]> bbs.cooldavid.org Git - net-next-2.6.git/blame - include/linux/mmzone.h
[PATCH] vm: add per-zone writeout counter
[net-next-2.6.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
4#ifdef __KERNEL__
5#ifndef __ASSEMBLY__
6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
10#include <linux/cache.h>
11#include <linux/threads.h>
12#include <linux/numa.h>
13#include <linux/init.h>
bdc8cb98 14#include <linux/seqlock.h>
8357f869 15#include <linux/nodemask.h>
1da177e4 16#include <asm/atomic.h>
93ff66bf 17#include <asm/page.h>
1da177e4
LT
18
19/* Free memory management - zoned buddy allocator. */
20#ifndef CONFIG_FORCE_MAX_ZONEORDER
21#define MAX_ORDER 11
22#else
23#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
24#endif
e984bb43 25#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4
LT
26
27struct free_area {
28 struct list_head free_list;
29 unsigned long nr_free;
30};
31
32struct pglist_data;
33
34/*
35 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
36 * So add a wild amount of padding here to ensure that they fall into separate
37 * cachelines. There are very few zone structures in the machine, so space
38 * consumption is not a concern here.
39 */
40#if defined(CONFIG_SMP)
41struct zone_padding {
42 char x[0];
22fc6ecc 43} ____cacheline_internodealigned_in_smp;
1da177e4
LT
44#define ZONE_PADDING(name) struct zone_padding name;
45#else
46#define ZONE_PADDING(name)
47#endif
48
2244b95a 49enum zone_stat_item {
f3dbd344
CL
50 NR_ANON_PAGES, /* Mapped anonymous pages */
51 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 52 only modified from process context */
347ce434 53 NR_FILE_PAGES,
972d1a7b
CL
54 NR_SLAB_RECLAIMABLE,
55 NR_SLAB_UNRECLAIMABLE,
df849a15 56 NR_PAGETABLE, /* used for pagetables */
b1e7a8fd 57 NR_FILE_DIRTY,
ce866b34 58 NR_WRITEBACK,
fd39fc85 59 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 60 NR_BOUNCE,
e129b5c2 61 NR_VMSCAN_WRITE,
ca889e6c
CL
62#ifdef CONFIG_NUMA
63 NUMA_HIT, /* allocated in intended node */
64 NUMA_MISS, /* allocated in non intended node */
65 NUMA_FOREIGN, /* was intended here, hit elsewhere */
66 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
67 NUMA_LOCAL, /* allocation from local node */
68 NUMA_OTHER, /* allocation from other node */
69#endif
2244b95a
CL
70 NR_VM_ZONE_STAT_ITEMS };
71
1da177e4
LT
72struct per_cpu_pages {
73 int count; /* number of pages in the list */
1da177e4
LT
74 int high; /* high watermark, emptying needed */
75 int batch; /* chunk size for buddy add/remove */
76 struct list_head list; /* the list of pages */
77};
78
79struct per_cpu_pageset {
80 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
2244b95a 81#ifdef CONFIG_SMP
df9ecaba 82 s8 stat_threshold;
2244b95a
CL
83 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
84#endif
1da177e4
LT
85} ____cacheline_aligned_in_smp;
86
e7c8d5c9
CL
87#ifdef CONFIG_NUMA
88#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
89#else
90#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
91#endif
92
2f1b6248
CL
93enum zone_type {
94 /*
95 * ZONE_DMA is used when there are devices that are not able
96 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
97 * carve out the portion of memory that is needed for these devices.
98 * The range is arch specific.
99 *
100 * Some examples
101 *
102 * Architecture Limit
103 * ---------------------------
104 * parisc, ia64, sparc <4G
105 * s390 <2G
106 * arm26 <48M
107 * arm Various
108 * alpha Unlimited or 0-16MB.
109 *
110 * i386, x86_64 and multiple other arches
111 * <16M.
112 */
113 ZONE_DMA,
fb0e7942 114#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
115 /*
116 * x86_64 needs two ZONE_DMAs because it supports devices that are
117 * only able to do DMA to the lower 16M but also 32 bit devices that
118 * can only do DMA areas below 4G.
119 */
120 ZONE_DMA32,
fb0e7942 121#endif
2f1b6248
CL
122 /*
123 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
124 * performed on pages in ZONE_NORMAL if the DMA devices support
125 * transfers to all addressable memory.
126 */
127 ZONE_NORMAL,
e53ef38d 128#ifdef CONFIG_HIGHMEM
2f1b6248
CL
129 /*
130 * A memory area that is only addressable by the kernel through
131 * mapping portions into its own address space. This is for example
132 * used by i386 to allow the kernel to address the memory beyond
133 * 900MB. The kernel will set up special mappings (page
134 * table entries on i386) for each page that the kernel needs to
135 * access.
136 */
137 ZONE_HIGHMEM,
e53ef38d 138#endif
2f1b6248
CL
139 MAX_NR_ZONES
140};
1da177e4 141
1da177e4
LT
142/*
143 * When a memory allocation must conform to specific limitations (such
144 * as being suitable for DMA) the caller will pass in hints to the
145 * allocator in the gfp_mask, in the zone modifier bits. These bits
146 * are used to select a priority ordered list of memory zones which
19655d34 147 * match the requested limits. See gfp_zone() in include/linux/gfp.h
1da177e4 148 */
fb0e7942 149
19655d34
CL
150#if !defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_HIGHMEM)
151#define ZONES_SHIFT 1
e53ef38d 152#else
19655d34 153#define ZONES_SHIFT 2
fb0e7942 154#endif
1da177e4 155
1da177e4
LT
156struct zone {
157 /* Fields commonly accessed by the page allocator */
158 unsigned long free_pages;
159 unsigned long pages_min, pages_low, pages_high;
160 /*
161 * We don't know if the memory that we're going to allocate will be freeable
162 * or/and it will be released eventually, so to avoid totally wasting several
163 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
164 * to run OOM on the lower zones despite there's tons of freeable ram
165 * on the higher zones). This array is recalculated at runtime if the
166 * sysctl_lowmem_reserve_ratio sysctl changes.
167 */
168 unsigned long lowmem_reserve[MAX_NR_ZONES];
169
e7c8d5c9 170#ifdef CONFIG_NUMA
9614634f
CL
171 /*
172 * zone reclaim becomes active if more unmapped pages exist.
173 */
8417bba4 174 unsigned long min_unmapped_pages;
0ff38490 175 unsigned long min_slab_pages;
e7c8d5c9
CL
176 struct per_cpu_pageset *pageset[NR_CPUS];
177#else
1da177e4 178 struct per_cpu_pageset pageset[NR_CPUS];
e7c8d5c9 179#endif
1da177e4
LT
180 /*
181 * free areas of different sizes
182 */
183 spinlock_t lock;
bdc8cb98
DH
184#ifdef CONFIG_MEMORY_HOTPLUG
185 /* see spanned/present_pages for more description */
186 seqlock_t span_seqlock;
187#endif
1da177e4
LT
188 struct free_area free_area[MAX_ORDER];
189
190
191 ZONE_PADDING(_pad1_)
192
193 /* Fields commonly accessed by the page reclaim scanner */
194 spinlock_t lru_lock;
195 struct list_head active_list;
196 struct list_head inactive_list;
197 unsigned long nr_scan_active;
198 unsigned long nr_scan_inactive;
199 unsigned long nr_active;
200 unsigned long nr_inactive;
201 unsigned long pages_scanned; /* since last reclaim */
202 int all_unreclaimable; /* All pages pinned */
203
1e7e5a90
MH
204 /* A count of how many reclaimers are scanning this zone */
205 atomic_t reclaim_in_progress;
753ee728 206
2244b95a
CL
207 /* Zone statistics */
208 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 209
1da177e4
LT
210 /*
211 * prev_priority holds the scanning priority for this zone. It is
212 * defined as the scanning priority at which we achieved our reclaim
213 * target at the previous try_to_free_pages() or balance_pgdat()
214 * invokation.
215 *
216 * We use prev_priority as a measure of how much stress page reclaim is
217 * under - it drives the swappiness decision: whether to unmap mapped
218 * pages.
219 *
220 * temp_priority is used to remember the scanning priority at which
221 * this zone was successfully refilled to free_pages == pages_high.
222 *
223 * Access to both these fields is quite racy even on uniprocessor. But
224 * it is expected to average out OK.
225 */
226 int temp_priority;
227 int prev_priority;
228
229
230 ZONE_PADDING(_pad2_)
231 /* Rarely used or read-mostly fields */
232
233 /*
234 * wait_table -- the array holding the hash table
02b694de 235 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
236 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
237 *
238 * The purpose of all these is to keep track of the people
239 * waiting for a page to become available and make them
240 * runnable again when possible. The trouble is that this
241 * consumes a lot of space, especially when so few things
242 * wait on pages at a given time. So instead of using
243 * per-page waitqueues, we use a waitqueue hash table.
244 *
245 * The bucket discipline is to sleep on the same queue when
246 * colliding and wake all in that wait queue when removing.
247 * When something wakes, it must check to be sure its page is
248 * truly available, a la thundering herd. The cost of a
249 * collision is great, but given the expected load of the
250 * table, they should be so rare as to be outweighed by the
251 * benefits from the saved space.
252 *
253 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
254 * primary users of these fields, and in mm/page_alloc.c
255 * free_area_init_core() performs the initialization of them.
256 */
257 wait_queue_head_t * wait_table;
02b694de 258 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
259 unsigned long wait_table_bits;
260
261 /*
262 * Discontig memory support fields.
263 */
264 struct pglist_data *zone_pgdat;
1da177e4
LT
265 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
266 unsigned long zone_start_pfn;
267
bdc8cb98
DH
268 /*
269 * zone_start_pfn, spanned_pages and present_pages are all
270 * protected by span_seqlock. It is a seqlock because it has
271 * to be read outside of zone->lock, and it is done in the main
272 * allocator path. But, it is written quite infrequently.
273 *
274 * The lock is declared along with zone->lock because it is
275 * frequently read in proximity to zone->lock. It's good to
276 * give them a chance of being in the same cacheline.
277 */
1da177e4
LT
278 unsigned long spanned_pages; /* total size, including holes */
279 unsigned long present_pages; /* amount of memory (excluding holes) */
280
281 /*
282 * rarely used fields:
283 */
284 char *name;
22fc6ecc 285} ____cacheline_internodealigned_in_smp;
1da177e4 286
1da177e4
LT
287/*
288 * The "priority" of VM scanning is how much of the queues we will scan in one
289 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
290 * queues ("queue_length >> 12") during an aging round.
291 */
292#define DEF_PRIORITY 12
293
294/*
295 * One allocation request operates on a zonelist. A zonelist
296 * is a list of zones, the first one is the 'goal' of the
297 * allocation, the other zones are fallback zones, in decreasing
298 * priority.
299 *
300 * Right now a zonelist takes up less than a cacheline. We never
301 * modify it apart from boot-up, and only a few indices are used,
302 * so despite the zonelist table being relatively big, the cache
303 * footprint of this construct is very small.
304 */
305struct zonelist {
306 struct zone *zones[MAX_NUMNODES * MAX_NR_ZONES + 1]; // NULL delimited
307};
308
c713216d
MG
309#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
310struct node_active_region {
311 unsigned long start_pfn;
312 unsigned long end_pfn;
313 int nid;
314};
315#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1da177e4
LT
316
317/*
318 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
319 * (mostly NUMA machines?) to denote a higher-level memory zone than the
320 * zone denotes.
321 *
322 * On NUMA machines, each NUMA node would have a pg_data_t to describe
323 * it's memory layout.
324 *
325 * Memory statistics and page replacement data structures are maintained on a
326 * per-zone basis.
327 */
328struct bootmem_data;
329typedef struct pglist_data {
330 struct zone node_zones[MAX_NR_ZONES];
19655d34 331 struct zonelist node_zonelists[MAX_NR_ZONES];
1da177e4 332 int nr_zones;
d41dee36 333#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4 334 struct page *node_mem_map;
d41dee36 335#endif
1da177e4 336 struct bootmem_data *bdata;
208d54e5
DH
337#ifdef CONFIG_MEMORY_HOTPLUG
338 /*
339 * Must be held any time you expect node_start_pfn, node_present_pages
340 * or node_spanned_pages stay constant. Holding this will also
341 * guarantee that any pfn_valid() stays that way.
342 *
343 * Nests above zone->lock and zone->size_seqlock.
344 */
345 spinlock_t node_size_lock;
346#endif
1da177e4
LT
347 unsigned long node_start_pfn;
348 unsigned long node_present_pages; /* total number of physical pages */
349 unsigned long node_spanned_pages; /* total size of physical page
350 range, including holes */
351 int node_id;
1da177e4
LT
352 wait_queue_head_t kswapd_wait;
353 struct task_struct *kswapd;
354 int kswapd_max_order;
355} pg_data_t;
356
357#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
358#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 359#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 360#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
361#else
362#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
363#endif
408fde81 364#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 365
208d54e5
DH
366#include <linux/memory_hotplug.h>
367
1da177e4
LT
368void __get_zone_counts(unsigned long *active, unsigned long *inactive,
369 unsigned long *free, struct pglist_data *pgdat);
370void get_zone_counts(unsigned long *active, unsigned long *inactive,
371 unsigned long *free);
372void build_all_zonelists(void);
373void wakeup_kswapd(struct zone *zone, int order);
374int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 375 int classzone_idx, int alloc_flags);
1da177e4 376
718127cc
YG
377extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
378 unsigned long size);
379
1da177e4
LT
380#ifdef CONFIG_HAVE_MEMORY_PRESENT
381void memory_present(int nid, unsigned long start, unsigned long end);
382#else
383static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
384#endif
385
386#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
387unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
388#endif
389
390/*
391 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
392 */
393#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
394
f3fe6512
CK
395static inline int populated_zone(struct zone *zone)
396{
397 return (!!zone->present_pages);
398}
399
2f1b6248 400static inline int is_highmem_idx(enum zone_type idx)
1da177e4 401{
e53ef38d 402#ifdef CONFIG_HIGHMEM
1da177e4 403 return (idx == ZONE_HIGHMEM);
e53ef38d
CL
404#else
405 return 0;
406#endif
1da177e4
LT
407}
408
2f1b6248 409static inline int is_normal_idx(enum zone_type idx)
1da177e4
LT
410{
411 return (idx == ZONE_NORMAL);
412}
9328b8fa 413
1da177e4
LT
414/**
415 * is_highmem - helper function to quickly check if a struct zone is a
416 * highmem zone or not. This is an attempt to keep references
417 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
418 * @zone - pointer to struct zone variable
419 */
420static inline int is_highmem(struct zone *zone)
421{
e53ef38d 422#ifdef CONFIG_HIGHMEM
1da177e4 423 return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
e53ef38d
CL
424#else
425 return 0;
426#endif
1da177e4
LT
427}
428
429static inline int is_normal(struct zone *zone)
430{
431 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
432}
433
9328b8fa
NP
434static inline int is_dma32(struct zone *zone)
435{
fb0e7942 436#ifdef CONFIG_ZONE_DMA32
9328b8fa 437 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
fb0e7942
CL
438#else
439 return 0;
440#endif
9328b8fa
NP
441}
442
443static inline int is_dma(struct zone *zone)
444{
445 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
446}
447
1da177e4
LT
448/* These two functions are used to setup the per zone pages min values */
449struct ctl_table;
450struct file;
451int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
452 void __user *, size_t *, loff_t *);
453extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
454int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
455 void __user *, size_t *, loff_t *);
8ad4b1fb
RS
456int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
457 void __user *, size_t *, loff_t *);
9614634f
CL
458int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
459 struct file *, void __user *, size_t *, loff_t *);
0ff38490
CL
460int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
461 struct file *, void __user *, size_t *, loff_t *);
1da177e4
LT
462
463#include <linux/topology.h>
464/* Returns the number of the current Node. */
69d81fcd 465#ifndef numa_node_id
39c715b7 466#define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
69d81fcd 467#endif
1da177e4 468
93b7504e 469#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
470
471extern struct pglist_data contig_page_data;
472#define NODE_DATA(nid) (&contig_page_data)
473#define NODE_MEM_MAP(nid) mem_map
474#define MAX_NODES_SHIFT 1
1da177e4 475
93b7504e 476#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
477
478#include <asm/mmzone.h>
479
93b7504e 480#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 481
95144c78
KH
482extern struct pglist_data *first_online_pgdat(void);
483extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
484extern struct zone *next_zone(struct zone *zone);
8357f869
KH
485
486/**
487 * for_each_pgdat - helper macro to iterate over all nodes
488 * @pgdat - pointer to a pg_data_t variable
489 */
490#define for_each_online_pgdat(pgdat) \
491 for (pgdat = first_online_pgdat(); \
492 pgdat; \
493 pgdat = next_online_pgdat(pgdat))
8357f869
KH
494/**
495 * for_each_zone - helper macro to iterate over all memory zones
496 * @zone - pointer to struct zone variable
497 *
498 * The user only needs to declare the zone variable, for_each_zone
499 * fills it in.
500 */
501#define for_each_zone(zone) \
502 for (zone = (first_online_pgdat())->node_zones; \
503 zone; \
504 zone = next_zone(zone))
505
d41dee36
AW
506#ifdef CONFIG_SPARSEMEM
507#include <asm/sparsemem.h>
508#endif
509
07808b74 510#if BITS_PER_LONG == 32
1da177e4 511/*
a2f1b424
AK
512 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
513 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
1da177e4 514 */
a2f1b424 515#define FLAGS_RESERVED 9
348f8b6c 516
1da177e4
LT
517#elif BITS_PER_LONG == 64
518/*
519 * with 64 bit flags field, there's plenty of room.
520 */
348f8b6c 521#define FLAGS_RESERVED 32
1da177e4 522
348f8b6c 523#else
1da177e4 524
348f8b6c 525#error BITS_PER_LONG not defined
1da177e4 526
1da177e4
LT
527#endif
528
c713216d
MG
529#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
530 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
b159d43f
AW
531#define early_pfn_to_nid(nid) (0UL)
532#endif
533
2bdaf115
AW
534#ifdef CONFIG_FLATMEM
535#define pfn_to_nid(pfn) (0)
536#endif
537
d41dee36
AW
538#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
539#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
540
541#ifdef CONFIG_SPARSEMEM
542
543/*
544 * SECTION_SHIFT #bits space required to store a section #
545 *
546 * PA_SECTION_SHIFT physical address to/from section number
547 * PFN_SECTION_SHIFT pfn to/from section number
548 */
549#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
550
551#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
552#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
553
554#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
555
556#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
557#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
558
559#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
560#error Allocator MAX_ORDER exceeds SECTION_SIZE
561#endif
562
563struct page;
564struct mem_section {
29751f69
AW
565 /*
566 * This is, logically, a pointer to an array of struct
567 * pages. However, it is stored with some other magic.
568 * (see sparse.c::sparse_init_one_section())
569 *
30c253e6
AW
570 * Additionally during early boot we encode node id of
571 * the location of the section here to guide allocation.
572 * (see sparse.c::memory_present())
573 *
29751f69
AW
574 * Making it a UL at least makes someone do a cast
575 * before using it wrong.
576 */
577 unsigned long section_mem_map;
d41dee36
AW
578};
579
3e347261
BP
580#ifdef CONFIG_SPARSEMEM_EXTREME
581#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
582#else
583#define SECTIONS_PER_ROOT 1
584#endif
802f192e 585
3e347261
BP
586#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
587#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
588#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 589
3e347261
BP
590#ifdef CONFIG_SPARSEMEM_EXTREME
591extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 592#else
3e347261
BP
593extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
594#endif
d41dee36 595
29751f69
AW
596static inline struct mem_section *__nr_to_section(unsigned long nr)
597{
3e347261
BP
598 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
599 return NULL;
600 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 601}
4ca644d9 602extern int __section_nr(struct mem_section* ms);
29751f69
AW
603
604/*
605 * We use the lower bits of the mem_map pointer to store
606 * a little bit of information. There should be at least
607 * 3 bits here due to 32-bit alignment.
608 */
609#define SECTION_MARKED_PRESENT (1UL<<0)
610#define SECTION_HAS_MEM_MAP (1UL<<1)
611#define SECTION_MAP_LAST_BIT (1UL<<2)
612#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 613#define SECTION_NID_SHIFT 2
29751f69
AW
614
615static inline struct page *__section_mem_map_addr(struct mem_section *section)
616{
617 unsigned long map = section->section_mem_map;
618 map &= SECTION_MAP_MASK;
619 return (struct page *)map;
620}
621
622static inline int valid_section(struct mem_section *section)
623{
802f192e 624 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
625}
626
627static inline int section_has_mem_map(struct mem_section *section)
628{
802f192e 629 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
630}
631
632static inline int valid_section_nr(unsigned long nr)
633{
634 return valid_section(__nr_to_section(nr));
635}
636
d41dee36
AW
637static inline struct mem_section *__pfn_to_section(unsigned long pfn)
638{
29751f69 639 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
640}
641
d41dee36
AW
642static inline int pfn_valid(unsigned long pfn)
643{
644 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
645 return 0;
29751f69 646 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36
AW
647}
648
649/*
650 * These are _only_ used during initialisation, therefore they
651 * can use __initdata ... They could have names to indicate
652 * this restriction.
653 */
654#ifdef CONFIG_NUMA
161599ff
AW
655#define pfn_to_nid(pfn) \
656({ \
657 unsigned long __pfn_to_nid_pfn = (pfn); \
658 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
659})
2bdaf115
AW
660#else
661#define pfn_to_nid(pfn) (0)
d41dee36
AW
662#endif
663
d41dee36
AW
664#define early_pfn_valid(pfn) pfn_valid(pfn)
665void sparse_init(void);
666#else
667#define sparse_init() do {} while (0)
28ae55c9 668#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
669#endif /* CONFIG_SPARSEMEM */
670
671#ifndef early_pfn_valid
672#define early_pfn_valid(pfn) (1)
673#endif
674
675void memory_present(int nid, unsigned long start, unsigned long end);
676unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
677
1da177e4
LT
678#endif /* !__ASSEMBLY__ */
679#endif /* __KERNEL__ */
680#endif /* _LINUX_MMZONE_H */