]> bbs.cooldavid.org Git - net-next-2.6.git/blame - include/linux/percpu.h
percpu: handle __percpu notations in UP accessors
[net-next-2.6.git] / include / linux / percpu.h
CommitLineData
1da177e4
LT
1#ifndef __LINUX_PERCPU_H
2#define __LINUX_PERCPU_H
7ff6f082 3
0a3021f4 4#include <linux/preempt.h>
1da177e4 5#include <linux/smp.h>
7ff6f082 6#include <linux/cpumask.h>
6a242909 7#include <linux/pfn.h>
de380b55 8#include <linux/init.h>
7ff6f082 9
1da177e4
LT
10#include <asm/percpu.h>
11
6a242909 12/* enough to cover all DEFINE_PER_CPUs in modules */
b00742d3 13#ifdef CONFIG_MODULES
6a242909 14#define PERCPU_MODULE_RESERVE (8 << 10)
b00742d3 15#else
6a242909 16#define PERCPU_MODULE_RESERVE 0
1da177e4
LT
17#endif
18
6a242909 19#ifndef PERCPU_ENOUGH_ROOM
b00742d3 20#define PERCPU_ENOUGH_ROOM \
6a242909
TH
21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \
22 PERCPU_MODULE_RESERVE)
23#endif
b00742d3 24
632bbfee
JB
25/*
26 * Must be an lvalue. Since @var must be a simple identifier,
27 * we force a syntax error here if it isn't.
28 */
29#define get_cpu_var(var) (*({ \
632bbfee
JB
30 preempt_disable(); \
31 &__get_cpu_var(var); }))
f7b64fe8 32
e0fdb0e0
RR
33/*
34 * The weird & is necessary because sparse considers (void)(var) to be
35 * a direct dereference of percpu variable (var).
36 */
f7b64fe8 37#define put_cpu_var(var) do { \
e0fdb0e0 38 (void)&(var); \
f7b64fe8
TH
39 preempt_enable(); \
40} while (0)
1da177e4
LT
41
42#ifdef CONFIG_SMP
43
8d408b4b 44/* minimum unit size, also is the maximum supported allocation size */
6a242909 45#define PCPU_MIN_UNIT_SIZE PFN_ALIGN(64 << 10)
8d408b4b 46
099a19d9
TH
47/*
48 * Percpu allocator can serve percpu allocations before slab is
49 * initialized which allows slab to depend on the percpu allocator.
50 * The following two parameters decide how much resource to
51 * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or
52 * larger than PERCPU_DYNAMIC_EARLY_SIZE.
53 */
54#define PERCPU_DYNAMIC_EARLY_SLOTS 128
55#define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10)
56
8d408b4b
TH
57/*
58 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
6b19b0c2
TH
59 * back on the first chunk for dynamic percpu allocation if arch is
60 * manually allocating and mapping it for faster access (as a part of
61 * large page mapping for example).
8d408b4b 62 *
6b19b0c2
TH
63 * The following values give between one and two pages of free space
64 * after typical minimal boot (2-way SMP, single disk and NIC) with
65 * both defconfig and a distro config on x86_64 and 32. More
66 * intelligent way to determine this would be nice.
8d408b4b 67 */
6b19b0c2
TH
68#if BITS_PER_LONG > 32
69#define PERCPU_DYNAMIC_RESERVE (20 << 10)
70#else
71#define PERCPU_DYNAMIC_RESERVE (12 << 10)
72#endif
8d408b4b 73
fbf59bc9 74extern void *pcpu_base_addr;
fb435d52 75extern const unsigned long *pcpu_unit_offsets;
1da177e4 76
fd1e8a1f
TH
77struct pcpu_group_info {
78 int nr_units; /* aligned # of units */
79 unsigned long base_offset; /* base address offset */
80 unsigned int *cpu_map; /* unit->cpu map, empty
81 * entries contain NR_CPUS */
82};
83
84struct pcpu_alloc_info {
85 size_t static_size;
86 size_t reserved_size;
87 size_t dyn_size;
88 size_t unit_size;
89 size_t atom_size;
90 size_t alloc_size;
91 size_t __ai_size; /* internal, don't use */
92 int nr_groups; /* 0 if grouping unnecessary */
93 struct pcpu_group_info groups[];
94};
95
f58dc01b
TH
96enum pcpu_fc {
97 PCPU_FC_AUTO,
98 PCPU_FC_EMBED,
99 PCPU_FC_PAGE,
f58dc01b
TH
100
101 PCPU_FC_NR,
102};
103extern const char *pcpu_fc_names[PCPU_FC_NR];
104
105extern enum pcpu_fc pcpu_chosen_fc;
106
3cbc8565
TH
107typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
108 size_t align);
d4b95f80
TH
109typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
110typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
a530b795 111typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
fbf59bc9 112
fd1e8a1f
TH
113extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
114 int nr_units);
115extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
116
fb435d52
TH
117extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
118 void *base_addr);
8d408b4b 119
08fc4580 120#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
4ba6ce25 121extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
122 size_t atom_size,
123 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
124 pcpu_fc_alloc_fn_t alloc_fn,
125 pcpu_fc_free_fn_t free_fn);
08fc4580 126#endif
66c3a757 127
08fc4580 128#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
fb435d52 129extern int __init pcpu_page_first_chunk(size_t reserved_size,
d4b95f80
TH
130 pcpu_fc_alloc_fn_t alloc_fn,
131 pcpu_fc_free_fn_t free_fn,
132 pcpu_fc_populate_pte_fn_t populate_pte_fn);
08fc4580 133#endif
d4b95f80 134
f2a8205c
TH
135/*
136 * Use this to get to a cpu's version of the per-cpu object
137 * dynamically allocated. Non-atomic access to the current CPU's
138 * version should probably be combined with get_cpu()/put_cpu().
139 */
fbf59bc9
TH
140#define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
141
e0fdb0e0 142extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
10fad5e4 143extern bool is_kernel_percpu_address(unsigned long addr);
1da177e4 144
e74e3962
TH
145#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
146extern void __init setup_per_cpu_areas(void);
147#endif
099a19d9 148extern void __init percpu_init_late(void);
e74e3962 149
1da177e4
LT
150#else /* CONFIG_SMP */
151
18cb2aef 152#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); })
7ff6f082 153
10fad5e4
TH
154/* can't distinguish from other static vars, always false */
155static inline bool is_kernel_percpu_address(unsigned long addr)
156{
157 return false;
158}
159
e74e3962
TH
160static inline void __init setup_per_cpu_areas(void) { }
161
099a19d9
TH
162static inline void __init percpu_init_late(void) { }
163
a76761b6
TH
164static inline void *pcpu_lpage_remapped(void *kaddr)
165{
166 return NULL;
167}
168
1da177e4
LT
169#endif /* CONFIG_SMP */
170
de380b55
TH
171extern void __percpu *__alloc_percpu(size_t size, size_t align);
172extern void free_percpu(void __percpu *__pdata);
173extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
174
64ef291f 175#define alloc_percpu(type) \
e0fdb0e0 176 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
1da177e4 177
066123a5
TH
178/*
179 * Optional methods for optimized non-lvalue per-cpu variable access.
180 *
181 * @var can be a percpu variable or a field of it and its size should
182 * equal char, int or long. percpu_read() evaluates to a lvalue and
183 * all others to void.
184 *
185 * These operations are guaranteed to be atomic w.r.t. preemption.
186 * The generic versions use plain get/put_cpu_var(). Archs are
187 * encouraged to implement single-instruction alternatives which don't
188 * require preemption protection.
189 */
190#ifndef percpu_read
191# define percpu_read(var) \
192 ({ \
f7b64fe8
TH
193 typeof(var) *pr_ptr__ = &(var); \
194 typeof(var) pr_ret__; \
195 pr_ret__ = get_cpu_var(*pr_ptr__); \
196 put_cpu_var(*pr_ptr__); \
197 pr_ret__; \
066123a5
TH
198 })
199#endif
200
201#define __percpu_generic_to_op(var, val, op) \
202do { \
f7b64fe8
TH
203 typeof(var) *pgto_ptr__ = &(var); \
204 get_cpu_var(*pgto_ptr__) op val; \
205 put_cpu_var(*pgto_ptr__); \
066123a5
TH
206} while (0)
207
208#ifndef percpu_write
209# define percpu_write(var, val) __percpu_generic_to_op(var, (val), =)
210#endif
211
212#ifndef percpu_add
213# define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=)
214#endif
215
216#ifndef percpu_sub
217# define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=)
218#endif
219
220#ifndef percpu_and
221# define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=)
222#endif
223
224#ifndef percpu_or
225# define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=)
226#endif
227
228#ifndef percpu_xor
229# define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=)
230#endif
231
7340a0b1
CL
232/*
233 * Branching function to split up a function into a set of functions that
234 * are called for different scalar sizes of the objects handled.
235 */
236
237extern void __bad_size_call_parameter(void);
238
0f5e4816
TH
239#define __pcpu_size_call_return(stem, variable) \
240({ typeof(variable) pscr_ret__; \
545695fb 241 __verify_pcpu_ptr(&(variable)); \
7340a0b1 242 switch(sizeof(variable)) { \
0f5e4816
TH
243 case 1: pscr_ret__ = stem##1(variable);break; \
244 case 2: pscr_ret__ = stem##2(variable);break; \
245 case 4: pscr_ret__ = stem##4(variable);break; \
246 case 8: pscr_ret__ = stem##8(variable);break; \
7340a0b1
CL
247 default: \
248 __bad_size_call_parameter();break; \
249 } \
0f5e4816 250 pscr_ret__; \
7340a0b1
CL
251})
252
0f5e4816 253#define __pcpu_size_call(stem, variable, ...) \
7340a0b1 254do { \
545695fb 255 __verify_pcpu_ptr(&(variable)); \
7340a0b1
CL
256 switch(sizeof(variable)) { \
257 case 1: stem##1(variable, __VA_ARGS__);break; \
258 case 2: stem##2(variable, __VA_ARGS__);break; \
259 case 4: stem##4(variable, __VA_ARGS__);break; \
260 case 8: stem##8(variable, __VA_ARGS__);break; \
261 default: \
262 __bad_size_call_parameter();break; \
263 } \
264} while (0)
265
266/*
267 * Optimized manipulation for memory allocated through the per cpu
dd17c8f7 268 * allocator or for addresses of per cpu variables.
7340a0b1
CL
269 *
270 * These operation guarantee exclusivity of access for other operations
271 * on the *same* processor. The assumption is that per cpu data is only
272 * accessed by a single processor instance (the current one).
273 *
274 * The first group is used for accesses that must be done in a
275 * preemption safe way since we know that the context is not preempt
276 * safe. Interrupts may occur. If the interrupt modifies the variable
277 * too then RMW actions will not be reliable.
278 *
279 * The arch code can provide optimized functions in two ways:
280 *
281 * 1. Override the function completely. F.e. define this_cpu_add().
282 * The arch must then ensure that the various scalar format passed
283 * are handled correctly.
284 *
285 * 2. Provide functions for certain scalar sizes. F.e. provide
286 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte
287 * sized RMW actions. If arch code does not provide operations for
288 * a scalar size then the fallback in the generic code will be
289 * used.
290 */
291
292#define _this_cpu_generic_read(pcp) \
293({ typeof(pcp) ret__; \
294 preempt_disable(); \
295 ret__ = *this_cpu_ptr(&(pcp)); \
296 preempt_enable(); \
297 ret__; \
298})
299
300#ifndef this_cpu_read
301# ifndef this_cpu_read_1
302# define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp)
303# endif
304# ifndef this_cpu_read_2
305# define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp)
306# endif
307# ifndef this_cpu_read_4
308# define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp)
309# endif
310# ifndef this_cpu_read_8
311# define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp)
312# endif
0f5e4816 313# define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp))
7340a0b1
CL
314#endif
315
316#define _this_cpu_generic_to_op(pcp, val, op) \
317do { \
318 preempt_disable(); \
f7b64fe8 319 *__this_cpu_ptr(&(pcp)) op val; \
7340a0b1
CL
320 preempt_enable(); \
321} while (0)
322
323#ifndef this_cpu_write
324# ifndef this_cpu_write_1
325# define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
326# endif
327# ifndef this_cpu_write_2
328# define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
329# endif
330# ifndef this_cpu_write_4
331# define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
332# endif
333# ifndef this_cpu_write_8
334# define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
335# endif
0f5e4816 336# define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val))
7340a0b1
CL
337#endif
338
339#ifndef this_cpu_add
340# ifndef this_cpu_add_1
341# define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
342# endif
343# ifndef this_cpu_add_2
344# define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
345# endif
346# ifndef this_cpu_add_4
347# define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
348# endif
349# ifndef this_cpu_add_8
350# define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
351# endif
0f5e4816 352# define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val))
7340a0b1
CL
353#endif
354
355#ifndef this_cpu_sub
356# define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val))
357#endif
358
359#ifndef this_cpu_inc
360# define this_cpu_inc(pcp) this_cpu_add((pcp), 1)
361#endif
362
363#ifndef this_cpu_dec
364# define this_cpu_dec(pcp) this_cpu_sub((pcp), 1)
365#endif
366
367#ifndef this_cpu_and
368# ifndef this_cpu_and_1
369# define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
370# endif
371# ifndef this_cpu_and_2
372# define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
373# endif
374# ifndef this_cpu_and_4
375# define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
376# endif
377# ifndef this_cpu_and_8
378# define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
379# endif
0f5e4816 380# define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val))
7340a0b1
CL
381#endif
382
383#ifndef this_cpu_or
384# ifndef this_cpu_or_1
385# define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
386# endif
387# ifndef this_cpu_or_2
388# define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
389# endif
390# ifndef this_cpu_or_4
391# define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
392# endif
393# ifndef this_cpu_or_8
394# define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
395# endif
0f5e4816 396# define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
7340a0b1
CL
397#endif
398
399#ifndef this_cpu_xor
400# ifndef this_cpu_xor_1
401# define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
402# endif
403# ifndef this_cpu_xor_2
404# define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
405# endif
406# ifndef this_cpu_xor_4
407# define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
408# endif
409# ifndef this_cpu_xor_8
410# define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
411# endif
0f5e4816 412# define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
7340a0b1
CL
413#endif
414
415/*
416 * Generic percpu operations that do not require preemption handling.
417 * Either we do not care about races or the caller has the
418 * responsibility of handling preemptions issues. Arch code can still
419 * override these instructions since the arch per cpu code may be more
420 * efficient and may actually get race freeness for free (that is the
421 * case for x86 for example).
422 *
423 * If there is no other protection through preempt disable and/or
424 * disabling interupts then one of these RMW operations can show unexpected
425 * behavior because the execution thread was rescheduled on another processor
426 * or an interrupt occurred and the same percpu variable was modified from
427 * the interrupt context.
428 */
429#ifndef __this_cpu_read
430# ifndef __this_cpu_read_1
431# define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp)))
432# endif
433# ifndef __this_cpu_read_2
434# define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp)))
435# endif
436# ifndef __this_cpu_read_4
437# define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp)))
438# endif
439# ifndef __this_cpu_read_8
440# define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp)))
441# endif
0f5e4816 442# define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp))
7340a0b1
CL
443#endif
444
445#define __this_cpu_generic_to_op(pcp, val, op) \
446do { \
447 *__this_cpu_ptr(&(pcp)) op val; \
448} while (0)
449
450#ifndef __this_cpu_write
451# ifndef __this_cpu_write_1
452# define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
453# endif
454# ifndef __this_cpu_write_2
455# define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
456# endif
457# ifndef __this_cpu_write_4
458# define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
459# endif
460# ifndef __this_cpu_write_8
461# define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
462# endif
0f5e4816 463# define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val))
7340a0b1
CL
464#endif
465
466#ifndef __this_cpu_add
467# ifndef __this_cpu_add_1
468# define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
469# endif
470# ifndef __this_cpu_add_2
471# define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
472# endif
473# ifndef __this_cpu_add_4
474# define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
475# endif
476# ifndef __this_cpu_add_8
477# define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
478# endif
0f5e4816 479# define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val))
7340a0b1
CL
480#endif
481
482#ifndef __this_cpu_sub
483# define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val))
484#endif
485
486#ifndef __this_cpu_inc
487# define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1)
488#endif
489
490#ifndef __this_cpu_dec
491# define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1)
492#endif
493
494#ifndef __this_cpu_and
495# ifndef __this_cpu_and_1
496# define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
497# endif
498# ifndef __this_cpu_and_2
499# define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
500# endif
501# ifndef __this_cpu_and_4
502# define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
503# endif
504# ifndef __this_cpu_and_8
505# define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
506# endif
0f5e4816 507# define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val))
7340a0b1
CL
508#endif
509
510#ifndef __this_cpu_or
511# ifndef __this_cpu_or_1
512# define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
513# endif
514# ifndef __this_cpu_or_2
515# define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
516# endif
517# ifndef __this_cpu_or_4
518# define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
519# endif
520# ifndef __this_cpu_or_8
521# define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
522# endif
0f5e4816 523# define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val))
7340a0b1
CL
524#endif
525
526#ifndef __this_cpu_xor
527# ifndef __this_cpu_xor_1
528# define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
529# endif
530# ifndef __this_cpu_xor_2
531# define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
532# endif
533# ifndef __this_cpu_xor_4
534# define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
535# endif
536# ifndef __this_cpu_xor_8
537# define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
538# endif
0f5e4816 539# define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val))
7340a0b1
CL
540#endif
541
542/*
543 * IRQ safe versions of the per cpu RMW operations. Note that these operations
544 * are *not* safe against modification of the same variable from another
545 * processors (which one gets when using regular atomic operations)
546 . They are guaranteed to be atomic vs. local interrupts and
547 * preemption only.
548 */
549#define irqsafe_cpu_generic_to_op(pcp, val, op) \
550do { \
551 unsigned long flags; \
552 local_irq_save(flags); \
553 *__this_cpu_ptr(&(pcp)) op val; \
554 local_irq_restore(flags); \
555} while (0)
556
557#ifndef irqsafe_cpu_add
558# ifndef irqsafe_cpu_add_1
559# define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
560# endif
561# ifndef irqsafe_cpu_add_2
562# define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
563# endif
564# ifndef irqsafe_cpu_add_4
565# define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
566# endif
567# ifndef irqsafe_cpu_add_8
568# define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
569# endif
0f5e4816 570# define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val))
7340a0b1
CL
571#endif
572
573#ifndef irqsafe_cpu_sub
574# define irqsafe_cpu_sub(pcp, val) irqsafe_cpu_add((pcp), -(val))
575#endif
576
577#ifndef irqsafe_cpu_inc
578# define irqsafe_cpu_inc(pcp) irqsafe_cpu_add((pcp), 1)
579#endif
580
581#ifndef irqsafe_cpu_dec
582# define irqsafe_cpu_dec(pcp) irqsafe_cpu_sub((pcp), 1)
583#endif
584
585#ifndef irqsafe_cpu_and
586# ifndef irqsafe_cpu_and_1
587# define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
588# endif
589# ifndef irqsafe_cpu_and_2
590# define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
591# endif
592# ifndef irqsafe_cpu_and_4
593# define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
594# endif
595# ifndef irqsafe_cpu_and_8
596# define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
597# endif
0f5e4816 598# define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val))
7340a0b1
CL
599#endif
600
601#ifndef irqsafe_cpu_or
602# ifndef irqsafe_cpu_or_1
603# define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
604# endif
605# ifndef irqsafe_cpu_or_2
606# define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
607# endif
608# ifndef irqsafe_cpu_or_4
609# define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
610# endif
611# ifndef irqsafe_cpu_or_8
612# define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
613# endif
0f5e4816 614# define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val))
7340a0b1
CL
615#endif
616
617#ifndef irqsafe_cpu_xor
618# ifndef irqsafe_cpu_xor_1
619# define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
620# endif
621# ifndef irqsafe_cpu_xor_2
622# define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
623# endif
624# ifndef irqsafe_cpu_xor_4
625# define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
626# endif
627# ifndef irqsafe_cpu_xor_8
628# define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
629# endif
0f5e4816 630# define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val))
7340a0b1
CL
631#endif
632
1da177e4 633#endif /* __LINUX_PERCPU_H */