]> bbs.cooldavid.org Git - net-next-2.6.git/blame - include/linux/slub_def.h
Staging: comedi: drivers: adl_pci9111: Fix AI commands in TRIG_FOLLOW case
[net-next-2.6.git] / include / linux / slub_def.h
CommitLineData
81819f0f
CL
1#ifndef _LINUX_SLUB_DEF_H
2#define _LINUX_SLUB_DEF_H
3
4/*
5 * SLUB : A Slab allocator without object queues.
6 *
cde53535 7 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
8 */
9#include <linux/types.h>
10#include <linux/gfp.h>
11#include <linux/workqueue.h>
12#include <linux/kobject.h>
02af61bb 13#include <linux/kmemtrace.h>
e4f7c0b4 14#include <linux/kmemleak.h>
81819f0f 15
8ff12cfc
CL
16enum stat_item {
17 ALLOC_FASTPATH, /* Allocation from cpu slab */
18 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
19 FREE_FASTPATH, /* Free to cpu slub */
20 FREE_SLOWPATH, /* Freeing not to cpu slab */
21 FREE_FROZEN, /* Freeing to frozen slab */
22 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
23 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
24 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */
25 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
26 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
27 FREE_SLAB, /* Slab freed to the page allocator */
28 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
29 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
30 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
31 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
32 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
33 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
65c3376a 34 ORDER_FALLBACK, /* Number of times fallback was necessary */
8ff12cfc
CL
35 NR_SLUB_STAT_ITEMS };
36
dfb4f096 37struct kmem_cache_cpu {
da89b79e
CL
38 void **freelist; /* Pointer to first free per cpu object */
39 struct page *page; /* The slab from which we are allocating */
40 int node; /* The node of the page (or -1 for debug) */
8ff12cfc
CL
41#ifdef CONFIG_SLUB_STATS
42 unsigned stat[NR_SLUB_STAT_ITEMS];
43#endif
4c93c355 44};
dfb4f096 45
81819f0f
CL
46struct kmem_cache_node {
47 spinlock_t list_lock; /* Protect partial list and nr_partial */
48 unsigned long nr_partial;
81819f0f 49 struct list_head partial;
0c710013 50#ifdef CONFIG_SLUB_DEBUG
0f389ec6 51 atomic_long_t nr_slabs;
205ab99d 52 atomic_long_t total_objects;
643b1138 53 struct list_head full;
0c710013 54#endif
81819f0f
CL
55};
56
834f3d11
CL
57/*
58 * Word size structure that can be atomically updated or read and that
59 * contains both the order and the number of objects that a slab of the
60 * given order would contain.
61 */
62struct kmem_cache_order_objects {
63 unsigned long x;
64};
65
81819f0f
CL
66/*
67 * Slab cache management.
68 */
69struct kmem_cache {
9dfc6e68 70 struct kmem_cache_cpu *cpu_slab;
81819f0f
CL
71 /* Used for retriving partial slabs etc */
72 unsigned long flags;
73 int size; /* The size of an object including meta data */
74 int objsize; /* The size of an object without meta data */
75 int offset; /* Free pointer offset. */
834f3d11 76 struct kmem_cache_order_objects oo;
81819f0f 77
81819f0f 78 /* Allocation and freeing of slabs */
205ab99d 79 struct kmem_cache_order_objects max;
65c3376a 80 struct kmem_cache_order_objects min;
b7a49f0d 81 gfp_t allocflags; /* gfp flags to use on each alloc */
81819f0f 82 int refcount; /* Refcount for slab cache destroy */
51cc5068 83 void (*ctor)(void *);
81819f0f
CL
84 int inuse; /* Offset to metadata */
85 int align; /* Alignment */
3b89d7d8 86 unsigned long min_partial;
81819f0f
CL
87 const char *name; /* Name (only for display!) */
88 struct list_head list; /* List of slab caches */
0c710013 89#ifdef CONFIG_SLUB_DEBUG
81819f0f 90 struct kobject kobj; /* For sysfs */
0c710013 91#endif
81819f0f
CL
92
93#ifdef CONFIG_NUMA
9824601e
CL
94 /*
95 * Defragmentation by allocating from a remote node.
96 */
97 int remote_node_defrag_ratio;
81819f0f 98 struct kmem_cache_node *node[MAX_NUMNODES];
73367bd8
AD
99#else
100 /* Avoid an extra cache line for UP */
101 struct kmem_cache_node local_node;
81819f0f 102#endif
81819f0f
CL
103};
104
105/*
106 * Kmalloc subsystem.
107 */
4b356be0
CL
108#if defined(ARCH_KMALLOC_MINALIGN) && ARCH_KMALLOC_MINALIGN > 8
109#define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN
110#else
111#define KMALLOC_MIN_SIZE 8
112#endif
113
114#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
81819f0f 115
4581ced3
DW
116#ifndef ARCH_KMALLOC_MINALIGN
117#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
118#endif
119
120#ifndef ARCH_SLAB_MINALIGN
121#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
122#endif
123
ffadd4d0
CL
124/*
125 * Maximum kmalloc object size handled by SLUB. Larger object allocations
126 * are passed through to the page allocator. The page allocator "fastpath"
127 * is relatively slow so we need this value sufficiently high so that
128 * performance critical objects are allocated through the SLUB fastpath.
129 *
130 * This should be dropped to PAGE_SIZE / 2 once the page allocator
131 * "fastpath" becomes competitive with the slab allocator fastpaths.
132 */
51735a7c 133#define SLUB_MAX_SIZE (2 * PAGE_SIZE)
ffadd4d0 134
51735a7c 135#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
ffadd4d0 136
756dee75
CL
137#ifdef CONFIG_ZONE_DMA
138#define SLUB_DMA __GFP_DMA
139/* Reserve extra caches for potential DMA use */
0f1f6942 140#define KMALLOC_CACHES (2 * SLUB_PAGE_SHIFT)
756dee75
CL
141#else
142/* Disable DMA functionality */
143#define SLUB_DMA (__force gfp_t)0
144#define KMALLOC_CACHES SLUB_PAGE_SHIFT
145#endif
146
81819f0f
CL
147/*
148 * We keep the general caches in an array of slab caches that are used for
149 * 2^x bytes of allocations.
150 */
756dee75 151extern struct kmem_cache kmalloc_caches[KMALLOC_CACHES];
81819f0f
CL
152
153/*
154 * Sorry that the following has to be that ugly but some versions of GCC
155 * have trouble with constant propagation and loops.
156 */
aa137f9d 157static __always_inline int kmalloc_index(size_t size)
81819f0f 158{
272c1d21
CL
159 if (!size)
160 return 0;
614410d5 161
4b356be0
CL
162 if (size <= KMALLOC_MIN_SIZE)
163 return KMALLOC_SHIFT_LOW;
164
acdfcd04 165 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
81819f0f 166 return 1;
acdfcd04 167 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
81819f0f
CL
168 return 2;
169 if (size <= 8) return 3;
170 if (size <= 16) return 4;
171 if (size <= 32) return 5;
172 if (size <= 64) return 6;
173 if (size <= 128) return 7;
174 if (size <= 256) return 8;
175 if (size <= 512) return 9;
176 if (size <= 1024) return 10;
177 if (size <= 2 * 1024) return 11;
6446faa2 178 if (size <= 4 * 1024) return 12;
aadb4bc4
CL
179/*
180 * The following is only needed to support architectures with a larger page
181 * size than 4k.
182 */
81819f0f
CL
183 if (size <= 8 * 1024) return 13;
184 if (size <= 16 * 1024) return 14;
185 if (size <= 32 * 1024) return 15;
186 if (size <= 64 * 1024) return 16;
187 if (size <= 128 * 1024) return 17;
188 if (size <= 256 * 1024) return 18;
aadb4bc4 189 if (size <= 512 * 1024) return 19;
81819f0f 190 if (size <= 1024 * 1024) return 20;
81819f0f 191 if (size <= 2 * 1024 * 1024) return 21;
81819f0f
CL
192 return -1;
193
194/*
195 * What we really wanted to do and cannot do because of compiler issues is:
196 * int i;
197 * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
198 * if (size <= (1 << i))
199 * return i;
200 */
201}
202
203/*
204 * Find the slab cache for a given combination of allocation flags and size.
205 *
206 * This ought to end up with a global pointer to the right cache
207 * in kmalloc_caches.
208 */
aa137f9d 209static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
81819f0f
CL
210{
211 int index = kmalloc_index(size);
212
213 if (index == 0)
214 return NULL;
215
81819f0f
CL
216 return &kmalloc_caches[index];
217}
218
6193a2ff
PM
219void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
220void *__kmalloc(size_t size, gfp_t flags);
221
0f24f128 222#ifdef CONFIG_TRACING
5b882be4
EGM
223extern void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags);
224#else
225static __always_inline void *
226kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
227{
228 return kmem_cache_alloc(s, gfpflags);
229}
230#endif
231
eada35ef
PE
232static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
233{
5b882be4
EGM
234 unsigned int order = get_order(size);
235 void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
236
e4f7c0b4 237 kmemleak_alloc(ret, size, 1, flags);
ca2b84cb 238 trace_kmalloc(_THIS_IP_, ret, size, PAGE_SIZE << order, flags);
5b882be4
EGM
239
240 return ret;
eada35ef
PE
241}
242
aa137f9d 243static __always_inline void *kmalloc(size_t size, gfp_t flags)
81819f0f 244{
5b882be4
EGM
245 void *ret;
246
aadb4bc4 247 if (__builtin_constant_p(size)) {
ffadd4d0 248 if (size > SLUB_MAX_SIZE)
eada35ef 249 return kmalloc_large(size, flags);
81819f0f 250
aadb4bc4
CL
251 if (!(flags & SLUB_DMA)) {
252 struct kmem_cache *s = kmalloc_slab(size);
253
254 if (!s)
255 return ZERO_SIZE_PTR;
81819f0f 256
5b882be4
EGM
257 ret = kmem_cache_alloc_notrace(s, flags);
258
ca2b84cb 259 trace_kmalloc(_THIS_IP_, ret, size, s->size, flags);
5b882be4
EGM
260
261 return ret;
aadb4bc4
CL
262 }
263 }
264 return __kmalloc(size, flags);
81819f0f
CL
265}
266
81819f0f 267#ifdef CONFIG_NUMA
6193a2ff
PM
268void *__kmalloc_node(size_t size, gfp_t flags, int node);
269void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
81819f0f 270
0f24f128 271#ifdef CONFIG_TRACING
5b882be4
EGM
272extern void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
273 gfp_t gfpflags,
274 int node);
275#else
276static __always_inline void *
277kmem_cache_alloc_node_notrace(struct kmem_cache *s,
278 gfp_t gfpflags,
279 int node)
280{
281 return kmem_cache_alloc_node(s, gfpflags, node);
282}
283#endif
284
aa137f9d 285static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
81819f0f 286{
5b882be4
EGM
287 void *ret;
288
aadb4bc4 289 if (__builtin_constant_p(size) &&
ffadd4d0 290 size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
aadb4bc4 291 struct kmem_cache *s = kmalloc_slab(size);
81819f0f
CL
292
293 if (!s)
272c1d21 294 return ZERO_SIZE_PTR;
81819f0f 295
5b882be4
EGM
296 ret = kmem_cache_alloc_node_notrace(s, flags, node);
297
ca2b84cb
EGM
298 trace_kmalloc_node(_THIS_IP_, ret,
299 size, s->size, flags, node);
5b882be4
EGM
300
301 return ret;
aadb4bc4
CL
302 }
303 return __kmalloc_node(size, flags, node);
81819f0f
CL
304}
305#endif
306
307#endif /* _LINUX_SLUB_DEF_H */