: a neighbour has left the beacon group.
34e95e41
IPG
573 *
574 * Higher layers can register callback functions with the radio
575 * controller using uwb_notifs_register(). The radio controller
576 * maintains a list of all registered handlers and will notify all
577 * nodes when an event occurs.
578 */
579enum uwb_notifs {
34e95e41
IPG
580 UWB_NOTIF_ONAIR,
581 UWB_NOTIF_OFFAIR,
582};
583
584/* Callback function registered with UWB */
585struct uwb_notifs_handler {
586 struct list_head list_node;
587 void (*cb)(void *, struct uwb_dev *, enum uwb_notifs);
588 void *data;
589};
590
591int uwb_notifs_register(struct uwb_rc *, struct uwb_notifs_handler *);
592int uwb_notifs_deregister(struct uwb_rc *, struct uwb_notifs_handler *);
593
594
595/**
596 * UWB radio controller Event Size Entry (for creating entry tables)
597 *
598 * WUSB and WHCI define events and notifications, and they might have
599 * fixed or variable size.
600 *
601 * Each event/notification has a size which is not necessarily known
602 * in advance based on the event code. As well, vendor specific
603 * events/notifications will have a size impossible to determine
604 * unless we know about the device's specific details.
605 *
606 * It was way too smart of the spec writers not to think that it would
607 * be impossible for a generic driver to skip over vendor specific
608 * events/notifications if there are no LENGTH fields in the HEADER of
609 * each message...the transaction size cannot be counted on as the
610 * spec does not forbid to pack more than one event in a single
611 * transaction.
612 *
613 * Thus, we guess sizes with tables (or for events, when you know the
614 * size ahead of time you can use uwb_rc_neh_extra_size*()). We
615 * register tables with the known events and their sizes, and then we
616 * traverse those tables. For those with variable length, we provide a
617 * way to lookup the size inside the event/notification's
618 * payload. This allows device-specific event size tables to be
619 * registered.
620 *
621 * @size: Size of the payload
622 *
623 * @offset: if != 0, at offset @offset-1 starts a field with a length
624 * that has to be added to @size. The format of the field is
625 * given by @type.
626 *
627 * @type: Type and length of the offset field. Most common is LE 16
628 * bits (that's why that is zero); others are there mostly to
629 * cover for bugs and weirdos.
630 */
631struct uwb_est_entry {
632 size_t size;
633 unsigned offset;
634 enum { UWB_EST_16 = 0, UWB_EST_8 = 1 } type;
635};
636
637int uwb_est_register(u8 type, u8 code_high, u16 vendor, u16 product,
638 const struct uwb_est_entry *, size_t entries);
639int uwb_est_unregister(u8 type, u8 code_high, u16 vendor, u16 product,
640 const struct uwb_est_entry *, size_t entries);
641ssize_t uwb_est_find_size(struct uwb_rc *rc, const struct uwb_rceb *rceb,
642 size_t len);
643
644/* -- Misc */
645
646enum {
647 EDC_MAX_ERRORS = 10,
648 EDC_ERROR_TIMEFRAME = HZ,
649};
650
651/* error density counter */
652struct edc {
653 unsigned long timestart;
654 u16 errorcount;
655};
656
657static inline
658void edc_init(struct edc *edc)
659{
660 edc->timestart = jiffies;
661}
662
663/* Called when an error occured.
664 * This is way to determine if the number of acceptable errors per time
665 * period has been exceeded. It is not accurate as there are cases in which
666 * this scheme will not work, for example if there are periodic occurences
667 * of errors that straddle updates to the start time. This scheme is
668 * sufficient for our usage.
669 *
670 * @returns 1 if maximum acceptable errors per timeframe has been exceeded.
671 */
672static inline int edc_inc(struct edc *err_hist, u16 max_err, u16 timeframe)
673{
674 unsigned long now;
675
676 now = jiffies;
677 if (now - err_hist->timestart > timeframe) {
678 err_hist->errorcount = 1;
679 err_hist->timestart = now;
680 } else if (++err_hist->errorcount > max_err) {
681 err_hist->errorcount = 0;
682 err_hist->timestart = now;
683 return 1;
684 }
685 return 0;
686}
687
688
689/* Information Element handling */
690
34e95e41 691struct uwb_ie_hdr *uwb_ie_next(void **ptr, size_t *len);
1cde7f68
DV
692int uwb_rc_ie_add(struct uwb_rc *uwb_rc, const struct uwb_ie_hdr *ies, size_t size);
693int uwb_rc_ie_rm(struct uwb_rc *uwb_rc, enum uwb_ie element_id);
34e95e41
IPG
694
695/*
696 * Transmission statistics
697 *
698 * UWB uses LQI and RSSI (one byte values) for reporting radio signal
699 * strength and line quality indication. We do quick and dirty
700 * averages of those. They are signed values, btw.
701 *
702 * For 8 bit quantities, we keep the min, the max, an accumulator
703 * (@sigma) and a # of samples. When @samples gets to 255, we compute
704 * the average (@sigma / @samples), place it in @sigma and reset
705 * @samples to 1 (so we use it as the first sample).
706 *
707 * Now, statistically speaking, probably I am kicking the kidneys of
708 * some books I have in my shelves collecting dust, but I just want to
709 * get an approx, not the Nobel.
710 *
711 * LOCKING: there is no locking per se, but we try to keep a lockless
712 * schema. Only _add_samples() modifies the values--as long as you
713 * have other locking on top that makes sure that no two calls of
714 * _add_sample() happen at the same time, then we are fine. Now, for
715 * resetting the values we just set @samples to 0 and that makes the
716 * next _add_sample() to start with defaults. Reading the values in
717 * _show() currently can race, so you need to make sure the calls are
718 * under the same lock that protects calls to _add_sample(). FIXME:
719 * currently unlocked (It is not ultraprecise but does the trick. Bite
720 * me).
721 */
722struct stats {
723 s8 min, max;
724 s16 sigma;
725 atomic_t samples;
726};
727
728static inline
729void stats_init(struct stats *stats)
730{
731 atomic_set(&stats->samples, 0);
732 wmb();
733}
734
735static inline
736void stats_add_sample(struct stats *stats, s8 sample)
737{
738 s8 min, max;
739 s16 sigma;
740 unsigned samples = atomic_read(&stats->samples);
741 if (samples == 0) { /* it was zero before, so we initialize */
742 min = 127;
743 max = -128;
744 sigma = 0;
745 } else {
746 min = stats->min;
747 max = stats->max;
748 sigma = stats->sigma;
749 }
750
751 if (sample < min) /* compute new values */
752 min = sample;
753 else if (sample > max)
754 max = sample;
755 sigma += sample;
756
757 stats->min = min; /* commit */
758 stats->max = max;
759 stats->sigma = sigma;
760 if (atomic_add_return(1, &stats->samples) > 255) {
761 /* wrapped around! reset */
762 stats->sigma = sigma / 256;
763 atomic_set(&stats->samples, 1);
764 }
765}
766
767static inline ssize_t stats_show(struct stats *stats, char *buf)
768{
769 int min, max, avg;
770 int samples = atomic_read(&stats->samples);
771 if (samples == 0)
772 min = max = avg = 0;
773 else {
774 min = stats->min;
775 max = stats->max;
776 avg = stats->sigma / samples;
777 }
778 return scnprintf(buf, PAGE_SIZE, "%d %d %d\n", min, max, avg);
779}
780
781static inline ssize_t stats_store(struct stats *stats, const char *buf,
782 size_t size)
783{
784 stats_init(stats);
785 return size;
786}
787
788#endif /* #ifndef __LINUX__UWB_H__ */