]> bbs.cooldavid.org Git - net-next-2.6.git/blame - include/linux/percpu.h
qlcnic: Bumped up driver version to 5.0.12
[net-next-2.6.git] / include / linux / percpu.h
CommitLineData
1da177e4
LT
1#ifndef __LINUX_PERCPU_H
2#define __LINUX_PERCPU_H
7ff6f082 3
0a3021f4 4#include <linux/preempt.h>
1da177e4 5#include <linux/smp.h>
7ff6f082 6#include <linux/cpumask.h>
6a242909 7#include <linux/pfn.h>
de380b55 8#include <linux/init.h>
7ff6f082 9
1da177e4
LT
10#include <asm/percpu.h>
11
6a242909 12/* enough to cover all DEFINE_PER_CPUs in modules */
b00742d3 13#ifdef CONFIG_MODULES
6a242909 14#define PERCPU_MODULE_RESERVE (8 << 10)
b00742d3 15#else
6a242909 16#define PERCPU_MODULE_RESERVE 0
1da177e4
LT
17#endif
18
6a242909 19#ifndef PERCPU_ENOUGH_ROOM
b00742d3 20#define PERCPU_ENOUGH_ROOM \
6a242909
TH
21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \
22 PERCPU_MODULE_RESERVE)
23#endif
b00742d3 24
632bbfee
JB
25/*
26 * Must be an lvalue. Since @var must be a simple identifier,
27 * we force a syntax error here if it isn't.
28 */
29#define get_cpu_var(var) (*({ \
632bbfee
JB
30 preempt_disable(); \
31 &__get_cpu_var(var); }))
f7b64fe8 32
e0fdb0e0
RR
33/*
34 * The weird & is necessary because sparse considers (void)(var) to be
35 * a direct dereference of percpu variable (var).
36 */
f7b64fe8 37#define put_cpu_var(var) do { \
e0fdb0e0 38 (void)&(var); \
f7b64fe8
TH
39 preempt_enable(); \
40} while (0)
1da177e4 41
8b8e2ec1
PZ
42#define get_cpu_ptr(var) ({ \
43 preempt_disable(); \
44 this_cpu_ptr(var); })
45
46#define put_cpu_ptr(var) do { \
47 (void)(var); \
48 preempt_enable(); \
49} while (0)
50
8d408b4b 51/* minimum unit size, also is the maximum supported allocation size */
6abad5ac 52#define PCPU_MIN_UNIT_SIZE PFN_ALIGN(32 << 10)
8d408b4b 53
099a19d9
TH
54/*
55 * Percpu allocator can serve percpu allocations before slab is
56 * initialized which allows slab to depend on the percpu allocator.
57 * The following two parameters decide how much resource to
58 * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or
59 * larger than PERCPU_DYNAMIC_EARLY_SIZE.
60 */
61#define PERCPU_DYNAMIC_EARLY_SLOTS 128
62#define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10)
63
8d408b4b
TH
64/*
65 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
6b19b0c2
TH
66 * back on the first chunk for dynamic percpu allocation if arch is
67 * manually allocating and mapping it for faster access (as a part of
68 * large page mapping for example).
8d408b4b 69 *
6b19b0c2
TH
70 * The following values give between one and two pages of free space
71 * after typical minimal boot (2-way SMP, single disk and NIC) with
72 * both defconfig and a distro config on x86_64 and 32. More
73 * intelligent way to determine this would be nice.
8d408b4b 74 */
6b19b0c2
TH
75#if BITS_PER_LONG > 32
76#define PERCPU_DYNAMIC_RESERVE (20 << 10)
77#else
78#define PERCPU_DYNAMIC_RESERVE (12 << 10)
79#endif
8d408b4b 80
fbf59bc9 81extern void *pcpu_base_addr;
fb435d52 82extern const unsigned long *pcpu_unit_offsets;
1da177e4 83
fd1e8a1f
TH
84struct pcpu_group_info {
85 int nr_units; /* aligned # of units */
86 unsigned long base_offset; /* base address offset */
87 unsigned int *cpu_map; /* unit->cpu map, empty
88 * entries contain NR_CPUS */
89};
90
91struct pcpu_alloc_info {
92 size_t static_size;
93 size_t reserved_size;
94 size_t dyn_size;
95 size_t unit_size;
96 size_t atom_size;
97 size_t alloc_size;
98 size_t __ai_size; /* internal, don't use */
99 int nr_groups; /* 0 if grouping unnecessary */
100 struct pcpu_group_info groups[];
101};
102
f58dc01b
TH
103enum pcpu_fc {
104 PCPU_FC_AUTO,
105 PCPU_FC_EMBED,
106 PCPU_FC_PAGE,
f58dc01b
TH
107
108 PCPU_FC_NR,
109};
110extern const char *pcpu_fc_names[PCPU_FC_NR];
111
112extern enum pcpu_fc pcpu_chosen_fc;
113
3cbc8565
TH
114typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
115 size_t align);
d4b95f80
TH
116typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
117typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
a530b795 118typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
fbf59bc9 119
fd1e8a1f
TH
120extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
121 int nr_units);
122extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
123
fb435d52
TH
124extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
125 void *base_addr);
8d408b4b 126
08fc4580 127#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
4ba6ce25 128extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
129 size_t atom_size,
130 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
131 pcpu_fc_alloc_fn_t alloc_fn,
132 pcpu_fc_free_fn_t free_fn);
08fc4580 133#endif
66c3a757 134
08fc4580 135#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
fb435d52 136extern int __init pcpu_page_first_chunk(size_t reserved_size,
d4b95f80
TH
137 pcpu_fc_alloc_fn_t alloc_fn,
138 pcpu_fc_free_fn_t free_fn,
139 pcpu_fc_populate_pte_fn_t populate_pte_fn);
08fc4580 140#endif
d4b95f80 141
f2a8205c
TH
142/*
143 * Use this to get to a cpu's version of the per-cpu object
144 * dynamically allocated. Non-atomic access to the current CPU's
145 * version should probably be combined with get_cpu()/put_cpu().
146 */
bbddff05 147#ifdef CONFIG_SMP
fbf59bc9 148#define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
bbddff05
TH
149#else
150#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); })
151#endif
fbf59bc9 152
e0fdb0e0 153extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
10fad5e4 154extern bool is_kernel_percpu_address(unsigned long addr);
1da177e4 155
bbddff05 156#if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
e74e3962
TH
157extern void __init setup_per_cpu_areas(void);
158#endif
099a19d9 159extern void __init percpu_init_late(void);
e74e3962 160
de380b55
TH
161extern void __percpu *__alloc_percpu(size_t size, size_t align);
162extern void free_percpu(void __percpu *__pdata);
163extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
164
64ef291f 165#define alloc_percpu(type) \
e0fdb0e0 166 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
1da177e4 167
066123a5
TH
168/*
169 * Optional methods for optimized non-lvalue per-cpu variable access.
170 *
171 * @var can be a percpu variable or a field of it and its size should
172 * equal char, int or long. percpu_read() evaluates to a lvalue and
173 * all others to void.
174 *
175 * These operations are guaranteed to be atomic w.r.t. preemption.
176 * The generic versions use plain get/put_cpu_var(). Archs are
177 * encouraged to implement single-instruction alternatives which don't
178 * require preemption protection.
179 */
180#ifndef percpu_read
181# define percpu_read(var) \
182 ({ \
f7b64fe8
TH
183 typeof(var) *pr_ptr__ = &(var); \
184 typeof(var) pr_ret__; \
185 pr_ret__ = get_cpu_var(*pr_ptr__); \
186 put_cpu_var(*pr_ptr__); \
187 pr_ret__; \
066123a5
TH
188 })
189#endif
190
191#define __percpu_generic_to_op(var, val, op) \
192do { \
f7b64fe8
TH
193 typeof(var) *pgto_ptr__ = &(var); \
194 get_cpu_var(*pgto_ptr__) op val; \
195 put_cpu_var(*pgto_ptr__); \
066123a5
TH
196} while (0)
197
198#ifndef percpu_write
199# define percpu_write(var, val) __percpu_generic_to_op(var, (val), =)
200#endif
201
202#ifndef percpu_add
203# define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=)
204#endif
205
206#ifndef percpu_sub
207# define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=)
208#endif
209
210#ifndef percpu_and
211# define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=)
212#endif
213
214#ifndef percpu_or
215# define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=)
216#endif
217
218#ifndef percpu_xor
219# define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=)
220#endif
221
7340a0b1
CL
222/*
223 * Branching function to split up a function into a set of functions that
224 * are called for different scalar sizes of the objects handled.
225 */
226
227extern void __bad_size_call_parameter(void);
228
0f5e4816
TH
229#define __pcpu_size_call_return(stem, variable) \
230({ typeof(variable) pscr_ret__; \
545695fb 231 __verify_pcpu_ptr(&(variable)); \
7340a0b1 232 switch(sizeof(variable)) { \
0f5e4816
TH
233 case 1: pscr_ret__ = stem##1(variable);break; \
234 case 2: pscr_ret__ = stem##2(variable);break; \
235 case 4: pscr_ret__ = stem##4(variable);break; \
236 case 8: pscr_ret__ = stem##8(variable);break; \
7340a0b1
CL
237 default: \
238 __bad_size_call_parameter();break; \
239 } \
0f5e4816 240 pscr_ret__; \
7340a0b1
CL
241})
242
0f5e4816 243#define __pcpu_size_call(stem, variable, ...) \
7340a0b1 244do { \
545695fb 245 __verify_pcpu_ptr(&(variable)); \
7340a0b1
CL
246 switch(sizeof(variable)) { \
247 case 1: stem##1(variable, __VA_ARGS__);break; \
248 case 2: stem##2(variable, __VA_ARGS__);break; \
249 case 4: stem##4(variable, __VA_ARGS__);break; \
250 case 8: stem##8(variable, __VA_ARGS__);break; \
251 default: \
252 __bad_size_call_parameter();break; \
253 } \
254} while (0)
255
256/*
257 * Optimized manipulation for memory allocated through the per cpu
dd17c8f7 258 * allocator or for addresses of per cpu variables.
7340a0b1
CL
259 *
260 * These operation guarantee exclusivity of access for other operations
261 * on the *same* processor. The assumption is that per cpu data is only
262 * accessed by a single processor instance (the current one).
263 *
264 * The first group is used for accesses that must be done in a
265 * preemption safe way since we know that the context is not preempt
266 * safe. Interrupts may occur. If the interrupt modifies the variable
267 * too then RMW actions will not be reliable.
268 *
269 * The arch code can provide optimized functions in two ways:
270 *
271 * 1. Override the function completely. F.e. define this_cpu_add().
272 * The arch must then ensure that the various scalar format passed
273 * are handled correctly.
274 *
275 * 2. Provide functions for certain scalar sizes. F.e. provide
276 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte
277 * sized RMW actions. If arch code does not provide operations for
278 * a scalar size then the fallback in the generic code will be
279 * used.
280 */
281
282#define _this_cpu_generic_read(pcp) \
283({ typeof(pcp) ret__; \
284 preempt_disable(); \
285 ret__ = *this_cpu_ptr(&(pcp)); \
286 preempt_enable(); \
287 ret__; \
288})
289
290#ifndef this_cpu_read
291# ifndef this_cpu_read_1
292# define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp)
293# endif
294# ifndef this_cpu_read_2
295# define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp)
296# endif
297# ifndef this_cpu_read_4
298# define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp)
299# endif
300# ifndef this_cpu_read_8
301# define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp)
302# endif
0f5e4816 303# define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp))
7340a0b1
CL
304#endif
305
306#define _this_cpu_generic_to_op(pcp, val, op) \
307do { \
308 preempt_disable(); \
f7b64fe8 309 *__this_cpu_ptr(&(pcp)) op val; \
7340a0b1
CL
310 preempt_enable(); \
311} while (0)
312
313#ifndef this_cpu_write
314# ifndef this_cpu_write_1
315# define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
316# endif
317# ifndef this_cpu_write_2
318# define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
319# endif
320# ifndef this_cpu_write_4
321# define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
322# endif
323# ifndef this_cpu_write_8
324# define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
325# endif
0f5e4816 326# define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val))
7340a0b1
CL
327#endif
328
329#ifndef this_cpu_add
330# ifndef this_cpu_add_1
331# define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
332# endif
333# ifndef this_cpu_add_2
334# define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
335# endif
336# ifndef this_cpu_add_4
337# define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
338# endif
339# ifndef this_cpu_add_8
340# define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
341# endif
0f5e4816 342# define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val))
7340a0b1
CL
343#endif
344
345#ifndef this_cpu_sub
346# define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val))
347#endif
348
349#ifndef this_cpu_inc
350# define this_cpu_inc(pcp) this_cpu_add((pcp), 1)
351#endif
352
353#ifndef this_cpu_dec
354# define this_cpu_dec(pcp) this_cpu_sub((pcp), 1)
355#endif
356
357#ifndef this_cpu_and
358# ifndef this_cpu_and_1
359# define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
360# endif
361# ifndef this_cpu_and_2
362# define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
363# endif
364# ifndef this_cpu_and_4
365# define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
366# endif
367# ifndef this_cpu_and_8
368# define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
369# endif
0f5e4816 370# define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val))
7340a0b1
CL
371#endif
372
373#ifndef this_cpu_or
374# ifndef this_cpu_or_1
375# define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
376# endif
377# ifndef this_cpu_or_2
378# define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
379# endif
380# ifndef this_cpu_or_4
381# define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
382# endif
383# ifndef this_cpu_or_8
384# define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
385# endif
0f5e4816 386# define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
7340a0b1
CL
387#endif
388
389#ifndef this_cpu_xor
390# ifndef this_cpu_xor_1
391# define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
392# endif
393# ifndef this_cpu_xor_2
394# define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
395# endif
396# ifndef this_cpu_xor_4
397# define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
398# endif
399# ifndef this_cpu_xor_8
400# define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
401# endif
0f5e4816 402# define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
7340a0b1
CL
403#endif
404
405/*
406 * Generic percpu operations that do not require preemption handling.
407 * Either we do not care about races or the caller has the
408 * responsibility of handling preemptions issues. Arch code can still
409 * override these instructions since the arch per cpu code may be more
410 * efficient and may actually get race freeness for free (that is the
411 * case for x86 for example).
412 *
413 * If there is no other protection through preempt disable and/or
414 * disabling interupts then one of these RMW operations can show unexpected
415 * behavior because the execution thread was rescheduled on another processor
416 * or an interrupt occurred and the same percpu variable was modified from
417 * the interrupt context.
418 */
419#ifndef __this_cpu_read
420# ifndef __this_cpu_read_1
421# define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp)))
422# endif
423# ifndef __this_cpu_read_2
424# define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp)))
425# endif
426# ifndef __this_cpu_read_4
427# define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp)))
428# endif
429# ifndef __this_cpu_read_8
430# define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp)))
431# endif
0f5e4816 432# define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp))
7340a0b1
CL
433#endif
434
435#define __this_cpu_generic_to_op(pcp, val, op) \
436do { \
437 *__this_cpu_ptr(&(pcp)) op val; \
438} while (0)
439
440#ifndef __this_cpu_write
441# ifndef __this_cpu_write_1
442# define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
443# endif
444# ifndef __this_cpu_write_2
445# define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
446# endif
447# ifndef __this_cpu_write_4
448# define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
449# endif
450# ifndef __this_cpu_write_8
451# define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
452# endif
0f5e4816 453# define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val))
7340a0b1
CL
454#endif
455
456#ifndef __this_cpu_add
457# ifndef __this_cpu_add_1
458# define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
459# endif
460# ifndef __this_cpu_add_2
461# define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
462# endif
463# ifndef __this_cpu_add_4
464# define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
465# endif
466# ifndef __this_cpu_add_8
467# define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
468# endif
0f5e4816 469# define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val))
7340a0b1
CL
470#endif
471
472#ifndef __this_cpu_sub
473# define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val))
474#endif
475
476#ifndef __this_cpu_inc
477# define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1)
478#endif
479
480#ifndef __this_cpu_dec
481# define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1)
482#endif
483
484#ifndef __this_cpu_and
485# ifndef __this_cpu_and_1
486# define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
487# endif
488# ifndef __this_cpu_and_2
489# define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
490# endif
491# ifndef __this_cpu_and_4
492# define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
493# endif
494# ifndef __this_cpu_and_8
495# define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
496# endif
0f5e4816 497# define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val))
7340a0b1
CL
498#endif
499
500#ifndef __this_cpu_or
501# ifndef __this_cpu_or_1
502# define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
503# endif
504# ifndef __this_cpu_or_2
505# define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
506# endif
507# ifndef __this_cpu_or_4
508# define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
509# endif
510# ifndef __this_cpu_or_8
511# define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
512# endif
0f5e4816 513# define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val))
7340a0b1
CL
514#endif
515
516#ifndef __this_cpu_xor
517# ifndef __this_cpu_xor_1
518# define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
519# endif
520# ifndef __this_cpu_xor_2
521# define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
522# endif
523# ifndef __this_cpu_xor_4
524# define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
525# endif
526# ifndef __this_cpu_xor_8
527# define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
528# endif
0f5e4816 529# define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val))
7340a0b1
CL
530#endif
531
532/*
533 * IRQ safe versions of the per cpu RMW operations. Note that these operations
534 * are *not* safe against modification of the same variable from another
535 * processors (which one gets when using regular atomic operations)
536 . They are guaranteed to be atomic vs. local interrupts and
537 * preemption only.
538 */
539#define irqsafe_cpu_generic_to_op(pcp, val, op) \
540do { \
541 unsigned long flags; \
542 local_irq_save(flags); \
543 *__this_cpu_ptr(&(pcp)) op val; \
544 local_irq_restore(flags); \
545} while (0)
546
547#ifndef irqsafe_cpu_add
548# ifndef irqsafe_cpu_add_1
549# define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
550# endif
551# ifndef irqsafe_cpu_add_2
552# define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
553# endif
554# ifndef irqsafe_cpu_add_4
555# define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
556# endif
557# ifndef irqsafe_cpu_add_8
558# define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
559# endif
0f5e4816 560# define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val))
7340a0b1
CL
561#endif
562
563#ifndef irqsafe_cpu_sub
564# define irqsafe_cpu_sub(pcp, val) irqsafe_cpu_add((pcp), -(val))
565#endif
566
567#ifndef irqsafe_cpu_inc
568# define irqsafe_cpu_inc(pcp) irqsafe_cpu_add((pcp), 1)
569#endif
570
571#ifndef irqsafe_cpu_dec
572# define irqsafe_cpu_dec(pcp) irqsafe_cpu_sub((pcp), 1)
573#endif
574
575#ifndef irqsafe_cpu_and
576# ifndef irqsafe_cpu_and_1
577# define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
578# endif
579# ifndef irqsafe_cpu_and_2
580# define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
581# endif
582# ifndef irqsafe_cpu_and_4
583# define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
584# endif
585# ifndef irqsafe_cpu_and_8
586# define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
587# endif
0f5e4816 588# define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val))
7340a0b1
CL
589#endif
590
591#ifndef irqsafe_cpu_or
592# ifndef irqsafe_cpu_or_1
593# define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
594# endif
595# ifndef irqsafe_cpu_or_2
596# define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
597# endif
598# ifndef irqsafe_cpu_or_4
599# define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
600# endif
601# ifndef irqsafe_cpu_or_8
602# define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
603# endif
0f5e4816 604# define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val))
7340a0b1
CL
605#endif
606
607#ifndef irqsafe_cpu_xor
608# ifndef irqsafe_cpu_xor_1
609# define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
610# endif
611# ifndef irqsafe_cpu_xor_2
612# define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
613# endif
614# ifndef irqsafe_cpu_xor_4
615# define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
616# endif
617# ifndef irqsafe_cpu_xor_8
618# define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
619# endif
0f5e4816 620# define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val))
7340a0b1
CL
621#endif
622
1da177e4 623#endif /* __LINUX_PERCPU_H */