]> bbs.cooldavid.org Git - net-next-2.6.git/blame - include/asm-generic/pgtable.h
x86/paravirt: finish change from lazy cpu to context switch start/end
[net-next-2.6.git] / include / asm-generic / pgtable.h
CommitLineData
1da177e4
LT
1#ifndef _ASM_GENERIC_PGTABLE_H
2#define _ASM_GENERIC_PGTABLE_H
3
673eae82 4#ifndef __ASSEMBLY__
9535239f 5#ifdef CONFIG_MMU
673eae82 6
1da177e4
LT
7#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
8/*
9 * Largely same as above, but only sets the access flags (dirty,
10 * accessed, and writable). Furthermore, we know it always gets set
11 * to a "more permissive" setting, which allows most architectures
8dab5241
BH
12 * to optimize this. We return whether the PTE actually changed, which
13 * in turn instructs the caller to do things like update__mmu_cache.
14 * This used to be done in the caller, but sparc needs minor faults to
15 * force that call on sun4c so we changed this macro slightly
1da177e4
LT
16 */
17#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
8dab5241
BH
18({ \
19 int __changed = !pte_same(*(__ptep), __entry); \
20 if (__changed) { \
21 set_pte_at((__vma)->vm_mm, (__address), __ptep, __entry); \
22 flush_tlb_page(__vma, __address); \
23 } \
24 __changed; \
25})
1da177e4
LT
26#endif
27
28#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
29#define ptep_test_and_clear_young(__vma, __address, __ptep) \
30({ \
31 pte_t __pte = *(__ptep); \
32 int r = 1; \
33 if (!pte_young(__pte)) \
34 r = 0; \
35 else \
36 set_pte_at((__vma)->vm_mm, (__address), \
37 (__ptep), pte_mkold(__pte)); \
38 r; \
39})
40#endif
41
42#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
43#define ptep_clear_flush_young(__vma, __address, __ptep) \
44({ \
45 int __young; \
46 __young = ptep_test_and_clear_young(__vma, __address, __ptep); \
47 if (__young) \
48 flush_tlb_page(__vma, __address); \
49 __young; \
50})
51#endif
52
1da177e4
LT
53#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
54#define ptep_get_and_clear(__mm, __address, __ptep) \
55({ \
56 pte_t __pte = *(__ptep); \
57 pte_clear((__mm), (__address), (__ptep)); \
58 __pte; \
59})
60#endif
61
a600388d
ZA
62#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
63#define ptep_get_and_clear_full(__mm, __address, __ptep, __full) \
64({ \
65 pte_t __pte; \
66 __pte = ptep_get_and_clear((__mm), (__address), (__ptep)); \
67 __pte; \
68})
69#endif
70
9888a1ca
ZA
71/*
72 * Some architectures may be able to avoid expensive synchronization
73 * primitives when modifications are made to PTE's which are already
74 * not present, or in the process of an address space destruction.
75 */
76#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
77#define pte_clear_not_present_full(__mm, __address, __ptep, __full) \
a600388d
ZA
78do { \
79 pte_clear((__mm), (__address), (__ptep)); \
80} while (0)
81#endif
82
1da177e4
LT
83#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
84#define ptep_clear_flush(__vma, __address, __ptep) \
85({ \
86 pte_t __pte; \
87 __pte = ptep_get_and_clear((__vma)->vm_mm, __address, __ptep); \
88 flush_tlb_page(__vma, __address); \
89 __pte; \
90})
91#endif
92
93#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
8c65b4a6 94struct mm_struct;
1da177e4
LT
95static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
96{
97 pte_t old_pte = *ptep;
98 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
99}
100#endif
101
102#ifndef __HAVE_ARCH_PTE_SAME
103#define pte_same(A,B) (pte_val(A) == pte_val(B))
104#endif
105
6c210482
MS
106#ifndef __HAVE_ARCH_PAGE_TEST_DIRTY
107#define page_test_dirty(page) (0)
108#endif
109
110#ifndef __HAVE_ARCH_PAGE_CLEAR_DIRTY
111#define page_clear_dirty(page) do { } while (0)
112#endif
113
114#ifndef __HAVE_ARCH_PAGE_TEST_DIRTY
b4955ce3
AK
115#define pte_maybe_dirty(pte) pte_dirty(pte)
116#else
117#define pte_maybe_dirty(pte) (1)
1da177e4
LT
118#endif
119
120#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
121#define page_test_and_clear_young(page) (0)
122#endif
123
124#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
125#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
126#endif
127
0b0968a3 128#ifndef __HAVE_ARCH_MOVE_PTE
8b1f3124 129#define move_pte(pte, prot, old_addr, new_addr) (pte)
8b1f3124
NP
130#endif
131
2520bd31 132#ifndef pgprot_writecombine
133#define pgprot_writecombine pgprot_noncached
134#endif
135
1da177e4 136/*
8f6c99c1
HD
137 * When walking page tables, get the address of the next boundary,
138 * or the end address of the range if that comes earlier. Although no
139 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
1da177e4
LT
140 */
141
1da177e4
LT
142#define pgd_addr_end(addr, end) \
143({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
144 (__boundary - 1 < (end) - 1)? __boundary: (end); \
145})
1da177e4
LT
146
147#ifndef pud_addr_end
148#define pud_addr_end(addr, end) \
149({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
150 (__boundary - 1 < (end) - 1)? __boundary: (end); \
151})
152#endif
153
154#ifndef pmd_addr_end
155#define pmd_addr_end(addr, end) \
156({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
157 (__boundary - 1 < (end) - 1)? __boundary: (end); \
158})
159#endif
160
1da177e4
LT
161/*
162 * When walking page tables, we usually want to skip any p?d_none entries;
163 * and any p?d_bad entries - reporting the error before resetting to none.
164 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
165 */
166void pgd_clear_bad(pgd_t *);
167void pud_clear_bad(pud_t *);
168void pmd_clear_bad(pmd_t *);
169
170static inline int pgd_none_or_clear_bad(pgd_t *pgd)
171{
172 if (pgd_none(*pgd))
173 return 1;
174 if (unlikely(pgd_bad(*pgd))) {
175 pgd_clear_bad(pgd);
176 return 1;
177 }
178 return 0;
179}
180
181static inline int pud_none_or_clear_bad(pud_t *pud)
182{
183 if (pud_none(*pud))
184 return 1;
185 if (unlikely(pud_bad(*pud))) {
186 pud_clear_bad(pud);
187 return 1;
188 }
189 return 0;
190}
191
192static inline int pmd_none_or_clear_bad(pmd_t *pmd)
193{
194 if (pmd_none(*pmd))
195 return 1;
196 if (unlikely(pmd_bad(*pmd))) {
197 pmd_clear_bad(pmd);
198 return 1;
199 }
200 return 0;
201}
9535239f 202
1ea0704e
JF
203static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
204 unsigned long addr,
205 pte_t *ptep)
206{
207 /*
208 * Get the current pte state, but zero it out to make it
209 * non-present, preventing the hardware from asynchronously
210 * updating it.
211 */
212 return ptep_get_and_clear(mm, addr, ptep);
213}
214
215static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
216 unsigned long addr,
217 pte_t *ptep, pte_t pte)
218{
219 /*
220 * The pte is non-present, so there's no hardware state to
221 * preserve.
222 */
223 set_pte_at(mm, addr, ptep, pte);
224}
225
226#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
227/*
228 * Start a pte protection read-modify-write transaction, which
229 * protects against asynchronous hardware modifications to the pte.
230 * The intention is not to prevent the hardware from making pte
231 * updates, but to prevent any updates it may make from being lost.
232 *
233 * This does not protect against other software modifications of the
234 * pte; the appropriate pte lock must be held over the transation.
235 *
236 * Note that this interface is intended to be batchable, meaning that
237 * ptep_modify_prot_commit may not actually update the pte, but merely
238 * queue the update to be done at some later time. The update must be
239 * actually committed before the pte lock is released, however.
240 */
241static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
242 unsigned long addr,
243 pte_t *ptep)
244{
245 return __ptep_modify_prot_start(mm, addr, ptep);
246}
247
248/*
249 * Commit an update to a pte, leaving any hardware-controlled bits in
250 * the PTE unmodified.
251 */
252static inline void ptep_modify_prot_commit(struct mm_struct *mm,
253 unsigned long addr,
254 pte_t *ptep, pte_t pte)
255{
256 __ptep_modify_prot_commit(mm, addr, ptep, pte);
257}
258#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
fe1a6875 259#endif /* CONFIG_MMU */
1ea0704e 260
9535239f
GU
261/*
262 * A facility to provide lazy MMU batching. This allows PTE updates and
263 * page invalidations to be delayed until a call to leave lazy MMU mode
264 * is issued. Some architectures may benefit from doing this, and it is
265 * beneficial for both shadow and direct mode hypervisors, which may batch
266 * the PTE updates which happen during this window. Note that using this
267 * interface requires that read hazards be removed from the code. A read
268 * hazard could result in the direct mode hypervisor case, since the actual
269 * write to the page tables may not yet have taken place, so reads though
270 * a raw PTE pointer after it has been modified are not guaranteed to be
271 * up to date. This mode can only be entered and left under the protection of
272 * the page table locks for all page tables which may be modified. In the UP
273 * case, this is required so that preemption is disabled, and in the SMP case,
274 * it must synchronize the delayed page table writes properly on other CPUs.
275 */
276#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
277#define arch_enter_lazy_mmu_mode() do {} while (0)
278#define arch_leave_lazy_mmu_mode() do {} while (0)
279#define arch_flush_lazy_mmu_mode() do {} while (0)
280#endif
281
282/*
7fd7d83d
JF
283 * A facility to provide batching of the reload of page tables and
284 * other process state with the actual context switch code for
285 * paravirtualized guests. By convention, only one of the batched
286 * update (lazy) modes (CPU, MMU) should be active at any given time,
287 * entry should never be nested, and entry and exits should always be
288 * paired. This is for sanity of maintaining and reasoning about the
289 * kernel code. In this case, the exit (end of the context switch) is
290 * in architecture-specific code, and so doesn't need a generic
291 * definition.
9535239f 292 */
7fd7d83d 293#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
224101ed 294#define arch_start_context_switch(prev) do {} while (0)
9535239f
GU
295#endif
296
34801ba9 297#ifndef __HAVE_PFNMAP_TRACKING
298/*
299 * Interface that can be used by architecture code to keep track of
300 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
301 *
302 * track_pfn_vma_new is called when a _new_ pfn mapping is being established
303 * for physical range indicated by pfn and size.
304 */
e4b866ed 305static inline int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
34801ba9 306 unsigned long pfn, unsigned long size)
307{
308 return 0;
309}
310
311/*
312 * Interface that can be used by architecture code to keep track of
313 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
314 *
315 * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
316 * copied through copy_page_range().
317 */
318static inline int track_pfn_vma_copy(struct vm_area_struct *vma)
319{
320 return 0;
321}
322
323/*
324 * Interface that can be used by architecture code to keep track of
325 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
326 *
327 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
328 * untrack can be called for a specific region indicated by pfn and size or
329 * can be for the entire vma (in which case size can be zero).
330 */
331static inline void untrack_pfn_vma(struct vm_area_struct *vma,
332 unsigned long pfn, unsigned long size)
333{
334}
335#else
e4b866ed 336extern int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
34801ba9 337 unsigned long pfn, unsigned long size);
338extern int track_pfn_vma_copy(struct vm_area_struct *vma);
339extern void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
340 unsigned long size);
341#endif
342
1da177e4
LT
343#endif /* !__ASSEMBLY__ */
344
345#endif /* _ASM_GENERIC_PGTABLE_H */