]> bbs.cooldavid.org Git - net-next-2.6.git/blame - include/linux/mmzone.h
mm: compaction: defer compaction using an exponential backoff when compaction fails
[net-next-2.6.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
1da177e4 4#ifndef __ASSEMBLY__
97965478 5#ifndef __GENERATING_BOUNDS_H
1da177e4 6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
e815af95 10#include <linux/bitops.h>
1da177e4
LT
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
bdc8cb98 15#include <linux/seqlock.h>
8357f869 16#include <linux/nodemask.h>
835c134e 17#include <linux/pageblock-flags.h>
01fc0ac1 18#include <generated/bounds.h>
1da177e4 19#include <asm/atomic.h>
93ff66bf 20#include <asm/page.h>
1da177e4
LT
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
e984bb43 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 29
5ad333eb
AW
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coelesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
b2a0ac88 38#define MIGRATE_UNMOVABLE 0
e12ba74d
MG
39#define MIGRATE_RECLAIMABLE 1
40#define MIGRATE_MOVABLE 2
5f8dcc21 41#define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */
64c5e135 42#define MIGRATE_RESERVE 3
a5d76b54
KH
43#define MIGRATE_ISOLATE 4 /* can't allocate from here */
44#define MIGRATE_TYPES 5
b2a0ac88
MG
45
46#define for_each_migratetype_order(order, type) \
47 for (order = 0; order < MAX_ORDER; order++) \
48 for (type = 0; type < MIGRATE_TYPES; type++)
49
467c996c
MG
50extern int page_group_by_mobility_disabled;
51
52static inline int get_pageblock_migratetype(struct page *page)
53{
467c996c
MG
54 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
55}
56
1da177e4 57struct free_area {
b2a0ac88 58 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
59 unsigned long nr_free;
60};
61
62struct pglist_data;
63
64/*
65 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
66 * So add a wild amount of padding here to ensure that they fall into separate
67 * cachelines. There are very few zone structures in the machine, so space
68 * consumption is not a concern here.
69 */
70#if defined(CONFIG_SMP)
71struct zone_padding {
72 char x[0];
22fc6ecc 73} ____cacheline_internodealigned_in_smp;
1da177e4
LT
74#define ZONE_PADDING(name) struct zone_padding name;
75#else
76#define ZONE_PADDING(name)
77#endif
78
2244b95a 79enum zone_stat_item {
51ed4491 80 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 81 NR_FREE_PAGES,
b69408e8 82 NR_LRU_BASE,
4f98a2fe
RR
83 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
84 NR_ACTIVE_ANON, /* " " " " " */
85 NR_INACTIVE_FILE, /* " " " " " */
86 NR_ACTIVE_FILE, /* " " " " " */
894bc310 87 NR_UNEVICTABLE, /* " " " " " */
5344b7e6 88 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
f3dbd344
CL
89 NR_ANON_PAGES, /* Mapped anonymous pages */
90 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 91 only modified from process context */
347ce434 92 NR_FILE_PAGES,
b1e7a8fd 93 NR_FILE_DIRTY,
ce866b34 94 NR_WRITEBACK,
51ed4491
CL
95 NR_SLAB_RECLAIMABLE,
96 NR_SLAB_UNRECLAIMABLE,
97 NR_PAGETABLE, /* used for pagetables */
c6a7f572
KM
98 NR_KERNEL_STACK,
99 /* Second 128 byte cacheline */
fd39fc85 100 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 101 NR_BOUNCE,
e129b5c2 102 NR_VMSCAN_WRITE,
fc3ba692 103 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
a731286d
KM
104 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
105 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
4b02108a 106 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
ca889e6c
CL
107#ifdef CONFIG_NUMA
108 NUMA_HIT, /* allocated in intended node */
109 NUMA_MISS, /* allocated in non intended node */
110 NUMA_FOREIGN, /* was intended here, hit elsewhere */
111 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
112 NUMA_LOCAL, /* allocation from local node */
113 NUMA_OTHER, /* allocation from other node */
114#endif
2244b95a
CL
115 NR_VM_ZONE_STAT_ITEMS };
116
4f98a2fe
RR
117/*
118 * We do arithmetic on the LRU lists in various places in the code,
119 * so it is important to keep the active lists LRU_ACTIVE higher in
120 * the array than the corresponding inactive lists, and to keep
121 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
122 *
123 * This has to be kept in sync with the statistics in zone_stat_item
124 * above and the descriptions in vmstat_text in mm/vmstat.c
125 */
126#define LRU_BASE 0
127#define LRU_ACTIVE 1
128#define LRU_FILE 2
129
b69408e8 130enum lru_list {
4f98a2fe
RR
131 LRU_INACTIVE_ANON = LRU_BASE,
132 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
133 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
134 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 135 LRU_UNEVICTABLE,
894bc310
LS
136 NR_LRU_LISTS
137};
b69408e8
CL
138
139#define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
140
894bc310
LS
141#define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
142
4f98a2fe
RR
143static inline int is_file_lru(enum lru_list l)
144{
145 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
146}
147
b69408e8
CL
148static inline int is_active_lru(enum lru_list l)
149{
4f98a2fe 150 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
b69408e8
CL
151}
152
894bc310
LS
153static inline int is_unevictable_lru(enum lru_list l)
154{
894bc310 155 return (l == LRU_UNEVICTABLE);
894bc310
LS
156}
157
41858966
MG
158enum zone_watermarks {
159 WMARK_MIN,
160 WMARK_LOW,
161 WMARK_HIGH,
162 NR_WMARK
163};
164
165#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
166#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
167#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
168
1da177e4
LT
169struct per_cpu_pages {
170 int count; /* number of pages in the list */
1da177e4
LT
171 int high; /* high watermark, emptying needed */
172 int batch; /* chunk size for buddy add/remove */
5f8dcc21
MG
173
174 /* Lists of pages, one per migrate type stored on the pcp-lists */
175 struct list_head lists[MIGRATE_PCPTYPES];
1da177e4
LT
176};
177
178struct per_cpu_pageset {
3dfa5721 179 struct per_cpu_pages pcp;
4037d452
CL
180#ifdef CONFIG_NUMA
181 s8 expire;
182#endif
2244b95a 183#ifdef CONFIG_SMP
df9ecaba 184 s8 stat_threshold;
2244b95a
CL
185 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
186#endif
99dcc3e5 187};
e7c8d5c9 188
97965478
CL
189#endif /* !__GENERATING_BOUNDS.H */
190
2f1b6248 191enum zone_type {
4b51d669 192#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
193 /*
194 * ZONE_DMA is used when there are devices that are not able
195 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
196 * carve out the portion of memory that is needed for these devices.
197 * The range is arch specific.
198 *
199 * Some examples
200 *
201 * Architecture Limit
202 * ---------------------------
203 * parisc, ia64, sparc <4G
204 * s390 <2G
2f1b6248
CL
205 * arm Various
206 * alpha Unlimited or 0-16MB.
207 *
208 * i386, x86_64 and multiple other arches
209 * <16M.
210 */
211 ZONE_DMA,
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
214 /*
215 * x86_64 needs two ZONE_DMAs because it supports devices that are
216 * only able to do DMA to the lower 16M but also 32 bit devices that
217 * can only do DMA areas below 4G.
218 */
219 ZONE_DMA32,
fb0e7942 220#endif
2f1b6248
CL
221 /*
222 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
223 * performed on pages in ZONE_NORMAL if the DMA devices support
224 * transfers to all addressable memory.
225 */
226 ZONE_NORMAL,
e53ef38d 227#ifdef CONFIG_HIGHMEM
2f1b6248
CL
228 /*
229 * A memory area that is only addressable by the kernel through
230 * mapping portions into its own address space. This is for example
231 * used by i386 to allow the kernel to address the memory beyond
232 * 900MB. The kernel will set up special mappings (page
233 * table entries on i386) for each page that the kernel needs to
234 * access.
235 */
236 ZONE_HIGHMEM,
e53ef38d 237#endif
2a1e274a 238 ZONE_MOVABLE,
97965478 239 __MAX_NR_ZONES
2f1b6248 240};
1da177e4 241
97965478
CL
242#ifndef __GENERATING_BOUNDS_H
243
1da177e4
LT
244/*
245 * When a memory allocation must conform to specific limitations (such
246 * as being suitable for DMA) the caller will pass in hints to the
247 * allocator in the gfp_mask, in the zone modifier bits. These bits
248 * are used to select a priority ordered list of memory zones which
19655d34 249 * match the requested limits. See gfp_zone() in include/linux/gfp.h
1da177e4 250 */
fb0e7942 251
97965478 252#if MAX_NR_ZONES < 2
4b51d669 253#define ZONES_SHIFT 0
97965478 254#elif MAX_NR_ZONES <= 2
19655d34 255#define ZONES_SHIFT 1
97965478 256#elif MAX_NR_ZONES <= 4
19655d34 257#define ZONES_SHIFT 2
4b51d669
CL
258#else
259#error ZONES_SHIFT -- too many zones configured adjust calculation
fb0e7942 260#endif
1da177e4 261
6e901571
KM
262struct zone_reclaim_stat {
263 /*
264 * The pageout code in vmscan.c keeps track of how many of the
265 * mem/swap backed and file backed pages are refeferenced.
266 * The higher the rotated/scanned ratio, the more valuable
267 * that cache is.
268 *
269 * The anon LRU stats live in [0], file LRU stats in [1]
270 */
271 unsigned long recent_rotated[2];
272 unsigned long recent_scanned[2];
f8629631
WF
273
274 /*
275 * accumulated for batching
276 */
277 unsigned long nr_saved_scan[NR_LRU_LISTS];
6e901571
KM
278};
279
1da177e4
LT
280struct zone {
281 /* Fields commonly accessed by the page allocator */
41858966
MG
282
283 /* zone watermarks, access with *_wmark_pages(zone) macros */
284 unsigned long watermark[NR_WMARK];
285
1da177e4
LT
286 /*
287 * We don't know if the memory that we're going to allocate will be freeable
288 * or/and it will be released eventually, so to avoid totally wasting several
289 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
290 * to run OOM on the lower zones despite there's tons of freeable ram
291 * on the higher zones). This array is recalculated at runtime if the
292 * sysctl_lowmem_reserve_ratio sysctl changes.
293 */
294 unsigned long lowmem_reserve[MAX_NR_ZONES];
295
e7c8d5c9 296#ifdef CONFIG_NUMA
d5f541ed 297 int node;
9614634f
CL
298 /*
299 * zone reclaim becomes active if more unmapped pages exist.
300 */
8417bba4 301 unsigned long min_unmapped_pages;
0ff38490 302 unsigned long min_slab_pages;
e7c8d5c9 303#endif
43cf38eb 304 struct per_cpu_pageset __percpu *pageset;
1da177e4
LT
305 /*
306 * free areas of different sizes
307 */
308 spinlock_t lock;
93e4a89a 309 int all_unreclaimable; /* All pages pinned */
bdc8cb98
DH
310#ifdef CONFIG_MEMORY_HOTPLUG
311 /* see spanned/present_pages for more description */
312 seqlock_t span_seqlock;
313#endif
1da177e4
LT
314 struct free_area free_area[MAX_ORDER];
315
835c134e
MG
316#ifndef CONFIG_SPARSEMEM
317 /*
d9c23400 318 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
319 * In SPARSEMEM, this map is stored in struct mem_section
320 */
321 unsigned long *pageblock_flags;
322#endif /* CONFIG_SPARSEMEM */
323
4f92e258
MG
324#ifdef CONFIG_COMPACTION
325 /*
326 * On compaction failure, 1<<compact_defer_shift compactions
327 * are skipped before trying again. The number attempted since
328 * last failure is tracked with compact_considered.
329 */
330 unsigned int compact_considered;
331 unsigned int compact_defer_shift;
332#endif
1da177e4
LT
333
334 ZONE_PADDING(_pad1_)
335
336 /* Fields commonly accessed by the page reclaim scanner */
337 spinlock_t lru_lock;
6e08a369 338 struct zone_lru {
b69408e8 339 struct list_head list;
b69408e8 340 } lru[NR_LRU_LISTS];
4f98a2fe 341
6e901571 342 struct zone_reclaim_stat reclaim_stat;
4f98a2fe 343
1da177e4 344 unsigned long pages_scanned; /* since last reclaim */
e815af95 345 unsigned long flags; /* zone flags, see below */
753ee728 346
2244b95a
CL
347 /* Zone statistics */
348 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 349
1da177e4
LT
350 /*
351 * prev_priority holds the scanning priority for this zone. It is
352 * defined as the scanning priority at which we achieved our reclaim
353 * target at the previous try_to_free_pages() or balance_pgdat()
2a61aa40 354 * invocation.
1da177e4
LT
355 *
356 * We use prev_priority as a measure of how much stress page reclaim is
357 * under - it drives the swappiness decision: whether to unmap mapped
358 * pages.
359 *
3bb1a852 360 * Access to both this field is quite racy even on uniprocessor. But
1da177e4
LT
361 * it is expected to average out OK.
362 */
1da177e4
LT
363 int prev_priority;
364
556adecb
RR
365 /*
366 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
367 * this zone's LRU. Maintained by the pageout code.
368 */
369 unsigned int inactive_ratio;
370
1da177e4
LT
371
372 ZONE_PADDING(_pad2_)
373 /* Rarely used or read-mostly fields */
374
375 /*
376 * wait_table -- the array holding the hash table
02b694de 377 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
378 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
379 *
380 * The purpose of all these is to keep track of the people
381 * waiting for a page to become available and make them
382 * runnable again when possible. The trouble is that this
383 * consumes a lot of space, especially when so few things
384 * wait on pages at a given time. So instead of using
385 * per-page waitqueues, we use a waitqueue hash table.
386 *
387 * The bucket discipline is to sleep on the same queue when
388 * colliding and wake all in that wait queue when removing.
389 * When something wakes, it must check to be sure its page is
390 * truly available, a la thundering herd. The cost of a
391 * collision is great, but given the expected load of the
392 * table, they should be so rare as to be outweighed by the
393 * benefits from the saved space.
394 *
395 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
396 * primary users of these fields, and in mm/page_alloc.c
397 * free_area_init_core() performs the initialization of them.
398 */
399 wait_queue_head_t * wait_table;
02b694de 400 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
401 unsigned long wait_table_bits;
402
403 /*
404 * Discontig memory support fields.
405 */
406 struct pglist_data *zone_pgdat;
1da177e4
LT
407 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
408 unsigned long zone_start_pfn;
409
bdc8cb98
DH
410 /*
411 * zone_start_pfn, spanned_pages and present_pages are all
412 * protected by span_seqlock. It is a seqlock because it has
413 * to be read outside of zone->lock, and it is done in the main
414 * allocator path. But, it is written quite infrequently.
415 *
416 * The lock is declared along with zone->lock because it is
417 * frequently read in proximity to zone->lock. It's good to
418 * give them a chance of being in the same cacheline.
419 */
1da177e4
LT
420 unsigned long spanned_pages; /* total size, including holes */
421 unsigned long present_pages; /* amount of memory (excluding holes) */
422
423 /*
424 * rarely used fields:
425 */
15ad7cdc 426 const char *name;
22fc6ecc 427} ____cacheline_internodealigned_in_smp;
1da177e4 428
e815af95 429typedef enum {
e815af95 430 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
098d7f12 431 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
e815af95
DR
432} zone_flags_t;
433
434static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
435{
436 set_bit(flag, &zone->flags);
437}
d773ed6b
DR
438
439static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
440{
441 return test_and_set_bit(flag, &zone->flags);
442}
443
e815af95
DR
444static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
445{
446 clear_bit(flag, &zone->flags);
447}
448
e815af95
DR
449static inline int zone_is_reclaim_locked(const struct zone *zone)
450{
451 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
452}
d773ed6b 453
098d7f12
DR
454static inline int zone_is_oom_locked(const struct zone *zone)
455{
456 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
457}
e815af95 458
1da177e4
LT
459/*
460 * The "priority" of VM scanning is how much of the queues we will scan in one
461 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
462 * queues ("queue_length >> 12") during an aging round.
463 */
464#define DEF_PRIORITY 12
465
9276b1bc
PJ
466/* Maximum number of zones on a zonelist */
467#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
468
469#ifdef CONFIG_NUMA
523b9458
CL
470
471/*
472 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
473 * allocations to a single node for GFP_THISNODE.
474 *
54a6eb5c
MG
475 * [0] : Zonelist with fallback
476 * [1] : No fallback (GFP_THISNODE)
523b9458 477 */
54a6eb5c 478#define MAX_ZONELISTS 2
523b9458
CL
479
480
9276b1bc
PJ
481/*
482 * We cache key information from each zonelist for smaller cache
483 * footprint when scanning for free pages in get_page_from_freelist().
484 *
485 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
486 * up short of free memory since the last time (last_fullzone_zap)
487 * we zero'd fullzones.
488 * 2) The array z_to_n[] maps each zone in the zonelist to its node
489 * id, so that we can efficiently evaluate whether that node is
490 * set in the current tasks mems_allowed.
491 *
492 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
493 * indexed by a zones offset in the zonelist zones[] array.
494 *
495 * The get_page_from_freelist() routine does two scans. During the
496 * first scan, we skip zones whose corresponding bit in 'fullzones'
497 * is set or whose corresponding node in current->mems_allowed (which
498 * comes from cpusets) is not set. During the second scan, we bypass
499 * this zonelist_cache, to ensure we look methodically at each zone.
500 *
501 * Once per second, we zero out (zap) fullzones, forcing us to
502 * reconsider nodes that might have regained more free memory.
503 * The field last_full_zap is the time we last zapped fullzones.
504 *
505 * This mechanism reduces the amount of time we waste repeatedly
506 * reexaming zones for free memory when they just came up low on
507 * memory momentarilly ago.
508 *
509 * The zonelist_cache struct members logically belong in struct
510 * zonelist. However, the mempolicy zonelists constructed for
511 * MPOL_BIND are intentionally variable length (and usually much
512 * shorter). A general purpose mechanism for handling structs with
513 * multiple variable length members is more mechanism than we want
514 * here. We resort to some special case hackery instead.
515 *
516 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
517 * part because they are shorter), so we put the fixed length stuff
518 * at the front of the zonelist struct, ending in a variable length
519 * zones[], as is needed by MPOL_BIND.
520 *
521 * Then we put the optional zonelist cache on the end of the zonelist
522 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
523 * the fixed length portion at the front of the struct. This pointer
524 * both enables us to find the zonelist cache, and in the case of
525 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
526 * to know that the zonelist cache is not there.
527 *
528 * The end result is that struct zonelists come in two flavors:
529 * 1) The full, fixed length version, shown below, and
530 * 2) The custom zonelists for MPOL_BIND.
531 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
532 *
533 * Even though there may be multiple CPU cores on a node modifying
534 * fullzones or last_full_zap in the same zonelist_cache at the same
535 * time, we don't lock it. This is just hint data - if it is wrong now
536 * and then, the allocator will still function, perhaps a bit slower.
537 */
538
539
540struct zonelist_cache {
9276b1bc 541 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
7253f4ef 542 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
9276b1bc
PJ
543 unsigned long last_full_zap; /* when last zap'd (jiffies) */
544};
545#else
54a6eb5c 546#define MAX_ZONELISTS 1
9276b1bc
PJ
547struct zonelist_cache;
548#endif
549
dd1a239f
MG
550/*
551 * This struct contains information about a zone in a zonelist. It is stored
552 * here to avoid dereferences into large structures and lookups of tables
553 */
554struct zoneref {
555 struct zone *zone; /* Pointer to actual zone */
556 int zone_idx; /* zone_idx(zoneref->zone) */
557};
558
1da177e4
LT
559/*
560 * One allocation request operates on a zonelist. A zonelist
561 * is a list of zones, the first one is the 'goal' of the
562 * allocation, the other zones are fallback zones, in decreasing
563 * priority.
564 *
9276b1bc
PJ
565 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
566 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
dd1a239f
MG
567 * *
568 * To speed the reading of the zonelist, the zonerefs contain the zone index
569 * of the entry being read. Helper functions to access information given
570 * a struct zoneref are
571 *
572 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
573 * zonelist_zone_idx() - Return the index of the zone for an entry
574 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
575 */
576struct zonelist {
9276b1bc 577 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
dd1a239f 578 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
9276b1bc
PJ
579#ifdef CONFIG_NUMA
580 struct zonelist_cache zlcache; // optional ...
581#endif
1da177e4
LT
582};
583
c713216d
MG
584#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
585struct node_active_region {
586 unsigned long start_pfn;
587 unsigned long end_pfn;
588 int nid;
589};
590#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1da177e4 591
5b99cd0e
HC
592#ifndef CONFIG_DISCONTIGMEM
593/* The array of struct pages - for discontigmem use pgdat->lmem_map */
594extern struct page *mem_map;
595#endif
596
1da177e4
LT
597/*
598 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
599 * (mostly NUMA machines?) to denote a higher-level memory zone than the
600 * zone denotes.
601 *
602 * On NUMA machines, each NUMA node would have a pg_data_t to describe
603 * it's memory layout.
604 *
605 * Memory statistics and page replacement data structures are maintained on a
606 * per-zone basis.
607 */
608struct bootmem_data;
609typedef struct pglist_data {
610 struct zone node_zones[MAX_NR_ZONES];
523b9458 611 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 612 int nr_zones;
52d4b9ac 613#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
1da177e4 614 struct page *node_mem_map;
52d4b9ac
KH
615#ifdef CONFIG_CGROUP_MEM_RES_CTLR
616 struct page_cgroup *node_page_cgroup;
617#endif
d41dee36 618#endif
08677214 619#ifndef CONFIG_NO_BOOTMEM
1da177e4 620 struct bootmem_data *bdata;
08677214 621#endif
208d54e5
DH
622#ifdef CONFIG_MEMORY_HOTPLUG
623 /*
624 * Must be held any time you expect node_start_pfn, node_present_pages
625 * or node_spanned_pages stay constant. Holding this will also
626 * guarantee that any pfn_valid() stays that way.
627 *
628 * Nests above zone->lock and zone->size_seqlock.
629 */
630 spinlock_t node_size_lock;
631#endif
1da177e4
LT
632 unsigned long node_start_pfn;
633 unsigned long node_present_pages; /* total number of physical pages */
634 unsigned long node_spanned_pages; /* total size of physical page
635 range, including holes */
636 int node_id;
1da177e4
LT
637 wait_queue_head_t kswapd_wait;
638 struct task_struct *kswapd;
639 int kswapd_max_order;
640} pg_data_t;
641
642#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
643#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 644#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 645#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
646#else
647#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
648#endif
408fde81 649#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 650
208d54e5
DH
651#include <linux/memory_hotplug.h>
652
1da177e4
LT
653void get_zone_counts(unsigned long *active, unsigned long *inactive,
654 unsigned long *free);
655void build_all_zonelists(void);
656void wakeup_kswapd(struct zone *zone, int order);
657int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 658 int classzone_idx, int alloc_flags);
a2f3aa02
DH
659enum memmap_context {
660 MEMMAP_EARLY,
661 MEMMAP_HOTPLUG,
662};
718127cc 663extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
a2f3aa02
DH
664 unsigned long size,
665 enum memmap_context context);
718127cc 666
1da177e4
LT
667#ifdef CONFIG_HAVE_MEMORY_PRESENT
668void memory_present(int nid, unsigned long start, unsigned long end);
669#else
670static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
671#endif
672
673#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
674unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
675#endif
676
677/*
678 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
679 */
680#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
681
f3fe6512
CK
682static inline int populated_zone(struct zone *zone)
683{
684 return (!!zone->present_pages);
685}
686
2a1e274a
MG
687extern int movable_zone;
688
689static inline int zone_movable_is_highmem(void)
690{
691#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
692 return movable_zone == ZONE_HIGHMEM;
693#else
694 return 0;
695#endif
696}
697
2f1b6248 698static inline int is_highmem_idx(enum zone_type idx)
1da177e4 699{
e53ef38d 700#ifdef CONFIG_HIGHMEM
2a1e274a
MG
701 return (idx == ZONE_HIGHMEM ||
702 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
703#else
704 return 0;
705#endif
1da177e4
LT
706}
707
2f1b6248 708static inline int is_normal_idx(enum zone_type idx)
1da177e4
LT
709{
710 return (idx == ZONE_NORMAL);
711}
9328b8fa 712
1da177e4
LT
713/**
714 * is_highmem - helper function to quickly check if a struct zone is a
715 * highmem zone or not. This is an attempt to keep references
716 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
717 * @zone - pointer to struct zone variable
718 */
719static inline int is_highmem(struct zone *zone)
720{
e53ef38d 721#ifdef CONFIG_HIGHMEM
ddc81ed2
HH
722 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
723 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
724 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
725 zone_movable_is_highmem());
e53ef38d
CL
726#else
727 return 0;
728#endif
1da177e4
LT
729}
730
731static inline int is_normal(struct zone *zone)
732{
733 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
734}
735
9328b8fa
NP
736static inline int is_dma32(struct zone *zone)
737{
fb0e7942 738#ifdef CONFIG_ZONE_DMA32
9328b8fa 739 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
fb0e7942
CL
740#else
741 return 0;
742#endif
9328b8fa
NP
743}
744
745static inline int is_dma(struct zone *zone)
746{
4b51d669 747#ifdef CONFIG_ZONE_DMA
9328b8fa 748 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
4b51d669
CL
749#else
750 return 0;
751#endif
9328b8fa
NP
752}
753
1da177e4
LT
754/* These two functions are used to setup the per zone pages min values */
755struct ctl_table;
8d65af78 756int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
1da177e4
LT
757 void __user *, size_t *, loff_t *);
758extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
8d65af78 759int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
1da177e4 760 void __user *, size_t *, loff_t *);
8d65af78 761int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
8ad4b1fb 762 void __user *, size_t *, loff_t *);
9614634f 763int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 764 void __user *, size_t *, loff_t *);
0ff38490 765int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 766 void __user *, size_t *, loff_t *);
1da177e4 767
f0c0b2b8 768extern int numa_zonelist_order_handler(struct ctl_table *, int,
8d65af78 769 void __user *, size_t *, loff_t *);
f0c0b2b8
KH
770extern char numa_zonelist_order[];
771#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
772
93b7504e 773#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
774
775extern struct pglist_data contig_page_data;
776#define NODE_DATA(nid) (&contig_page_data)
777#define NODE_MEM_MAP(nid) mem_map
1da177e4 778
93b7504e 779#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
780
781#include <asm/mmzone.h>
782
93b7504e 783#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 784
95144c78
KH
785extern struct pglist_data *first_online_pgdat(void);
786extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
787extern struct zone *next_zone(struct zone *zone);
8357f869
KH
788
789/**
12d15f0d 790 * for_each_online_pgdat - helper macro to iterate over all online nodes
8357f869
KH
791 * @pgdat - pointer to a pg_data_t variable
792 */
793#define for_each_online_pgdat(pgdat) \
794 for (pgdat = first_online_pgdat(); \
795 pgdat; \
796 pgdat = next_online_pgdat(pgdat))
8357f869
KH
797/**
798 * for_each_zone - helper macro to iterate over all memory zones
799 * @zone - pointer to struct zone variable
800 *
801 * The user only needs to declare the zone variable, for_each_zone
802 * fills it in.
803 */
804#define for_each_zone(zone) \
805 for (zone = (first_online_pgdat())->node_zones; \
806 zone; \
807 zone = next_zone(zone))
808
ee99c71c
KM
809#define for_each_populated_zone(zone) \
810 for (zone = (first_online_pgdat())->node_zones; \
811 zone; \
812 zone = next_zone(zone)) \
813 if (!populated_zone(zone)) \
814 ; /* do nothing */ \
815 else
816
dd1a239f
MG
817static inline struct zone *zonelist_zone(struct zoneref *zoneref)
818{
819 return zoneref->zone;
820}
821
822static inline int zonelist_zone_idx(struct zoneref *zoneref)
823{
824 return zoneref->zone_idx;
825}
826
827static inline int zonelist_node_idx(struct zoneref *zoneref)
828{
829#ifdef CONFIG_NUMA
830 /* zone_to_nid not available in this context */
831 return zoneref->zone->node;
832#else
833 return 0;
834#endif /* CONFIG_NUMA */
835}
836
19770b32
MG
837/**
838 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
839 * @z - The cursor used as a starting point for the search
840 * @highest_zoneidx - The zone index of the highest zone to return
841 * @nodes - An optional nodemask to filter the zonelist with
842 * @zone - The first suitable zone found is returned via this parameter
843 *
844 * This function returns the next zone at or below a given zone index that is
845 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
846 * search. The zoneref returned is a cursor that represents the current zone
847 * being examined. It should be advanced by one before calling
848 * next_zones_zonelist again.
19770b32
MG
849 */
850struct zoneref *next_zones_zonelist(struct zoneref *z,
851 enum zone_type highest_zoneidx,
852 nodemask_t *nodes,
853 struct zone **zone);
dd1a239f 854
19770b32
MG
855/**
856 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
857 * @zonelist - The zonelist to search for a suitable zone
858 * @highest_zoneidx - The zone index of the highest zone to return
859 * @nodes - An optional nodemask to filter the zonelist with
860 * @zone - The first suitable zone found is returned via this parameter
861 *
862 * This function returns the first zone at or below a given zone index that is
863 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
864 * used to iterate the zonelist with next_zones_zonelist by advancing it by
865 * one before calling.
19770b32 866 */
dd1a239f 867static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32
MG
868 enum zone_type highest_zoneidx,
869 nodemask_t *nodes,
870 struct zone **zone)
54a6eb5c 871{
19770b32
MG
872 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
873 zone);
54a6eb5c
MG
874}
875
19770b32
MG
876/**
877 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
878 * @zone - The current zone in the iterator
879 * @z - The current pointer within zonelist->zones being iterated
880 * @zlist - The zonelist being iterated
881 * @highidx - The zone index of the highest zone to return
882 * @nodemask - Nodemask allowed by the allocator
883 *
884 * This iterator iterates though all zones at or below a given zone index and
885 * within a given nodemask
886 */
887#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
888 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
889 zone; \
5bead2a0 890 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
54a6eb5c
MG
891
892/**
893 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
894 * @zone - The current zone in the iterator
895 * @z - The current pointer within zonelist->zones being iterated
896 * @zlist - The zonelist being iterated
897 * @highidx - The zone index of the highest zone to return
898 *
899 * This iterator iterates though all zones at or below a given zone index.
900 */
901#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 902 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 903
d41dee36
AW
904#ifdef CONFIG_SPARSEMEM
905#include <asm/sparsemem.h>
906#endif
907
c713216d
MG
908#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
909 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
b4544568
AM
910static inline unsigned long early_pfn_to_nid(unsigned long pfn)
911{
912 return 0;
913}
b159d43f
AW
914#endif
915
2bdaf115
AW
916#ifdef CONFIG_FLATMEM
917#define pfn_to_nid(pfn) (0)
918#endif
919
d41dee36
AW
920#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
921#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
922
923#ifdef CONFIG_SPARSEMEM
924
925/*
926 * SECTION_SHIFT #bits space required to store a section #
927 *
928 * PA_SECTION_SHIFT physical address to/from section number
929 * PFN_SECTION_SHIFT pfn to/from section number
930 */
931#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
932
933#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
934#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
935
936#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
937
938#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
939#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
940
835c134e 941#define SECTION_BLOCKFLAGS_BITS \
d9c23400 942 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 943
d41dee36
AW
944#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
945#error Allocator MAX_ORDER exceeds SECTION_SIZE
946#endif
947
948struct page;
52d4b9ac 949struct page_cgroup;
d41dee36 950struct mem_section {
29751f69
AW
951 /*
952 * This is, logically, a pointer to an array of struct
953 * pages. However, it is stored with some other magic.
954 * (see sparse.c::sparse_init_one_section())
955 *
30c253e6
AW
956 * Additionally during early boot we encode node id of
957 * the location of the section here to guide allocation.
958 * (see sparse.c::memory_present())
959 *
29751f69
AW
960 * Making it a UL at least makes someone do a cast
961 * before using it wrong.
962 */
963 unsigned long section_mem_map;
5c0e3066
MG
964
965 /* See declaration of similar field in struct zone */
966 unsigned long *pageblock_flags;
52d4b9ac
KH
967#ifdef CONFIG_CGROUP_MEM_RES_CTLR
968 /*
969 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
970 * section. (see memcontrol.h/page_cgroup.h about this.)
971 */
972 struct page_cgroup *page_cgroup;
973 unsigned long pad;
974#endif
d41dee36
AW
975};
976
3e347261
BP
977#ifdef CONFIG_SPARSEMEM_EXTREME
978#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
979#else
980#define SECTIONS_PER_ROOT 1
981#endif
802f192e 982
3e347261
BP
983#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
984#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
985#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 986
3e347261
BP
987#ifdef CONFIG_SPARSEMEM_EXTREME
988extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 989#else
3e347261
BP
990extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
991#endif
d41dee36 992
29751f69
AW
993static inline struct mem_section *__nr_to_section(unsigned long nr)
994{
3e347261
BP
995 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
996 return NULL;
997 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 998}
4ca644d9 999extern int __section_nr(struct mem_section* ms);
04753278 1000extern unsigned long usemap_size(void);
29751f69
AW
1001
1002/*
1003 * We use the lower bits of the mem_map pointer to store
1004 * a little bit of information. There should be at least
1005 * 3 bits here due to 32-bit alignment.
1006 */
1007#define SECTION_MARKED_PRESENT (1UL<<0)
1008#define SECTION_HAS_MEM_MAP (1UL<<1)
1009#define SECTION_MAP_LAST_BIT (1UL<<2)
1010#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 1011#define SECTION_NID_SHIFT 2
29751f69
AW
1012
1013static inline struct page *__section_mem_map_addr(struct mem_section *section)
1014{
1015 unsigned long map = section->section_mem_map;
1016 map &= SECTION_MAP_MASK;
1017 return (struct page *)map;
1018}
1019
540557b9 1020static inline int present_section(struct mem_section *section)
29751f69 1021{
802f192e 1022 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1023}
1024
540557b9
AW
1025static inline int present_section_nr(unsigned long nr)
1026{
1027 return present_section(__nr_to_section(nr));
1028}
1029
1030static inline int valid_section(struct mem_section *section)
29751f69 1031{
802f192e 1032 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1033}
1034
1035static inline int valid_section_nr(unsigned long nr)
1036{
1037 return valid_section(__nr_to_section(nr));
1038}
1039
d41dee36
AW
1040static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1041{
29751f69 1042 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1043}
1044
d41dee36
AW
1045static inline int pfn_valid(unsigned long pfn)
1046{
1047 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1048 return 0;
29751f69 1049 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36
AW
1050}
1051
540557b9
AW
1052static inline int pfn_present(unsigned long pfn)
1053{
1054 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1055 return 0;
1056 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1057}
1058
d41dee36
AW
1059/*
1060 * These are _only_ used during initialisation, therefore they
1061 * can use __initdata ... They could have names to indicate
1062 * this restriction.
1063 */
1064#ifdef CONFIG_NUMA
161599ff
AW
1065#define pfn_to_nid(pfn) \
1066({ \
1067 unsigned long __pfn_to_nid_pfn = (pfn); \
1068 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1069})
2bdaf115
AW
1070#else
1071#define pfn_to_nid(pfn) (0)
d41dee36
AW
1072#endif
1073
d41dee36
AW
1074#define early_pfn_valid(pfn) pfn_valid(pfn)
1075void sparse_init(void);
1076#else
1077#define sparse_init() do {} while (0)
28ae55c9 1078#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
1079#endif /* CONFIG_SPARSEMEM */
1080
75167957 1081#ifdef CONFIG_NODES_SPAN_OTHER_NODES
cc2559bc 1082bool early_pfn_in_nid(unsigned long pfn, int nid);
75167957
AW
1083#else
1084#define early_pfn_in_nid(pfn, nid) (1)
1085#endif
1086
d41dee36
AW
1087#ifndef early_pfn_valid
1088#define early_pfn_valid(pfn) (1)
1089#endif
1090
1091void memory_present(int nid, unsigned long start, unsigned long end);
1092unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1093
14e07298
AW
1094/*
1095 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1096 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1097 * pfn_valid_within() should be used in this case; we optimise this away
1098 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1099 */
1100#ifdef CONFIG_HOLES_IN_ZONE
1101#define pfn_valid_within(pfn) pfn_valid(pfn)
1102#else
1103#define pfn_valid_within(pfn) (1)
1104#endif
1105
eb33575c
MG
1106#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1107/*
1108 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1109 * associated with it or not. In FLATMEM, it is expected that holes always
1110 * have valid memmap as long as there is valid PFNs either side of the hole.
1111 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1112 * entire section.
1113 *
1114 * However, an ARM, and maybe other embedded architectures in the future
1115 * free memmap backing holes to save memory on the assumption the memmap is
1116 * never used. The page_zone linkages are then broken even though pfn_valid()
1117 * returns true. A walker of the full memmap must then do this additional
1118 * check to ensure the memmap they are looking at is sane by making sure
1119 * the zone and PFN linkages are still valid. This is expensive, but walkers
1120 * of the full memmap are extremely rare.
1121 */
1122int memmap_valid_within(unsigned long pfn,
1123 struct page *page, struct zone *zone);
1124#else
1125static inline int memmap_valid_within(unsigned long pfn,
1126 struct page *page, struct zone *zone)
1127{
1128 return 1;
1129}
1130#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1131
97965478 1132#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1133#endif /* !__ASSEMBLY__ */
1da177e4 1134#endif /* _LINUX_MMZONE_H */