]> bbs.cooldavid.org Git - net-next-2.6.git/blame - include/linux/mmzone.h
[PATCH] Use ZVC for free_pages
[net-next-2.6.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
4#ifdef __KERNEL__
5#ifndef __ASSEMBLY__
6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
10#include <linux/cache.h>
11#include <linux/threads.h>
12#include <linux/numa.h>
13#include <linux/init.h>
bdc8cb98 14#include <linux/seqlock.h>
8357f869 15#include <linux/nodemask.h>
1da177e4 16#include <asm/atomic.h>
93ff66bf 17#include <asm/page.h>
1da177e4
LT
18
19/* Free memory management - zoned buddy allocator. */
20#ifndef CONFIG_FORCE_MAX_ZONEORDER
21#define MAX_ORDER 11
22#else
23#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
24#endif
e984bb43 25#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4
LT
26
27struct free_area {
28 struct list_head free_list;
29 unsigned long nr_free;
30};
31
32struct pglist_data;
33
34/*
35 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
36 * So add a wild amount of padding here to ensure that they fall into separate
37 * cachelines. There are very few zone structures in the machine, so space
38 * consumption is not a concern here.
39 */
40#if defined(CONFIG_SMP)
41struct zone_padding {
42 char x[0];
22fc6ecc 43} ____cacheline_internodealigned_in_smp;
1da177e4
LT
44#define ZONE_PADDING(name) struct zone_padding name;
45#else
46#define ZONE_PADDING(name)
47#endif
48
2244b95a 49enum zone_stat_item {
d23ad423 50 NR_FREE_PAGES,
c8785385
CL
51 NR_INACTIVE,
52 NR_ACTIVE,
f3dbd344
CL
53 NR_ANON_PAGES, /* Mapped anonymous pages */
54 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 55 only modified from process context */
347ce434 56 NR_FILE_PAGES,
972d1a7b
CL
57 NR_SLAB_RECLAIMABLE,
58 NR_SLAB_UNRECLAIMABLE,
df849a15 59 NR_PAGETABLE, /* used for pagetables */
b1e7a8fd 60 NR_FILE_DIRTY,
ce866b34 61 NR_WRITEBACK,
fd39fc85 62 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 63 NR_BOUNCE,
e129b5c2 64 NR_VMSCAN_WRITE,
ca889e6c
CL
65#ifdef CONFIG_NUMA
66 NUMA_HIT, /* allocated in intended node */
67 NUMA_MISS, /* allocated in non intended node */
68 NUMA_FOREIGN, /* was intended here, hit elsewhere */
69 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
70 NUMA_LOCAL, /* allocation from local node */
71 NUMA_OTHER, /* allocation from other node */
72#endif
2244b95a
CL
73 NR_VM_ZONE_STAT_ITEMS };
74
1da177e4
LT
75struct per_cpu_pages {
76 int count; /* number of pages in the list */
1da177e4
LT
77 int high; /* high watermark, emptying needed */
78 int batch; /* chunk size for buddy add/remove */
79 struct list_head list; /* the list of pages */
80};
81
82struct per_cpu_pageset {
83 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
2244b95a 84#ifdef CONFIG_SMP
df9ecaba 85 s8 stat_threshold;
2244b95a
CL
86 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
87#endif
1da177e4
LT
88} ____cacheline_aligned_in_smp;
89
e7c8d5c9
CL
90#ifdef CONFIG_NUMA
91#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
92#else
93#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
94#endif
95
2f1b6248
CL
96enum zone_type {
97 /*
98 * ZONE_DMA is used when there are devices that are not able
99 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
100 * carve out the portion of memory that is needed for these devices.
101 * The range is arch specific.
102 *
103 * Some examples
104 *
105 * Architecture Limit
106 * ---------------------------
107 * parisc, ia64, sparc <4G
108 * s390 <2G
109 * arm26 <48M
110 * arm Various
111 * alpha Unlimited or 0-16MB.
112 *
113 * i386, x86_64 and multiple other arches
114 * <16M.
115 */
116 ZONE_DMA,
fb0e7942 117#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
118 /*
119 * x86_64 needs two ZONE_DMAs because it supports devices that are
120 * only able to do DMA to the lower 16M but also 32 bit devices that
121 * can only do DMA areas below 4G.
122 */
123 ZONE_DMA32,
fb0e7942 124#endif
2f1b6248
CL
125 /*
126 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
127 * performed on pages in ZONE_NORMAL if the DMA devices support
128 * transfers to all addressable memory.
129 */
130 ZONE_NORMAL,
e53ef38d 131#ifdef CONFIG_HIGHMEM
2f1b6248
CL
132 /*
133 * A memory area that is only addressable by the kernel through
134 * mapping portions into its own address space. This is for example
135 * used by i386 to allow the kernel to address the memory beyond
136 * 900MB. The kernel will set up special mappings (page
137 * table entries on i386) for each page that the kernel needs to
138 * access.
139 */
140 ZONE_HIGHMEM,
e53ef38d 141#endif
2f1b6248
CL
142 MAX_NR_ZONES
143};
1da177e4 144
1da177e4
LT
145/*
146 * When a memory allocation must conform to specific limitations (such
147 * as being suitable for DMA) the caller will pass in hints to the
148 * allocator in the gfp_mask, in the zone modifier bits. These bits
149 * are used to select a priority ordered list of memory zones which
19655d34 150 * match the requested limits. See gfp_zone() in include/linux/gfp.h
1da177e4 151 */
fb0e7942 152
19655d34
CL
153#if !defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_HIGHMEM)
154#define ZONES_SHIFT 1
e53ef38d 155#else
19655d34 156#define ZONES_SHIFT 2
fb0e7942 157#endif
1da177e4 158
1da177e4
LT
159struct zone {
160 /* Fields commonly accessed by the page allocator */
1da177e4
LT
161 unsigned long pages_min, pages_low, pages_high;
162 /*
163 * We don't know if the memory that we're going to allocate will be freeable
164 * or/and it will be released eventually, so to avoid totally wasting several
165 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
166 * to run OOM on the lower zones despite there's tons of freeable ram
167 * on the higher zones). This array is recalculated at runtime if the
168 * sysctl_lowmem_reserve_ratio sysctl changes.
169 */
170 unsigned long lowmem_reserve[MAX_NR_ZONES];
171
e7c8d5c9 172#ifdef CONFIG_NUMA
d5f541ed 173 int node;
9614634f
CL
174 /*
175 * zone reclaim becomes active if more unmapped pages exist.
176 */
8417bba4 177 unsigned long min_unmapped_pages;
0ff38490 178 unsigned long min_slab_pages;
e7c8d5c9
CL
179 struct per_cpu_pageset *pageset[NR_CPUS];
180#else
1da177e4 181 struct per_cpu_pageset pageset[NR_CPUS];
e7c8d5c9 182#endif
1da177e4
LT
183 /*
184 * free areas of different sizes
185 */
186 spinlock_t lock;
bdc8cb98
DH
187#ifdef CONFIG_MEMORY_HOTPLUG
188 /* see spanned/present_pages for more description */
189 seqlock_t span_seqlock;
190#endif
1da177e4
LT
191 struct free_area free_area[MAX_ORDER];
192
193
194 ZONE_PADDING(_pad1_)
195
196 /* Fields commonly accessed by the page reclaim scanner */
197 spinlock_t lru_lock;
198 struct list_head active_list;
199 struct list_head inactive_list;
200 unsigned long nr_scan_active;
201 unsigned long nr_scan_inactive;
1da177e4
LT
202 unsigned long pages_scanned; /* since last reclaim */
203 int all_unreclaimable; /* All pages pinned */
204
1e7e5a90
MH
205 /* A count of how many reclaimers are scanning this zone */
206 atomic_t reclaim_in_progress;
753ee728 207
2244b95a
CL
208 /* Zone statistics */
209 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 210
1da177e4
LT
211 /*
212 * prev_priority holds the scanning priority for this zone. It is
213 * defined as the scanning priority at which we achieved our reclaim
214 * target at the previous try_to_free_pages() or balance_pgdat()
215 * invokation.
216 *
217 * We use prev_priority as a measure of how much stress page reclaim is
218 * under - it drives the swappiness decision: whether to unmap mapped
219 * pages.
220 *
3bb1a852 221 * Access to both this field is quite racy even on uniprocessor. But
1da177e4
LT
222 * it is expected to average out OK.
223 */
1da177e4
LT
224 int prev_priority;
225
226
227 ZONE_PADDING(_pad2_)
228 /* Rarely used or read-mostly fields */
229
230 /*
231 * wait_table -- the array holding the hash table
02b694de 232 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
233 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
234 *
235 * The purpose of all these is to keep track of the people
236 * waiting for a page to become available and make them
237 * runnable again when possible. The trouble is that this
238 * consumes a lot of space, especially when so few things
239 * wait on pages at a given time. So instead of using
240 * per-page waitqueues, we use a waitqueue hash table.
241 *
242 * The bucket discipline is to sleep on the same queue when
243 * colliding and wake all in that wait queue when removing.
244 * When something wakes, it must check to be sure its page is
245 * truly available, a la thundering herd. The cost of a
246 * collision is great, but given the expected load of the
247 * table, they should be so rare as to be outweighed by the
248 * benefits from the saved space.
249 *
250 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
251 * primary users of these fields, and in mm/page_alloc.c
252 * free_area_init_core() performs the initialization of them.
253 */
254 wait_queue_head_t * wait_table;
02b694de 255 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
256 unsigned long wait_table_bits;
257
258 /*
259 * Discontig memory support fields.
260 */
261 struct pglist_data *zone_pgdat;
1da177e4
LT
262 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
263 unsigned long zone_start_pfn;
264
bdc8cb98
DH
265 /*
266 * zone_start_pfn, spanned_pages and present_pages are all
267 * protected by span_seqlock. It is a seqlock because it has
268 * to be read outside of zone->lock, and it is done in the main
269 * allocator path. But, it is written quite infrequently.
270 *
271 * The lock is declared along with zone->lock because it is
272 * frequently read in proximity to zone->lock. It's good to
273 * give them a chance of being in the same cacheline.
274 */
1da177e4
LT
275 unsigned long spanned_pages; /* total size, including holes */
276 unsigned long present_pages; /* amount of memory (excluding holes) */
277
278 /*
279 * rarely used fields:
280 */
15ad7cdc 281 const char *name;
22fc6ecc 282} ____cacheline_internodealigned_in_smp;
1da177e4 283
1da177e4
LT
284/*
285 * The "priority" of VM scanning is how much of the queues we will scan in one
286 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
287 * queues ("queue_length >> 12") during an aging round.
288 */
289#define DEF_PRIORITY 12
290
9276b1bc
PJ
291/* Maximum number of zones on a zonelist */
292#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
293
294#ifdef CONFIG_NUMA
295/*
296 * We cache key information from each zonelist for smaller cache
297 * footprint when scanning for free pages in get_page_from_freelist().
298 *
299 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
300 * up short of free memory since the last time (last_fullzone_zap)
301 * we zero'd fullzones.
302 * 2) The array z_to_n[] maps each zone in the zonelist to its node
303 * id, so that we can efficiently evaluate whether that node is
304 * set in the current tasks mems_allowed.
305 *
306 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
307 * indexed by a zones offset in the zonelist zones[] array.
308 *
309 * The get_page_from_freelist() routine does two scans. During the
310 * first scan, we skip zones whose corresponding bit in 'fullzones'
311 * is set or whose corresponding node in current->mems_allowed (which
312 * comes from cpusets) is not set. During the second scan, we bypass
313 * this zonelist_cache, to ensure we look methodically at each zone.
314 *
315 * Once per second, we zero out (zap) fullzones, forcing us to
316 * reconsider nodes that might have regained more free memory.
317 * The field last_full_zap is the time we last zapped fullzones.
318 *
319 * This mechanism reduces the amount of time we waste repeatedly
320 * reexaming zones for free memory when they just came up low on
321 * memory momentarilly ago.
322 *
323 * The zonelist_cache struct members logically belong in struct
324 * zonelist. However, the mempolicy zonelists constructed for
325 * MPOL_BIND are intentionally variable length (and usually much
326 * shorter). A general purpose mechanism for handling structs with
327 * multiple variable length members is more mechanism than we want
328 * here. We resort to some special case hackery instead.
329 *
330 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
331 * part because they are shorter), so we put the fixed length stuff
332 * at the front of the zonelist struct, ending in a variable length
333 * zones[], as is needed by MPOL_BIND.
334 *
335 * Then we put the optional zonelist cache on the end of the zonelist
336 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
337 * the fixed length portion at the front of the struct. This pointer
338 * both enables us to find the zonelist cache, and in the case of
339 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
340 * to know that the zonelist cache is not there.
341 *
342 * The end result is that struct zonelists come in two flavors:
343 * 1) The full, fixed length version, shown below, and
344 * 2) The custom zonelists for MPOL_BIND.
345 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
346 *
347 * Even though there may be multiple CPU cores on a node modifying
348 * fullzones or last_full_zap in the same zonelist_cache at the same
349 * time, we don't lock it. This is just hint data - if it is wrong now
350 * and then, the allocator will still function, perhaps a bit slower.
351 */
352
353
354struct zonelist_cache {
9276b1bc 355 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
7253f4ef 356 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
9276b1bc
PJ
357 unsigned long last_full_zap; /* when last zap'd (jiffies) */
358};
359#else
360struct zonelist_cache;
361#endif
362
1da177e4
LT
363/*
364 * One allocation request operates on a zonelist. A zonelist
365 * is a list of zones, the first one is the 'goal' of the
366 * allocation, the other zones are fallback zones, in decreasing
367 * priority.
368 *
9276b1bc
PJ
369 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
370 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
1da177e4 371 */
9276b1bc 372
1da177e4 373struct zonelist {
9276b1bc
PJ
374 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
375 struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited
376#ifdef CONFIG_NUMA
377 struct zonelist_cache zlcache; // optional ...
378#endif
1da177e4
LT
379};
380
c713216d
MG
381#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
382struct node_active_region {
383 unsigned long start_pfn;
384 unsigned long end_pfn;
385 int nid;
386};
387#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1da177e4 388
5b99cd0e
HC
389#ifndef CONFIG_DISCONTIGMEM
390/* The array of struct pages - for discontigmem use pgdat->lmem_map */
391extern struct page *mem_map;
392#endif
393
1da177e4
LT
394/*
395 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
396 * (mostly NUMA machines?) to denote a higher-level memory zone than the
397 * zone denotes.
398 *
399 * On NUMA machines, each NUMA node would have a pg_data_t to describe
400 * it's memory layout.
401 *
402 * Memory statistics and page replacement data structures are maintained on a
403 * per-zone basis.
404 */
405struct bootmem_data;
406typedef struct pglist_data {
407 struct zone node_zones[MAX_NR_ZONES];
19655d34 408 struct zonelist node_zonelists[MAX_NR_ZONES];
1da177e4 409 int nr_zones;
d41dee36 410#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4 411 struct page *node_mem_map;
d41dee36 412#endif
1da177e4 413 struct bootmem_data *bdata;
208d54e5
DH
414#ifdef CONFIG_MEMORY_HOTPLUG
415 /*
416 * Must be held any time you expect node_start_pfn, node_present_pages
417 * or node_spanned_pages stay constant. Holding this will also
418 * guarantee that any pfn_valid() stays that way.
419 *
420 * Nests above zone->lock and zone->size_seqlock.
421 */
422 spinlock_t node_size_lock;
423#endif
1da177e4
LT
424 unsigned long node_start_pfn;
425 unsigned long node_present_pages; /* total number of physical pages */
426 unsigned long node_spanned_pages; /* total size of physical page
427 range, including holes */
428 int node_id;
1da177e4
LT
429 wait_queue_head_t kswapd_wait;
430 struct task_struct *kswapd;
431 int kswapd_max_order;
432} pg_data_t;
433
434#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
435#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 436#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 437#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
438#else
439#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
440#endif
408fde81 441#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 442
208d54e5
DH
443#include <linux/memory_hotplug.h>
444
1da177e4
LT
445void __get_zone_counts(unsigned long *active, unsigned long *inactive,
446 unsigned long *free, struct pglist_data *pgdat);
447void get_zone_counts(unsigned long *active, unsigned long *inactive,
448 unsigned long *free);
449void build_all_zonelists(void);
450void wakeup_kswapd(struct zone *zone, int order);
451int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 452 int classzone_idx, int alloc_flags);
a2f3aa02
DH
453enum memmap_context {
454 MEMMAP_EARLY,
455 MEMMAP_HOTPLUG,
456};
718127cc 457extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
a2f3aa02
DH
458 unsigned long size,
459 enum memmap_context context);
718127cc 460
1da177e4
LT
461#ifdef CONFIG_HAVE_MEMORY_PRESENT
462void memory_present(int nid, unsigned long start, unsigned long end);
463#else
464static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
465#endif
466
467#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
468unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
469#endif
470
471/*
472 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
473 */
474#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
475
f3fe6512
CK
476static inline int populated_zone(struct zone *zone)
477{
478 return (!!zone->present_pages);
479}
480
2f1b6248 481static inline int is_highmem_idx(enum zone_type idx)
1da177e4 482{
e53ef38d 483#ifdef CONFIG_HIGHMEM
1da177e4 484 return (idx == ZONE_HIGHMEM);
e53ef38d
CL
485#else
486 return 0;
487#endif
1da177e4
LT
488}
489
2f1b6248 490static inline int is_normal_idx(enum zone_type idx)
1da177e4
LT
491{
492 return (idx == ZONE_NORMAL);
493}
9328b8fa 494
1da177e4
LT
495/**
496 * is_highmem - helper function to quickly check if a struct zone is a
497 * highmem zone or not. This is an attempt to keep references
498 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
499 * @zone - pointer to struct zone variable
500 */
501static inline int is_highmem(struct zone *zone)
502{
e53ef38d 503#ifdef CONFIG_HIGHMEM
1da177e4 504 return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
e53ef38d
CL
505#else
506 return 0;
507#endif
1da177e4
LT
508}
509
510static inline int is_normal(struct zone *zone)
511{
512 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
513}
514
9328b8fa
NP
515static inline int is_dma32(struct zone *zone)
516{
fb0e7942 517#ifdef CONFIG_ZONE_DMA32
9328b8fa 518 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
fb0e7942
CL
519#else
520 return 0;
521#endif
9328b8fa
NP
522}
523
524static inline int is_dma(struct zone *zone)
525{
526 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
527}
528
1da177e4
LT
529/* These two functions are used to setup the per zone pages min values */
530struct ctl_table;
531struct file;
532int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
533 void __user *, size_t *, loff_t *);
534extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
535int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
536 void __user *, size_t *, loff_t *);
8ad4b1fb
RS
537int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
538 void __user *, size_t *, loff_t *);
9614634f
CL
539int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
540 struct file *, void __user *, size_t *, loff_t *);
0ff38490
CL
541int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
542 struct file *, void __user *, size_t *, loff_t *);
1da177e4
LT
543
544#include <linux/topology.h>
545/* Returns the number of the current Node. */
69d81fcd 546#ifndef numa_node_id
39c715b7 547#define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
69d81fcd 548#endif
1da177e4 549
93b7504e 550#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
551
552extern struct pglist_data contig_page_data;
553#define NODE_DATA(nid) (&contig_page_data)
554#define NODE_MEM_MAP(nid) mem_map
555#define MAX_NODES_SHIFT 1
1da177e4 556
93b7504e 557#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
558
559#include <asm/mmzone.h>
560
93b7504e 561#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 562
95144c78
KH
563extern struct pglist_data *first_online_pgdat(void);
564extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
565extern struct zone *next_zone(struct zone *zone);
8357f869
KH
566
567/**
568 * for_each_pgdat - helper macro to iterate over all nodes
569 * @pgdat - pointer to a pg_data_t variable
570 */
571#define for_each_online_pgdat(pgdat) \
572 for (pgdat = first_online_pgdat(); \
573 pgdat; \
574 pgdat = next_online_pgdat(pgdat))
8357f869
KH
575/**
576 * for_each_zone - helper macro to iterate over all memory zones
577 * @zone - pointer to struct zone variable
578 *
579 * The user only needs to declare the zone variable, for_each_zone
580 * fills it in.
581 */
582#define for_each_zone(zone) \
583 for (zone = (first_online_pgdat())->node_zones; \
584 zone; \
585 zone = next_zone(zone))
586
d41dee36
AW
587#ifdef CONFIG_SPARSEMEM
588#include <asm/sparsemem.h>
589#endif
590
07808b74 591#if BITS_PER_LONG == 32
1da177e4 592/*
a2f1b424
AK
593 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
594 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
1da177e4 595 */
a2f1b424 596#define FLAGS_RESERVED 9
348f8b6c 597
1da177e4
LT
598#elif BITS_PER_LONG == 64
599/*
600 * with 64 bit flags field, there's plenty of room.
601 */
348f8b6c 602#define FLAGS_RESERVED 32
1da177e4 603
348f8b6c 604#else
1da177e4 605
348f8b6c 606#error BITS_PER_LONG not defined
1da177e4 607
1da177e4
LT
608#endif
609
c713216d
MG
610#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
611 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
b159d43f
AW
612#define early_pfn_to_nid(nid) (0UL)
613#endif
614
2bdaf115
AW
615#ifdef CONFIG_FLATMEM
616#define pfn_to_nid(pfn) (0)
617#endif
618
d41dee36
AW
619#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
620#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
621
622#ifdef CONFIG_SPARSEMEM
623
624/*
625 * SECTION_SHIFT #bits space required to store a section #
626 *
627 * PA_SECTION_SHIFT physical address to/from section number
628 * PFN_SECTION_SHIFT pfn to/from section number
629 */
630#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
631
632#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
633#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
634
635#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
636
637#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
638#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
639
640#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
641#error Allocator MAX_ORDER exceeds SECTION_SIZE
642#endif
643
644struct page;
645struct mem_section {
29751f69
AW
646 /*
647 * This is, logically, a pointer to an array of struct
648 * pages. However, it is stored with some other magic.
649 * (see sparse.c::sparse_init_one_section())
650 *
30c253e6
AW
651 * Additionally during early boot we encode node id of
652 * the location of the section here to guide allocation.
653 * (see sparse.c::memory_present())
654 *
29751f69
AW
655 * Making it a UL at least makes someone do a cast
656 * before using it wrong.
657 */
658 unsigned long section_mem_map;
d41dee36
AW
659};
660
3e347261
BP
661#ifdef CONFIG_SPARSEMEM_EXTREME
662#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
663#else
664#define SECTIONS_PER_ROOT 1
665#endif
802f192e 666
3e347261
BP
667#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
668#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
669#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 670
3e347261
BP
671#ifdef CONFIG_SPARSEMEM_EXTREME
672extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 673#else
3e347261
BP
674extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
675#endif
d41dee36 676
29751f69
AW
677static inline struct mem_section *__nr_to_section(unsigned long nr)
678{
3e347261
BP
679 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
680 return NULL;
681 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 682}
4ca644d9 683extern int __section_nr(struct mem_section* ms);
29751f69
AW
684
685/*
686 * We use the lower bits of the mem_map pointer to store
687 * a little bit of information. There should be at least
688 * 3 bits here due to 32-bit alignment.
689 */
690#define SECTION_MARKED_PRESENT (1UL<<0)
691#define SECTION_HAS_MEM_MAP (1UL<<1)
692#define SECTION_MAP_LAST_BIT (1UL<<2)
693#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 694#define SECTION_NID_SHIFT 2
29751f69
AW
695
696static inline struct page *__section_mem_map_addr(struct mem_section *section)
697{
698 unsigned long map = section->section_mem_map;
699 map &= SECTION_MAP_MASK;
700 return (struct page *)map;
701}
702
703static inline int valid_section(struct mem_section *section)
704{
802f192e 705 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
706}
707
708static inline int section_has_mem_map(struct mem_section *section)
709{
802f192e 710 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
711}
712
713static inline int valid_section_nr(unsigned long nr)
714{
715 return valid_section(__nr_to_section(nr));
716}
717
d41dee36
AW
718static inline struct mem_section *__pfn_to_section(unsigned long pfn)
719{
29751f69 720 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
721}
722
d41dee36
AW
723static inline int pfn_valid(unsigned long pfn)
724{
725 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
726 return 0;
29751f69 727 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36
AW
728}
729
730/*
731 * These are _only_ used during initialisation, therefore they
732 * can use __initdata ... They could have names to indicate
733 * this restriction.
734 */
735#ifdef CONFIG_NUMA
161599ff
AW
736#define pfn_to_nid(pfn) \
737({ \
738 unsigned long __pfn_to_nid_pfn = (pfn); \
739 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
740})
2bdaf115
AW
741#else
742#define pfn_to_nid(pfn) (0)
d41dee36
AW
743#endif
744
d41dee36
AW
745#define early_pfn_valid(pfn) pfn_valid(pfn)
746void sparse_init(void);
747#else
748#define sparse_init() do {} while (0)
28ae55c9 749#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
750#endif /* CONFIG_SPARSEMEM */
751
75167957
AW
752#ifdef CONFIG_NODES_SPAN_OTHER_NODES
753#define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
754#else
755#define early_pfn_in_nid(pfn, nid) (1)
756#endif
757
d41dee36
AW
758#ifndef early_pfn_valid
759#define early_pfn_valid(pfn) (1)
760#endif
761
762void memory_present(int nid, unsigned long start, unsigned long end);
763unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
764
1da177e4
LT
765#endif /* !__ASSEMBLY__ */
766#endif /* __KERNEL__ */
767#endif /* _LINUX_MMZONE_H */