]> bbs.cooldavid.org Git - net-next-2.6.git/blame - include/linux/mmzone.h
page allocator: use allocation flags as an index to the zone watermark
[net-next-2.6.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
1da177e4 4#ifndef __ASSEMBLY__
97965478 5#ifndef __GENERATING_BOUNDS_H
1da177e4 6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
e815af95 10#include <linux/bitops.h>
1da177e4
LT
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
bdc8cb98 15#include <linux/seqlock.h>
8357f869 16#include <linux/nodemask.h>
835c134e 17#include <linux/pageblock-flags.h>
97965478 18#include <linux/bounds.h>
1da177e4 19#include <asm/atomic.h>
93ff66bf 20#include <asm/page.h>
1da177e4
LT
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
e984bb43 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 29
5ad333eb
AW
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coelesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
b2a0ac88 38#define MIGRATE_UNMOVABLE 0
e12ba74d
MG
39#define MIGRATE_RECLAIMABLE 1
40#define MIGRATE_MOVABLE 2
64c5e135 41#define MIGRATE_RESERVE 3
a5d76b54
KH
42#define MIGRATE_ISOLATE 4 /* can't allocate from here */
43#define MIGRATE_TYPES 5
b2a0ac88
MG
44
45#define for_each_migratetype_order(order, type) \
46 for (order = 0; order < MAX_ORDER; order++) \
47 for (type = 0; type < MIGRATE_TYPES; type++)
48
467c996c
MG
49extern int page_group_by_mobility_disabled;
50
51static inline int get_pageblock_migratetype(struct page *page)
52{
467c996c
MG
53 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
54}
55
1da177e4 56struct free_area {
b2a0ac88 57 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
58 unsigned long nr_free;
59};
60
61struct pglist_data;
62
63/*
64 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
65 * So add a wild amount of padding here to ensure that they fall into separate
66 * cachelines. There are very few zone structures in the machine, so space
67 * consumption is not a concern here.
68 */
69#if defined(CONFIG_SMP)
70struct zone_padding {
71 char x[0];
22fc6ecc 72} ____cacheline_internodealigned_in_smp;
1da177e4
LT
73#define ZONE_PADDING(name) struct zone_padding name;
74#else
75#define ZONE_PADDING(name)
76#endif
77
2244b95a 78enum zone_stat_item {
51ed4491 79 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 80 NR_FREE_PAGES,
b69408e8 81 NR_LRU_BASE,
4f98a2fe
RR
82 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
83 NR_ACTIVE_ANON, /* " " " " " */
84 NR_INACTIVE_FILE, /* " " " " " */
85 NR_ACTIVE_FILE, /* " " " " " */
894bc310
LS
86#ifdef CONFIG_UNEVICTABLE_LRU
87 NR_UNEVICTABLE, /* " " " " " */
5344b7e6 88 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
894bc310
LS
89#else
90 NR_UNEVICTABLE = NR_ACTIVE_FILE, /* avoid compiler errors in dead code */
5344b7e6 91 NR_MLOCK = NR_ACTIVE_FILE,
894bc310 92#endif
f3dbd344
CL
93 NR_ANON_PAGES, /* Mapped anonymous pages */
94 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 95 only modified from process context */
347ce434 96 NR_FILE_PAGES,
b1e7a8fd 97 NR_FILE_DIRTY,
ce866b34 98 NR_WRITEBACK,
51ed4491
CL
99 NR_SLAB_RECLAIMABLE,
100 NR_SLAB_UNRECLAIMABLE,
101 NR_PAGETABLE, /* used for pagetables */
fd39fc85 102 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 103 NR_BOUNCE,
e129b5c2 104 NR_VMSCAN_WRITE,
4f98a2fe 105 /* Second 128 byte cacheline */
fc3ba692 106 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
ca889e6c
CL
107#ifdef CONFIG_NUMA
108 NUMA_HIT, /* allocated in intended node */
109 NUMA_MISS, /* allocated in non intended node */
110 NUMA_FOREIGN, /* was intended here, hit elsewhere */
111 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
112 NUMA_LOCAL, /* allocation from local node */
113 NUMA_OTHER, /* allocation from other node */
114#endif
2244b95a
CL
115 NR_VM_ZONE_STAT_ITEMS };
116
4f98a2fe
RR
117/*
118 * We do arithmetic on the LRU lists in various places in the code,
119 * so it is important to keep the active lists LRU_ACTIVE higher in
120 * the array than the corresponding inactive lists, and to keep
121 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
122 *
123 * This has to be kept in sync with the statistics in zone_stat_item
124 * above and the descriptions in vmstat_text in mm/vmstat.c
125 */
126#define LRU_BASE 0
127#define LRU_ACTIVE 1
128#define LRU_FILE 2
129
b69408e8 130enum lru_list {
4f98a2fe
RR
131 LRU_INACTIVE_ANON = LRU_BASE,
132 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
133 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
134 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310
LS
135#ifdef CONFIG_UNEVICTABLE_LRU
136 LRU_UNEVICTABLE,
137#else
138 LRU_UNEVICTABLE = LRU_ACTIVE_FILE, /* avoid compiler errors in dead code */
139#endif
140 NR_LRU_LISTS
141};
b69408e8
CL
142
143#define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
144
894bc310
LS
145#define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
146
4f98a2fe
RR
147static inline int is_file_lru(enum lru_list l)
148{
149 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
150}
151
b69408e8
CL
152static inline int is_active_lru(enum lru_list l)
153{
4f98a2fe 154 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
b69408e8
CL
155}
156
894bc310
LS
157static inline int is_unevictable_lru(enum lru_list l)
158{
159#ifdef CONFIG_UNEVICTABLE_LRU
160 return (l == LRU_UNEVICTABLE);
161#else
162 return 0;
163#endif
164}
165
41858966
MG
166enum zone_watermarks {
167 WMARK_MIN,
168 WMARK_LOW,
169 WMARK_HIGH,
170 NR_WMARK
171};
172
173#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
174#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
175#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
176
1da177e4
LT
177struct per_cpu_pages {
178 int count; /* number of pages in the list */
1da177e4
LT
179 int high; /* high watermark, emptying needed */
180 int batch; /* chunk size for buddy add/remove */
181 struct list_head list; /* the list of pages */
182};
183
184struct per_cpu_pageset {
3dfa5721 185 struct per_cpu_pages pcp;
4037d452
CL
186#ifdef CONFIG_NUMA
187 s8 expire;
188#endif
2244b95a 189#ifdef CONFIG_SMP
df9ecaba 190 s8 stat_threshold;
2244b95a
CL
191 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
192#endif
1da177e4
LT
193} ____cacheline_aligned_in_smp;
194
e7c8d5c9
CL
195#ifdef CONFIG_NUMA
196#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
197#else
198#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
199#endif
200
97965478
CL
201#endif /* !__GENERATING_BOUNDS.H */
202
2f1b6248 203enum zone_type {
4b51d669 204#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
205 /*
206 * ZONE_DMA is used when there are devices that are not able
207 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
208 * carve out the portion of memory that is needed for these devices.
209 * The range is arch specific.
210 *
211 * Some examples
212 *
213 * Architecture Limit
214 * ---------------------------
215 * parisc, ia64, sparc <4G
216 * s390 <2G
2f1b6248
CL
217 * arm Various
218 * alpha Unlimited or 0-16MB.
219 *
220 * i386, x86_64 and multiple other arches
221 * <16M.
222 */
223 ZONE_DMA,
4b51d669 224#endif
fb0e7942 225#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
226 /*
227 * x86_64 needs two ZONE_DMAs because it supports devices that are
228 * only able to do DMA to the lower 16M but also 32 bit devices that
229 * can only do DMA areas below 4G.
230 */
231 ZONE_DMA32,
fb0e7942 232#endif
2f1b6248
CL
233 /*
234 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
235 * performed on pages in ZONE_NORMAL if the DMA devices support
236 * transfers to all addressable memory.
237 */
238 ZONE_NORMAL,
e53ef38d 239#ifdef CONFIG_HIGHMEM
2f1b6248
CL
240 /*
241 * A memory area that is only addressable by the kernel through
242 * mapping portions into its own address space. This is for example
243 * used by i386 to allow the kernel to address the memory beyond
244 * 900MB. The kernel will set up special mappings (page
245 * table entries on i386) for each page that the kernel needs to
246 * access.
247 */
248 ZONE_HIGHMEM,
e53ef38d 249#endif
2a1e274a 250 ZONE_MOVABLE,
97965478 251 __MAX_NR_ZONES
2f1b6248 252};
1da177e4 253
97965478
CL
254#ifndef __GENERATING_BOUNDS_H
255
1da177e4
LT
256/*
257 * When a memory allocation must conform to specific limitations (such
258 * as being suitable for DMA) the caller will pass in hints to the
259 * allocator in the gfp_mask, in the zone modifier bits. These bits
260 * are used to select a priority ordered list of memory zones which
19655d34 261 * match the requested limits. See gfp_zone() in include/linux/gfp.h
1da177e4 262 */
fb0e7942 263
97965478 264#if MAX_NR_ZONES < 2
4b51d669 265#define ZONES_SHIFT 0
97965478 266#elif MAX_NR_ZONES <= 2
19655d34 267#define ZONES_SHIFT 1
97965478 268#elif MAX_NR_ZONES <= 4
19655d34 269#define ZONES_SHIFT 2
4b51d669
CL
270#else
271#error ZONES_SHIFT -- too many zones configured adjust calculation
fb0e7942 272#endif
1da177e4 273
6e901571
KM
274struct zone_reclaim_stat {
275 /*
276 * The pageout code in vmscan.c keeps track of how many of the
277 * mem/swap backed and file backed pages are refeferenced.
278 * The higher the rotated/scanned ratio, the more valuable
279 * that cache is.
280 *
281 * The anon LRU stats live in [0], file LRU stats in [1]
282 */
283 unsigned long recent_rotated[2];
284 unsigned long recent_scanned[2];
285};
286
1da177e4
LT
287struct zone {
288 /* Fields commonly accessed by the page allocator */
41858966
MG
289
290 /* zone watermarks, access with *_wmark_pages(zone) macros */
291 unsigned long watermark[NR_WMARK];
292
1da177e4
LT
293 /*
294 * We don't know if the memory that we're going to allocate will be freeable
295 * or/and it will be released eventually, so to avoid totally wasting several
296 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
297 * to run OOM on the lower zones despite there's tons of freeable ram
298 * on the higher zones). This array is recalculated at runtime if the
299 * sysctl_lowmem_reserve_ratio sysctl changes.
300 */
301 unsigned long lowmem_reserve[MAX_NR_ZONES];
302
e7c8d5c9 303#ifdef CONFIG_NUMA
d5f541ed 304 int node;
9614634f
CL
305 /*
306 * zone reclaim becomes active if more unmapped pages exist.
307 */
8417bba4 308 unsigned long min_unmapped_pages;
0ff38490 309 unsigned long min_slab_pages;
e7c8d5c9
CL
310 struct per_cpu_pageset *pageset[NR_CPUS];
311#else
1da177e4 312 struct per_cpu_pageset pageset[NR_CPUS];
e7c8d5c9 313#endif
1da177e4
LT
314 /*
315 * free areas of different sizes
316 */
317 spinlock_t lock;
bdc8cb98
DH
318#ifdef CONFIG_MEMORY_HOTPLUG
319 /* see spanned/present_pages for more description */
320 seqlock_t span_seqlock;
321#endif
1da177e4
LT
322 struct free_area free_area[MAX_ORDER];
323
835c134e
MG
324#ifndef CONFIG_SPARSEMEM
325 /*
d9c23400 326 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
327 * In SPARSEMEM, this map is stored in struct mem_section
328 */
329 unsigned long *pageblock_flags;
330#endif /* CONFIG_SPARSEMEM */
331
1da177e4
LT
332
333 ZONE_PADDING(_pad1_)
334
335 /* Fields commonly accessed by the page reclaim scanner */
336 spinlock_t lru_lock;
b69408e8
CL
337 struct {
338 struct list_head list;
339 unsigned long nr_scan;
340 } lru[NR_LRU_LISTS];
4f98a2fe 341
6e901571 342 struct zone_reclaim_stat reclaim_stat;
4f98a2fe 343
1da177e4 344 unsigned long pages_scanned; /* since last reclaim */
e815af95 345 unsigned long flags; /* zone flags, see below */
753ee728 346
2244b95a
CL
347 /* Zone statistics */
348 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 349
1da177e4
LT
350 /*
351 * prev_priority holds the scanning priority for this zone. It is
352 * defined as the scanning priority at which we achieved our reclaim
353 * target at the previous try_to_free_pages() or balance_pgdat()
354 * invokation.
355 *
356 * We use prev_priority as a measure of how much stress page reclaim is
357 * under - it drives the swappiness decision: whether to unmap mapped
358 * pages.
359 *
3bb1a852 360 * Access to both this field is quite racy even on uniprocessor. But
1da177e4
LT
361 * it is expected to average out OK.
362 */
1da177e4
LT
363 int prev_priority;
364
556adecb
RR
365 /*
366 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
367 * this zone's LRU. Maintained by the pageout code.
368 */
369 unsigned int inactive_ratio;
370
1da177e4
LT
371
372 ZONE_PADDING(_pad2_)
373 /* Rarely used or read-mostly fields */
374
375 /*
376 * wait_table -- the array holding the hash table
02b694de 377 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
378 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
379 *
380 * The purpose of all these is to keep track of the people
381 * waiting for a page to become available and make them
382 * runnable again when possible. The trouble is that this
383 * consumes a lot of space, especially when so few things
384 * wait on pages at a given time. So instead of using
385 * per-page waitqueues, we use a waitqueue hash table.
386 *
387 * The bucket discipline is to sleep on the same queue when
388 * colliding and wake all in that wait queue when removing.
389 * When something wakes, it must check to be sure its page is
390 * truly available, a la thundering herd. The cost of a
391 * collision is great, but given the expected load of the
392 * table, they should be so rare as to be outweighed by the
393 * benefits from the saved space.
394 *
395 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
396 * primary users of these fields, and in mm/page_alloc.c
397 * free_area_init_core() performs the initialization of them.
398 */
399 wait_queue_head_t * wait_table;
02b694de 400 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
401 unsigned long wait_table_bits;
402
403 /*
404 * Discontig memory support fields.
405 */
406 struct pglist_data *zone_pgdat;
1da177e4
LT
407 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
408 unsigned long zone_start_pfn;
409
bdc8cb98
DH
410 /*
411 * zone_start_pfn, spanned_pages and present_pages are all
412 * protected by span_seqlock. It is a seqlock because it has
413 * to be read outside of zone->lock, and it is done in the main
414 * allocator path. But, it is written quite infrequently.
415 *
416 * The lock is declared along with zone->lock because it is
417 * frequently read in proximity to zone->lock. It's good to
418 * give them a chance of being in the same cacheline.
419 */
1da177e4
LT
420 unsigned long spanned_pages; /* total size, including holes */
421 unsigned long present_pages; /* amount of memory (excluding holes) */
422
423 /*
424 * rarely used fields:
425 */
15ad7cdc 426 const char *name;
22fc6ecc 427} ____cacheline_internodealigned_in_smp;
1da177e4 428
e815af95
DR
429typedef enum {
430 ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */
431 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
098d7f12 432 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
e815af95
DR
433} zone_flags_t;
434
435static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
436{
437 set_bit(flag, &zone->flags);
438}
d773ed6b
DR
439
440static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
441{
442 return test_and_set_bit(flag, &zone->flags);
443}
444
e815af95
DR
445static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
446{
447 clear_bit(flag, &zone->flags);
448}
449
450static inline int zone_is_all_unreclaimable(const struct zone *zone)
451{
452 return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
453}
d773ed6b 454
e815af95
DR
455static inline int zone_is_reclaim_locked(const struct zone *zone)
456{
457 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
458}
d773ed6b 459
098d7f12
DR
460static inline int zone_is_oom_locked(const struct zone *zone)
461{
462 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
463}
e815af95 464
1da177e4
LT
465/*
466 * The "priority" of VM scanning is how much of the queues we will scan in one
467 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
468 * queues ("queue_length >> 12") during an aging round.
469 */
470#define DEF_PRIORITY 12
471
9276b1bc
PJ
472/* Maximum number of zones on a zonelist */
473#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
474
475#ifdef CONFIG_NUMA
523b9458
CL
476
477/*
478 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
479 * allocations to a single node for GFP_THISNODE.
480 *
54a6eb5c
MG
481 * [0] : Zonelist with fallback
482 * [1] : No fallback (GFP_THISNODE)
523b9458 483 */
54a6eb5c 484#define MAX_ZONELISTS 2
523b9458
CL
485
486
9276b1bc
PJ
487/*
488 * We cache key information from each zonelist for smaller cache
489 * footprint when scanning for free pages in get_page_from_freelist().
490 *
491 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
492 * up short of free memory since the last time (last_fullzone_zap)
493 * we zero'd fullzones.
494 * 2) The array z_to_n[] maps each zone in the zonelist to its node
495 * id, so that we can efficiently evaluate whether that node is
496 * set in the current tasks mems_allowed.
497 *
498 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
499 * indexed by a zones offset in the zonelist zones[] array.
500 *
501 * The get_page_from_freelist() routine does two scans. During the
502 * first scan, we skip zones whose corresponding bit in 'fullzones'
503 * is set or whose corresponding node in current->mems_allowed (which
504 * comes from cpusets) is not set. During the second scan, we bypass
505 * this zonelist_cache, to ensure we look methodically at each zone.
506 *
507 * Once per second, we zero out (zap) fullzones, forcing us to
508 * reconsider nodes that might have regained more free memory.
509 * The field last_full_zap is the time we last zapped fullzones.
510 *
511 * This mechanism reduces the amount of time we waste repeatedly
512 * reexaming zones for free memory when they just came up low on
513 * memory momentarilly ago.
514 *
515 * The zonelist_cache struct members logically belong in struct
516 * zonelist. However, the mempolicy zonelists constructed for
517 * MPOL_BIND are intentionally variable length (and usually much
518 * shorter). A general purpose mechanism for handling structs with
519 * multiple variable length members is more mechanism than we want
520 * here. We resort to some special case hackery instead.
521 *
522 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
523 * part because they are shorter), so we put the fixed length stuff
524 * at the front of the zonelist struct, ending in a variable length
525 * zones[], as is needed by MPOL_BIND.
526 *
527 * Then we put the optional zonelist cache on the end of the zonelist
528 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
529 * the fixed length portion at the front of the struct. This pointer
530 * both enables us to find the zonelist cache, and in the case of
531 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
532 * to know that the zonelist cache is not there.
533 *
534 * The end result is that struct zonelists come in two flavors:
535 * 1) The full, fixed length version, shown below, and
536 * 2) The custom zonelists for MPOL_BIND.
537 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
538 *
539 * Even though there may be multiple CPU cores on a node modifying
540 * fullzones or last_full_zap in the same zonelist_cache at the same
541 * time, we don't lock it. This is just hint data - if it is wrong now
542 * and then, the allocator will still function, perhaps a bit slower.
543 */
544
545
546struct zonelist_cache {
9276b1bc 547 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
7253f4ef 548 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
9276b1bc
PJ
549 unsigned long last_full_zap; /* when last zap'd (jiffies) */
550};
551#else
54a6eb5c 552#define MAX_ZONELISTS 1
9276b1bc
PJ
553struct zonelist_cache;
554#endif
555
dd1a239f
MG
556/*
557 * This struct contains information about a zone in a zonelist. It is stored
558 * here to avoid dereferences into large structures and lookups of tables
559 */
560struct zoneref {
561 struct zone *zone; /* Pointer to actual zone */
562 int zone_idx; /* zone_idx(zoneref->zone) */
563};
564
1da177e4
LT
565/*
566 * One allocation request operates on a zonelist. A zonelist
567 * is a list of zones, the first one is the 'goal' of the
568 * allocation, the other zones are fallback zones, in decreasing
569 * priority.
570 *
9276b1bc
PJ
571 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
572 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
dd1a239f
MG
573 * *
574 * To speed the reading of the zonelist, the zonerefs contain the zone index
575 * of the entry being read. Helper functions to access information given
576 * a struct zoneref are
577 *
578 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
579 * zonelist_zone_idx() - Return the index of the zone for an entry
580 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
581 */
582struct zonelist {
9276b1bc 583 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
dd1a239f 584 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
9276b1bc
PJ
585#ifdef CONFIG_NUMA
586 struct zonelist_cache zlcache; // optional ...
587#endif
1da177e4
LT
588};
589
c713216d
MG
590#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
591struct node_active_region {
592 unsigned long start_pfn;
593 unsigned long end_pfn;
594 int nid;
595};
596#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1da177e4 597
5b99cd0e
HC
598#ifndef CONFIG_DISCONTIGMEM
599/* The array of struct pages - for discontigmem use pgdat->lmem_map */
600extern struct page *mem_map;
601#endif
602
1da177e4
LT
603/*
604 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
605 * (mostly NUMA machines?) to denote a higher-level memory zone than the
606 * zone denotes.
607 *
608 * On NUMA machines, each NUMA node would have a pg_data_t to describe
609 * it's memory layout.
610 *
611 * Memory statistics and page replacement data structures are maintained on a
612 * per-zone basis.
613 */
614struct bootmem_data;
615typedef struct pglist_data {
616 struct zone node_zones[MAX_NR_ZONES];
523b9458 617 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 618 int nr_zones;
52d4b9ac 619#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
1da177e4 620 struct page *node_mem_map;
52d4b9ac
KH
621#ifdef CONFIG_CGROUP_MEM_RES_CTLR
622 struct page_cgroup *node_page_cgroup;
623#endif
d41dee36 624#endif
1da177e4 625 struct bootmem_data *bdata;
208d54e5
DH
626#ifdef CONFIG_MEMORY_HOTPLUG
627 /*
628 * Must be held any time you expect node_start_pfn, node_present_pages
629 * or node_spanned_pages stay constant. Holding this will also
630 * guarantee that any pfn_valid() stays that way.
631 *
632 * Nests above zone->lock and zone->size_seqlock.
633 */
634 spinlock_t node_size_lock;
635#endif
1da177e4
LT
636 unsigned long node_start_pfn;
637 unsigned long node_present_pages; /* total number of physical pages */
638 unsigned long node_spanned_pages; /* total size of physical page
639 range, including holes */
640 int node_id;
1da177e4
LT
641 wait_queue_head_t kswapd_wait;
642 struct task_struct *kswapd;
643 int kswapd_max_order;
644} pg_data_t;
645
646#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
647#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 648#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 649#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
650#else
651#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
652#endif
408fde81 653#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 654
208d54e5
DH
655#include <linux/memory_hotplug.h>
656
1da177e4
LT
657void get_zone_counts(unsigned long *active, unsigned long *inactive,
658 unsigned long *free);
659void build_all_zonelists(void);
660void wakeup_kswapd(struct zone *zone, int order);
661int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 662 int classzone_idx, int alloc_flags);
a2f3aa02
DH
663enum memmap_context {
664 MEMMAP_EARLY,
665 MEMMAP_HOTPLUG,
666};
718127cc 667extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
a2f3aa02
DH
668 unsigned long size,
669 enum memmap_context context);
718127cc 670
1da177e4
LT
671#ifdef CONFIG_HAVE_MEMORY_PRESENT
672void memory_present(int nid, unsigned long start, unsigned long end);
673#else
674static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
675#endif
676
677#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
678unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
679#endif
680
681/*
682 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
683 */
684#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
685
f3fe6512
CK
686static inline int populated_zone(struct zone *zone)
687{
688 return (!!zone->present_pages);
689}
690
2a1e274a
MG
691extern int movable_zone;
692
693static inline int zone_movable_is_highmem(void)
694{
695#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
696 return movable_zone == ZONE_HIGHMEM;
697#else
698 return 0;
699#endif
700}
701
2f1b6248 702static inline int is_highmem_idx(enum zone_type idx)
1da177e4 703{
e53ef38d 704#ifdef CONFIG_HIGHMEM
2a1e274a
MG
705 return (idx == ZONE_HIGHMEM ||
706 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
707#else
708 return 0;
709#endif
1da177e4
LT
710}
711
2f1b6248 712static inline int is_normal_idx(enum zone_type idx)
1da177e4
LT
713{
714 return (idx == ZONE_NORMAL);
715}
9328b8fa 716
1da177e4
LT
717/**
718 * is_highmem - helper function to quickly check if a struct zone is a
719 * highmem zone or not. This is an attempt to keep references
720 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
721 * @zone - pointer to struct zone variable
722 */
723static inline int is_highmem(struct zone *zone)
724{
e53ef38d 725#ifdef CONFIG_HIGHMEM
ddc81ed2
HH
726 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
727 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
728 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
729 zone_movable_is_highmem());
e53ef38d
CL
730#else
731 return 0;
732#endif
1da177e4
LT
733}
734
735static inline int is_normal(struct zone *zone)
736{
737 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
738}
739
9328b8fa
NP
740static inline int is_dma32(struct zone *zone)
741{
fb0e7942 742#ifdef CONFIG_ZONE_DMA32
9328b8fa 743 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
fb0e7942
CL
744#else
745 return 0;
746#endif
9328b8fa
NP
747}
748
749static inline int is_dma(struct zone *zone)
750{
4b51d669 751#ifdef CONFIG_ZONE_DMA
9328b8fa 752 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
4b51d669
CL
753#else
754 return 0;
755#endif
9328b8fa
NP
756}
757
1da177e4
LT
758/* These two functions are used to setup the per zone pages min values */
759struct ctl_table;
760struct file;
761int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
762 void __user *, size_t *, loff_t *);
763extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
764int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
765 void __user *, size_t *, loff_t *);
8ad4b1fb
RS
766int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
767 void __user *, size_t *, loff_t *);
9614634f
CL
768int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
769 struct file *, void __user *, size_t *, loff_t *);
0ff38490
CL
770int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
771 struct file *, void __user *, size_t *, loff_t *);
1da177e4 772
f0c0b2b8
KH
773extern int numa_zonelist_order_handler(struct ctl_table *, int,
774 struct file *, void __user *, size_t *, loff_t *);
775extern char numa_zonelist_order[];
776#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
777
93b7504e 778#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
779
780extern struct pglist_data contig_page_data;
781#define NODE_DATA(nid) (&contig_page_data)
782#define NODE_MEM_MAP(nid) mem_map
1da177e4 783
93b7504e 784#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
785
786#include <asm/mmzone.h>
787
93b7504e 788#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 789
95144c78
KH
790extern struct pglist_data *first_online_pgdat(void);
791extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
792extern struct zone *next_zone(struct zone *zone);
8357f869
KH
793
794/**
12d15f0d 795 * for_each_online_pgdat - helper macro to iterate over all online nodes
8357f869
KH
796 * @pgdat - pointer to a pg_data_t variable
797 */
798#define for_each_online_pgdat(pgdat) \
799 for (pgdat = first_online_pgdat(); \
800 pgdat; \
801 pgdat = next_online_pgdat(pgdat))
8357f869
KH
802/**
803 * for_each_zone - helper macro to iterate over all memory zones
804 * @zone - pointer to struct zone variable
805 *
806 * The user only needs to declare the zone variable, for_each_zone
807 * fills it in.
808 */
809#define for_each_zone(zone) \
810 for (zone = (first_online_pgdat())->node_zones; \
811 zone; \
812 zone = next_zone(zone))
813
ee99c71c
KM
814#define for_each_populated_zone(zone) \
815 for (zone = (first_online_pgdat())->node_zones; \
816 zone; \
817 zone = next_zone(zone)) \
818 if (!populated_zone(zone)) \
819 ; /* do nothing */ \
820 else
821
dd1a239f
MG
822static inline struct zone *zonelist_zone(struct zoneref *zoneref)
823{
824 return zoneref->zone;
825}
826
827static inline int zonelist_zone_idx(struct zoneref *zoneref)
828{
829 return zoneref->zone_idx;
830}
831
832static inline int zonelist_node_idx(struct zoneref *zoneref)
833{
834#ifdef CONFIG_NUMA
835 /* zone_to_nid not available in this context */
836 return zoneref->zone->node;
837#else
838 return 0;
839#endif /* CONFIG_NUMA */
840}
841
19770b32
MG
842/**
843 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
844 * @z - The cursor used as a starting point for the search
845 * @highest_zoneidx - The zone index of the highest zone to return
846 * @nodes - An optional nodemask to filter the zonelist with
847 * @zone - The first suitable zone found is returned via this parameter
848 *
849 * This function returns the next zone at or below a given zone index that is
850 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
851 * search. The zoneref returned is a cursor that represents the current zone
852 * being examined. It should be advanced by one before calling
853 * next_zones_zonelist again.
19770b32
MG
854 */
855struct zoneref *next_zones_zonelist(struct zoneref *z,
856 enum zone_type highest_zoneidx,
857 nodemask_t *nodes,
858 struct zone **zone);
dd1a239f 859
19770b32
MG
860/**
861 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
862 * @zonelist - The zonelist to search for a suitable zone
863 * @highest_zoneidx - The zone index of the highest zone to return
864 * @nodes - An optional nodemask to filter the zonelist with
865 * @zone - The first suitable zone found is returned via this parameter
866 *
867 * This function returns the first zone at or below a given zone index that is
868 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
869 * used to iterate the zonelist with next_zones_zonelist by advancing it by
870 * one before calling.
19770b32 871 */
dd1a239f 872static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32
MG
873 enum zone_type highest_zoneidx,
874 nodemask_t *nodes,
875 struct zone **zone)
54a6eb5c 876{
19770b32
MG
877 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
878 zone);
54a6eb5c
MG
879}
880
19770b32
MG
881/**
882 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
883 * @zone - The current zone in the iterator
884 * @z - The current pointer within zonelist->zones being iterated
885 * @zlist - The zonelist being iterated
886 * @highidx - The zone index of the highest zone to return
887 * @nodemask - Nodemask allowed by the allocator
888 *
889 * This iterator iterates though all zones at or below a given zone index and
890 * within a given nodemask
891 */
892#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
893 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
894 zone; \
5bead2a0 895 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
54a6eb5c
MG
896
897/**
898 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
899 * @zone - The current zone in the iterator
900 * @z - The current pointer within zonelist->zones being iterated
901 * @zlist - The zonelist being iterated
902 * @highidx - The zone index of the highest zone to return
903 *
904 * This iterator iterates though all zones at or below a given zone index.
905 */
906#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 907 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 908
d41dee36
AW
909#ifdef CONFIG_SPARSEMEM
910#include <asm/sparsemem.h>
911#endif
912
c713216d
MG
913#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
914 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
b4544568
AM
915static inline unsigned long early_pfn_to_nid(unsigned long pfn)
916{
917 return 0;
918}
b159d43f
AW
919#endif
920
2bdaf115
AW
921#ifdef CONFIG_FLATMEM
922#define pfn_to_nid(pfn) (0)
923#endif
924
d41dee36
AW
925#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
926#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
927
928#ifdef CONFIG_SPARSEMEM
929
930/*
931 * SECTION_SHIFT #bits space required to store a section #
932 *
933 * PA_SECTION_SHIFT physical address to/from section number
934 * PFN_SECTION_SHIFT pfn to/from section number
935 */
936#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
937
938#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
939#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
940
941#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
942
943#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
944#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
945
835c134e 946#define SECTION_BLOCKFLAGS_BITS \
d9c23400 947 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 948
d41dee36
AW
949#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
950#error Allocator MAX_ORDER exceeds SECTION_SIZE
951#endif
952
953struct page;
52d4b9ac 954struct page_cgroup;
d41dee36 955struct mem_section {
29751f69
AW
956 /*
957 * This is, logically, a pointer to an array of struct
958 * pages. However, it is stored with some other magic.
959 * (see sparse.c::sparse_init_one_section())
960 *
30c253e6
AW
961 * Additionally during early boot we encode node id of
962 * the location of the section here to guide allocation.
963 * (see sparse.c::memory_present())
964 *
29751f69
AW
965 * Making it a UL at least makes someone do a cast
966 * before using it wrong.
967 */
968 unsigned long section_mem_map;
5c0e3066
MG
969
970 /* See declaration of similar field in struct zone */
971 unsigned long *pageblock_flags;
52d4b9ac
KH
972#ifdef CONFIG_CGROUP_MEM_RES_CTLR
973 /*
974 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
975 * section. (see memcontrol.h/page_cgroup.h about this.)
976 */
977 struct page_cgroup *page_cgroup;
978 unsigned long pad;
979#endif
d41dee36
AW
980};
981
3e347261
BP
982#ifdef CONFIG_SPARSEMEM_EXTREME
983#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
984#else
985#define SECTIONS_PER_ROOT 1
986#endif
802f192e 987
3e347261
BP
988#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
989#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
990#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 991
3e347261
BP
992#ifdef CONFIG_SPARSEMEM_EXTREME
993extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 994#else
3e347261
BP
995extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
996#endif
d41dee36 997
29751f69
AW
998static inline struct mem_section *__nr_to_section(unsigned long nr)
999{
3e347261
BP
1000 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1001 return NULL;
1002 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 1003}
4ca644d9 1004extern int __section_nr(struct mem_section* ms);
04753278 1005extern unsigned long usemap_size(void);
29751f69
AW
1006
1007/*
1008 * We use the lower bits of the mem_map pointer to store
1009 * a little bit of information. There should be at least
1010 * 3 bits here due to 32-bit alignment.
1011 */
1012#define SECTION_MARKED_PRESENT (1UL<<0)
1013#define SECTION_HAS_MEM_MAP (1UL<<1)
1014#define SECTION_MAP_LAST_BIT (1UL<<2)
1015#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 1016#define SECTION_NID_SHIFT 2
29751f69
AW
1017
1018static inline struct page *__section_mem_map_addr(struct mem_section *section)
1019{
1020 unsigned long map = section->section_mem_map;
1021 map &= SECTION_MAP_MASK;
1022 return (struct page *)map;
1023}
1024
540557b9 1025static inline int present_section(struct mem_section *section)
29751f69 1026{
802f192e 1027 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1028}
1029
540557b9
AW
1030static inline int present_section_nr(unsigned long nr)
1031{
1032 return present_section(__nr_to_section(nr));
1033}
1034
1035static inline int valid_section(struct mem_section *section)
29751f69 1036{
802f192e 1037 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1038}
1039
1040static inline int valid_section_nr(unsigned long nr)
1041{
1042 return valid_section(__nr_to_section(nr));
1043}
1044
d41dee36
AW
1045static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1046{
29751f69 1047 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1048}
1049
d41dee36
AW
1050static inline int pfn_valid(unsigned long pfn)
1051{
1052 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1053 return 0;
29751f69 1054 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36
AW
1055}
1056
540557b9
AW
1057static inline int pfn_present(unsigned long pfn)
1058{
1059 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1060 return 0;
1061 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1062}
1063
d41dee36
AW
1064/*
1065 * These are _only_ used during initialisation, therefore they
1066 * can use __initdata ... They could have names to indicate
1067 * this restriction.
1068 */
1069#ifdef CONFIG_NUMA
161599ff
AW
1070#define pfn_to_nid(pfn) \
1071({ \
1072 unsigned long __pfn_to_nid_pfn = (pfn); \
1073 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1074})
2bdaf115
AW
1075#else
1076#define pfn_to_nid(pfn) (0)
d41dee36
AW
1077#endif
1078
d41dee36
AW
1079#define early_pfn_valid(pfn) pfn_valid(pfn)
1080void sparse_init(void);
1081#else
1082#define sparse_init() do {} while (0)
28ae55c9 1083#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
1084#endif /* CONFIG_SPARSEMEM */
1085
75167957 1086#ifdef CONFIG_NODES_SPAN_OTHER_NODES
cc2559bc 1087bool early_pfn_in_nid(unsigned long pfn, int nid);
75167957
AW
1088#else
1089#define early_pfn_in_nid(pfn, nid) (1)
1090#endif
1091
d41dee36
AW
1092#ifndef early_pfn_valid
1093#define early_pfn_valid(pfn) (1)
1094#endif
1095
1096void memory_present(int nid, unsigned long start, unsigned long end);
1097unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1098
14e07298
AW
1099/*
1100 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1101 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1102 * pfn_valid_within() should be used in this case; we optimise this away
1103 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1104 */
1105#ifdef CONFIG_HOLES_IN_ZONE
1106#define pfn_valid_within(pfn) pfn_valid(pfn)
1107#else
1108#define pfn_valid_within(pfn) (1)
1109#endif
1110
eb33575c
MG
1111#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1112/*
1113 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1114 * associated with it or not. In FLATMEM, it is expected that holes always
1115 * have valid memmap as long as there is valid PFNs either side of the hole.
1116 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1117 * entire section.
1118 *
1119 * However, an ARM, and maybe other embedded architectures in the future
1120 * free memmap backing holes to save memory on the assumption the memmap is
1121 * never used. The page_zone linkages are then broken even though pfn_valid()
1122 * returns true. A walker of the full memmap must then do this additional
1123 * check to ensure the memmap they are looking at is sane by making sure
1124 * the zone and PFN linkages are still valid. This is expensive, but walkers
1125 * of the full memmap are extremely rare.
1126 */
1127int memmap_valid_within(unsigned long pfn,
1128 struct page *page, struct zone *zone);
1129#else
1130static inline int memmap_valid_within(unsigned long pfn,
1131 struct page *page, struct zone *zone)
1132{
1133 return 1;
1134}
1135#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1136
97965478 1137#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1138#endif /* !__ASSEMBLY__ */
1da177e4 1139#endif /* _LINUX_MMZONE_H */