]> bbs.cooldavid.org Git - net-next-2.6.git/blame - include/linux/mm.h
[PATCH] unpaged: unifdefed PageCompound
[net-next-2.6.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
4#include <linux/sched.h>
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
9#include <linux/config.h>
10#include <linux/gfp.h>
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
14#include <linux/prio_tree.h>
15#include <linux/fs.h>
16
17struct mempolicy;
18struct anon_vma;
19
20#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
21extern unsigned long max_mapnr;
22#endif
23
24extern unsigned long num_physpages;
25extern void * high_memory;
26extern unsigned long vmalloc_earlyreserve;
27extern int page_cluster;
28
29#ifdef CONFIG_SYSCTL
30extern int sysctl_legacy_va_layout;
31#else
32#define sysctl_legacy_va_layout 0
33#endif
34
35#include <asm/page.h>
36#include <asm/pgtable.h>
37#include <asm/processor.h>
38#include <asm/atomic.h>
39
1da177e4
LT
40#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
41
42/*
43 * Linux kernel virtual memory manager primitives.
44 * The idea being to have a "virtual" mm in the same way
45 * we have a virtual fs - giving a cleaner interface to the
46 * mm details, and allowing different kinds of memory mappings
47 * (from shared memory to executable loading to arbitrary
48 * mmap() functions).
49 */
50
51/*
52 * This struct defines a memory VMM memory area. There is one of these
53 * per VM-area/task. A VM area is any part of the process virtual memory
54 * space that has a special rule for the page-fault handlers (ie a shared
55 * library, the executable area etc).
56 */
57struct vm_area_struct {
58 struct mm_struct * vm_mm; /* The address space we belong to. */
59 unsigned long vm_start; /* Our start address within vm_mm. */
60 unsigned long vm_end; /* The first byte after our end address
61 within vm_mm. */
62
63 /* linked list of VM areas per task, sorted by address */
64 struct vm_area_struct *vm_next;
65
66 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
67 unsigned long vm_flags; /* Flags, listed below. */
68
69 struct rb_node vm_rb;
70
71 /*
72 * For areas with an address space and backing store,
73 * linkage into the address_space->i_mmap prio tree, or
74 * linkage to the list of like vmas hanging off its node, or
75 * linkage of vma in the address_space->i_mmap_nonlinear list.
76 */
77 union {
78 struct {
79 struct list_head list;
80 void *parent; /* aligns with prio_tree_node parent */
81 struct vm_area_struct *head;
82 } vm_set;
83
84 struct raw_prio_tree_node prio_tree_node;
85 } shared;
86
87 /*
88 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
89 * list, after a COW of one of the file pages. A MAP_SHARED vma
90 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
91 * or brk vma (with NULL file) can only be in an anon_vma list.
92 */
93 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
94 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
95
96 /* Function pointers to deal with this struct. */
97 struct vm_operations_struct * vm_ops;
98
99 /* Information about our backing store: */
100 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
101 units, *not* PAGE_CACHE_SIZE */
102 struct file * vm_file; /* File we map to (can be NULL). */
103 void * vm_private_data; /* was vm_pte (shared mem) */
104 unsigned long vm_truncate_count;/* truncate_count or restart_addr */
105
106#ifndef CONFIG_MMU
107 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */
108#endif
109#ifdef CONFIG_NUMA
110 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
111#endif
112};
113
114/*
115 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
116 * disabled, then there's a single shared list of VMAs maintained by the
117 * system, and mm's subscribe to these individually
118 */
119struct vm_list_struct {
120 struct vm_list_struct *next;
121 struct vm_area_struct *vma;
122};
123
124#ifndef CONFIG_MMU
125extern struct rb_root nommu_vma_tree;
126extern struct rw_semaphore nommu_vma_sem;
127
128extern unsigned int kobjsize(const void *objp);
129#endif
130
131/*
132 * vm_flags..
133 */
134#define VM_READ 0x00000001 /* currently active flags */
135#define VM_WRITE 0x00000002
136#define VM_EXEC 0x00000004
137#define VM_SHARED 0x00000008
138
7e2cff42 139/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
140#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
141#define VM_MAYWRITE 0x00000020
142#define VM_MAYEXEC 0x00000040
143#define VM_MAYSHARE 0x00000080
144
145#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
146#define VM_GROWSUP 0x00000200
147#define VM_SHM 0x00000400 /* shared memory area, don't swap out */
148#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
149
150#define VM_EXECUTABLE 0x00001000
151#define VM_LOCKED 0x00002000
152#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
153
154 /* Used by sys_madvise() */
155#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
156#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
157
158#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
159#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
b5810039 160#define VM_RESERVED 0x00080000 /* Pages managed in a special way */
1da177e4
LT
161#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
162#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
163#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
164#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
165
166#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
167#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
168#endif
169
170#ifdef CONFIG_STACK_GROWSUP
171#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
172#else
173#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
174#endif
175
176#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
177#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
178#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
179#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
180#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
181
182/*
183 * mapping from the currently active vm_flags protection bits (the
184 * low four bits) to a page protection mask..
185 */
186extern pgprot_t protection_map[16];
187
188
189/*
190 * These are the virtual MM functions - opening of an area, closing and
191 * unmapping it (needed to keep files on disk up-to-date etc), pointer
192 * to the functions called when a no-page or a wp-page exception occurs.
193 */
194struct vm_operations_struct {
195 void (*open)(struct vm_area_struct * area);
196 void (*close)(struct vm_area_struct * area);
197 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type);
198 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock);
199#ifdef CONFIG_NUMA
200 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
201 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
202 unsigned long addr);
203#endif
204};
205
206struct mmu_gather;
207struct inode;
208
1da177e4
LT
209/*
210 * Each physical page in the system has a struct page associated with
211 * it to keep track of whatever it is we are using the page for at the
212 * moment. Note that we have no way to track which tasks are using
213 * a page.
214 */
215struct page {
07808b74 216 unsigned long flags; /* Atomic flags, some possibly
1da177e4
LT
217 * updated asynchronously */
218 atomic_t _count; /* Usage count, see below. */
219 atomic_t _mapcount; /* Count of ptes mapped in mms,
220 * to show when page is mapped
221 * & limit reverse map searches.
222 */
4c21e2f2
HD
223 union {
224 unsigned long private; /* Mapping-private opaque data:
1da177e4
LT
225 * usually used for buffer_heads
226 * if PagePrivate set; used for
227 * swp_entry_t if PageSwapCache
228 * When page is free, this indicates
229 * order in the buddy system.
230 */
4c21e2f2
HD
231#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
232 spinlock_t ptl;
233#endif
234 } u;
1da177e4
LT
235 struct address_space *mapping; /* If low bit clear, points to
236 * inode address_space, or NULL.
237 * If page mapped as anonymous
238 * memory, low bit is set, and
239 * it points to anon_vma object:
240 * see PAGE_MAPPING_ANON below.
241 */
242 pgoff_t index; /* Our offset within mapping. */
243 struct list_head lru; /* Pageout list, eg. active_list
244 * protected by zone->lru_lock !
245 */
246 /*
247 * On machines where all RAM is mapped into kernel address space,
248 * we can simply calculate the virtual address. On machines with
249 * highmem some memory is mapped into kernel virtual memory
250 * dynamically, so we need a place to store that address.
251 * Note that this field could be 16 bits on x86 ... ;)
252 *
253 * Architectures with slow multiplication can define
254 * WANT_PAGE_VIRTUAL in asm/page.h
255 */
256#if defined(WANT_PAGE_VIRTUAL)
257 void *virtual; /* Kernel virtual address (NULL if
258 not kmapped, ie. highmem) */
259#endif /* WANT_PAGE_VIRTUAL */
260};
261
4c21e2f2
HD
262#define page_private(page) ((page)->u.private)
263#define set_page_private(page, v) ((page)->u.private = (v))
264
1da177e4
LT
265/*
266 * FIXME: take this include out, include page-flags.h in
267 * files which need it (119 of them)
268 */
269#include <linux/page-flags.h>
270
271/*
272 * Methods to modify the page usage count.
273 *
274 * What counts for a page usage:
275 * - cache mapping (page->mapping)
276 * - private data (page->private)
277 * - page mapped in a task's page tables, each mapping
278 * is counted separately
279 *
280 * Also, many kernel routines increase the page count before a critical
281 * routine so they can be sure the page doesn't go away from under them.
282 *
283 * Since 2.6.6 (approx), a free page has ->_count = -1. This is so that we
284 * can use atomic_add_negative(-1, page->_count) to detect when the page
285 * becomes free and so that we can also use atomic_inc_and_test to atomically
286 * detect when we just tried to grab a ref on a page which some other CPU has
287 * already deemed to be freeable.
288 *
289 * NO code should make assumptions about this internal detail! Use the provided
290 * macros which retain the old rules: page_count(page) == 0 is a free page.
291 */
292
293/*
294 * Drop a ref, return true if the logical refcount fell to zero (the page has
295 * no users)
296 */
297#define put_page_testzero(p) \
298 ({ \
299 BUG_ON(page_count(p) == 0); \
300 atomic_add_negative(-1, &(p)->_count); \
301 })
302
303/*
304 * Grab a ref, return true if the page previously had a logical refcount of
305 * zero. ie: returns true if we just grabbed an already-deemed-to-be-free page
306 */
307#define get_page_testone(p) atomic_inc_and_test(&(p)->_count)
308
309#define set_page_count(p,v) atomic_set(&(p)->_count, v - 1)
310#define __put_page(p) atomic_dec(&(p)->_count)
311
312extern void FASTCALL(__page_cache_release(struct page *));
313
4c21e2f2 314static inline int page_count(struct page *page)
1da177e4 315{
4c21e2f2
HD
316 if (PageCompound(page))
317 page = (struct page *)page_private(page);
318 return atomic_read(&page->_count) + 1;
1da177e4
LT
319}
320
321static inline void get_page(struct page *page)
322{
323 if (unlikely(PageCompound(page)))
4c21e2f2 324 page = (struct page *)page_private(page);
1da177e4
LT
325 atomic_inc(&page->_count);
326}
327
328void put_page(struct page *page);
329
1da177e4
LT
330/*
331 * Multiple processes may "see" the same page. E.g. for untouched
332 * mappings of /dev/null, all processes see the same page full of
333 * zeroes, and text pages of executables and shared libraries have
334 * only one copy in memory, at most, normally.
335 *
336 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
337 * page_count() == 0 means the page is free. page->lru is then used for
338 * freelist management in the buddy allocator.
1da177e4
LT
339 * page_count() == 1 means the page is used for exactly one purpose
340 * (e.g. a private data page of one process).
341 *
342 * A page may be used for kmalloc() or anyone else who does a
343 * __get_free_page(). In this case the page_count() is at least 1, and
344 * all other fields are unused but should be 0 or NULL. The
345 * management of this page is the responsibility of the one who uses
346 * it.
347 *
348 * The other pages (we may call them "process pages") are completely
349 * managed by the Linux memory manager: I/O, buffers, swapping etc.
350 * The following discussion applies only to them.
351 *
352 * A page may belong to an inode's memory mapping. In this case,
353 * page->mapping is the pointer to the inode, and page->index is the
354 * file offset of the page, in units of PAGE_CACHE_SIZE.
355 *
356 * A page contains an opaque `private' member, which belongs to the
357 * page's address_space. Usually, this is the address of a circular
358 * list of the page's disk buffers.
359 *
360 * For pages belonging to inodes, the page_count() is the number of
361 * attaches, plus 1 if `private' contains something, plus one for
362 * the page cache itself.
363 *
7e871b6c
PBG
364 * Instead of keeping dirty/clean pages in per address-space lists, we instead
365 * now tag pages as dirty/under writeback in the radix tree.
1da177e4
LT
366 *
367 * There is also a per-mapping radix tree mapping index to the page
368 * in memory if present. The tree is rooted at mapping->root.
369 *
370 * All process pages can do I/O:
371 * - inode pages may need to be read from disk,
372 * - inode pages which have been modified and are MAP_SHARED may need
373 * to be written to disk,
374 * - private pages which have been modified may need to be swapped out
375 * to swap space and (later) to be read back into memory.
376 */
377
378/*
379 * The zone field is never updated after free_area_init_core()
380 * sets it, so none of the operations on it need to be atomic.
1da177e4 381 */
348f8b6c 382
d41dee36
AW
383
384/*
385 * page->flags layout:
386 *
387 * There are three possibilities for how page->flags get
388 * laid out. The first is for the normal case, without
389 * sparsemem. The second is for sparsemem when there is
390 * plenty of space for node and section. The last is when
391 * we have run out of space and have to fall back to an
392 * alternate (slower) way of determining the node.
393 *
394 * No sparsemem: | NODE | ZONE | ... | FLAGS |
395 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
396 * no space for node: | SECTION | ZONE | ... | FLAGS |
397 */
398#ifdef CONFIG_SPARSEMEM
399#define SECTIONS_WIDTH SECTIONS_SHIFT
400#else
401#define SECTIONS_WIDTH 0
402#endif
403
404#define ZONES_WIDTH ZONES_SHIFT
405
406#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
407#define NODES_WIDTH NODES_SHIFT
408#else
409#define NODES_WIDTH 0
410#endif
411
412/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
07808b74 413#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
414#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
415#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
416
417/*
418 * We are going to use the flags for the page to node mapping if its in
419 * there. This includes the case where there is no node, so it is implicit.
420 */
421#define FLAGS_HAS_NODE (NODES_WIDTH > 0 || NODES_SHIFT == 0)
422
423#ifndef PFN_SECTION_SHIFT
424#define PFN_SECTION_SHIFT 0
425#endif
348f8b6c
DH
426
427/*
428 * Define the bit shifts to access each section. For non-existant
429 * sections we define the shift as 0; that plus a 0 mask ensures
430 * the compiler will optimise away reference to them.
431 */
d41dee36
AW
432#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
433#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
434#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
348f8b6c 435
d41dee36
AW
436/* NODE:ZONE or SECTION:ZONE is used to lookup the zone from a page. */
437#if FLAGS_HAS_NODE
348f8b6c 438#define ZONETABLE_SHIFT (NODES_SHIFT + ZONES_SHIFT)
d41dee36
AW
439#else
440#define ZONETABLE_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
441#endif
348f8b6c
DH
442#define ZONETABLE_PGSHIFT ZONES_PGSHIFT
443
d41dee36
AW
444#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
445#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
348f8b6c
DH
446#endif
447
d41dee36
AW
448#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
449#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
450#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
348f8b6c
DH
451#define ZONETABLE_MASK ((1UL << ZONETABLE_SHIFT) - 1)
452
1da177e4
LT
453static inline unsigned long page_zonenum(struct page *page)
454{
348f8b6c 455 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 456}
1da177e4
LT
457
458struct zone;
459extern struct zone *zone_table[];
460
461static inline struct zone *page_zone(struct page *page)
462{
348f8b6c
DH
463 return zone_table[(page->flags >> ZONETABLE_PGSHIFT) &
464 ZONETABLE_MASK];
465}
466
d41dee36
AW
467static inline unsigned long page_to_nid(struct page *page)
468{
469 if (FLAGS_HAS_NODE)
470 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
471 else
472 return page_zone(page)->zone_pgdat->node_id;
473}
474static inline unsigned long page_to_section(struct page *page)
475{
476 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
477}
478
348f8b6c
DH
479static inline void set_page_zone(struct page *page, unsigned long zone)
480{
481 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
482 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
483}
484static inline void set_page_node(struct page *page, unsigned long node)
485{
486 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
487 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 488}
d41dee36
AW
489static inline void set_page_section(struct page *page, unsigned long section)
490{
491 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
492 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
493}
1da177e4 494
348f8b6c 495static inline void set_page_links(struct page *page, unsigned long zone,
d41dee36 496 unsigned long node, unsigned long pfn)
1da177e4 497{
348f8b6c
DH
498 set_page_zone(page, zone);
499 set_page_node(page, node);
d41dee36 500 set_page_section(page, pfn_to_section_nr(pfn));
1da177e4
LT
501}
502
503#ifndef CONFIG_DISCONTIGMEM
504/* The array of struct pages - for discontigmem use pgdat->lmem_map */
505extern struct page *mem_map;
506#endif
507
508static inline void *lowmem_page_address(struct page *page)
509{
510 return __va(page_to_pfn(page) << PAGE_SHIFT);
511}
512
513#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
514#define HASHED_PAGE_VIRTUAL
515#endif
516
517#if defined(WANT_PAGE_VIRTUAL)
518#define page_address(page) ((page)->virtual)
519#define set_page_address(page, address) \
520 do { \
521 (page)->virtual = (address); \
522 } while(0)
523#define page_address_init() do { } while(0)
524#endif
525
526#if defined(HASHED_PAGE_VIRTUAL)
527void *page_address(struct page *page);
528void set_page_address(struct page *page, void *virtual);
529void page_address_init(void);
530#endif
531
532#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
533#define page_address(page) lowmem_page_address(page)
534#define set_page_address(page, address) do { } while(0)
535#define page_address_init() do { } while(0)
536#endif
537
538/*
539 * On an anonymous page mapped into a user virtual memory area,
540 * page->mapping points to its anon_vma, not to a struct address_space;
541 * with the PAGE_MAPPING_ANON bit set to distinguish it.
542 *
543 * Please note that, confusingly, "page_mapping" refers to the inode
544 * address_space which maps the page from disk; whereas "page_mapped"
545 * refers to user virtual address space into which the page is mapped.
546 */
547#define PAGE_MAPPING_ANON 1
548
549extern struct address_space swapper_space;
550static inline struct address_space *page_mapping(struct page *page)
551{
552 struct address_space *mapping = page->mapping;
553
554 if (unlikely(PageSwapCache(page)))
555 mapping = &swapper_space;
556 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
557 mapping = NULL;
558 return mapping;
559}
560
561static inline int PageAnon(struct page *page)
562{
563 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
564}
565
566/*
567 * Return the pagecache index of the passed page. Regular pagecache pages
568 * use ->index whereas swapcache pages use ->private
569 */
570static inline pgoff_t page_index(struct page *page)
571{
572 if (unlikely(PageSwapCache(page)))
4c21e2f2 573 return page_private(page);
1da177e4
LT
574 return page->index;
575}
576
577/*
578 * The atomic page->_mapcount, like _count, starts from -1:
579 * so that transitions both from it and to it can be tracked,
580 * using atomic_inc_and_test and atomic_add_negative(-1).
581 */
582static inline void reset_page_mapcount(struct page *page)
583{
584 atomic_set(&(page)->_mapcount, -1);
585}
586
587static inline int page_mapcount(struct page *page)
588{
589 return atomic_read(&(page)->_mapcount) + 1;
590}
591
592/*
593 * Return true if this page is mapped into pagetables.
594 */
595static inline int page_mapped(struct page *page)
596{
597 return atomic_read(&(page)->_mapcount) >= 0;
598}
599
600/*
601 * Error return values for the *_nopage functions
602 */
603#define NOPAGE_SIGBUS (NULL)
604#define NOPAGE_OOM ((struct page *) (-1))
605
606/*
607 * Different kinds of faults, as returned by handle_mm_fault().
608 * Used to decide whether a process gets delivered SIGBUS or
609 * just gets major/minor fault counters bumped up.
610 */
f33ea7f4
NP
611#define VM_FAULT_OOM 0x00
612#define VM_FAULT_SIGBUS 0x01
613#define VM_FAULT_MINOR 0x02
614#define VM_FAULT_MAJOR 0x03
615
616/*
617 * Special case for get_user_pages.
618 * Must be in a distinct bit from the above VM_FAULT_ flags.
619 */
620#define VM_FAULT_WRITE 0x10
1da177e4
LT
621
622#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
623
624extern void show_free_areas(void);
625
626#ifdef CONFIG_SHMEM
627struct page *shmem_nopage(struct vm_area_struct *vma,
628 unsigned long address, int *type);
629int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
630struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
631 unsigned long addr);
632int shmem_lock(struct file *file, int lock, struct user_struct *user);
633#else
634#define shmem_nopage filemap_nopage
635#define shmem_lock(a, b, c) ({0;}) /* always in memory, no need to lock */
636#define shmem_set_policy(a, b) (0)
637#define shmem_get_policy(a, b) (NULL)
638#endif
639struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
640
641int shmem_zero_setup(struct vm_area_struct *);
642
643static inline int can_do_mlock(void)
644{
645 if (capable(CAP_IPC_LOCK))
646 return 1;
647 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
648 return 1;
649 return 0;
650}
651extern int user_shm_lock(size_t, struct user_struct *);
652extern void user_shm_unlock(size_t, struct user_struct *);
653
654/*
655 * Parameter block passed down to zap_pte_range in exceptional cases.
656 */
657struct zap_details {
658 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
659 struct address_space *check_mapping; /* Check page->mapping if set */
660 pgoff_t first_index; /* Lowest page->index to unmap */
661 pgoff_t last_index; /* Highest page->index to unmap */
662 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
1da177e4
LT
663 unsigned long truncate_count; /* Compare vm_truncate_count */
664};
665
ee39b37b 666unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 667 unsigned long size, struct zap_details *);
508034a3 668unsigned long unmap_vmas(struct mmu_gather **tlb,
1da177e4
LT
669 struct vm_area_struct *start_vma, unsigned long start_addr,
670 unsigned long end_addr, unsigned long *nr_accounted,
671 struct zap_details *);
3bf5ee95
HD
672void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
673 unsigned long end, unsigned long floor, unsigned long ceiling);
674void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
e0da382c 675 unsigned long floor, unsigned long ceiling);
1da177e4
LT
676int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
677 struct vm_area_struct *vma);
678int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
679 unsigned long size, pgprot_t prot);
680void unmap_mapping_range(struct address_space *mapping,
681 loff_t const holebegin, loff_t const holelen, int even_cows);
682
683static inline void unmap_shared_mapping_range(struct address_space *mapping,
684 loff_t const holebegin, loff_t const holelen)
685{
686 unmap_mapping_range(mapping, holebegin, holelen, 0);
687}
688
689extern int vmtruncate(struct inode * inode, loff_t offset);
1da177e4
LT
690extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot);
691extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot);
f33ea7f4
NP
692extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma, unsigned long address, int write_access);
693
694static inline int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, int write_access)
695{
696 return __handle_mm_fault(mm, vma, address, write_access) & (~VM_FAULT_WRITE);
697}
698
1da177e4
LT
699extern int make_pages_present(unsigned long addr, unsigned long end);
700extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
701void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
702
703int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
704 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
b5810039 705void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
1da177e4
LT
706
707int __set_page_dirty_buffers(struct page *page);
708int __set_page_dirty_nobuffers(struct page *page);
709int redirty_page_for_writepage(struct writeback_control *wbc,
710 struct page *page);
711int FASTCALL(set_page_dirty(struct page *page));
712int set_page_dirty_lock(struct page *page);
713int clear_page_dirty_for_io(struct page *page);
714
715extern unsigned long do_mremap(unsigned long addr,
716 unsigned long old_len, unsigned long new_len,
717 unsigned long flags, unsigned long new_addr);
718
719/*
720 * Prototype to add a shrinker callback for ageable caches.
721 *
722 * These functions are passed a count `nr_to_scan' and a gfpmask. They should
723 * scan `nr_to_scan' objects, attempting to free them.
724 *
845d3431 725 * The callback must return the number of objects which remain in the cache.
1da177e4 726 *
845d3431 727 * The callback will be passed nr_to_scan == 0 when the VM is querying the
1da177e4
LT
728 * cache size, so a fastpath for that case is appropriate.
729 */
6daa0e28 730typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask);
1da177e4
LT
731
732/*
733 * Add an aging callback. The int is the number of 'seeks' it takes
734 * to recreate one of the objects that these functions age.
735 */
736
737#define DEFAULT_SEEKS 2
738struct shrinker;
739extern struct shrinker *set_shrinker(int, shrinker_t);
740extern void remove_shrinker(struct shrinker *shrinker);
741
1bb3630e
HD
742int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
743int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
744int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
745int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
746
1da177e4
LT
747/*
748 * The following ifdef needed to get the 4level-fixup.h header to work.
749 * Remove it when 4level-fixup.h has been removed.
750 */
1bb3630e 751#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
752static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
753{
1bb3630e
HD
754 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
755 NULL: pud_offset(pgd, address);
1da177e4
LT
756}
757
758static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
759{
1bb3630e
HD
760 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
761 NULL: pmd_offset(pud, address);
1da177e4 762}
1bb3630e
HD
763#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
764
4c21e2f2
HD
765#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
766/*
767 * We tuck a spinlock to guard each pagetable page into its struct page,
768 * at page->private, with BUILD_BUG_ON to make sure that this will not
769 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
770 * When freeing, reset page->mapping so free_pages_check won't complain.
771 */
772#define __pte_lockptr(page) &((page)->u.ptl)
773#define pte_lock_init(_page) do { \
774 spin_lock_init(__pte_lockptr(_page)); \
775} while (0)
776#define pte_lock_deinit(page) ((page)->mapping = NULL)
777#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
778#else
779/*
780 * We use mm->page_table_lock to guard all pagetable pages of the mm.
781 */
782#define pte_lock_init(page) do {} while (0)
783#define pte_lock_deinit(page) do {} while (0)
784#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
785#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
786
c74df32c
HD
787#define pte_offset_map_lock(mm, pmd, address, ptlp) \
788({ \
4c21e2f2 789 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
790 pte_t *__pte = pte_offset_map(pmd, address); \
791 *(ptlp) = __ptl; \
792 spin_lock(__ptl); \
793 __pte; \
794})
795
796#define pte_unmap_unlock(pte, ptl) do { \
797 spin_unlock(ptl); \
798 pte_unmap(pte); \
799} while (0)
800
1bb3630e
HD
801#define pte_alloc_map(mm, pmd, address) \
802 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
803 NULL: pte_offset_map(pmd, address))
804
c74df32c
HD
805#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
806 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
807 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
808
1bb3630e
HD
809#define pte_alloc_kernel(pmd, address) \
810 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
811 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
812
813extern void free_area_init(unsigned long * zones_size);
814extern void free_area_init_node(int nid, pg_data_t *pgdat,
815 unsigned long * zones_size, unsigned long zone_start_pfn,
816 unsigned long *zholes_size);
817extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long);
3947be19 818extern void setup_per_zone_pages_min(void);
1da177e4
LT
819extern void mem_init(void);
820extern void show_mem(void);
821extern void si_meminfo(struct sysinfo * val);
822extern void si_meminfo_node(struct sysinfo *val, int nid);
823
e7c8d5c9
CL
824#ifdef CONFIG_NUMA
825extern void setup_per_cpu_pageset(void);
826#else
827static inline void setup_per_cpu_pageset(void) {}
828#endif
829
1da177e4
LT
830/* prio_tree.c */
831void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
832void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
833void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
834struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
835 struct prio_tree_iter *iter);
836
837#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
838 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
839 (vma = vma_prio_tree_next(vma, iter)); )
840
841static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
842 struct list_head *list)
843{
844 vma->shared.vm_set.parent = NULL;
845 list_add_tail(&vma->shared.vm_set.list, list);
846}
847
848/* mmap.c */
849extern int __vm_enough_memory(long pages, int cap_sys_admin);
850extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
851 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
852extern struct vm_area_struct *vma_merge(struct mm_struct *,
853 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
854 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
855 struct mempolicy *);
856extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
857extern int split_vma(struct mm_struct *,
858 struct vm_area_struct *, unsigned long addr, int new_below);
859extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
860extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
861 struct rb_node **, struct rb_node *);
a8fb5618 862extern void unlink_file_vma(struct vm_area_struct *);
1da177e4
LT
863extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
864 unsigned long addr, unsigned long len, pgoff_t pgoff);
865extern void exit_mmap(struct mm_struct *);
119f657c 866extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1da177e4
LT
867
868extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
869
870extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
871 unsigned long len, unsigned long prot,
872 unsigned long flag, unsigned long pgoff);
873
874static inline unsigned long do_mmap(struct file *file, unsigned long addr,
875 unsigned long len, unsigned long prot,
876 unsigned long flag, unsigned long offset)
877{
878 unsigned long ret = -EINVAL;
879 if ((offset + PAGE_ALIGN(len)) < offset)
880 goto out;
881 if (!(offset & ~PAGE_MASK))
882 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
883out:
884 return ret;
885}
886
887extern int do_munmap(struct mm_struct *, unsigned long, size_t);
888
889extern unsigned long do_brk(unsigned long, unsigned long);
890
891/* filemap.c */
892extern unsigned long page_unuse(struct page *);
893extern void truncate_inode_pages(struct address_space *, loff_t);
894
895/* generic vm_area_ops exported for stackable file systems */
896extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *);
897extern int filemap_populate(struct vm_area_struct *, unsigned long,
898 unsigned long, pgprot_t, unsigned long, int);
899
900/* mm/page-writeback.c */
901int write_one_page(struct page *page, int wait);
902
903/* readahead.c */
904#define VM_MAX_READAHEAD 128 /* kbytes */
905#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
906#define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before
907 * turning readahead off */
908
909int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 910 pgoff_t offset, unsigned long nr_to_read);
1da177e4 911int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8
AM
912 pgoff_t offset, unsigned long nr_to_read);
913unsigned long page_cache_readahead(struct address_space *mapping,
1da177e4
LT
914 struct file_ra_state *ra,
915 struct file *filp,
7361f4d8 916 pgoff_t offset,
1da177e4
LT
917 unsigned long size);
918void handle_ra_miss(struct address_space *mapping,
919 struct file_ra_state *ra, pgoff_t offset);
920unsigned long max_sane_readahead(unsigned long nr);
921
922/* Do stack extension */
46dea3d0 923extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
9ab88515 924#ifdef CONFIG_IA64
46dea3d0 925extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
9ab88515 926#endif
1da177e4
LT
927
928/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
929extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
930extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
931 struct vm_area_struct **pprev);
932
933/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
934 NULL if none. Assume start_addr < end_addr. */
935static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
936{
937 struct vm_area_struct * vma = find_vma(mm,start_addr);
938
939 if (vma && end_addr <= vma->vm_start)
940 vma = NULL;
941 return vma;
942}
943
944static inline unsigned long vma_pages(struct vm_area_struct *vma)
945{
946 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
947}
948
deceb6cd
HD
949struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
950struct page *vmalloc_to_page(void *addr);
951unsigned long vmalloc_to_pfn(void *addr);
952int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
953 unsigned long pfn, unsigned long size, pgprot_t);
954
955struct page *follow_page(struct mm_struct *, unsigned long address,
956 unsigned int foll_flags);
957#define FOLL_WRITE 0x01 /* check pte is writable */
958#define FOLL_TOUCH 0x02 /* mark page accessed */
959#define FOLL_GET 0x04 /* do get_page on page */
960#define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1da177e4
LT
961
962#ifdef CONFIG_PROC_FS
ab50b8ed 963void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 964#else
ab50b8ed 965static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
966 unsigned long flags, struct file *file, long pages)
967{
968}
969#endif /* CONFIG_PROC_FS */
970
1da177e4
LT
971#ifndef CONFIG_DEBUG_PAGEALLOC
972static inline void
973kernel_map_pages(struct page *page, int numpages, int enable)
974{
975}
976#endif
977
978extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
979#ifdef __HAVE_ARCH_GATE_AREA
980int in_gate_area_no_task(unsigned long addr);
981int in_gate_area(struct task_struct *task, unsigned long addr);
982#else
983int in_gate_area_no_task(unsigned long addr);
984#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
985#endif /* __HAVE_ARCH_GATE_AREA */
986
79befd0c
AA
987/* /proc/<pid>/oom_adj set to -17 protects from the oom-killer */
988#define OOM_DISABLE -17
989
1da177e4
LT
990#endif /* __KERNEL__ */
991#endif /* _LINUX_MM_H */