]> bbs.cooldavid.org Git - net-next-2.6.git/blame - include/linux/mmzone.h
Add a movablecore= parameter for sizing ZONE_MOVABLE
[net-next-2.6.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
4#ifdef __KERNEL__
5#ifndef __ASSEMBLY__
6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
10#include <linux/cache.h>
11#include <linux/threads.h>
12#include <linux/numa.h>
13#include <linux/init.h>
bdc8cb98 14#include <linux/seqlock.h>
8357f869 15#include <linux/nodemask.h>
1da177e4 16#include <asm/atomic.h>
93ff66bf 17#include <asm/page.h>
1da177e4
LT
18
19/* Free memory management - zoned buddy allocator. */
20#ifndef CONFIG_FORCE_MAX_ZONEORDER
21#define MAX_ORDER 11
22#else
23#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
24#endif
e984bb43 25#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4
LT
26
27struct free_area {
28 struct list_head free_list;
29 unsigned long nr_free;
30};
31
32struct pglist_data;
33
34/*
35 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
36 * So add a wild amount of padding here to ensure that they fall into separate
37 * cachelines. There are very few zone structures in the machine, so space
38 * consumption is not a concern here.
39 */
40#if defined(CONFIG_SMP)
41struct zone_padding {
42 char x[0];
22fc6ecc 43} ____cacheline_internodealigned_in_smp;
1da177e4
LT
44#define ZONE_PADDING(name) struct zone_padding name;
45#else
46#define ZONE_PADDING(name)
47#endif
48
2244b95a 49enum zone_stat_item {
51ed4491 50 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 51 NR_FREE_PAGES,
c8785385
CL
52 NR_INACTIVE,
53 NR_ACTIVE,
f3dbd344
CL
54 NR_ANON_PAGES, /* Mapped anonymous pages */
55 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 56 only modified from process context */
347ce434 57 NR_FILE_PAGES,
b1e7a8fd 58 NR_FILE_DIRTY,
ce866b34 59 NR_WRITEBACK,
51ed4491
CL
60 /* Second 128 byte cacheline */
61 NR_SLAB_RECLAIMABLE,
62 NR_SLAB_UNRECLAIMABLE,
63 NR_PAGETABLE, /* used for pagetables */
fd39fc85 64 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 65 NR_BOUNCE,
e129b5c2 66 NR_VMSCAN_WRITE,
ca889e6c
CL
67#ifdef CONFIG_NUMA
68 NUMA_HIT, /* allocated in intended node */
69 NUMA_MISS, /* allocated in non intended node */
70 NUMA_FOREIGN, /* was intended here, hit elsewhere */
71 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
72 NUMA_LOCAL, /* allocation from local node */
73 NUMA_OTHER, /* allocation from other node */
74#endif
2244b95a
CL
75 NR_VM_ZONE_STAT_ITEMS };
76
1da177e4
LT
77struct per_cpu_pages {
78 int count; /* number of pages in the list */
1da177e4
LT
79 int high; /* high watermark, emptying needed */
80 int batch; /* chunk size for buddy add/remove */
81 struct list_head list; /* the list of pages */
82};
83
84struct per_cpu_pageset {
85 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
4037d452
CL
86#ifdef CONFIG_NUMA
87 s8 expire;
88#endif
2244b95a 89#ifdef CONFIG_SMP
df9ecaba 90 s8 stat_threshold;
2244b95a
CL
91 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
92#endif
1da177e4
LT
93} ____cacheline_aligned_in_smp;
94
e7c8d5c9
CL
95#ifdef CONFIG_NUMA
96#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
97#else
98#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
99#endif
100
2f1b6248 101enum zone_type {
4b51d669 102#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
103 /*
104 * ZONE_DMA is used when there are devices that are not able
105 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
106 * carve out the portion of memory that is needed for these devices.
107 * The range is arch specific.
108 *
109 * Some examples
110 *
111 * Architecture Limit
112 * ---------------------------
113 * parisc, ia64, sparc <4G
114 * s390 <2G
115 * arm26 <48M
116 * arm Various
117 * alpha Unlimited or 0-16MB.
118 *
119 * i386, x86_64 and multiple other arches
120 * <16M.
121 */
122 ZONE_DMA,
4b51d669 123#endif
fb0e7942 124#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
125 /*
126 * x86_64 needs two ZONE_DMAs because it supports devices that are
127 * only able to do DMA to the lower 16M but also 32 bit devices that
128 * can only do DMA areas below 4G.
129 */
130 ZONE_DMA32,
fb0e7942 131#endif
2f1b6248
CL
132 /*
133 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
134 * performed on pages in ZONE_NORMAL if the DMA devices support
135 * transfers to all addressable memory.
136 */
137 ZONE_NORMAL,
e53ef38d 138#ifdef CONFIG_HIGHMEM
2f1b6248
CL
139 /*
140 * A memory area that is only addressable by the kernel through
141 * mapping portions into its own address space. This is for example
142 * used by i386 to allow the kernel to address the memory beyond
143 * 900MB. The kernel will set up special mappings (page
144 * table entries on i386) for each page that the kernel needs to
145 * access.
146 */
147 ZONE_HIGHMEM,
e53ef38d 148#endif
2a1e274a 149 ZONE_MOVABLE,
2f1b6248
CL
150 MAX_NR_ZONES
151};
1da177e4 152
1da177e4
LT
153/*
154 * When a memory allocation must conform to specific limitations (such
155 * as being suitable for DMA) the caller will pass in hints to the
156 * allocator in the gfp_mask, in the zone modifier bits. These bits
157 * are used to select a priority ordered list of memory zones which
19655d34 158 * match the requested limits. See gfp_zone() in include/linux/gfp.h
1da177e4 159 */
fb0e7942 160
4b51d669
CL
161/*
162 * Count the active zones. Note that the use of defined(X) outside
163 * #if and family is not necessarily defined so ensure we cannot use
164 * it later. Use __ZONE_COUNT to work out how many shift bits we need.
165 */
166#define __ZONE_COUNT ( \
167 defined(CONFIG_ZONE_DMA) \
168 + defined(CONFIG_ZONE_DMA32) \
169 + 1 \
170 + defined(CONFIG_HIGHMEM) \
2a1e274a 171 + 1 \
4b51d669
CL
172)
173#if __ZONE_COUNT < 2
174#define ZONES_SHIFT 0
175#elif __ZONE_COUNT <= 2
19655d34 176#define ZONES_SHIFT 1
4b51d669 177#elif __ZONE_COUNT <= 4
19655d34 178#define ZONES_SHIFT 2
4b51d669
CL
179#else
180#error ZONES_SHIFT -- too many zones configured adjust calculation
fb0e7942 181#endif
4b51d669 182#undef __ZONE_COUNT
1da177e4 183
1da177e4
LT
184struct zone {
185 /* Fields commonly accessed by the page allocator */
1da177e4
LT
186 unsigned long pages_min, pages_low, pages_high;
187 /*
188 * We don't know if the memory that we're going to allocate will be freeable
189 * or/and it will be released eventually, so to avoid totally wasting several
190 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
191 * to run OOM on the lower zones despite there's tons of freeable ram
192 * on the higher zones). This array is recalculated at runtime if the
193 * sysctl_lowmem_reserve_ratio sysctl changes.
194 */
195 unsigned long lowmem_reserve[MAX_NR_ZONES];
196
e7c8d5c9 197#ifdef CONFIG_NUMA
d5f541ed 198 int node;
9614634f
CL
199 /*
200 * zone reclaim becomes active if more unmapped pages exist.
201 */
8417bba4 202 unsigned long min_unmapped_pages;
0ff38490 203 unsigned long min_slab_pages;
e7c8d5c9
CL
204 struct per_cpu_pageset *pageset[NR_CPUS];
205#else
1da177e4 206 struct per_cpu_pageset pageset[NR_CPUS];
e7c8d5c9 207#endif
1da177e4
LT
208 /*
209 * free areas of different sizes
210 */
211 spinlock_t lock;
bdc8cb98
DH
212#ifdef CONFIG_MEMORY_HOTPLUG
213 /* see spanned/present_pages for more description */
214 seqlock_t span_seqlock;
215#endif
1da177e4
LT
216 struct free_area free_area[MAX_ORDER];
217
218
219 ZONE_PADDING(_pad1_)
220
221 /* Fields commonly accessed by the page reclaim scanner */
222 spinlock_t lru_lock;
223 struct list_head active_list;
224 struct list_head inactive_list;
225 unsigned long nr_scan_active;
226 unsigned long nr_scan_inactive;
1da177e4
LT
227 unsigned long pages_scanned; /* since last reclaim */
228 int all_unreclaimable; /* All pages pinned */
229
1e7e5a90
MH
230 /* A count of how many reclaimers are scanning this zone */
231 atomic_t reclaim_in_progress;
753ee728 232
2244b95a
CL
233 /* Zone statistics */
234 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 235
1da177e4
LT
236 /*
237 * prev_priority holds the scanning priority for this zone. It is
238 * defined as the scanning priority at which we achieved our reclaim
239 * target at the previous try_to_free_pages() or balance_pgdat()
240 * invokation.
241 *
242 * We use prev_priority as a measure of how much stress page reclaim is
243 * under - it drives the swappiness decision: whether to unmap mapped
244 * pages.
245 *
3bb1a852 246 * Access to both this field is quite racy even on uniprocessor. But
1da177e4
LT
247 * it is expected to average out OK.
248 */
1da177e4
LT
249 int prev_priority;
250
251
252 ZONE_PADDING(_pad2_)
253 /* Rarely used or read-mostly fields */
254
255 /*
256 * wait_table -- the array holding the hash table
02b694de 257 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
258 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
259 *
260 * The purpose of all these is to keep track of the people
261 * waiting for a page to become available and make them
262 * runnable again when possible. The trouble is that this
263 * consumes a lot of space, especially when so few things
264 * wait on pages at a given time. So instead of using
265 * per-page waitqueues, we use a waitqueue hash table.
266 *
267 * The bucket discipline is to sleep on the same queue when
268 * colliding and wake all in that wait queue when removing.
269 * When something wakes, it must check to be sure its page is
270 * truly available, a la thundering herd. The cost of a
271 * collision is great, but given the expected load of the
272 * table, they should be so rare as to be outweighed by the
273 * benefits from the saved space.
274 *
275 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
276 * primary users of these fields, and in mm/page_alloc.c
277 * free_area_init_core() performs the initialization of them.
278 */
279 wait_queue_head_t * wait_table;
02b694de 280 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
281 unsigned long wait_table_bits;
282
283 /*
284 * Discontig memory support fields.
285 */
286 struct pglist_data *zone_pgdat;
1da177e4
LT
287 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
288 unsigned long zone_start_pfn;
289
bdc8cb98
DH
290 /*
291 * zone_start_pfn, spanned_pages and present_pages are all
292 * protected by span_seqlock. It is a seqlock because it has
293 * to be read outside of zone->lock, and it is done in the main
294 * allocator path. But, it is written quite infrequently.
295 *
296 * The lock is declared along with zone->lock because it is
297 * frequently read in proximity to zone->lock. It's good to
298 * give them a chance of being in the same cacheline.
299 */
1da177e4
LT
300 unsigned long spanned_pages; /* total size, including holes */
301 unsigned long present_pages; /* amount of memory (excluding holes) */
302
303 /*
304 * rarely used fields:
305 */
15ad7cdc 306 const char *name;
22fc6ecc 307} ____cacheline_internodealigned_in_smp;
1da177e4 308
1da177e4
LT
309/*
310 * The "priority" of VM scanning is how much of the queues we will scan in one
311 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
312 * queues ("queue_length >> 12") during an aging round.
313 */
314#define DEF_PRIORITY 12
315
9276b1bc
PJ
316/* Maximum number of zones on a zonelist */
317#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
318
319#ifdef CONFIG_NUMA
320/*
321 * We cache key information from each zonelist for smaller cache
322 * footprint when scanning for free pages in get_page_from_freelist().
323 *
324 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
325 * up short of free memory since the last time (last_fullzone_zap)
326 * we zero'd fullzones.
327 * 2) The array z_to_n[] maps each zone in the zonelist to its node
328 * id, so that we can efficiently evaluate whether that node is
329 * set in the current tasks mems_allowed.
330 *
331 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
332 * indexed by a zones offset in the zonelist zones[] array.
333 *
334 * The get_page_from_freelist() routine does two scans. During the
335 * first scan, we skip zones whose corresponding bit in 'fullzones'
336 * is set or whose corresponding node in current->mems_allowed (which
337 * comes from cpusets) is not set. During the second scan, we bypass
338 * this zonelist_cache, to ensure we look methodically at each zone.
339 *
340 * Once per second, we zero out (zap) fullzones, forcing us to
341 * reconsider nodes that might have regained more free memory.
342 * The field last_full_zap is the time we last zapped fullzones.
343 *
344 * This mechanism reduces the amount of time we waste repeatedly
345 * reexaming zones for free memory when they just came up low on
346 * memory momentarilly ago.
347 *
348 * The zonelist_cache struct members logically belong in struct
349 * zonelist. However, the mempolicy zonelists constructed for
350 * MPOL_BIND are intentionally variable length (and usually much
351 * shorter). A general purpose mechanism for handling structs with
352 * multiple variable length members is more mechanism than we want
353 * here. We resort to some special case hackery instead.
354 *
355 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
356 * part because they are shorter), so we put the fixed length stuff
357 * at the front of the zonelist struct, ending in a variable length
358 * zones[], as is needed by MPOL_BIND.
359 *
360 * Then we put the optional zonelist cache on the end of the zonelist
361 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
362 * the fixed length portion at the front of the struct. This pointer
363 * both enables us to find the zonelist cache, and in the case of
364 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
365 * to know that the zonelist cache is not there.
366 *
367 * The end result is that struct zonelists come in two flavors:
368 * 1) The full, fixed length version, shown below, and
369 * 2) The custom zonelists for MPOL_BIND.
370 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
371 *
372 * Even though there may be multiple CPU cores on a node modifying
373 * fullzones or last_full_zap in the same zonelist_cache at the same
374 * time, we don't lock it. This is just hint data - if it is wrong now
375 * and then, the allocator will still function, perhaps a bit slower.
376 */
377
378
379struct zonelist_cache {
9276b1bc 380 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
7253f4ef 381 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
9276b1bc
PJ
382 unsigned long last_full_zap; /* when last zap'd (jiffies) */
383};
384#else
385struct zonelist_cache;
386#endif
387
1da177e4
LT
388/*
389 * One allocation request operates on a zonelist. A zonelist
390 * is a list of zones, the first one is the 'goal' of the
391 * allocation, the other zones are fallback zones, in decreasing
392 * priority.
393 *
9276b1bc
PJ
394 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
395 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
1da177e4 396 */
9276b1bc 397
1da177e4 398struct zonelist {
9276b1bc
PJ
399 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
400 struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited
401#ifdef CONFIG_NUMA
402 struct zonelist_cache zlcache; // optional ...
403#endif
1da177e4
LT
404};
405
c713216d
MG
406#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
407struct node_active_region {
408 unsigned long start_pfn;
409 unsigned long end_pfn;
410 int nid;
411};
412#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1da177e4 413
5b99cd0e
HC
414#ifndef CONFIG_DISCONTIGMEM
415/* The array of struct pages - for discontigmem use pgdat->lmem_map */
416extern struct page *mem_map;
417#endif
418
1da177e4
LT
419/*
420 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
421 * (mostly NUMA machines?) to denote a higher-level memory zone than the
422 * zone denotes.
423 *
424 * On NUMA machines, each NUMA node would have a pg_data_t to describe
425 * it's memory layout.
426 *
427 * Memory statistics and page replacement data structures are maintained on a
428 * per-zone basis.
429 */
430struct bootmem_data;
431typedef struct pglist_data {
432 struct zone node_zones[MAX_NR_ZONES];
19655d34 433 struct zonelist node_zonelists[MAX_NR_ZONES];
1da177e4 434 int nr_zones;
d41dee36 435#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4 436 struct page *node_mem_map;
d41dee36 437#endif
1da177e4 438 struct bootmem_data *bdata;
208d54e5
DH
439#ifdef CONFIG_MEMORY_HOTPLUG
440 /*
441 * Must be held any time you expect node_start_pfn, node_present_pages
442 * or node_spanned_pages stay constant. Holding this will also
443 * guarantee that any pfn_valid() stays that way.
444 *
445 * Nests above zone->lock and zone->size_seqlock.
446 */
447 spinlock_t node_size_lock;
448#endif
1da177e4
LT
449 unsigned long node_start_pfn;
450 unsigned long node_present_pages; /* total number of physical pages */
451 unsigned long node_spanned_pages; /* total size of physical page
452 range, including holes */
453 int node_id;
1da177e4
LT
454 wait_queue_head_t kswapd_wait;
455 struct task_struct *kswapd;
456 int kswapd_max_order;
457} pg_data_t;
458
459#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
460#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 461#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 462#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
463#else
464#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
465#endif
408fde81 466#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 467
208d54e5
DH
468#include <linux/memory_hotplug.h>
469
1da177e4
LT
470void get_zone_counts(unsigned long *active, unsigned long *inactive,
471 unsigned long *free);
472void build_all_zonelists(void);
473void wakeup_kswapd(struct zone *zone, int order);
474int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 475 int classzone_idx, int alloc_flags);
a2f3aa02
DH
476enum memmap_context {
477 MEMMAP_EARLY,
478 MEMMAP_HOTPLUG,
479};
718127cc 480extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
a2f3aa02
DH
481 unsigned long size,
482 enum memmap_context context);
718127cc 483
1da177e4
LT
484#ifdef CONFIG_HAVE_MEMORY_PRESENT
485void memory_present(int nid, unsigned long start, unsigned long end);
486#else
487static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
488#endif
489
490#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
491unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
492#endif
493
494/*
495 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
496 */
497#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
498
f3fe6512
CK
499static inline int populated_zone(struct zone *zone)
500{
501 return (!!zone->present_pages);
502}
503
2a1e274a
MG
504extern int movable_zone;
505
506static inline int zone_movable_is_highmem(void)
507{
508#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
509 return movable_zone == ZONE_HIGHMEM;
510#else
511 return 0;
512#endif
513}
514
2f1b6248 515static inline int is_highmem_idx(enum zone_type idx)
1da177e4 516{
e53ef38d 517#ifdef CONFIG_HIGHMEM
2a1e274a
MG
518 return (idx == ZONE_HIGHMEM ||
519 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
520#else
521 return 0;
522#endif
1da177e4
LT
523}
524
2f1b6248 525static inline int is_normal_idx(enum zone_type idx)
1da177e4
LT
526{
527 return (idx == ZONE_NORMAL);
528}
9328b8fa 529
1da177e4
LT
530/**
531 * is_highmem - helper function to quickly check if a struct zone is a
532 * highmem zone or not. This is an attempt to keep references
533 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
534 * @zone - pointer to struct zone variable
535 */
536static inline int is_highmem(struct zone *zone)
537{
e53ef38d 538#ifdef CONFIG_HIGHMEM
2a1e274a
MG
539 int zone_idx = zone - zone->zone_pgdat->node_zones;
540 return zone_idx == ZONE_HIGHMEM ||
541 (zone_idx == ZONE_MOVABLE && zone_movable_is_highmem());
e53ef38d
CL
542#else
543 return 0;
544#endif
1da177e4
LT
545}
546
547static inline int is_normal(struct zone *zone)
548{
549 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
550}
551
9328b8fa
NP
552static inline int is_dma32(struct zone *zone)
553{
fb0e7942 554#ifdef CONFIG_ZONE_DMA32
9328b8fa 555 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
fb0e7942
CL
556#else
557 return 0;
558#endif
9328b8fa
NP
559}
560
561static inline int is_dma(struct zone *zone)
562{
4b51d669 563#ifdef CONFIG_ZONE_DMA
9328b8fa 564 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
4b51d669
CL
565#else
566 return 0;
567#endif
9328b8fa
NP
568}
569
1da177e4
LT
570/* These two functions are used to setup the per zone pages min values */
571struct ctl_table;
572struct file;
573int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
574 void __user *, size_t *, loff_t *);
575extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
576int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
577 void __user *, size_t *, loff_t *);
8ad4b1fb
RS
578int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
579 void __user *, size_t *, loff_t *);
9614634f
CL
580int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
581 struct file *, void __user *, size_t *, loff_t *);
0ff38490
CL
582int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
583 struct file *, void __user *, size_t *, loff_t *);
1da177e4 584
f0c0b2b8
KH
585extern int numa_zonelist_order_handler(struct ctl_table *, int,
586 struct file *, void __user *, size_t *, loff_t *);
587extern char numa_zonelist_order[];
588#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
589
1da177e4
LT
590#include <linux/topology.h>
591/* Returns the number of the current Node. */
69d81fcd 592#ifndef numa_node_id
39c715b7 593#define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
69d81fcd 594#endif
1da177e4 595
93b7504e 596#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
597
598extern struct pglist_data contig_page_data;
599#define NODE_DATA(nid) (&contig_page_data)
600#define NODE_MEM_MAP(nid) mem_map
601#define MAX_NODES_SHIFT 1
1da177e4 602
93b7504e 603#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
604
605#include <asm/mmzone.h>
606
93b7504e 607#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 608
95144c78
KH
609extern struct pglist_data *first_online_pgdat(void);
610extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
611extern struct zone *next_zone(struct zone *zone);
8357f869
KH
612
613/**
614 * for_each_pgdat - helper macro to iterate over all nodes
615 * @pgdat - pointer to a pg_data_t variable
616 */
617#define for_each_online_pgdat(pgdat) \
618 for (pgdat = first_online_pgdat(); \
619 pgdat; \
620 pgdat = next_online_pgdat(pgdat))
8357f869
KH
621/**
622 * for_each_zone - helper macro to iterate over all memory zones
623 * @zone - pointer to struct zone variable
624 *
625 * The user only needs to declare the zone variable, for_each_zone
626 * fills it in.
627 */
628#define for_each_zone(zone) \
629 for (zone = (first_online_pgdat())->node_zones; \
630 zone; \
631 zone = next_zone(zone))
632
d41dee36
AW
633#ifdef CONFIG_SPARSEMEM
634#include <asm/sparsemem.h>
635#endif
636
07808b74 637#if BITS_PER_LONG == 32
1da177e4 638/*
a2f1b424
AK
639 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
640 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
1da177e4 641 */
a2f1b424 642#define FLAGS_RESERVED 9
348f8b6c 643
1da177e4
LT
644#elif BITS_PER_LONG == 64
645/*
646 * with 64 bit flags field, there's plenty of room.
647 */
348f8b6c 648#define FLAGS_RESERVED 32
1da177e4 649
348f8b6c 650#else
1da177e4 651
348f8b6c 652#error BITS_PER_LONG not defined
1da177e4 653
1da177e4
LT
654#endif
655
c713216d
MG
656#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
657 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
b159d43f
AW
658#define early_pfn_to_nid(nid) (0UL)
659#endif
660
2bdaf115
AW
661#ifdef CONFIG_FLATMEM
662#define pfn_to_nid(pfn) (0)
663#endif
664
d41dee36
AW
665#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
666#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
667
668#ifdef CONFIG_SPARSEMEM
669
670/*
671 * SECTION_SHIFT #bits space required to store a section #
672 *
673 * PA_SECTION_SHIFT physical address to/from section number
674 * PFN_SECTION_SHIFT pfn to/from section number
675 */
676#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
677
678#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
679#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
680
681#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
682
683#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
684#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
685
686#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
687#error Allocator MAX_ORDER exceeds SECTION_SIZE
688#endif
689
690struct page;
691struct mem_section {
29751f69
AW
692 /*
693 * This is, logically, a pointer to an array of struct
694 * pages. However, it is stored with some other magic.
695 * (see sparse.c::sparse_init_one_section())
696 *
30c253e6
AW
697 * Additionally during early boot we encode node id of
698 * the location of the section here to guide allocation.
699 * (see sparse.c::memory_present())
700 *
29751f69
AW
701 * Making it a UL at least makes someone do a cast
702 * before using it wrong.
703 */
704 unsigned long section_mem_map;
d41dee36
AW
705};
706
3e347261
BP
707#ifdef CONFIG_SPARSEMEM_EXTREME
708#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
709#else
710#define SECTIONS_PER_ROOT 1
711#endif
802f192e 712
3e347261
BP
713#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
714#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
715#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 716
3e347261
BP
717#ifdef CONFIG_SPARSEMEM_EXTREME
718extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 719#else
3e347261
BP
720extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
721#endif
d41dee36 722
29751f69
AW
723static inline struct mem_section *__nr_to_section(unsigned long nr)
724{
3e347261
BP
725 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
726 return NULL;
727 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 728}
4ca644d9 729extern int __section_nr(struct mem_section* ms);
29751f69
AW
730
731/*
732 * We use the lower bits of the mem_map pointer to store
733 * a little bit of information. There should be at least
734 * 3 bits here due to 32-bit alignment.
735 */
736#define SECTION_MARKED_PRESENT (1UL<<0)
737#define SECTION_HAS_MEM_MAP (1UL<<1)
738#define SECTION_MAP_LAST_BIT (1UL<<2)
739#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 740#define SECTION_NID_SHIFT 2
29751f69
AW
741
742static inline struct page *__section_mem_map_addr(struct mem_section *section)
743{
744 unsigned long map = section->section_mem_map;
745 map &= SECTION_MAP_MASK;
746 return (struct page *)map;
747}
748
749static inline int valid_section(struct mem_section *section)
750{
802f192e 751 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
752}
753
754static inline int section_has_mem_map(struct mem_section *section)
755{
802f192e 756 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
757}
758
759static inline int valid_section_nr(unsigned long nr)
760{
761 return valid_section(__nr_to_section(nr));
762}
763
d41dee36
AW
764static inline struct mem_section *__pfn_to_section(unsigned long pfn)
765{
29751f69 766 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
767}
768
d41dee36
AW
769static inline int pfn_valid(unsigned long pfn)
770{
771 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
772 return 0;
29751f69 773 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36
AW
774}
775
776/*
777 * These are _only_ used during initialisation, therefore they
778 * can use __initdata ... They could have names to indicate
779 * this restriction.
780 */
781#ifdef CONFIG_NUMA
161599ff
AW
782#define pfn_to_nid(pfn) \
783({ \
784 unsigned long __pfn_to_nid_pfn = (pfn); \
785 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
786})
2bdaf115
AW
787#else
788#define pfn_to_nid(pfn) (0)
d41dee36
AW
789#endif
790
d41dee36
AW
791#define early_pfn_valid(pfn) pfn_valid(pfn)
792void sparse_init(void);
793#else
794#define sparse_init() do {} while (0)
28ae55c9 795#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
796#endif /* CONFIG_SPARSEMEM */
797
75167957
AW
798#ifdef CONFIG_NODES_SPAN_OTHER_NODES
799#define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
800#else
801#define early_pfn_in_nid(pfn, nid) (1)
802#endif
803
d41dee36
AW
804#ifndef early_pfn_valid
805#define early_pfn_valid(pfn) (1)
806#endif
807
808void memory_present(int nid, unsigned long start, unsigned long end);
809unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
810
14e07298
AW
811/*
812 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
813 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
814 * pfn_valid_within() should be used in this case; we optimise this away
815 * when we have no holes within a MAX_ORDER_NR_PAGES block.
816 */
817#ifdef CONFIG_HOLES_IN_ZONE
818#define pfn_valid_within(pfn) pfn_valid(pfn)
819#else
820#define pfn_valid_within(pfn) (1)
821#endif
822
1da177e4
LT
823#endif /* !__ASSEMBLY__ */
824#endif /* __KERNEL__ */
825#endif /* _LINUX_MMZONE_H */