]> bbs.cooldavid.org Git - net-next-2.6.git/blame - include/linux/mm.h
Merge branch 'isdn-fix' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik/misc-2.6
[net-next-2.6.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4
LT
8#include <linux/gfp.h>
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
12#include <linux/prio_tree.h>
13#include <linux/fs.h>
de5097c2 14#include <linux/mutex.h>
9a11b49a 15#include <linux/debug_locks.h>
d08b3851 16#include <linux/backing-dev.h>
5b99cd0e 17#include <linux/mm_types.h>
1da177e4
LT
18
19struct mempolicy;
20struct anon_vma;
e8edc6e0 21struct user_struct;
1da177e4
LT
22
23#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
24extern unsigned long max_mapnr;
25#endif
26
27extern unsigned long num_physpages;
28extern void * high_memory;
1da177e4
LT
29extern int page_cluster;
30
31#ifdef CONFIG_SYSCTL
32extern int sysctl_legacy_va_layout;
33#else
34#define sysctl_legacy_va_layout 0
35#endif
36
37#include <asm/page.h>
38#include <asm/pgtable.h>
39#include <asm/processor.h>
1da177e4 40
1da177e4
LT
41#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
42
43/*
44 * Linux kernel virtual memory manager primitives.
45 * The idea being to have a "virtual" mm in the same way
46 * we have a virtual fs - giving a cleaner interface to the
47 * mm details, and allowing different kinds of memory mappings
48 * (from shared memory to executable loading to arbitrary
49 * mmap() functions).
50 */
51
52/*
53 * This struct defines a memory VMM memory area. There is one of these
54 * per VM-area/task. A VM area is any part of the process virtual memory
55 * space that has a special rule for the page-fault handlers (ie a shared
56 * library, the executable area etc).
57 */
58struct vm_area_struct {
59 struct mm_struct * vm_mm; /* The address space we belong to. */
60 unsigned long vm_start; /* Our start address within vm_mm. */
61 unsigned long vm_end; /* The first byte after our end address
62 within vm_mm. */
63
64 /* linked list of VM areas per task, sorted by address */
65 struct vm_area_struct *vm_next;
66
67 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
68 unsigned long vm_flags; /* Flags, listed below. */
69
70 struct rb_node vm_rb;
71
72 /*
73 * For areas with an address space and backing store,
74 * linkage into the address_space->i_mmap prio tree, or
75 * linkage to the list of like vmas hanging off its node, or
76 * linkage of vma in the address_space->i_mmap_nonlinear list.
77 */
78 union {
79 struct {
80 struct list_head list;
81 void *parent; /* aligns with prio_tree_node parent */
82 struct vm_area_struct *head;
83 } vm_set;
84
85 struct raw_prio_tree_node prio_tree_node;
86 } shared;
87
88 /*
89 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
90 * list, after a COW of one of the file pages. A MAP_SHARED vma
91 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
92 * or brk vma (with NULL file) can only be in an anon_vma list.
93 */
94 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
95 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
96
97 /* Function pointers to deal with this struct. */
98 struct vm_operations_struct * vm_ops;
99
100 /* Information about our backing store: */
101 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
102 units, *not* PAGE_CACHE_SIZE */
103 struct file * vm_file; /* File we map to (can be NULL). */
104 void * vm_private_data; /* was vm_pte (shared mem) */
105 unsigned long vm_truncate_count;/* truncate_count or restart_addr */
106
107#ifndef CONFIG_MMU
108 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */
109#endif
110#ifdef CONFIG_NUMA
111 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
112#endif
113};
114
c43692e8
CL
115extern struct kmem_cache *vm_area_cachep;
116
1da177e4
LT
117/*
118 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
119 * disabled, then there's a single shared list of VMAs maintained by the
120 * system, and mm's subscribe to these individually
121 */
122struct vm_list_struct {
123 struct vm_list_struct *next;
124 struct vm_area_struct *vma;
125};
126
127#ifndef CONFIG_MMU
128extern struct rb_root nommu_vma_tree;
129extern struct rw_semaphore nommu_vma_sem;
130
131extern unsigned int kobjsize(const void *objp);
132#endif
133
134/*
135 * vm_flags..
136 */
137#define VM_READ 0x00000001 /* currently active flags */
138#define VM_WRITE 0x00000002
139#define VM_EXEC 0x00000004
140#define VM_SHARED 0x00000008
141
7e2cff42 142/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
143#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
144#define VM_MAYWRITE 0x00000020
145#define VM_MAYEXEC 0x00000040
146#define VM_MAYSHARE 0x00000080
147
148#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
149#define VM_GROWSUP 0x00000200
6aab341e 150#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
151#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
152
153#define VM_EXECUTABLE 0x00001000
154#define VM_LOCKED 0x00002000
155#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
156
157 /* Used by sys_madvise() */
158#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
159#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
160
161#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
162#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
0b14c179 163#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
1da177e4
LT
164#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
165#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
166#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
167#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
4d7672b4 168#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
e5b97dde 169#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
1da177e4
LT
170
171#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
172#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
173#endif
174
175#ifdef CONFIG_STACK_GROWSUP
176#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
177#else
178#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
179#endif
180
181#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
182#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
183#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
184#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
185#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
186
187/*
188 * mapping from the currently active vm_flags protection bits (the
189 * low four bits) to a page protection mask..
190 */
191extern pgprot_t protection_map[16];
192
193
194/*
195 * These are the virtual MM functions - opening of an area, closing and
196 * unmapping it (needed to keep files on disk up-to-date etc), pointer
197 * to the functions called when a no-page or a wp-page exception occurs.
198 */
199struct vm_operations_struct {
200 void (*open)(struct vm_area_struct * area);
201 void (*close)(struct vm_area_struct * area);
202 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type);
f4b81804 203 unsigned long (*nopfn)(struct vm_area_struct * area, unsigned long address);
1da177e4 204 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock);
9637a5ef
DH
205
206 /* notification that a previously read-only page is about to become
207 * writable, if an error is returned it will cause a SIGBUS */
208 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
1da177e4
LT
209#ifdef CONFIG_NUMA
210 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
211 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
212 unsigned long addr);
7b2259b3
CL
213 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
214 const nodemask_t *to, unsigned long flags);
1da177e4
LT
215#endif
216};
217
218struct mmu_gather;
219struct inode;
220
349aef0b
AM
221#define page_private(page) ((page)->private)
222#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 223
1da177e4
LT
224/*
225 * FIXME: take this include out, include page-flags.h in
226 * files which need it (119 of them)
227 */
228#include <linux/page-flags.h>
229
725d704e
NP
230#ifdef CONFIG_DEBUG_VM
231#define VM_BUG_ON(cond) BUG_ON(cond)
232#else
233#define VM_BUG_ON(condition) do { } while(0)
234#endif
235
1da177e4
LT
236/*
237 * Methods to modify the page usage count.
238 *
239 * What counts for a page usage:
240 * - cache mapping (page->mapping)
241 * - private data (page->private)
242 * - page mapped in a task's page tables, each mapping
243 * is counted separately
244 *
245 * Also, many kernel routines increase the page count before a critical
246 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
247 */
248
249/*
da6052f7 250 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 251 */
7c8ee9a8
NP
252static inline int put_page_testzero(struct page *page)
253{
725d704e 254 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 255 return atomic_dec_and_test(&page->_count);
7c8ee9a8 256}
1da177e4
LT
257
258/*
7c8ee9a8
NP
259 * Try to grab a ref unless the page has a refcount of zero, return false if
260 * that is the case.
1da177e4 261 */
7c8ee9a8
NP
262static inline int get_page_unless_zero(struct page *page)
263{
725d704e 264 VM_BUG_ON(PageCompound(page));
8dc04efb 265 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 266}
1da177e4 267
d85f3385
CL
268static inline struct page *compound_head(struct page *page)
269{
6d777953 270 if (unlikely(PageTail(page)))
d85f3385
CL
271 return page->first_page;
272 return page;
273}
274
4c21e2f2 275static inline int page_count(struct page *page)
1da177e4 276{
d85f3385 277 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
278}
279
280static inline void get_page(struct page *page)
281{
d85f3385 282 page = compound_head(page);
725d704e 283 VM_BUG_ON(atomic_read(&page->_count) == 0);
1da177e4
LT
284 atomic_inc(&page->_count);
285}
286
b49af68f
CL
287static inline struct page *virt_to_head_page(const void *x)
288{
289 struct page *page = virt_to_page(x);
290 return compound_head(page);
291}
292
7835e98b
NP
293/*
294 * Setup the page count before being freed into the page allocator for
295 * the first time (boot or memory hotplug)
296 */
297static inline void init_page_count(struct page *page)
298{
299 atomic_set(&page->_count, 1);
300}
301
1da177e4 302void put_page(struct page *page);
1d7ea732 303void put_pages_list(struct list_head *pages);
1da177e4 304
8dfcc9ba 305void split_page(struct page *page, unsigned int order);
8dfcc9ba 306
33f2ef89
AW
307/*
308 * Compound pages have a destructor function. Provide a
309 * prototype for that function and accessor functions.
310 * These are _only_ valid on the head of a PG_compound page.
311 */
312typedef void compound_page_dtor(struct page *);
313
314static inline void set_compound_page_dtor(struct page *page,
315 compound_page_dtor *dtor)
316{
317 page[1].lru.next = (void *)dtor;
318}
319
320static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
321{
322 return (compound_page_dtor *)page[1].lru.next;
323}
324
d85f3385
CL
325static inline int compound_order(struct page *page)
326{
6d777953 327 if (!PageHead(page))
d85f3385
CL
328 return 0;
329 return (unsigned long)page[1].lru.prev;
330}
331
332static inline void set_compound_order(struct page *page, unsigned long order)
333{
334 page[1].lru.prev = (void *)order;
335}
336
1da177e4
LT
337/*
338 * Multiple processes may "see" the same page. E.g. for untouched
339 * mappings of /dev/null, all processes see the same page full of
340 * zeroes, and text pages of executables and shared libraries have
341 * only one copy in memory, at most, normally.
342 *
343 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
344 * page_count() == 0 means the page is free. page->lru is then used for
345 * freelist management in the buddy allocator.
da6052f7 346 * page_count() > 0 means the page has been allocated.
1da177e4 347 *
da6052f7
NP
348 * Pages are allocated by the slab allocator in order to provide memory
349 * to kmalloc and kmem_cache_alloc. In this case, the management of the
350 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
351 * unless a particular usage is carefully commented. (the responsibility of
352 * freeing the kmalloc memory is the caller's, of course).
1da177e4 353 *
da6052f7
NP
354 * A page may be used by anyone else who does a __get_free_page().
355 * In this case, page_count still tracks the references, and should only
356 * be used through the normal accessor functions. The top bits of page->flags
357 * and page->virtual store page management information, but all other fields
358 * are unused and could be used privately, carefully. The management of this
359 * page is the responsibility of the one who allocated it, and those who have
360 * subsequently been given references to it.
361 *
362 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
363 * managed by the Linux memory manager: I/O, buffers, swapping etc.
364 * The following discussion applies only to them.
365 *
da6052f7
NP
366 * A pagecache page contains an opaque `private' member, which belongs to the
367 * page's address_space. Usually, this is the address of a circular list of
368 * the page's disk buffers. PG_private must be set to tell the VM to call
369 * into the filesystem to release these pages.
1da177e4 370 *
da6052f7
NP
371 * A page may belong to an inode's memory mapping. In this case, page->mapping
372 * is the pointer to the inode, and page->index is the file offset of the page,
373 * in units of PAGE_CACHE_SIZE.
1da177e4 374 *
da6052f7
NP
375 * If pagecache pages are not associated with an inode, they are said to be
376 * anonymous pages. These may become associated with the swapcache, and in that
377 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 378 *
da6052f7
NP
379 * In either case (swapcache or inode backed), the pagecache itself holds one
380 * reference to the page. Setting PG_private should also increment the
381 * refcount. The each user mapping also has a reference to the page.
1da177e4 382 *
da6052f7
NP
383 * The pagecache pages are stored in a per-mapping radix tree, which is
384 * rooted at mapping->page_tree, and indexed by offset.
385 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
386 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 387 *
da6052f7 388 * All pagecache pages may be subject to I/O:
1da177e4
LT
389 * - inode pages may need to be read from disk,
390 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
391 * to be written back to the inode on disk,
392 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
393 * modified may need to be swapped out to swap space and (later) to be read
394 * back into memory.
1da177e4
LT
395 */
396
397/*
398 * The zone field is never updated after free_area_init_core()
399 * sets it, so none of the operations on it need to be atomic.
1da177e4 400 */
348f8b6c 401
d41dee36
AW
402
403/*
404 * page->flags layout:
405 *
406 * There are three possibilities for how page->flags get
407 * laid out. The first is for the normal case, without
408 * sparsemem. The second is for sparsemem when there is
409 * plenty of space for node and section. The last is when
410 * we have run out of space and have to fall back to an
411 * alternate (slower) way of determining the node.
412 *
413 * No sparsemem: | NODE | ZONE | ... | FLAGS |
414 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
415 * no space for node: | SECTION | ZONE | ... | FLAGS |
416 */
417#ifdef CONFIG_SPARSEMEM
418#define SECTIONS_WIDTH SECTIONS_SHIFT
419#else
420#define SECTIONS_WIDTH 0
421#endif
422
423#define ZONES_WIDTH ZONES_SHIFT
424
425#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
426#define NODES_WIDTH NODES_SHIFT
427#else
428#define NODES_WIDTH 0
429#endif
430
431/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
07808b74 432#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
433#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
434#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
435
436/*
437 * We are going to use the flags for the page to node mapping if its in
438 * there. This includes the case where there is no node, so it is implicit.
439 */
89689ae7
CL
440#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
441#define NODE_NOT_IN_PAGE_FLAGS
442#endif
d41dee36
AW
443
444#ifndef PFN_SECTION_SHIFT
445#define PFN_SECTION_SHIFT 0
446#endif
348f8b6c
DH
447
448/*
449 * Define the bit shifts to access each section. For non-existant
450 * sections we define the shift as 0; that plus a 0 mask ensures
451 * the compiler will optimise away reference to them.
452 */
d41dee36
AW
453#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
454#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
455#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
348f8b6c 456
89689ae7
CL
457/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
458#ifdef NODE_NOT_IN_PAGEFLAGS
459#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
460#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
461 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 462#else
89689ae7 463#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
464#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
465 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
466#endif
467
bd8029b6 468#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 469
d41dee36
AW
470#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
471#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
348f8b6c
DH
472#endif
473
d41dee36
AW
474#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
475#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
476#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
89689ae7 477#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 478
2f1b6248 479static inline enum zone_type page_zonenum(struct page *page)
1da177e4 480{
348f8b6c 481 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 482}
1da177e4 483
89689ae7
CL
484/*
485 * The identification function is only used by the buddy allocator for
486 * determining if two pages could be buddies. We are not really
487 * identifying a zone since we could be using a the section number
488 * id if we have not node id available in page flags.
489 * We guarantee only that it will return the same value for two
490 * combinable pages in a zone.
491 */
cb2b95e1
AW
492static inline int page_zone_id(struct page *page)
493{
89689ae7 494 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
495}
496
25ba77c1 497static inline int zone_to_nid(struct zone *zone)
89fa3024 498{
d5f541ed
CL
499#ifdef CONFIG_NUMA
500 return zone->node;
501#else
502 return 0;
503#endif
89fa3024
CL
504}
505
89689ae7 506#ifdef NODE_NOT_IN_PAGE_FLAGS
25ba77c1 507extern int page_to_nid(struct page *page);
89689ae7 508#else
25ba77c1 509static inline int page_to_nid(struct page *page)
d41dee36 510{
89689ae7 511 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 512}
89689ae7
CL
513#endif
514
515static inline struct zone *page_zone(struct page *page)
516{
517 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
518}
519
d41dee36
AW
520static inline unsigned long page_to_section(struct page *page)
521{
522 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
523}
524
2f1b6248 525static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
526{
527 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
528 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
529}
2f1b6248 530
348f8b6c
DH
531static inline void set_page_node(struct page *page, unsigned long node)
532{
533 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
534 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 535}
89689ae7 536
d41dee36
AW
537static inline void set_page_section(struct page *page, unsigned long section)
538{
539 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
540 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
541}
1da177e4 542
2f1b6248 543static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 544 unsigned long node, unsigned long pfn)
1da177e4 545{
348f8b6c
DH
546 set_page_zone(page, zone);
547 set_page_node(page, node);
d41dee36 548 set_page_section(page, pfn_to_section_nr(pfn));
1da177e4
LT
549}
550
f6ac2354
CL
551/*
552 * Some inline functions in vmstat.h depend on page_zone()
553 */
554#include <linux/vmstat.h>
555
652050ae 556static __always_inline void *lowmem_page_address(struct page *page)
1da177e4
LT
557{
558 return __va(page_to_pfn(page) << PAGE_SHIFT);
559}
560
561#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
562#define HASHED_PAGE_VIRTUAL
563#endif
564
565#if defined(WANT_PAGE_VIRTUAL)
566#define page_address(page) ((page)->virtual)
567#define set_page_address(page, address) \
568 do { \
569 (page)->virtual = (address); \
570 } while(0)
571#define page_address_init() do { } while(0)
572#endif
573
574#if defined(HASHED_PAGE_VIRTUAL)
575void *page_address(struct page *page);
576void set_page_address(struct page *page, void *virtual);
577void page_address_init(void);
578#endif
579
580#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
581#define page_address(page) lowmem_page_address(page)
582#define set_page_address(page, address) do { } while(0)
583#define page_address_init() do { } while(0)
584#endif
585
586/*
587 * On an anonymous page mapped into a user virtual memory area,
588 * page->mapping points to its anon_vma, not to a struct address_space;
589 * with the PAGE_MAPPING_ANON bit set to distinguish it.
590 *
591 * Please note that, confusingly, "page_mapping" refers to the inode
592 * address_space which maps the page from disk; whereas "page_mapped"
593 * refers to user virtual address space into which the page is mapped.
594 */
595#define PAGE_MAPPING_ANON 1
596
597extern struct address_space swapper_space;
598static inline struct address_space *page_mapping(struct page *page)
599{
600 struct address_space *mapping = page->mapping;
601
b5fab14e 602 VM_BUG_ON(PageSlab(page));
1da177e4
LT
603 if (unlikely(PageSwapCache(page)))
604 mapping = &swapper_space;
b9bae340
HD
605#ifdef CONFIG_SLUB
606 else if (unlikely(PageSlab(page)))
607 mapping = NULL;
608#endif
1da177e4
LT
609 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
610 mapping = NULL;
611 return mapping;
612}
613
614static inline int PageAnon(struct page *page)
615{
616 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
617}
618
619/*
620 * Return the pagecache index of the passed page. Regular pagecache pages
621 * use ->index whereas swapcache pages use ->private
622 */
623static inline pgoff_t page_index(struct page *page)
624{
625 if (unlikely(PageSwapCache(page)))
4c21e2f2 626 return page_private(page);
1da177e4
LT
627 return page->index;
628}
629
630/*
631 * The atomic page->_mapcount, like _count, starts from -1:
632 * so that transitions both from it and to it can be tracked,
633 * using atomic_inc_and_test and atomic_add_negative(-1).
634 */
635static inline void reset_page_mapcount(struct page *page)
636{
637 atomic_set(&(page)->_mapcount, -1);
638}
639
640static inline int page_mapcount(struct page *page)
641{
642 return atomic_read(&(page)->_mapcount) + 1;
643}
644
645/*
646 * Return true if this page is mapped into pagetables.
647 */
648static inline int page_mapped(struct page *page)
649{
650 return atomic_read(&(page)->_mapcount) >= 0;
651}
652
653/*
654 * Error return values for the *_nopage functions
655 */
656#define NOPAGE_SIGBUS (NULL)
657#define NOPAGE_OOM ((struct page *) (-1))
7f7bbbe5 658#define NOPAGE_REFAULT ((struct page *) (-2)) /* Return to userspace, rerun */
1da177e4 659
f4b81804
JS
660/*
661 * Error return values for the *_nopfn functions
662 */
663#define NOPFN_SIGBUS ((unsigned long) -1)
664#define NOPFN_OOM ((unsigned long) -2)
22cd25ed 665#define NOPFN_REFAULT ((unsigned long) -3)
f4b81804 666
1da177e4
LT
667/*
668 * Different kinds of faults, as returned by handle_mm_fault().
669 * Used to decide whether a process gets delivered SIGBUS or
670 * just gets major/minor fault counters bumped up.
671 */
f33ea7f4
NP
672#define VM_FAULT_OOM 0x00
673#define VM_FAULT_SIGBUS 0x01
674#define VM_FAULT_MINOR 0x02
675#define VM_FAULT_MAJOR 0x03
676
677/*
678 * Special case for get_user_pages.
679 * Must be in a distinct bit from the above VM_FAULT_ flags.
680 */
681#define VM_FAULT_WRITE 0x10
1da177e4
LT
682
683#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
684
685extern void show_free_areas(void);
686
687#ifdef CONFIG_SHMEM
1da177e4
LT
688int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
689struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
690 unsigned long addr);
691int shmem_lock(struct file *file, int lock, struct user_struct *user);
692#else
03b00ebc
RK
693static inline int shmem_lock(struct file *file, int lock,
694 struct user_struct *user)
695{
696 return 0;
697}
698
699static inline int shmem_set_policy(struct vm_area_struct *vma,
700 struct mempolicy *new)
701{
702 return 0;
703}
704
705static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
706 unsigned long addr)
707{
708 return NULL;
709}
1da177e4
LT
710#endif
711struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
712
713int shmem_zero_setup(struct vm_area_struct *);
714
b0e15190
DH
715#ifndef CONFIG_MMU
716extern unsigned long shmem_get_unmapped_area(struct file *file,
717 unsigned long addr,
718 unsigned long len,
719 unsigned long pgoff,
720 unsigned long flags);
721#endif
722
e8edc6e0 723extern int can_do_mlock(void);
1da177e4
LT
724extern int user_shm_lock(size_t, struct user_struct *);
725extern void user_shm_unlock(size_t, struct user_struct *);
726
727/*
728 * Parameter block passed down to zap_pte_range in exceptional cases.
729 */
730struct zap_details {
731 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
732 struct address_space *check_mapping; /* Check page->mapping if set */
733 pgoff_t first_index; /* Lowest page->index to unmap */
734 pgoff_t last_index; /* Highest page->index to unmap */
735 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
1da177e4
LT
736 unsigned long truncate_count; /* Compare vm_truncate_count */
737};
738
6aab341e 739struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
ee39b37b 740unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 741 unsigned long size, struct zap_details *);
508034a3 742unsigned long unmap_vmas(struct mmu_gather **tlb,
1da177e4
LT
743 struct vm_area_struct *start_vma, unsigned long start_addr,
744 unsigned long end_addr, unsigned long *nr_accounted,
745 struct zap_details *);
3bf5ee95
HD
746void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
747 unsigned long end, unsigned long floor, unsigned long ceiling);
748void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
e0da382c 749 unsigned long floor, unsigned long ceiling);
1da177e4
LT
750int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
751 struct vm_area_struct *vma);
752int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
753 unsigned long size, pgprot_t prot);
754void unmap_mapping_range(struct address_space *mapping,
755 loff_t const holebegin, loff_t const holelen, int even_cows);
756
757static inline void unmap_shared_mapping_range(struct address_space *mapping,
758 loff_t const holebegin, loff_t const holelen)
759{
760 unmap_mapping_range(mapping, holebegin, holelen, 0);
761}
762
763extern int vmtruncate(struct inode * inode, loff_t offset);
f6b3ec23 764extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
1da177e4
LT
765extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot);
766extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot);
f33ea7f4 767
7ee1dd3f
DH
768#ifdef CONFIG_MMU
769extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma,
770 unsigned long address, int write_access);
771
772static inline int handle_mm_fault(struct mm_struct *mm,
773 struct vm_area_struct *vma, unsigned long address,
774 int write_access)
f33ea7f4 775{
7ee1dd3f
DH
776 return __handle_mm_fault(mm, vma, address, write_access) &
777 (~VM_FAULT_WRITE);
f33ea7f4 778}
7ee1dd3f
DH
779#else
780static inline int handle_mm_fault(struct mm_struct *mm,
781 struct vm_area_struct *vma, unsigned long address,
782 int write_access)
783{
784 /* should never happen if there's no MMU */
785 BUG();
786 return VM_FAULT_SIGBUS;
787}
788#endif
f33ea7f4 789
1da177e4
LT
790extern int make_pages_present(unsigned long addr, unsigned long end);
791extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
792void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
793
794int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
795 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
b5810039 796void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
1da177e4 797
cf9a2ae8
DH
798extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
799extern void do_invalidatepage(struct page *page, unsigned long offset);
800
1da177e4 801int __set_page_dirty_nobuffers(struct page *page);
76719325 802int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
803int redirty_page_for_writepage(struct writeback_control *wbc,
804 struct page *page);
805int FASTCALL(set_page_dirty(struct page *page));
806int set_page_dirty_lock(struct page *page);
807int clear_page_dirty_for_io(struct page *page);
808
809extern unsigned long do_mremap(unsigned long addr,
810 unsigned long old_len, unsigned long new_len,
811 unsigned long flags, unsigned long new_addr);
812
813/*
8e1f936b 814 * A callback you can register to apply pressure to ageable caches.
1da177e4 815 *
8e1f936b
RR
816 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
817 * look through the least-recently-used 'nr_to_scan' entries and
818 * attempt to free them up. It should return the number of objects
819 * which remain in the cache. If it returns -1, it means it cannot do
820 * any scanning at this time (eg. there is a risk of deadlock).
1da177e4 821 *
8e1f936b
RR
822 * The 'gfpmask' refers to the allocation we are currently trying to
823 * fulfil.
824 *
825 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
826 * querying the cache size, so a fastpath for that case is appropriate.
1da177e4 827 */
8e1f936b
RR
828struct shrinker {
829 int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
830 int seeks; /* seeks to recreate an obj */
1da177e4 831
8e1f936b
RR
832 /* These are for internal use */
833 struct list_head list;
834 long nr; /* objs pending delete */
835};
836#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
837extern void register_shrinker(struct shrinker *);
838extern void unregister_shrinker(struct shrinker *);
1da177e4 839
d08b3851
PZ
840/*
841 * Some shared mappigns will want the pages marked read-only
842 * to track write events. If so, we'll downgrade vm_page_prot
843 * to the private version (using protection_map[] without the
844 * VM_SHARED bit).
845 */
846static inline int vma_wants_writenotify(struct vm_area_struct *vma)
847{
848 unsigned int vm_flags = vma->vm_flags;
849
850 /* If it was private or non-writable, the write bit is already clear */
851 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
852 return 0;
853
854 /* The backer wishes to know when pages are first written to? */
855 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
856 return 1;
857
858 /* The open routine did something to the protections already? */
859 if (pgprot_val(vma->vm_page_prot) !=
860 pgprot_val(protection_map[vm_flags &
861 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]))
862 return 0;
863
864 /* Specialty mapping? */
865 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
866 return 0;
867
868 /* Can the mapping track the dirty pages? */
869 return vma->vm_file && vma->vm_file->f_mapping &&
870 mapping_cap_account_dirty(vma->vm_file->f_mapping);
871}
872
c9cfcddf
LT
873extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
874
5f22df00
NP
875#ifdef __PAGETABLE_PUD_FOLDED
876static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
877 unsigned long address)
878{
879 return 0;
880}
881#else
1bb3630e 882int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
883#endif
884
885#ifdef __PAGETABLE_PMD_FOLDED
886static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
887 unsigned long address)
888{
889 return 0;
890}
891#else
1bb3630e 892int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
893#endif
894
1bb3630e
HD
895int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
896int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
897
1da177e4
LT
898/*
899 * The following ifdef needed to get the 4level-fixup.h header to work.
900 * Remove it when 4level-fixup.h has been removed.
901 */
1bb3630e 902#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
903static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
904{
1bb3630e
HD
905 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
906 NULL: pud_offset(pgd, address);
1da177e4
LT
907}
908
909static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
910{
1bb3630e
HD
911 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
912 NULL: pmd_offset(pud, address);
1da177e4 913}
1bb3630e
HD
914#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
915
4c21e2f2
HD
916#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
917/*
918 * We tuck a spinlock to guard each pagetable page into its struct page,
919 * at page->private, with BUILD_BUG_ON to make sure that this will not
920 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
921 * When freeing, reset page->mapping so free_pages_check won't complain.
922 */
349aef0b 923#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
924#define pte_lock_init(_page) do { \
925 spin_lock_init(__pte_lockptr(_page)); \
926} while (0)
927#define pte_lock_deinit(page) ((page)->mapping = NULL)
928#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
929#else
930/*
931 * We use mm->page_table_lock to guard all pagetable pages of the mm.
932 */
933#define pte_lock_init(page) do {} while (0)
934#define pte_lock_deinit(page) do {} while (0)
935#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
936#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
937
c74df32c
HD
938#define pte_offset_map_lock(mm, pmd, address, ptlp) \
939({ \
4c21e2f2 940 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
941 pte_t *__pte = pte_offset_map(pmd, address); \
942 *(ptlp) = __ptl; \
943 spin_lock(__ptl); \
944 __pte; \
945})
946
947#define pte_unmap_unlock(pte, ptl) do { \
948 spin_unlock(ptl); \
949 pte_unmap(pte); \
950} while (0)
951
1bb3630e
HD
952#define pte_alloc_map(mm, pmd, address) \
953 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
954 NULL: pte_offset_map(pmd, address))
955
c74df32c
HD
956#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
957 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
958 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
959
1bb3630e
HD
960#define pte_alloc_kernel(pmd, address) \
961 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
962 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
963
964extern void free_area_init(unsigned long * zones_size);
965extern void free_area_init_node(int nid, pg_data_t *pgdat,
966 unsigned long * zones_size, unsigned long zone_start_pfn,
967 unsigned long *zholes_size);
c713216d
MG
968#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
969/*
970 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
971 * zones, allocate the backing mem_map and account for memory holes in a more
972 * architecture independent manner. This is a substitute for creating the
973 * zone_sizes[] and zholes_size[] arrays and passing them to
974 * free_area_init_node()
975 *
976 * An architecture is expected to register range of page frames backed by
977 * physical memory with add_active_range() before calling
978 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
979 * usage, an architecture is expected to do something like
980 *
981 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
982 * max_highmem_pfn};
983 * for_each_valid_physical_page_range()
984 * add_active_range(node_id, start_pfn, end_pfn)
985 * free_area_init_nodes(max_zone_pfns);
986 *
987 * If the architecture guarantees that there are no holes in the ranges
988 * registered with add_active_range(), free_bootmem_active_regions()
989 * will call free_bootmem_node() for each registered physical page range.
990 * Similarly sparse_memory_present_with_active_regions() calls
991 * memory_present() for each range when SPARSEMEM is enabled.
992 *
993 * See mm/page_alloc.c for more information on each function exposed by
994 * CONFIG_ARCH_POPULATES_NODE_MAP
995 */
996extern void free_area_init_nodes(unsigned long *max_zone_pfn);
997extern void add_active_range(unsigned int nid, unsigned long start_pfn,
998 unsigned long end_pfn);
999extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
1000 unsigned long new_end_pfn);
fb01439c
MG
1001extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
1002 unsigned long end_pfn);
c713216d
MG
1003extern void remove_all_active_ranges(void);
1004extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1005 unsigned long end_pfn);
1006extern void get_pfn_range_for_nid(unsigned int nid,
1007 unsigned long *start_pfn, unsigned long *end_pfn);
1008extern unsigned long find_min_pfn_with_active_regions(void);
1009extern unsigned long find_max_pfn_with_active_regions(void);
1010extern void free_bootmem_with_active_regions(int nid,
1011 unsigned long max_low_pfn);
1012extern void sparse_memory_present_with_active_regions(int nid);
1013#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1014extern int early_pfn_to_nid(unsigned long pfn);
1015#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1016#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
0e0b864e 1017extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1018extern void memmap_init_zone(unsigned long, int, unsigned long,
1019 unsigned long, enum memmap_context);
3947be19 1020extern void setup_per_zone_pages_min(void);
1da177e4
LT
1021extern void mem_init(void);
1022extern void show_mem(void);
1023extern void si_meminfo(struct sysinfo * val);
1024extern void si_meminfo_node(struct sysinfo *val, int nid);
1025
e7c8d5c9
CL
1026#ifdef CONFIG_NUMA
1027extern void setup_per_cpu_pageset(void);
1028#else
1029static inline void setup_per_cpu_pageset(void) {}
1030#endif
1031
1da177e4
LT
1032/* prio_tree.c */
1033void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1034void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1035void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1036struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1037 struct prio_tree_iter *iter);
1038
1039#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1040 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1041 (vma = vma_prio_tree_next(vma, iter)); )
1042
1043static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1044 struct list_head *list)
1045{
1046 vma->shared.vm_set.parent = NULL;
1047 list_add_tail(&vma->shared.vm_set.list, list);
1048}
1049
1050/* mmap.c */
1051extern int __vm_enough_memory(long pages, int cap_sys_admin);
1052extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
1053 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1054extern struct vm_area_struct *vma_merge(struct mm_struct *,
1055 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1056 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1057 struct mempolicy *);
1058extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1059extern int split_vma(struct mm_struct *,
1060 struct vm_area_struct *, unsigned long addr, int new_below);
1061extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1062extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1063 struct rb_node **, struct rb_node *);
a8fb5618 1064extern void unlink_file_vma(struct vm_area_struct *);
1da177e4
LT
1065extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1066 unsigned long addr, unsigned long len, pgoff_t pgoff);
1067extern void exit_mmap(struct mm_struct *);
119f657c 1068extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1069extern int install_special_mapping(struct mm_struct *mm,
1070 unsigned long addr, unsigned long len,
1071 unsigned long flags, struct page **pages);
1da177e4
LT
1072
1073extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1074
1075extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1076 unsigned long len, unsigned long prot,
1077 unsigned long flag, unsigned long pgoff);
0165ab44
MS
1078extern unsigned long mmap_region(struct file *file, unsigned long addr,
1079 unsigned long len, unsigned long flags,
1080 unsigned int vm_flags, unsigned long pgoff,
1081 int accountable);
1da177e4
LT
1082
1083static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1084 unsigned long len, unsigned long prot,
1085 unsigned long flag, unsigned long offset)
1086{
1087 unsigned long ret = -EINVAL;
1088 if ((offset + PAGE_ALIGN(len)) < offset)
1089 goto out;
1090 if (!(offset & ~PAGE_MASK))
1091 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1092out:
1093 return ret;
1094}
1095
1096extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1097
1098extern unsigned long do_brk(unsigned long, unsigned long);
1099
1100/* filemap.c */
1101extern unsigned long page_unuse(struct page *);
1102extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1103extern void truncate_inode_pages_range(struct address_space *,
1104 loff_t lstart, loff_t lend);
1da177e4
LT
1105
1106/* generic vm_area_ops exported for stackable file systems */
1107extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *);
1108extern int filemap_populate(struct vm_area_struct *, unsigned long,
1109 unsigned long, pgprot_t, unsigned long, int);
1110
1111/* mm/page-writeback.c */
1112int write_one_page(struct page *page, int wait);
1113
1114/* readahead.c */
1115#define VM_MAX_READAHEAD 128 /* kbytes */
1116#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1117#define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before
1118 * turning readahead off */
1119
1120int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1121 pgoff_t offset, unsigned long nr_to_read);
1da177e4 1122int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8
AM
1123 pgoff_t offset, unsigned long nr_to_read);
1124unsigned long page_cache_readahead(struct address_space *mapping,
1da177e4
LT
1125 struct file_ra_state *ra,
1126 struct file *filp,
7361f4d8 1127 pgoff_t offset,
1da177e4
LT
1128 unsigned long size);
1129void handle_ra_miss(struct address_space *mapping,
1130 struct file_ra_state *ra, pgoff_t offset);
1131unsigned long max_sane_readahead(unsigned long nr);
1132
1133/* Do stack extension */
46dea3d0 1134extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
9ab88515 1135#ifdef CONFIG_IA64
46dea3d0 1136extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
9ab88515 1137#endif
1da177e4
LT
1138
1139/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1140extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1141extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1142 struct vm_area_struct **pprev);
1143
1144/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1145 NULL if none. Assume start_addr < end_addr. */
1146static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1147{
1148 struct vm_area_struct * vma = find_vma(mm,start_addr);
1149
1150 if (vma && end_addr <= vma->vm_start)
1151 vma = NULL;
1152 return vma;
1153}
1154
1155static inline unsigned long vma_pages(struct vm_area_struct *vma)
1156{
1157 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1158}
1159
804af2cf 1160pgprot_t vm_get_page_prot(unsigned long vm_flags);
deceb6cd
HD
1161struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1162struct page *vmalloc_to_page(void *addr);
1163unsigned long vmalloc_to_pfn(void *addr);
1164int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1165 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1166int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1167int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1168 unsigned long pfn);
deceb6cd 1169
6aab341e 1170struct page *follow_page(struct vm_area_struct *, unsigned long address,
deceb6cd
HD
1171 unsigned int foll_flags);
1172#define FOLL_WRITE 0x01 /* check pte is writable */
1173#define FOLL_TOUCH 0x02 /* mark page accessed */
1174#define FOLL_GET 0x04 /* do get_page on page */
1175#define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1da177e4 1176
aee16b3c
JF
1177typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr,
1178 void *data);
1179extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1180 unsigned long size, pte_fn_t fn, void *data);
1181
1da177e4 1182#ifdef CONFIG_PROC_FS
ab50b8ed 1183void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1184#else
ab50b8ed 1185static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1186 unsigned long flags, struct file *file, long pages)
1187{
1188}
1189#endif /* CONFIG_PROC_FS */
1190
1da177e4
LT
1191#ifndef CONFIG_DEBUG_PAGEALLOC
1192static inline void
9858db50 1193kernel_map_pages(struct page *page, int numpages, int enable) {}
1da177e4
LT
1194#endif
1195
1196extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1197#ifdef __HAVE_ARCH_GATE_AREA
1198int in_gate_area_no_task(unsigned long addr);
1199int in_gate_area(struct task_struct *task, unsigned long addr);
1200#else
1201int in_gate_area_no_task(unsigned long addr);
1202#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1203#endif /* __HAVE_ARCH_GATE_AREA */
1204
9d0243bc
AM
1205int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1206 void __user *, size_t *, loff_t *);
69e05944 1207unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
9d0243bc
AM
1208 unsigned long lru_pages);
1209void drop_pagecache(void);
1210void drop_slab(void);
1211
7a9166e3
LY
1212#ifndef CONFIG_MMU
1213#define randomize_va_space 0
1214#else
a62eaf15 1215extern int randomize_va_space;
7a9166e3 1216#endif
a62eaf15 1217
f269fdd1 1218__attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma);
e6e5494c 1219
1da177e4
LT
1220#endif /* __KERNEL__ */
1221#endif /* _LINUX_MM_H */