]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/xfs/xfs_trans_buf.c
[XFS] remove unused struct xfs_ail_ticket
[net-next-2.6.git] / fs / xfs / xfs_trans_buf.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2000-2002 Silicon Graphics, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it would be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
11 *
12 * Further, this software is distributed without any warranty that it is
13 * free of the rightful claim of any third person regarding infringement
14 * or the like. Any license provided herein, whether implied or
15 * otherwise, applies only to this software file. Patent licenses, if
16 * any, provided herein do not apply to combinations of this program with
17 * other software, or any other product whatsoever.
18 *
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston MA 02111-1307, USA.
22 *
23 * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24 * Mountain View, CA 94043, or:
25 *
26 * http://www.sgi.com
27 *
28 * For further information regarding this notice, see:
29 *
30 * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
31 */
32
33#include "xfs.h"
34#include "xfs_macros.h"
35#include "xfs_types.h"
36#include "xfs_inum.h"
37#include "xfs_log.h"
38#include "xfs_trans.h"
39#include "xfs_buf_item.h"
40#include "xfs_sb.h"
41#include "xfs_ag.h"
42#include "xfs_dir.h"
43#include "xfs_dmapi.h"
44#include "xfs_mount.h"
45#include "xfs_trans_priv.h"
46#include "xfs_error.h"
47#include "xfs_rw.h"
48
49
50STATIC xfs_buf_t *xfs_trans_buf_item_match(xfs_trans_t *, xfs_buftarg_t *,
51 xfs_daddr_t, int);
52STATIC xfs_buf_t *xfs_trans_buf_item_match_all(xfs_trans_t *, xfs_buftarg_t *,
53 xfs_daddr_t, int);
54
55
56/*
57 * Get and lock the buffer for the caller if it is not already
58 * locked within the given transaction. If it is already locked
59 * within the transaction, just increment its lock recursion count
60 * and return a pointer to it.
61 *
62 * Use the fast path function xfs_trans_buf_item_match() or the buffer
63 * cache routine incore_match() to find the buffer
64 * if it is already owned by this transaction.
65 *
66 * If we don't already own the buffer, use get_buf() to get it.
67 * If it doesn't yet have an associated xfs_buf_log_item structure,
68 * then allocate one and add the item to this transaction.
69 *
70 * If the transaction pointer is NULL, make this just a normal
71 * get_buf() call.
72 */
73xfs_buf_t *
74xfs_trans_get_buf(xfs_trans_t *tp,
75 xfs_buftarg_t *target_dev,
76 xfs_daddr_t blkno,
77 int len,
78 uint flags)
79{
80 xfs_buf_t *bp;
81 xfs_buf_log_item_t *bip;
82
83 if (flags == 0)
84 flags = XFS_BUF_LOCK | XFS_BUF_MAPPED;
85
86 /*
87 * Default to a normal get_buf() call if the tp is NULL.
88 */
89 if (tp == NULL) {
90 bp = xfs_buf_get_flags(target_dev, blkno, len,
91 flags | BUF_BUSY);
92 return(bp);
93 }
94
95 /*
96 * If we find the buffer in the cache with this transaction
97 * pointer in its b_fsprivate2 field, then we know we already
98 * have it locked. In this case we just increment the lock
99 * recursion count and return the buffer to the caller.
100 */
101 if (tp->t_items.lic_next == NULL) {
102 bp = xfs_trans_buf_item_match(tp, target_dev, blkno, len);
103 } else {
104 bp = xfs_trans_buf_item_match_all(tp, target_dev, blkno, len);
105 }
106 if (bp != NULL) {
107 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
108 if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
109 xfs_buftrace("TRANS GET RECUR SHUT", bp);
110 XFS_BUF_SUPER_STALE(bp);
111 }
112 /*
113 * If the buffer is stale then it was binval'ed
114 * since last read. This doesn't matter since the
115 * caller isn't allowed to use the data anyway.
116 */
117 else if (XFS_BUF_ISSTALE(bp)) {
118 xfs_buftrace("TRANS GET RECUR STALE", bp);
119 ASSERT(!XFS_BUF_ISDELAYWRITE(bp));
120 }
121 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
122 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
123 ASSERT(bip != NULL);
124 ASSERT(atomic_read(&bip->bli_refcount) > 0);
125 bip->bli_recur++;
126 xfs_buftrace("TRANS GET RECUR", bp);
127 xfs_buf_item_trace("GET RECUR", bip);
128 return (bp);
129 }
130
131 /*
132 * We always specify the BUF_BUSY flag within a transaction so
133 * that get_buf does not try to push out a delayed write buffer
134 * which might cause another transaction to take place (if the
135 * buffer was delayed alloc). Such recursive transactions can
136 * easily deadlock with our current transaction as well as cause
137 * us to run out of stack space.
138 */
139 bp = xfs_buf_get_flags(target_dev, blkno, len, flags | BUF_BUSY);
140 if (bp == NULL) {
141 return NULL;
142 }
143
144 ASSERT(!XFS_BUF_GETERROR(bp));
145
146 /*
147 * The xfs_buf_log_item pointer is stored in b_fsprivate. If
148 * it doesn't have one yet, then allocate one and initialize it.
149 * The checks to see if one is there are in xfs_buf_item_init().
150 */
151 xfs_buf_item_init(bp, tp->t_mountp);
152
153 /*
154 * Set the recursion count for the buffer within this transaction
155 * to 0.
156 */
157 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
158 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
159 ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL));
160 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
161 bip->bli_recur = 0;
162
163 /*
164 * Take a reference for this transaction on the buf item.
165 */
166 atomic_inc(&bip->bli_refcount);
167
168 /*
169 * Get a log_item_desc to point at the new item.
170 */
171 (void) xfs_trans_add_item(tp, (xfs_log_item_t*)bip);
172
173 /*
174 * Initialize b_fsprivate2 so we can find it with incore_match()
175 * above.
176 */
177 XFS_BUF_SET_FSPRIVATE2(bp, tp);
178
179 xfs_buftrace("TRANS GET", bp);
180 xfs_buf_item_trace("GET", bip);
181 return (bp);
182}
183
184/*
185 * Get and lock the superblock buffer of this file system for the
186 * given transaction.
187 *
188 * We don't need to use incore_match() here, because the superblock
189 * buffer is a private buffer which we keep a pointer to in the
190 * mount structure.
191 */
192xfs_buf_t *
193xfs_trans_getsb(xfs_trans_t *tp,
194 struct xfs_mount *mp,
195 int flags)
196{
197 xfs_buf_t *bp;
198 xfs_buf_log_item_t *bip;
199
200 /*
201 * Default to just trying to lock the superblock buffer
202 * if tp is NULL.
203 */
204 if (tp == NULL) {
205 return (xfs_getsb(mp, flags));
206 }
207
208 /*
209 * If the superblock buffer already has this transaction
210 * pointer in its b_fsprivate2 field, then we know we already
211 * have it locked. In this case we just increment the lock
212 * recursion count and return the buffer to the caller.
213 */
214 bp = mp->m_sb_bp;
215 if (XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp) {
216 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
217 ASSERT(bip != NULL);
218 ASSERT(atomic_read(&bip->bli_refcount) > 0);
219 bip->bli_recur++;
220 xfs_buf_item_trace("GETSB RECUR", bip);
221 return (bp);
222 }
223
224 bp = xfs_getsb(mp, flags);
225 if (bp == NULL) {
226 return NULL;
227 }
228
229 /*
230 * The xfs_buf_log_item pointer is stored in b_fsprivate. If
231 * it doesn't have one yet, then allocate one and initialize it.
232 * The checks to see if one is there are in xfs_buf_item_init().
233 */
234 xfs_buf_item_init(bp, mp);
235
236 /*
237 * Set the recursion count for the buffer within this transaction
238 * to 0.
239 */
240 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
241 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
242 ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL));
243 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
244 bip->bli_recur = 0;
245
246 /*
247 * Take a reference for this transaction on the buf item.
248 */
249 atomic_inc(&bip->bli_refcount);
250
251 /*
252 * Get a log_item_desc to point at the new item.
253 */
254 (void) xfs_trans_add_item(tp, (xfs_log_item_t*)bip);
255
256 /*
257 * Initialize b_fsprivate2 so we can find it with incore_match()
258 * above.
259 */
260 XFS_BUF_SET_FSPRIVATE2(bp, tp);
261
262 xfs_buf_item_trace("GETSB", bip);
263 return (bp);
264}
265
266#ifdef DEBUG
267xfs_buftarg_t *xfs_error_target;
268int xfs_do_error;
269int xfs_req_num;
270int xfs_error_mod = 33;
271#endif
272
273/*
274 * Get and lock the buffer for the caller if it is not already
275 * locked within the given transaction. If it has not yet been
276 * read in, read it from disk. If it is already locked
277 * within the transaction and already read in, just increment its
278 * lock recursion count and return a pointer to it.
279 *
280 * Use the fast path function xfs_trans_buf_item_match() or the buffer
281 * cache routine incore_match() to find the buffer
282 * if it is already owned by this transaction.
283 *
284 * If we don't already own the buffer, use read_buf() to get it.
285 * If it doesn't yet have an associated xfs_buf_log_item structure,
286 * then allocate one and add the item to this transaction.
287 *
288 * If the transaction pointer is NULL, make this just a normal
289 * read_buf() call.
290 */
291int
292xfs_trans_read_buf(
293 xfs_mount_t *mp,
294 xfs_trans_t *tp,
295 xfs_buftarg_t *target,
296 xfs_daddr_t blkno,
297 int len,
298 uint flags,
299 xfs_buf_t **bpp)
300{
301 xfs_buf_t *bp;
302 xfs_buf_log_item_t *bip;
303 int error;
304
305 if (flags == 0)
306 flags = XFS_BUF_LOCK | XFS_BUF_MAPPED;
307
308 /*
309 * Default to a normal get_buf() call if the tp is NULL.
310 */
311 if (tp == NULL) {
312 bp = xfs_buf_read_flags(target, blkno, len, flags | BUF_BUSY);
313 if (!bp)
314 return XFS_ERROR(ENOMEM);
315
316 if ((bp != NULL) && (XFS_BUF_GETERROR(bp) != 0)) {
317 xfs_ioerror_alert("xfs_trans_read_buf", mp,
318 bp, blkno);
319 error = XFS_BUF_GETERROR(bp);
320 xfs_buf_relse(bp);
321 return error;
322 }
323#ifdef DEBUG
324 if (xfs_do_error && (bp != NULL)) {
325 if (xfs_error_target == target) {
326 if (((xfs_req_num++) % xfs_error_mod) == 0) {
327 xfs_buf_relse(bp);
328 printk("Returning error!\n");
329 return XFS_ERROR(EIO);
330 }
331 }
332 }
333#endif
334 if (XFS_FORCED_SHUTDOWN(mp))
335 goto shutdown_abort;
336 *bpp = bp;
337 return 0;
338 }
339
340 /*
341 * If we find the buffer in the cache with this transaction
342 * pointer in its b_fsprivate2 field, then we know we already
343 * have it locked. If it is already read in we just increment
344 * the lock recursion count and return the buffer to the caller.
345 * If the buffer is not yet read in, then we read it in, increment
346 * the lock recursion count, and return it to the caller.
347 */
348 if (tp->t_items.lic_next == NULL) {
349 bp = xfs_trans_buf_item_match(tp, target, blkno, len);
350 } else {
351 bp = xfs_trans_buf_item_match_all(tp, target, blkno, len);
352 }
353 if (bp != NULL) {
354 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
355 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
356 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
357 ASSERT((XFS_BUF_ISERROR(bp)) == 0);
358 if (!(XFS_BUF_ISDONE(bp))) {
359 xfs_buftrace("READ_BUF_INCORE !DONE", bp);
360 ASSERT(!XFS_BUF_ISASYNC(bp));
361 XFS_BUF_READ(bp);
362 xfsbdstrat(tp->t_mountp, bp);
363 xfs_iowait(bp);
364 if (XFS_BUF_GETERROR(bp) != 0) {
365 xfs_ioerror_alert("xfs_trans_read_buf", mp,
366 bp, blkno);
367 error = XFS_BUF_GETERROR(bp);
368 xfs_buf_relse(bp);
369 /*
370 * We can gracefully recover from most
371 * read errors. Ones we can't are those
372 * that happen after the transaction's
373 * already dirty.
374 */
375 if (tp->t_flags & XFS_TRANS_DIRTY)
376 xfs_force_shutdown(tp->t_mountp,
377 XFS_METADATA_IO_ERROR);
378 return error;
379 }
380 }
381 /*
382 * We never locked this buf ourselves, so we shouldn't
383 * brelse it either. Just get out.
384 */
385 if (XFS_FORCED_SHUTDOWN(mp)) {
386 xfs_buftrace("READ_BUF_INCORE XFSSHUTDN", bp);
387 *bpp = NULL;
388 return XFS_ERROR(EIO);
389 }
390
391
392 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
393 bip->bli_recur++;
394
395 ASSERT(atomic_read(&bip->bli_refcount) > 0);
396 xfs_buf_item_trace("READ RECUR", bip);
397 *bpp = bp;
398 return 0;
399 }
400
401 /*
402 * We always specify the BUF_BUSY flag within a transaction so
403 * that get_buf does not try to push out a delayed write buffer
404 * which might cause another transaction to take place (if the
405 * buffer was delayed alloc). Such recursive transactions can
406 * easily deadlock with our current transaction as well as cause
407 * us to run out of stack space.
408 */
409 bp = xfs_buf_read_flags(target, blkno, len, flags | BUF_BUSY);
410 if (bp == NULL) {
411 *bpp = NULL;
412 return 0;
413 }
414 if (XFS_BUF_GETERROR(bp) != 0) {
415 XFS_BUF_SUPER_STALE(bp);
416 xfs_buftrace("READ ERROR", bp);
417 error = XFS_BUF_GETERROR(bp);
418
419 xfs_ioerror_alert("xfs_trans_read_buf", mp,
420 bp, blkno);
421 if (tp->t_flags & XFS_TRANS_DIRTY)
422 xfs_force_shutdown(tp->t_mountp, XFS_METADATA_IO_ERROR);
423 xfs_buf_relse(bp);
424 return error;
425 }
426#ifdef DEBUG
427 if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) {
428 if (xfs_error_target == target) {
429 if (((xfs_req_num++) % xfs_error_mod) == 0) {
430 xfs_force_shutdown(tp->t_mountp,
431 XFS_METADATA_IO_ERROR);
432 xfs_buf_relse(bp);
433 printk("Returning error in trans!\n");
434 return XFS_ERROR(EIO);
435 }
436 }
437 }
438#endif
439 if (XFS_FORCED_SHUTDOWN(mp))
440 goto shutdown_abort;
441
442 /*
443 * The xfs_buf_log_item pointer is stored in b_fsprivate. If
444 * it doesn't have one yet, then allocate one and initialize it.
445 * The checks to see if one is there are in xfs_buf_item_init().
446 */
447 xfs_buf_item_init(bp, tp->t_mountp);
448
449 /*
450 * Set the recursion count for the buffer within this transaction
451 * to 0.
452 */
453 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
454 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
455 ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL));
456 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
457 bip->bli_recur = 0;
458
459 /*
460 * Take a reference for this transaction on the buf item.
461 */
462 atomic_inc(&bip->bli_refcount);
463
464 /*
465 * Get a log_item_desc to point at the new item.
466 */
467 (void) xfs_trans_add_item(tp, (xfs_log_item_t*)bip);
468
469 /*
470 * Initialize b_fsprivate2 so we can find it with incore_match()
471 * above.
472 */
473 XFS_BUF_SET_FSPRIVATE2(bp, tp);
474
475 xfs_buftrace("TRANS READ", bp);
476 xfs_buf_item_trace("READ", bip);
477 *bpp = bp;
478 return 0;
479
480shutdown_abort:
481 /*
482 * the theory here is that buffer is good but we're
483 * bailing out because the filesystem is being forcibly
484 * shut down. So we should leave the b_flags alone since
485 * the buffer's not staled and just get out.
486 */
487#if defined(DEBUG)
488 if (XFS_BUF_ISSTALE(bp) && XFS_BUF_ISDELAYWRITE(bp))
489 cmn_err(CE_NOTE, "about to pop assert, bp == 0x%p", bp);
490#endif
491 ASSERT((XFS_BUF_BFLAGS(bp) & (XFS_B_STALE|XFS_B_DELWRI)) !=
492 (XFS_B_STALE|XFS_B_DELWRI));
493
494 xfs_buftrace("READ_BUF XFSSHUTDN", bp);
495 xfs_buf_relse(bp);
496 *bpp = NULL;
497 return XFS_ERROR(EIO);
498}
499
500
501/*
502 * Release the buffer bp which was previously acquired with one of the
503 * xfs_trans_... buffer allocation routines if the buffer has not
504 * been modified within this transaction. If the buffer is modified
505 * within this transaction, do decrement the recursion count but do
506 * not release the buffer even if the count goes to 0. If the buffer is not
507 * modified within the transaction, decrement the recursion count and
508 * release the buffer if the recursion count goes to 0.
509 *
510 * If the buffer is to be released and it was not modified before
511 * this transaction began, then free the buf_log_item associated with it.
512 *
513 * If the transaction pointer is NULL, make this just a normal
514 * brelse() call.
515 */
516void
517xfs_trans_brelse(xfs_trans_t *tp,
518 xfs_buf_t *bp)
519{
520 xfs_buf_log_item_t *bip;
521 xfs_log_item_t *lip;
522 xfs_log_item_desc_t *lidp;
523
524 /*
525 * Default to a normal brelse() call if the tp is NULL.
526 */
527 if (tp == NULL) {
528 ASSERT(XFS_BUF_FSPRIVATE2(bp, void *) == NULL);
529 /*
530 * If there's a buf log item attached to the buffer,
531 * then let the AIL know that the buffer is being
532 * unlocked.
533 */
534 if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) {
535 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
536 if (lip->li_type == XFS_LI_BUF) {
537 bip = XFS_BUF_FSPRIVATE(bp,xfs_buf_log_item_t*);
538 xfs_trans_unlocked_item(
539 bip->bli_item.li_mountp,
540 lip);
541 }
542 }
543 xfs_buf_relse(bp);
544 return;
545 }
546
547 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
548 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
549 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
550 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
551 ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL));
552 ASSERT(atomic_read(&bip->bli_refcount) > 0);
553
554 /*
555 * Find the item descriptor pointing to this buffer's
556 * log item. It must be there.
557 */
558 lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip);
559 ASSERT(lidp != NULL);
560
561 /*
562 * If the release is just for a recursive lock,
563 * then decrement the count and return.
564 */
565 if (bip->bli_recur > 0) {
566 bip->bli_recur--;
567 xfs_buf_item_trace("RELSE RECUR", bip);
568 return;
569 }
570
571 /*
572 * If the buffer is dirty within this transaction, we can't
573 * release it until we commit.
574 */
575 if (lidp->lid_flags & XFS_LID_DIRTY) {
576 xfs_buf_item_trace("RELSE DIRTY", bip);
577 return;
578 }
579
580 /*
581 * If the buffer has been invalidated, then we can't release
582 * it until the transaction commits to disk unless it is re-dirtied
583 * as part of this transaction. This prevents us from pulling
584 * the item from the AIL before we should.
585 */
586 if (bip->bli_flags & XFS_BLI_STALE) {
587 xfs_buf_item_trace("RELSE STALE", bip);
588 return;
589 }
590
591 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
592 xfs_buf_item_trace("RELSE", bip);
593
594 /*
595 * Free up the log item descriptor tracking the released item.
596 */
597 xfs_trans_free_item(tp, lidp);
598
599 /*
600 * Clear the hold flag in the buf log item if it is set.
601 * We wouldn't want the next user of the buffer to
602 * get confused.
603 */
604 if (bip->bli_flags & XFS_BLI_HOLD) {
605 bip->bli_flags &= ~XFS_BLI_HOLD;
606 }
607
608 /*
609 * Drop our reference to the buf log item.
610 */
611 atomic_dec(&bip->bli_refcount);
612
613 /*
614 * If the buf item is not tracking data in the log, then
615 * we must free it before releasing the buffer back to the
616 * free pool. Before releasing the buffer to the free pool,
617 * clear the transaction pointer in b_fsprivate2 to dissolve
618 * its relation to this transaction.
619 */
620 if (!xfs_buf_item_dirty(bip)) {
621/***
622 ASSERT(bp->b_pincount == 0);
623***/
624 ASSERT(atomic_read(&bip->bli_refcount) == 0);
625 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
626 ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF));
627 xfs_buf_item_relse(bp);
628 bip = NULL;
629 }
630 XFS_BUF_SET_FSPRIVATE2(bp, NULL);
631
632 /*
633 * If we've still got a buf log item on the buffer, then
634 * tell the AIL that the buffer is being unlocked.
635 */
636 if (bip != NULL) {
637 xfs_trans_unlocked_item(bip->bli_item.li_mountp,
638 (xfs_log_item_t*)bip);
639 }
640
641 xfs_buf_relse(bp);
642 return;
643}
644
645/*
646 * Add the locked buffer to the transaction.
647 * The buffer must be locked, and it cannot be associated with any
648 * transaction.
649 *
650 * If the buffer does not yet have a buf log item associated with it,
651 * then allocate one for it. Then add the buf item to the transaction.
652 */
653void
654xfs_trans_bjoin(xfs_trans_t *tp,
655 xfs_buf_t *bp)
656{
657 xfs_buf_log_item_t *bip;
658
659 ASSERT(XFS_BUF_ISBUSY(bp));
660 ASSERT(XFS_BUF_FSPRIVATE2(bp, void *) == NULL);
661
662 /*
663 * The xfs_buf_log_item pointer is stored in b_fsprivate. If
664 * it doesn't have one yet, then allocate one and initialize it.
665 * The checks to see if one is there are in xfs_buf_item_init().
666 */
667 xfs_buf_item_init(bp, tp->t_mountp);
668 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
669 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
670 ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL));
671 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
672
673 /*
674 * Take a reference for this transaction on the buf item.
675 */
676 atomic_inc(&bip->bli_refcount);
677
678 /*
679 * Get a log_item_desc to point at the new item.
680 */
681 (void) xfs_trans_add_item(tp, (xfs_log_item_t *)bip);
682
683 /*
684 * Initialize b_fsprivate2 so we can find it with incore_match()
685 * in xfs_trans_get_buf() and friends above.
686 */
687 XFS_BUF_SET_FSPRIVATE2(bp, tp);
688
689 xfs_buf_item_trace("BJOIN", bip);
690}
691
692/*
693 * Mark the buffer as not needing to be unlocked when the buf item's
694 * IOP_UNLOCK() routine is called. The buffer must already be locked
695 * and associated with the given transaction.
696 */
697/* ARGSUSED */
698void
699xfs_trans_bhold(xfs_trans_t *tp,
700 xfs_buf_t *bp)
701{
702 xfs_buf_log_item_t *bip;
703
704 ASSERT(XFS_BUF_ISBUSY(bp));
705 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
706 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
707
708 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
709 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
710 ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL));
711 ASSERT(atomic_read(&bip->bli_refcount) > 0);
712 bip->bli_flags |= XFS_BLI_HOLD;
713 xfs_buf_item_trace("BHOLD", bip);
714}
715
efa092f3
TS
716/*
717 * Cancel the previous buffer hold request made on this buffer
718 * for this transaction.
719 */
720void
721xfs_trans_bhold_release(xfs_trans_t *tp,
722 xfs_buf_t *bp)
723{
724 xfs_buf_log_item_t *bip;
725
726 ASSERT(XFS_BUF_ISBUSY(bp));
727 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
728 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
729
730 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
731 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
732 ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL));
733 ASSERT(atomic_read(&bip->bli_refcount) > 0);
734 ASSERT(bip->bli_flags & XFS_BLI_HOLD);
735 bip->bli_flags &= ~XFS_BLI_HOLD;
736 xfs_buf_item_trace("BHOLD RELEASE", bip);
737}
738
1da177e4
LT
739/*
740 * This is called to mark bytes first through last inclusive of the given
741 * buffer as needing to be logged when the transaction is committed.
742 * The buffer must already be associated with the given transaction.
743 *
744 * First and last are numbers relative to the beginning of this buffer,
745 * so the first byte in the buffer is numbered 0 regardless of the
746 * value of b_blkno.
747 */
748void
749xfs_trans_log_buf(xfs_trans_t *tp,
750 xfs_buf_t *bp,
751 uint first,
752 uint last)
753{
754 xfs_buf_log_item_t *bip;
755 xfs_log_item_desc_t *lidp;
756
757 ASSERT(XFS_BUF_ISBUSY(bp));
758 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
759 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
760 ASSERT((first <= last) && (last < XFS_BUF_COUNT(bp)));
761 ASSERT((XFS_BUF_IODONE_FUNC(bp) == NULL) ||
762 (XFS_BUF_IODONE_FUNC(bp) == xfs_buf_iodone_callbacks));
763
764 /*
765 * Mark the buffer as needing to be written out eventually,
766 * and set its iodone function to remove the buffer's buf log
767 * item from the AIL and free it when the buffer is flushed
768 * to disk. See xfs_buf_attach_iodone() for more details
769 * on li_cb and xfs_buf_iodone_callbacks().
770 * If we end up aborting this transaction, we trap this buffer
771 * inside the b_bdstrat callback so that this won't get written to
772 * disk.
773 */
774 XFS_BUF_DELAYWRITE(bp);
775 XFS_BUF_DONE(bp);
776
777 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
778 ASSERT(atomic_read(&bip->bli_refcount) > 0);
779 XFS_BUF_SET_IODONE_FUNC(bp, xfs_buf_iodone_callbacks);
780 bip->bli_item.li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*))xfs_buf_iodone;
781
782 /*
783 * If we invalidated the buffer within this transaction, then
784 * cancel the invalidation now that we're dirtying the buffer
785 * again. There are no races with the code in xfs_buf_item_unpin(),
786 * because we have a reference to the buffer this entire time.
787 */
788 if (bip->bli_flags & XFS_BLI_STALE) {
789 xfs_buf_item_trace("BLOG UNSTALE", bip);
790 bip->bli_flags &= ~XFS_BLI_STALE;
791 ASSERT(XFS_BUF_ISSTALE(bp));
792 XFS_BUF_UNSTALE(bp);
793 bip->bli_format.blf_flags &= ~XFS_BLI_CANCEL;
794 }
795
796 lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip);
797 ASSERT(lidp != NULL);
798
799 tp->t_flags |= XFS_TRANS_DIRTY;
800 lidp->lid_flags |= XFS_LID_DIRTY;
801 lidp->lid_flags &= ~XFS_LID_BUF_STALE;
802 bip->bli_flags |= XFS_BLI_LOGGED;
803 xfs_buf_item_log(bip, first, last);
804 xfs_buf_item_trace("BLOG", bip);
805}
806
807
808/*
809 * This called to invalidate a buffer that is being used within
810 * a transaction. Typically this is because the blocks in the
811 * buffer are being freed, so we need to prevent it from being
812 * written out when we're done. Allowing it to be written again
813 * might overwrite data in the free blocks if they are reallocated
814 * to a file.
815 *
816 * We prevent the buffer from being written out by clearing the
817 * B_DELWRI flag. We can't always
818 * get rid of the buf log item at this point, though, because
819 * the buffer may still be pinned by another transaction. If that
820 * is the case, then we'll wait until the buffer is committed to
821 * disk for the last time (we can tell by the ref count) and
822 * free it in xfs_buf_item_unpin(). Until it is cleaned up we
823 * will keep the buffer locked so that the buffer and buf log item
824 * are not reused.
825 */
826void
827xfs_trans_binval(
828 xfs_trans_t *tp,
829 xfs_buf_t *bp)
830{
831 xfs_log_item_desc_t *lidp;
832 xfs_buf_log_item_t *bip;
833
834 ASSERT(XFS_BUF_ISBUSY(bp));
835 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
836 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
837
838 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
839 lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip);
840 ASSERT(lidp != NULL);
841 ASSERT(atomic_read(&bip->bli_refcount) > 0);
842
843 if (bip->bli_flags & XFS_BLI_STALE) {
844 /*
845 * If the buffer is already invalidated, then
846 * just return.
847 */
848 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
849 ASSERT(XFS_BUF_ISSTALE(bp));
850 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
851 ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_INODE_BUF));
852 ASSERT(bip->bli_format.blf_flags & XFS_BLI_CANCEL);
853 ASSERT(lidp->lid_flags & XFS_LID_DIRTY);
854 ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
855 xfs_buftrace("XFS_BINVAL RECUR", bp);
856 xfs_buf_item_trace("BINVAL RECUR", bip);
857 return;
858 }
859
860 /*
861 * Clear the dirty bit in the buffer and set the STALE flag
862 * in the buf log item. The STALE flag will be used in
863 * xfs_buf_item_unpin() to determine if it should clean up
864 * when the last reference to the buf item is given up.
865 * We set the XFS_BLI_CANCEL flag in the buf log format structure
866 * and log the buf item. This will be used at recovery time
867 * to determine that copies of the buffer in the log before
868 * this should not be replayed.
869 * We mark the item descriptor and the transaction dirty so
870 * that we'll hold the buffer until after the commit.
871 *
872 * Since we're invalidating the buffer, we also clear the state
873 * about which parts of the buffer have been logged. We also
874 * clear the flag indicating that this is an inode buffer since
875 * the data in the buffer will no longer be valid.
876 *
877 * We set the stale bit in the buffer as well since we're getting
878 * rid of it.
879 */
880 XFS_BUF_UNDELAYWRITE(bp);
881 XFS_BUF_STALE(bp);
882 bip->bli_flags |= XFS_BLI_STALE;
883 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_DIRTY);
884 bip->bli_format.blf_flags &= ~XFS_BLI_INODE_BUF;
885 bip->bli_format.blf_flags |= XFS_BLI_CANCEL;
886 memset((char *)(bip->bli_format.blf_data_map), 0,
887 (bip->bli_format.blf_map_size * sizeof(uint)));
888 lidp->lid_flags |= XFS_LID_DIRTY|XFS_LID_BUF_STALE;
889 tp->t_flags |= XFS_TRANS_DIRTY;
890 xfs_buftrace("XFS_BINVAL", bp);
891 xfs_buf_item_trace("BINVAL", bip);
892}
893
894/*
895 * This call is used to indicate that the buffer contains on-disk
896 * inodes which must be handled specially during recovery. They
897 * require special handling because only the di_next_unlinked from
898 * the inodes in the buffer should be recovered. The rest of the
899 * data in the buffer is logged via the inodes themselves.
900 *
901 * All we do is set the XFS_BLI_INODE_BUF flag in the buffer's log
902 * format structure so that we'll know what to do at recovery time.
903 */
904/* ARGSUSED */
905void
906xfs_trans_inode_buf(
907 xfs_trans_t *tp,
908 xfs_buf_t *bp)
909{
910 xfs_buf_log_item_t *bip;
911
912 ASSERT(XFS_BUF_ISBUSY(bp));
913 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
914 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
915
916 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
917 ASSERT(atomic_read(&bip->bli_refcount) > 0);
918
919 bip->bli_format.blf_flags |= XFS_BLI_INODE_BUF;
920}
921
922/*
923 * This call is used to indicate that the buffer is going to
924 * be staled and was an inode buffer. This means it gets
925 * special processing during unpin - where any inodes
926 * associated with the buffer should be removed from ail.
927 * There is also special processing during recovery,
928 * any replay of the inodes in the buffer needs to be
929 * prevented as the buffer may have been reused.
930 */
931void
932xfs_trans_stale_inode_buf(
933 xfs_trans_t *tp,
934 xfs_buf_t *bp)
935{
936 xfs_buf_log_item_t *bip;
937
938 ASSERT(XFS_BUF_ISBUSY(bp));
939 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
940 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
941
942 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
943 ASSERT(atomic_read(&bip->bli_refcount) > 0);
944
945 bip->bli_flags |= XFS_BLI_STALE_INODE;
946 bip->bli_item.li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*))
947 xfs_buf_iodone;
948}
949
950
951
952/*
953 * Mark the buffer as being one which contains newly allocated
954 * inodes. We need to make sure that even if this buffer is
955 * relogged as an 'inode buf' we still recover all of the inode
956 * images in the face of a crash. This works in coordination with
957 * xfs_buf_item_committed() to ensure that the buffer remains in the
958 * AIL at its original location even after it has been relogged.
959 */
960/* ARGSUSED */
961void
962xfs_trans_inode_alloc_buf(
963 xfs_trans_t *tp,
964 xfs_buf_t *bp)
965{
966 xfs_buf_log_item_t *bip;
967
968 ASSERT(XFS_BUF_ISBUSY(bp));
969 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
970 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
971
972 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
973 ASSERT(atomic_read(&bip->bli_refcount) > 0);
974
975 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
976}
977
978
979/*
980 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
981 * dquots. However, unlike in inode buffer recovery, dquot buffers get
982 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
983 * The only thing that makes dquot buffers different from regular
984 * buffers is that we must not replay dquot bufs when recovering
985 * if a _corresponding_ quotaoff has happened. We also have to distinguish
986 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
987 * can be turned off independently.
988 */
989/* ARGSUSED */
990void
991xfs_trans_dquot_buf(
992 xfs_trans_t *tp,
993 xfs_buf_t *bp,
994 uint type)
995{
996 xfs_buf_log_item_t *bip;
997
998 ASSERT(XFS_BUF_ISBUSY(bp));
999 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
1000 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
1001 ASSERT(type == XFS_BLI_UDQUOT_BUF ||
c8ad20ff 1002 type == XFS_BLI_PDQUOT_BUF ||
1da177e4
LT
1003 type == XFS_BLI_GDQUOT_BUF);
1004
1005 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
1006 ASSERT(atomic_read(&bip->bli_refcount) > 0);
1007
1008 bip->bli_format.blf_flags |= type;
1009}
1010
1011/*
1012 * Check to see if a buffer matching the given parameters is already
1013 * a part of the given transaction. Only check the first, embedded
1014 * chunk, since we don't want to spend all day scanning large transactions.
1015 */
1016STATIC xfs_buf_t *
1017xfs_trans_buf_item_match(
1018 xfs_trans_t *tp,
1019 xfs_buftarg_t *target,
1020 xfs_daddr_t blkno,
1021 int len)
1022{
1023 xfs_log_item_chunk_t *licp;
1024 xfs_log_item_desc_t *lidp;
1025 xfs_buf_log_item_t *blip;
1026 xfs_buf_t *bp;
1027 int i;
1028
1029 bp = NULL;
1030 len = BBTOB(len);
1031 licp = &tp->t_items;
1032 if (!XFS_LIC_ARE_ALL_FREE(licp)) {
1033 for (i = 0; i < licp->lic_unused; i++) {
1034 /*
1035 * Skip unoccupied slots.
1036 */
1037 if (XFS_LIC_ISFREE(licp, i)) {
1038 continue;
1039 }
1040
1041 lidp = XFS_LIC_SLOT(licp, i);
1042 blip = (xfs_buf_log_item_t *)lidp->lid_item;
1043 if (blip->bli_item.li_type != XFS_LI_BUF) {
1044 continue;
1045 }
1046
1047 bp = blip->bli_buf;
1048 if ((XFS_BUF_TARGET(bp) == target) &&
1049 (XFS_BUF_ADDR(bp) == blkno) &&
1050 (XFS_BUF_COUNT(bp) == len)) {
1051 /*
1052 * We found it. Break out and
1053 * return the pointer to the buffer.
1054 */
1055 break;
1056 } else {
1057 bp = NULL;
1058 }
1059 }
1060 }
1061 return bp;
1062}
1063
1064/*
1065 * Check to see if a buffer matching the given parameters is already
1066 * a part of the given transaction. Check all the chunks, we
1067 * want to be thorough.
1068 */
1069STATIC xfs_buf_t *
1070xfs_trans_buf_item_match_all(
1071 xfs_trans_t *tp,
1072 xfs_buftarg_t *target,
1073 xfs_daddr_t blkno,
1074 int len)
1075{
1076 xfs_log_item_chunk_t *licp;
1077 xfs_log_item_desc_t *lidp;
1078 xfs_buf_log_item_t *blip;
1079 xfs_buf_t *bp;
1080 int i;
1081
1082 bp = NULL;
1083 len = BBTOB(len);
1084 for (licp = &tp->t_items; licp != NULL; licp = licp->lic_next) {
1085 if (XFS_LIC_ARE_ALL_FREE(licp)) {
1086 ASSERT(licp == &tp->t_items);
1087 ASSERT(licp->lic_next == NULL);
1088 return NULL;
1089 }
1090 for (i = 0; i < licp->lic_unused; i++) {
1091 /*
1092 * Skip unoccupied slots.
1093 */
1094 if (XFS_LIC_ISFREE(licp, i)) {
1095 continue;
1096 }
1097
1098 lidp = XFS_LIC_SLOT(licp, i);
1099 blip = (xfs_buf_log_item_t *)lidp->lid_item;
1100 if (blip->bli_item.li_type != XFS_LI_BUF) {
1101 continue;
1102 }
1103
1104 bp = blip->bli_buf;
1105 if ((XFS_BUF_TARGET(bp) == target) &&
1106 (XFS_BUF_ADDR(bp) == blkno) &&
1107 (XFS_BUF_COUNT(bp) == len)) {
1108 /*
1109 * We found it. Break out and
1110 * return the pointer to the buffer.
1111 */
1112 return bp;
1113 }
1114 }
1115 }
1116 return NULL;
1117}