]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/xfs/xfs_log_recover.c
[XFS] Don't allow silent errors in xfs_inactive().
[net-next-2.6.git] / fs / xfs / xfs_log_recover.c
CommitLineData
1da177e4 1/*
87c199c2 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4 24#include "xfs_trans.h"
a844f451
NS
25#include "xfs_sb.h"
26#include "xfs_ag.h"
1da177e4
LT
27#include "xfs_dir2.h"
28#include "xfs_dmapi.h"
29#include "xfs_mount.h"
30#include "xfs_error.h"
31#include "xfs_bmap_btree.h"
a844f451
NS
32#include "xfs_alloc_btree.h"
33#include "xfs_ialloc_btree.h"
1da177e4 34#include "xfs_dir2_sf.h"
a844f451 35#include "xfs_attr_sf.h"
1da177e4 36#include "xfs_dinode.h"
1da177e4 37#include "xfs_inode.h"
a844f451
NS
38#include "xfs_inode_item.h"
39#include "xfs_imap.h"
40#include "xfs_alloc.h"
1da177e4
LT
41#include "xfs_ialloc.h"
42#include "xfs_log_priv.h"
43#include "xfs_buf_item.h"
1da177e4
LT
44#include "xfs_log_recover.h"
45#include "xfs_extfree_item.h"
46#include "xfs_trans_priv.h"
1da177e4
LT
47#include "xfs_quota.h"
48#include "xfs_rw.h"
43355099 49#include "xfs_utils.h"
1da177e4
LT
50
51STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
52STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
53STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q,
54 xlog_recover_item_t *item);
55#if defined(DEBUG)
56STATIC void xlog_recover_check_summary(xlog_t *);
57STATIC void xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int);
58#else
59#define xlog_recover_check_summary(log)
60#define xlog_recover_check_ail(mp, lip, gen)
61#endif
62
63
64/*
65 * Sector aligned buffer routines for buffer create/read/write/access
66 */
67
68#define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
69 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
70 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
71#define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
72
73xfs_buf_t *
74xlog_get_bp(
75 xlog_t *log,
76 int num_bblks)
77{
78 ASSERT(num_bblks > 0);
79
80 if (log->l_sectbb_log) {
81 if (num_bblks > 1)
82 num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
83 num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
84 }
85 return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
86}
87
88void
89xlog_put_bp(
90 xfs_buf_t *bp)
91{
92 xfs_buf_free(bp);
93}
94
95
96/*
97 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
98 */
99int
100xlog_bread(
101 xlog_t *log,
102 xfs_daddr_t blk_no,
103 int nbblks,
104 xfs_buf_t *bp)
105{
106 int error;
107
108 if (log->l_sectbb_log) {
109 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
110 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
111 }
112
113 ASSERT(nbblks > 0);
114 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
115 ASSERT(bp);
116
117 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
118 XFS_BUF_READ(bp);
119 XFS_BUF_BUSY(bp);
120 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
121 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
122
123 xfsbdstrat(log->l_mp, bp);
d64e31a2
DC
124 error = xfs_iowait(bp);
125 if (error)
1da177e4
LT
126 xfs_ioerror_alert("xlog_bread", log->l_mp,
127 bp, XFS_BUF_ADDR(bp));
128 return error;
129}
130
131/*
132 * Write out the buffer at the given block for the given number of blocks.
133 * The buffer is kept locked across the write and is returned locked.
134 * This can only be used for synchronous log writes.
135 */
ba0f32d4 136STATIC int
1da177e4
LT
137xlog_bwrite(
138 xlog_t *log,
139 xfs_daddr_t blk_no,
140 int nbblks,
141 xfs_buf_t *bp)
142{
143 int error;
144
145 if (log->l_sectbb_log) {
146 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
147 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
148 }
149
150 ASSERT(nbblks > 0);
151 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
152
153 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
154 XFS_BUF_ZEROFLAGS(bp);
155 XFS_BUF_BUSY(bp);
156 XFS_BUF_HOLD(bp);
157 XFS_BUF_PSEMA(bp, PRIBIO);
158 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
159 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
160
161 if ((error = xfs_bwrite(log->l_mp, bp)))
162 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
163 bp, XFS_BUF_ADDR(bp));
164 return error;
165}
166
ba0f32d4 167STATIC xfs_caddr_t
1da177e4
LT
168xlog_align(
169 xlog_t *log,
170 xfs_daddr_t blk_no,
171 int nbblks,
172 xfs_buf_t *bp)
173{
174 xfs_caddr_t ptr;
175
176 if (!log->l_sectbb_log)
177 return XFS_BUF_PTR(bp);
178
179 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
180 ASSERT(XFS_BUF_SIZE(bp) >=
181 BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
182 return ptr;
183}
184
185#ifdef DEBUG
186/*
187 * dump debug superblock and log record information
188 */
189STATIC void
190xlog_header_check_dump(
191 xfs_mount_t *mp,
192 xlog_rec_header_t *head)
193{
194 int b;
195
34a622b2 196 cmn_err(CE_DEBUG, "%s: SB : uuid = ", __func__);
1da177e4 197 for (b = 0; b < 16; b++)
b6574520
NS
198 cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
199 cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
200 cmn_err(CE_DEBUG, " log : uuid = ");
1da177e4 201 for (b = 0; b < 16; b++)
b6574520 202 cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
b53e675d 203 cmn_err(CE_DEBUG, ", fmt = %d\n", be32_to_cpu(head->h_fmt));
1da177e4
LT
204}
205#else
206#define xlog_header_check_dump(mp, head)
207#endif
208
209/*
210 * check log record header for recovery
211 */
212STATIC int
213xlog_header_check_recover(
214 xfs_mount_t *mp,
215 xlog_rec_header_t *head)
216{
b53e675d 217 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
1da177e4
LT
218
219 /*
220 * IRIX doesn't write the h_fmt field and leaves it zeroed
221 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
222 * a dirty log created in IRIX.
223 */
b53e675d 224 if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
1da177e4
LT
225 xlog_warn(
226 "XFS: dirty log written in incompatible format - can't recover");
227 xlog_header_check_dump(mp, head);
228 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
229 XFS_ERRLEVEL_HIGH, mp);
230 return XFS_ERROR(EFSCORRUPTED);
231 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
232 xlog_warn(
233 "XFS: dirty log entry has mismatched uuid - can't recover");
234 xlog_header_check_dump(mp, head);
235 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
236 XFS_ERRLEVEL_HIGH, mp);
237 return XFS_ERROR(EFSCORRUPTED);
238 }
239 return 0;
240}
241
242/*
243 * read the head block of the log and check the header
244 */
245STATIC int
246xlog_header_check_mount(
247 xfs_mount_t *mp,
248 xlog_rec_header_t *head)
249{
b53e675d 250 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
1da177e4
LT
251
252 if (uuid_is_nil(&head->h_fs_uuid)) {
253 /*
254 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
255 * h_fs_uuid is nil, we assume this log was last mounted
256 * by IRIX and continue.
257 */
258 xlog_warn("XFS: nil uuid in log - IRIX style log");
259 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
260 xlog_warn("XFS: log has mismatched uuid - can't recover");
261 xlog_header_check_dump(mp, head);
262 XFS_ERROR_REPORT("xlog_header_check_mount",
263 XFS_ERRLEVEL_HIGH, mp);
264 return XFS_ERROR(EFSCORRUPTED);
265 }
266 return 0;
267}
268
269STATIC void
270xlog_recover_iodone(
271 struct xfs_buf *bp)
272{
273 xfs_mount_t *mp;
274
275 ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
276
277 if (XFS_BUF_GETERROR(bp)) {
278 /*
279 * We're not going to bother about retrying
280 * this during recovery. One strike!
281 */
282 mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
283 xfs_ioerror_alert("xlog_recover_iodone",
284 mp, bp, XFS_BUF_ADDR(bp));
7d04a335 285 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1da177e4
LT
286 }
287 XFS_BUF_SET_FSPRIVATE(bp, NULL);
288 XFS_BUF_CLR_IODONE_FUNC(bp);
289 xfs_biodone(bp);
290}
291
292/*
293 * This routine finds (to an approximation) the first block in the physical
294 * log which contains the given cycle. It uses a binary search algorithm.
295 * Note that the algorithm can not be perfect because the disk will not
296 * necessarily be perfect.
297 */
a8272ce0 298STATIC int
1da177e4
LT
299xlog_find_cycle_start(
300 xlog_t *log,
301 xfs_buf_t *bp,
302 xfs_daddr_t first_blk,
303 xfs_daddr_t *last_blk,
304 uint cycle)
305{
306 xfs_caddr_t offset;
307 xfs_daddr_t mid_blk;
308 uint mid_cycle;
309 int error;
310
311 mid_blk = BLK_AVG(first_blk, *last_blk);
312 while (mid_blk != first_blk && mid_blk != *last_blk) {
313 if ((error = xlog_bread(log, mid_blk, 1, bp)))
314 return error;
315 offset = xlog_align(log, mid_blk, 1, bp);
03bea6fe 316 mid_cycle = xlog_get_cycle(offset);
1da177e4
LT
317 if (mid_cycle == cycle) {
318 *last_blk = mid_blk;
319 /* last_half_cycle == mid_cycle */
320 } else {
321 first_blk = mid_blk;
322 /* first_half_cycle == mid_cycle */
323 }
324 mid_blk = BLK_AVG(first_blk, *last_blk);
325 }
326 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
327 (mid_blk == *last_blk && mid_blk-1 == first_blk));
328
329 return 0;
330}
331
332/*
333 * Check that the range of blocks does not contain the cycle number
334 * given. The scan needs to occur from front to back and the ptr into the
335 * region must be updated since a later routine will need to perform another
336 * test. If the region is completely good, we end up returning the same
337 * last block number.
338 *
339 * Set blkno to -1 if we encounter no errors. This is an invalid block number
340 * since we don't ever expect logs to get this large.
341 */
342STATIC int
343xlog_find_verify_cycle(
344 xlog_t *log,
345 xfs_daddr_t start_blk,
346 int nbblks,
347 uint stop_on_cycle_no,
348 xfs_daddr_t *new_blk)
349{
350 xfs_daddr_t i, j;
351 uint cycle;
352 xfs_buf_t *bp;
353 xfs_daddr_t bufblks;
354 xfs_caddr_t buf = NULL;
355 int error = 0;
356
357 bufblks = 1 << ffs(nbblks);
358
359 while (!(bp = xlog_get_bp(log, bufblks))) {
360 /* can't get enough memory to do everything in one big buffer */
361 bufblks >>= 1;
362 if (bufblks <= log->l_sectbb_log)
363 return ENOMEM;
364 }
365
366 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
367 int bcount;
368
369 bcount = min(bufblks, (start_blk + nbblks - i));
370
371 if ((error = xlog_bread(log, i, bcount, bp)))
372 goto out;
373
374 buf = xlog_align(log, i, bcount, bp);
375 for (j = 0; j < bcount; j++) {
03bea6fe 376 cycle = xlog_get_cycle(buf);
1da177e4
LT
377 if (cycle == stop_on_cycle_no) {
378 *new_blk = i+j;
379 goto out;
380 }
381
382 buf += BBSIZE;
383 }
384 }
385
386 *new_blk = -1;
387
388out:
389 xlog_put_bp(bp);
390 return error;
391}
392
393/*
394 * Potentially backup over partial log record write.
395 *
396 * In the typical case, last_blk is the number of the block directly after
397 * a good log record. Therefore, we subtract one to get the block number
398 * of the last block in the given buffer. extra_bblks contains the number
399 * of blocks we would have read on a previous read. This happens when the
400 * last log record is split over the end of the physical log.
401 *
402 * extra_bblks is the number of blocks potentially verified on a previous
403 * call to this routine.
404 */
405STATIC int
406xlog_find_verify_log_record(
407 xlog_t *log,
408 xfs_daddr_t start_blk,
409 xfs_daddr_t *last_blk,
410 int extra_bblks)
411{
412 xfs_daddr_t i;
413 xfs_buf_t *bp;
414 xfs_caddr_t offset = NULL;
415 xlog_rec_header_t *head = NULL;
416 int error = 0;
417 int smallmem = 0;
418 int num_blks = *last_blk - start_blk;
419 int xhdrs;
420
421 ASSERT(start_blk != 0 || *last_blk != start_blk);
422
423 if (!(bp = xlog_get_bp(log, num_blks))) {
424 if (!(bp = xlog_get_bp(log, 1)))
425 return ENOMEM;
426 smallmem = 1;
427 } else {
428 if ((error = xlog_bread(log, start_blk, num_blks, bp)))
429 goto out;
430 offset = xlog_align(log, start_blk, num_blks, bp);
431 offset += ((num_blks - 1) << BBSHIFT);
432 }
433
434 for (i = (*last_blk) - 1; i >= 0; i--) {
435 if (i < start_blk) {
436 /* valid log record not found */
437 xlog_warn(
438 "XFS: Log inconsistent (didn't find previous header)");
439 ASSERT(0);
440 error = XFS_ERROR(EIO);
441 goto out;
442 }
443
444 if (smallmem) {
445 if ((error = xlog_bread(log, i, 1, bp)))
446 goto out;
447 offset = xlog_align(log, i, 1, bp);
448 }
449
450 head = (xlog_rec_header_t *)offset;
451
b53e675d 452 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
1da177e4
LT
453 break;
454
455 if (!smallmem)
456 offset -= BBSIZE;
457 }
458
459 /*
460 * We hit the beginning of the physical log & still no header. Return
461 * to caller. If caller can handle a return of -1, then this routine
462 * will be called again for the end of the physical log.
463 */
464 if (i == -1) {
465 error = -1;
466 goto out;
467 }
468
469 /*
470 * We have the final block of the good log (the first block
471 * of the log record _before_ the head. So we check the uuid.
472 */
473 if ((error = xlog_header_check_mount(log->l_mp, head)))
474 goto out;
475
476 /*
477 * We may have found a log record header before we expected one.
478 * last_blk will be the 1st block # with a given cycle #. We may end
479 * up reading an entire log record. In this case, we don't want to
480 * reset last_blk. Only when last_blk points in the middle of a log
481 * record do we update last_blk.
482 */
62118709 483 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d 484 uint h_size = be32_to_cpu(head->h_size);
1da177e4
LT
485
486 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
487 if (h_size % XLOG_HEADER_CYCLE_SIZE)
488 xhdrs++;
489 } else {
490 xhdrs = 1;
491 }
492
b53e675d
CH
493 if (*last_blk - i + extra_bblks !=
494 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
1da177e4
LT
495 *last_blk = i;
496
497out:
498 xlog_put_bp(bp);
499 return error;
500}
501
502/*
503 * Head is defined to be the point of the log where the next log write
504 * write could go. This means that incomplete LR writes at the end are
505 * eliminated when calculating the head. We aren't guaranteed that previous
506 * LR have complete transactions. We only know that a cycle number of
507 * current cycle number -1 won't be present in the log if we start writing
508 * from our current block number.
509 *
510 * last_blk contains the block number of the first block with a given
511 * cycle number.
512 *
513 * Return: zero if normal, non-zero if error.
514 */
ba0f32d4 515STATIC int
1da177e4
LT
516xlog_find_head(
517 xlog_t *log,
518 xfs_daddr_t *return_head_blk)
519{
520 xfs_buf_t *bp;
521 xfs_caddr_t offset;
522 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
523 int num_scan_bblks;
524 uint first_half_cycle, last_half_cycle;
525 uint stop_on_cycle;
526 int error, log_bbnum = log->l_logBBsize;
527
528 /* Is the end of the log device zeroed? */
529 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
530 *return_head_blk = first_blk;
531
532 /* Is the whole lot zeroed? */
533 if (!first_blk) {
534 /* Linux XFS shouldn't generate totally zeroed logs -
535 * mkfs etc write a dummy unmount record to a fresh
536 * log so we can store the uuid in there
537 */
538 xlog_warn("XFS: totally zeroed log");
539 }
540
541 return 0;
542 } else if (error) {
543 xlog_warn("XFS: empty log check failed");
544 return error;
545 }
546
547 first_blk = 0; /* get cycle # of 1st block */
548 bp = xlog_get_bp(log, 1);
549 if (!bp)
550 return ENOMEM;
551 if ((error = xlog_bread(log, 0, 1, bp)))
552 goto bp_err;
553 offset = xlog_align(log, 0, 1, bp);
03bea6fe 554 first_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
555
556 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
557 if ((error = xlog_bread(log, last_blk, 1, bp)))
558 goto bp_err;
559 offset = xlog_align(log, last_blk, 1, bp);
03bea6fe 560 last_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
561 ASSERT(last_half_cycle != 0);
562
563 /*
564 * If the 1st half cycle number is equal to the last half cycle number,
565 * then the entire log is stamped with the same cycle number. In this
566 * case, head_blk can't be set to zero (which makes sense). The below
567 * math doesn't work out properly with head_blk equal to zero. Instead,
568 * we set it to log_bbnum which is an invalid block number, but this
569 * value makes the math correct. If head_blk doesn't changed through
570 * all the tests below, *head_blk is set to zero at the very end rather
571 * than log_bbnum. In a sense, log_bbnum and zero are the same block
572 * in a circular file.
573 */
574 if (first_half_cycle == last_half_cycle) {
575 /*
576 * In this case we believe that the entire log should have
577 * cycle number last_half_cycle. We need to scan backwards
578 * from the end verifying that there are no holes still
579 * containing last_half_cycle - 1. If we find such a hole,
580 * then the start of that hole will be the new head. The
581 * simple case looks like
582 * x | x ... | x - 1 | x
583 * Another case that fits this picture would be
584 * x | x + 1 | x ... | x
c41564b5 585 * In this case the head really is somewhere at the end of the
1da177e4
LT
586 * log, as one of the latest writes at the beginning was
587 * incomplete.
588 * One more case is
589 * x | x + 1 | x ... | x - 1 | x
590 * This is really the combination of the above two cases, and
591 * the head has to end up at the start of the x-1 hole at the
592 * end of the log.
593 *
594 * In the 256k log case, we will read from the beginning to the
595 * end of the log and search for cycle numbers equal to x-1.
596 * We don't worry about the x+1 blocks that we encounter,
597 * because we know that they cannot be the head since the log
598 * started with x.
599 */
600 head_blk = log_bbnum;
601 stop_on_cycle = last_half_cycle - 1;
602 } else {
603 /*
604 * In this case we want to find the first block with cycle
605 * number matching last_half_cycle. We expect the log to be
606 * some variation on
607 * x + 1 ... | x ...
608 * The first block with cycle number x (last_half_cycle) will
609 * be where the new head belongs. First we do a binary search
610 * for the first occurrence of last_half_cycle. The binary
611 * search may not be totally accurate, so then we scan back
612 * from there looking for occurrences of last_half_cycle before
613 * us. If that backwards scan wraps around the beginning of
614 * the log, then we look for occurrences of last_half_cycle - 1
615 * at the end of the log. The cases we're looking for look
616 * like
617 * x + 1 ... | x | x + 1 | x ...
618 * ^ binary search stopped here
619 * or
620 * x + 1 ... | x ... | x - 1 | x
621 * <---------> less than scan distance
622 */
623 stop_on_cycle = last_half_cycle;
624 if ((error = xlog_find_cycle_start(log, bp, first_blk,
625 &head_blk, last_half_cycle)))
626 goto bp_err;
627 }
628
629 /*
630 * Now validate the answer. Scan back some number of maximum possible
631 * blocks and make sure each one has the expected cycle number. The
632 * maximum is determined by the total possible amount of buffering
633 * in the in-core log. The following number can be made tighter if
634 * we actually look at the block size of the filesystem.
635 */
636 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
637 if (head_blk >= num_scan_bblks) {
638 /*
639 * We are guaranteed that the entire check can be performed
640 * in one buffer.
641 */
642 start_blk = head_blk - num_scan_bblks;
643 if ((error = xlog_find_verify_cycle(log,
644 start_blk, num_scan_bblks,
645 stop_on_cycle, &new_blk)))
646 goto bp_err;
647 if (new_blk != -1)
648 head_blk = new_blk;
649 } else { /* need to read 2 parts of log */
650 /*
651 * We are going to scan backwards in the log in two parts.
652 * First we scan the physical end of the log. In this part
653 * of the log, we are looking for blocks with cycle number
654 * last_half_cycle - 1.
655 * If we find one, then we know that the log starts there, as
656 * we've found a hole that didn't get written in going around
657 * the end of the physical log. The simple case for this is
658 * x + 1 ... | x ... | x - 1 | x
659 * <---------> less than scan distance
660 * If all of the blocks at the end of the log have cycle number
661 * last_half_cycle, then we check the blocks at the start of
662 * the log looking for occurrences of last_half_cycle. If we
663 * find one, then our current estimate for the location of the
664 * first occurrence of last_half_cycle is wrong and we move
665 * back to the hole we've found. This case looks like
666 * x + 1 ... | x | x + 1 | x ...
667 * ^ binary search stopped here
668 * Another case we need to handle that only occurs in 256k
669 * logs is
670 * x + 1 ... | x ... | x+1 | x ...
671 * ^ binary search stops here
672 * In a 256k log, the scan at the end of the log will see the
673 * x + 1 blocks. We need to skip past those since that is
674 * certainly not the head of the log. By searching for
675 * last_half_cycle-1 we accomplish that.
676 */
677 start_blk = log_bbnum - num_scan_bblks + head_blk;
678 ASSERT(head_blk <= INT_MAX &&
679 (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
680 if ((error = xlog_find_verify_cycle(log, start_blk,
681 num_scan_bblks - (int)head_blk,
682 (stop_on_cycle - 1), &new_blk)))
683 goto bp_err;
684 if (new_blk != -1) {
685 head_blk = new_blk;
686 goto bad_blk;
687 }
688
689 /*
690 * Scan beginning of log now. The last part of the physical
691 * log is good. This scan needs to verify that it doesn't find
692 * the last_half_cycle.
693 */
694 start_blk = 0;
695 ASSERT(head_blk <= INT_MAX);
696 if ((error = xlog_find_verify_cycle(log,
697 start_blk, (int)head_blk,
698 stop_on_cycle, &new_blk)))
699 goto bp_err;
700 if (new_blk != -1)
701 head_blk = new_blk;
702 }
703
704 bad_blk:
705 /*
706 * Now we need to make sure head_blk is not pointing to a block in
707 * the middle of a log record.
708 */
709 num_scan_bblks = XLOG_REC_SHIFT(log);
710 if (head_blk >= num_scan_bblks) {
711 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
712
713 /* start ptr at last block ptr before head_blk */
714 if ((error = xlog_find_verify_log_record(log, start_blk,
715 &head_blk, 0)) == -1) {
716 error = XFS_ERROR(EIO);
717 goto bp_err;
718 } else if (error)
719 goto bp_err;
720 } else {
721 start_blk = 0;
722 ASSERT(head_blk <= INT_MAX);
723 if ((error = xlog_find_verify_log_record(log, start_blk,
724 &head_blk, 0)) == -1) {
725 /* We hit the beginning of the log during our search */
726 start_blk = log_bbnum - num_scan_bblks + head_blk;
727 new_blk = log_bbnum;
728 ASSERT(start_blk <= INT_MAX &&
729 (xfs_daddr_t) log_bbnum-start_blk >= 0);
730 ASSERT(head_blk <= INT_MAX);
731 if ((error = xlog_find_verify_log_record(log,
732 start_blk, &new_blk,
733 (int)head_blk)) == -1) {
734 error = XFS_ERROR(EIO);
735 goto bp_err;
736 } else if (error)
737 goto bp_err;
738 if (new_blk != log_bbnum)
739 head_blk = new_blk;
740 } else if (error)
741 goto bp_err;
742 }
743
744 xlog_put_bp(bp);
745 if (head_blk == log_bbnum)
746 *return_head_blk = 0;
747 else
748 *return_head_blk = head_blk;
749 /*
750 * When returning here, we have a good block number. Bad block
751 * means that during a previous crash, we didn't have a clean break
752 * from cycle number N to cycle number N-1. In this case, we need
753 * to find the first block with cycle number N-1.
754 */
755 return 0;
756
757 bp_err:
758 xlog_put_bp(bp);
759
760 if (error)
761 xlog_warn("XFS: failed to find log head");
762 return error;
763}
764
765/*
766 * Find the sync block number or the tail of the log.
767 *
768 * This will be the block number of the last record to have its
769 * associated buffers synced to disk. Every log record header has
770 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
771 * to get a sync block number. The only concern is to figure out which
772 * log record header to believe.
773 *
774 * The following algorithm uses the log record header with the largest
775 * lsn. The entire log record does not need to be valid. We only care
776 * that the header is valid.
777 *
778 * We could speed up search by using current head_blk buffer, but it is not
779 * available.
780 */
781int
782xlog_find_tail(
783 xlog_t *log,
784 xfs_daddr_t *head_blk,
65be6054 785 xfs_daddr_t *tail_blk)
1da177e4
LT
786{
787 xlog_rec_header_t *rhead;
788 xlog_op_header_t *op_head;
789 xfs_caddr_t offset = NULL;
790 xfs_buf_t *bp;
791 int error, i, found;
792 xfs_daddr_t umount_data_blk;
793 xfs_daddr_t after_umount_blk;
794 xfs_lsn_t tail_lsn;
795 int hblks;
796
797 found = 0;
798
799 /*
800 * Find previous log record
801 */
802 if ((error = xlog_find_head(log, head_blk)))
803 return error;
804
805 bp = xlog_get_bp(log, 1);
806 if (!bp)
807 return ENOMEM;
808 if (*head_blk == 0) { /* special case */
809 if ((error = xlog_bread(log, 0, 1, bp)))
810 goto bread_err;
811 offset = xlog_align(log, 0, 1, bp);
03bea6fe 812 if (xlog_get_cycle(offset) == 0) {
1da177e4
LT
813 *tail_blk = 0;
814 /* leave all other log inited values alone */
815 goto exit;
816 }
817 }
818
819 /*
820 * Search backwards looking for log record header block
821 */
822 ASSERT(*head_blk < INT_MAX);
823 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
824 if ((error = xlog_bread(log, i, 1, bp)))
825 goto bread_err;
826 offset = xlog_align(log, i, 1, bp);
b53e675d 827 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
1da177e4
LT
828 found = 1;
829 break;
830 }
831 }
832 /*
833 * If we haven't found the log record header block, start looking
834 * again from the end of the physical log. XXXmiken: There should be
835 * a check here to make sure we didn't search more than N blocks in
836 * the previous code.
837 */
838 if (!found) {
839 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
840 if ((error = xlog_bread(log, i, 1, bp)))
841 goto bread_err;
842 offset = xlog_align(log, i, 1, bp);
843 if (XLOG_HEADER_MAGIC_NUM ==
b53e675d 844 be32_to_cpu(*(__be32 *)offset)) {
1da177e4
LT
845 found = 2;
846 break;
847 }
848 }
849 }
850 if (!found) {
851 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
852 ASSERT(0);
853 return XFS_ERROR(EIO);
854 }
855
856 /* find blk_no of tail of log */
857 rhead = (xlog_rec_header_t *)offset;
b53e675d 858 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1da177e4
LT
859
860 /*
861 * Reset log values according to the state of the log when we
862 * crashed. In the case where head_blk == 0, we bump curr_cycle
863 * one because the next write starts a new cycle rather than
864 * continuing the cycle of the last good log record. At this
865 * point we have guaranteed that all partial log records have been
866 * accounted for. Therefore, we know that the last good log record
867 * written was complete and ended exactly on the end boundary
868 * of the physical log.
869 */
870 log->l_prev_block = i;
871 log->l_curr_block = (int)*head_blk;
b53e675d 872 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1da177e4
LT
873 if (found == 2)
874 log->l_curr_cycle++;
b53e675d
CH
875 log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
876 log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
1da177e4
LT
877 log->l_grant_reserve_cycle = log->l_curr_cycle;
878 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
879 log->l_grant_write_cycle = log->l_curr_cycle;
880 log->l_grant_write_bytes = BBTOB(log->l_curr_block);
881
882 /*
883 * Look for unmount record. If we find it, then we know there
884 * was a clean unmount. Since 'i' could be the last block in
885 * the physical log, we convert to a log block before comparing
886 * to the head_blk.
887 *
888 * Save the current tail lsn to use to pass to
889 * xlog_clear_stale_blocks() below. We won't want to clear the
890 * unmount record if there is one, so we pass the lsn of the
891 * unmount record rather than the block after it.
892 */
62118709 893 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d
CH
894 int h_size = be32_to_cpu(rhead->h_size);
895 int h_version = be32_to_cpu(rhead->h_version);
1da177e4
LT
896
897 if ((h_version & XLOG_VERSION_2) &&
898 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
899 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
900 if (h_size % XLOG_HEADER_CYCLE_SIZE)
901 hblks++;
902 } else {
903 hblks = 1;
904 }
905 } else {
906 hblks = 1;
907 }
908 after_umount_blk = (i + hblks + (int)
b53e675d 909 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1da177e4
LT
910 tail_lsn = log->l_tail_lsn;
911 if (*head_blk == after_umount_blk &&
b53e675d 912 be32_to_cpu(rhead->h_num_logops) == 1) {
1da177e4
LT
913 umount_data_blk = (i + hblks) % log->l_logBBsize;
914 if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
915 goto bread_err;
916 }
917 offset = xlog_align(log, umount_data_blk, 1, bp);
918 op_head = (xlog_op_header_t *)offset;
919 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
920 /*
921 * Set tail and last sync so that newly written
922 * log records will point recovery to after the
923 * current unmount record.
924 */
03bea6fe
CH
925 log->l_tail_lsn =
926 xlog_assign_lsn(log->l_curr_cycle,
927 after_umount_blk);
928 log->l_last_sync_lsn =
929 xlog_assign_lsn(log->l_curr_cycle,
930 after_umount_blk);
1da177e4 931 *tail_blk = after_umount_blk;
92821e2b
DC
932
933 /*
934 * Note that the unmount was clean. If the unmount
935 * was not clean, we need to know this to rebuild the
936 * superblock counters from the perag headers if we
937 * have a filesystem using non-persistent counters.
938 */
939 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1da177e4
LT
940 }
941 }
942
943 /*
944 * Make sure that there are no blocks in front of the head
945 * with the same cycle number as the head. This can happen
946 * because we allow multiple outstanding log writes concurrently,
947 * and the later writes might make it out before earlier ones.
948 *
949 * We use the lsn from before modifying it so that we'll never
950 * overwrite the unmount record after a clean unmount.
951 *
952 * Do this only if we are going to recover the filesystem
953 *
954 * NOTE: This used to say "if (!readonly)"
955 * However on Linux, we can & do recover a read-only filesystem.
956 * We only skip recovery if NORECOVERY is specified on mount,
957 * in which case we would not be here.
958 *
959 * But... if the -device- itself is readonly, just skip this.
960 * We can't recover this device anyway, so it won't matter.
961 */
962 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
963 error = xlog_clear_stale_blocks(log, tail_lsn);
964 }
965
966bread_err:
967exit:
968 xlog_put_bp(bp);
969
970 if (error)
971 xlog_warn("XFS: failed to locate log tail");
972 return error;
973}
974
975/*
976 * Is the log zeroed at all?
977 *
978 * The last binary search should be changed to perform an X block read
979 * once X becomes small enough. You can then search linearly through
980 * the X blocks. This will cut down on the number of reads we need to do.
981 *
982 * If the log is partially zeroed, this routine will pass back the blkno
983 * of the first block with cycle number 0. It won't have a complete LR
984 * preceding it.
985 *
986 * Return:
987 * 0 => the log is completely written to
988 * -1 => use *blk_no as the first block of the log
989 * >0 => error has occurred
990 */
a8272ce0 991STATIC int
1da177e4
LT
992xlog_find_zeroed(
993 xlog_t *log,
994 xfs_daddr_t *blk_no)
995{
996 xfs_buf_t *bp;
997 xfs_caddr_t offset;
998 uint first_cycle, last_cycle;
999 xfs_daddr_t new_blk, last_blk, start_blk;
1000 xfs_daddr_t num_scan_bblks;
1001 int error, log_bbnum = log->l_logBBsize;
1002
6fdf8ccc
NS
1003 *blk_no = 0;
1004
1da177e4
LT
1005 /* check totally zeroed log */
1006 bp = xlog_get_bp(log, 1);
1007 if (!bp)
1008 return ENOMEM;
1009 if ((error = xlog_bread(log, 0, 1, bp)))
1010 goto bp_err;
1011 offset = xlog_align(log, 0, 1, bp);
03bea6fe 1012 first_cycle = xlog_get_cycle(offset);
1da177e4
LT
1013 if (first_cycle == 0) { /* completely zeroed log */
1014 *blk_no = 0;
1015 xlog_put_bp(bp);
1016 return -1;
1017 }
1018
1019 /* check partially zeroed log */
1020 if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
1021 goto bp_err;
1022 offset = xlog_align(log, log_bbnum-1, 1, bp);
03bea6fe 1023 last_cycle = xlog_get_cycle(offset);
1da177e4
LT
1024 if (last_cycle != 0) { /* log completely written to */
1025 xlog_put_bp(bp);
1026 return 0;
1027 } else if (first_cycle != 1) {
1028 /*
1029 * If the cycle of the last block is zero, the cycle of
1030 * the first block must be 1. If it's not, maybe we're
1031 * not looking at a log... Bail out.
1032 */
1033 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1034 return XFS_ERROR(EINVAL);
1035 }
1036
1037 /* we have a partially zeroed log */
1038 last_blk = log_bbnum-1;
1039 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1040 goto bp_err;
1041
1042 /*
1043 * Validate the answer. Because there is no way to guarantee that
1044 * the entire log is made up of log records which are the same size,
1045 * we scan over the defined maximum blocks. At this point, the maximum
1046 * is not chosen to mean anything special. XXXmiken
1047 */
1048 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1049 ASSERT(num_scan_bblks <= INT_MAX);
1050
1051 if (last_blk < num_scan_bblks)
1052 num_scan_bblks = last_blk;
1053 start_blk = last_blk - num_scan_bblks;
1054
1055 /*
1056 * We search for any instances of cycle number 0 that occur before
1057 * our current estimate of the head. What we're trying to detect is
1058 * 1 ... | 0 | 1 | 0...
1059 * ^ binary search ends here
1060 */
1061 if ((error = xlog_find_verify_cycle(log, start_blk,
1062 (int)num_scan_bblks, 0, &new_blk)))
1063 goto bp_err;
1064 if (new_blk != -1)
1065 last_blk = new_blk;
1066
1067 /*
1068 * Potentially backup over partial log record write. We don't need
1069 * to search the end of the log because we know it is zero.
1070 */
1071 if ((error = xlog_find_verify_log_record(log, start_blk,
1072 &last_blk, 0)) == -1) {
1073 error = XFS_ERROR(EIO);
1074 goto bp_err;
1075 } else if (error)
1076 goto bp_err;
1077
1078 *blk_no = last_blk;
1079bp_err:
1080 xlog_put_bp(bp);
1081 if (error)
1082 return error;
1083 return -1;
1084}
1085
1086/*
1087 * These are simple subroutines used by xlog_clear_stale_blocks() below
1088 * to initialize a buffer full of empty log record headers and write
1089 * them into the log.
1090 */
1091STATIC void
1092xlog_add_record(
1093 xlog_t *log,
1094 xfs_caddr_t buf,
1095 int cycle,
1096 int block,
1097 int tail_cycle,
1098 int tail_block)
1099{
1100 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1101
1102 memset(buf, 0, BBSIZE);
b53e675d
CH
1103 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1104 recp->h_cycle = cpu_to_be32(cycle);
1105 recp->h_version = cpu_to_be32(
62118709 1106 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d
CH
1107 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1108 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1109 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1110 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1111}
1112
1113STATIC int
1114xlog_write_log_records(
1115 xlog_t *log,
1116 int cycle,
1117 int start_block,
1118 int blocks,
1119 int tail_cycle,
1120 int tail_block)
1121{
1122 xfs_caddr_t offset;
1123 xfs_buf_t *bp;
1124 int balign, ealign;
1125 int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1126 int end_block = start_block + blocks;
1127 int bufblks;
1128 int error = 0;
1129 int i, j = 0;
1130
1131 bufblks = 1 << ffs(blocks);
1132 while (!(bp = xlog_get_bp(log, bufblks))) {
1133 bufblks >>= 1;
1134 if (bufblks <= log->l_sectbb_log)
1135 return ENOMEM;
1136 }
1137
1138 /* We may need to do a read at the start to fill in part of
1139 * the buffer in the starting sector not covered by the first
1140 * write below.
1141 */
1142 balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1143 if (balign != start_block) {
1144 if ((error = xlog_bread(log, start_block, 1, bp))) {
1145 xlog_put_bp(bp);
1146 return error;
1147 }
1148 j = start_block - balign;
1149 }
1150
1151 for (i = start_block; i < end_block; i += bufblks) {
1152 int bcount, endcount;
1153
1154 bcount = min(bufblks, end_block - start_block);
1155 endcount = bcount - j;
1156
1157 /* We may need to do a read at the end to fill in part of
1158 * the buffer in the final sector not covered by the write.
1159 * If this is the same sector as the above read, skip it.
1160 */
1161 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1162 if (j == 0 && (start_block + endcount > ealign)) {
1163 offset = XFS_BUF_PTR(bp);
1164 balign = BBTOB(ealign - start_block);
1165 XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb));
1166 if ((error = xlog_bread(log, ealign, sectbb, bp)))
1167 break;
1168 XFS_BUF_SET_PTR(bp, offset, bufblks);
1169 }
1170
1171 offset = xlog_align(log, start_block, endcount, bp);
1172 for (; j < endcount; j++) {
1173 xlog_add_record(log, offset, cycle, i+j,
1174 tail_cycle, tail_block);
1175 offset += BBSIZE;
1176 }
1177 error = xlog_bwrite(log, start_block, endcount, bp);
1178 if (error)
1179 break;
1180 start_block += endcount;
1181 j = 0;
1182 }
1183 xlog_put_bp(bp);
1184 return error;
1185}
1186
1187/*
1188 * This routine is called to blow away any incomplete log writes out
1189 * in front of the log head. We do this so that we won't become confused
1190 * if we come up, write only a little bit more, and then crash again.
1191 * If we leave the partial log records out there, this situation could
1192 * cause us to think those partial writes are valid blocks since they
1193 * have the current cycle number. We get rid of them by overwriting them
1194 * with empty log records with the old cycle number rather than the
1195 * current one.
1196 *
1197 * The tail lsn is passed in rather than taken from
1198 * the log so that we will not write over the unmount record after a
1199 * clean unmount in a 512 block log. Doing so would leave the log without
1200 * any valid log records in it until a new one was written. If we crashed
1201 * during that time we would not be able to recover.
1202 */
1203STATIC int
1204xlog_clear_stale_blocks(
1205 xlog_t *log,
1206 xfs_lsn_t tail_lsn)
1207{
1208 int tail_cycle, head_cycle;
1209 int tail_block, head_block;
1210 int tail_distance, max_distance;
1211 int distance;
1212 int error;
1213
1214 tail_cycle = CYCLE_LSN(tail_lsn);
1215 tail_block = BLOCK_LSN(tail_lsn);
1216 head_cycle = log->l_curr_cycle;
1217 head_block = log->l_curr_block;
1218
1219 /*
1220 * Figure out the distance between the new head of the log
1221 * and the tail. We want to write over any blocks beyond the
1222 * head that we may have written just before the crash, but
1223 * we don't want to overwrite the tail of the log.
1224 */
1225 if (head_cycle == tail_cycle) {
1226 /*
1227 * The tail is behind the head in the physical log,
1228 * so the distance from the head to the tail is the
1229 * distance from the head to the end of the log plus
1230 * the distance from the beginning of the log to the
1231 * tail.
1232 */
1233 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1234 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1235 XFS_ERRLEVEL_LOW, log->l_mp);
1236 return XFS_ERROR(EFSCORRUPTED);
1237 }
1238 tail_distance = tail_block + (log->l_logBBsize - head_block);
1239 } else {
1240 /*
1241 * The head is behind the tail in the physical log,
1242 * so the distance from the head to the tail is just
1243 * the tail block minus the head block.
1244 */
1245 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1246 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1247 XFS_ERRLEVEL_LOW, log->l_mp);
1248 return XFS_ERROR(EFSCORRUPTED);
1249 }
1250 tail_distance = tail_block - head_block;
1251 }
1252
1253 /*
1254 * If the head is right up against the tail, we can't clear
1255 * anything.
1256 */
1257 if (tail_distance <= 0) {
1258 ASSERT(tail_distance == 0);
1259 return 0;
1260 }
1261
1262 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1263 /*
1264 * Take the smaller of the maximum amount of outstanding I/O
1265 * we could have and the distance to the tail to clear out.
1266 * We take the smaller so that we don't overwrite the tail and
1267 * we don't waste all day writing from the head to the tail
1268 * for no reason.
1269 */
1270 max_distance = MIN(max_distance, tail_distance);
1271
1272 if ((head_block + max_distance) <= log->l_logBBsize) {
1273 /*
1274 * We can stomp all the blocks we need to without
1275 * wrapping around the end of the log. Just do it
1276 * in a single write. Use the cycle number of the
1277 * current cycle minus one so that the log will look like:
1278 * n ... | n - 1 ...
1279 */
1280 error = xlog_write_log_records(log, (head_cycle - 1),
1281 head_block, max_distance, tail_cycle,
1282 tail_block);
1283 if (error)
1284 return error;
1285 } else {
1286 /*
1287 * We need to wrap around the end of the physical log in
1288 * order to clear all the blocks. Do it in two separate
1289 * I/Os. The first write should be from the head to the
1290 * end of the physical log, and it should use the current
1291 * cycle number minus one just like above.
1292 */
1293 distance = log->l_logBBsize - head_block;
1294 error = xlog_write_log_records(log, (head_cycle - 1),
1295 head_block, distance, tail_cycle,
1296 tail_block);
1297
1298 if (error)
1299 return error;
1300
1301 /*
1302 * Now write the blocks at the start of the physical log.
1303 * This writes the remainder of the blocks we want to clear.
1304 * It uses the current cycle number since we're now on the
1305 * same cycle as the head so that we get:
1306 * n ... n ... | n - 1 ...
1307 * ^^^^^ blocks we're writing
1308 */
1309 distance = max_distance - (log->l_logBBsize - head_block);
1310 error = xlog_write_log_records(log, head_cycle, 0, distance,
1311 tail_cycle, tail_block);
1312 if (error)
1313 return error;
1314 }
1315
1316 return 0;
1317}
1318
1319/******************************************************************************
1320 *
1321 * Log recover routines
1322 *
1323 ******************************************************************************
1324 */
1325
1326STATIC xlog_recover_t *
1327xlog_recover_find_tid(
1328 xlog_recover_t *q,
1329 xlog_tid_t tid)
1330{
1331 xlog_recover_t *p = q;
1332
1333 while (p != NULL) {
1334 if (p->r_log_tid == tid)
1335 break;
1336 p = p->r_next;
1337 }
1338 return p;
1339}
1340
1341STATIC void
1342xlog_recover_put_hashq(
1343 xlog_recover_t **q,
1344 xlog_recover_t *trans)
1345{
1346 trans->r_next = *q;
1347 *q = trans;
1348}
1349
1350STATIC void
1351xlog_recover_add_item(
1352 xlog_recover_item_t **itemq)
1353{
1354 xlog_recover_item_t *item;
1355
1356 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1357 xlog_recover_insert_item_backq(itemq, item);
1358}
1359
1360STATIC int
1361xlog_recover_add_to_cont_trans(
1362 xlog_recover_t *trans,
1363 xfs_caddr_t dp,
1364 int len)
1365{
1366 xlog_recover_item_t *item;
1367 xfs_caddr_t ptr, old_ptr;
1368 int old_len;
1369
1370 item = trans->r_itemq;
4b80916b 1371 if (item == NULL) {
1da177e4
LT
1372 /* finish copying rest of trans header */
1373 xlog_recover_add_item(&trans->r_itemq);
1374 ptr = (xfs_caddr_t) &trans->r_theader +
1375 sizeof(xfs_trans_header_t) - len;
1376 memcpy(ptr, dp, len); /* d, s, l */
1377 return 0;
1378 }
1379 item = item->ri_prev;
1380
1381 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1382 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1383
760dea67 1384 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1da177e4
LT
1385 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1386 item->ri_buf[item->ri_cnt-1].i_len += len;
1387 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1388 return 0;
1389}
1390
1391/*
1392 * The next region to add is the start of a new region. It could be
1393 * a whole region or it could be the first part of a new region. Because
1394 * of this, the assumption here is that the type and size fields of all
1395 * format structures fit into the first 32 bits of the structure.
1396 *
1397 * This works because all regions must be 32 bit aligned. Therefore, we
1398 * either have both fields or we have neither field. In the case we have
1399 * neither field, the data part of the region is zero length. We only have
1400 * a log_op_header and can throw away the header since a new one will appear
1401 * later. If we have at least 4 bytes, then we can determine how many regions
1402 * will appear in the current log item.
1403 */
1404STATIC int
1405xlog_recover_add_to_trans(
1406 xlog_recover_t *trans,
1407 xfs_caddr_t dp,
1408 int len)
1409{
1410 xfs_inode_log_format_t *in_f; /* any will do */
1411 xlog_recover_item_t *item;
1412 xfs_caddr_t ptr;
1413
1414 if (!len)
1415 return 0;
1416 item = trans->r_itemq;
4b80916b 1417 if (item == NULL) {
1da177e4
LT
1418 ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC);
1419 if (len == sizeof(xfs_trans_header_t))
1420 xlog_recover_add_item(&trans->r_itemq);
1421 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1422 return 0;
1423 }
1424
1425 ptr = kmem_alloc(len, KM_SLEEP);
1426 memcpy(ptr, dp, len);
1427 in_f = (xfs_inode_log_format_t *)ptr;
1428
1429 if (item->ri_prev->ri_total != 0 &&
1430 item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1431 xlog_recover_add_item(&trans->r_itemq);
1432 }
1433 item = trans->r_itemq;
1434 item = item->ri_prev;
1435
1436 if (item->ri_total == 0) { /* first region to be added */
1437 item->ri_total = in_f->ilf_size;
1438 ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
1439 item->ri_buf = kmem_zalloc((item->ri_total *
1440 sizeof(xfs_log_iovec_t)), KM_SLEEP);
1441 }
1442 ASSERT(item->ri_total > item->ri_cnt);
1443 /* Description region is ri_buf[0] */
1444 item->ri_buf[item->ri_cnt].i_addr = ptr;
1445 item->ri_buf[item->ri_cnt].i_len = len;
1446 item->ri_cnt++;
1447 return 0;
1448}
1449
1450STATIC void
1451xlog_recover_new_tid(
1452 xlog_recover_t **q,
1453 xlog_tid_t tid,
1454 xfs_lsn_t lsn)
1455{
1456 xlog_recover_t *trans;
1457
1458 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1459 trans->r_log_tid = tid;
1460 trans->r_lsn = lsn;
1461 xlog_recover_put_hashq(q, trans);
1462}
1463
1464STATIC int
1465xlog_recover_unlink_tid(
1466 xlog_recover_t **q,
1467 xlog_recover_t *trans)
1468{
1469 xlog_recover_t *tp;
1470 int found = 0;
1471
4b80916b 1472 ASSERT(trans != NULL);
1da177e4
LT
1473 if (trans == *q) {
1474 *q = (*q)->r_next;
1475 } else {
1476 tp = *q;
4b80916b 1477 while (tp) {
1da177e4
LT
1478 if (tp->r_next == trans) {
1479 found = 1;
1480 break;
1481 }
1482 tp = tp->r_next;
1483 }
1484 if (!found) {
1485 xlog_warn(
1486 "XFS: xlog_recover_unlink_tid: trans not found");
1487 ASSERT(0);
1488 return XFS_ERROR(EIO);
1489 }
1490 tp->r_next = tp->r_next->r_next;
1491 }
1492 return 0;
1493}
1494
1495STATIC void
1496xlog_recover_insert_item_backq(
1497 xlog_recover_item_t **q,
1498 xlog_recover_item_t *item)
1499{
4b80916b 1500 if (*q == NULL) {
1da177e4
LT
1501 item->ri_prev = item->ri_next = item;
1502 *q = item;
1503 } else {
1504 item->ri_next = *q;
1505 item->ri_prev = (*q)->ri_prev;
1506 (*q)->ri_prev = item;
1507 item->ri_prev->ri_next = item;
1508 }
1509}
1510
1511STATIC void
1512xlog_recover_insert_item_frontq(
1513 xlog_recover_item_t **q,
1514 xlog_recover_item_t *item)
1515{
1516 xlog_recover_insert_item_backq(q, item);
1517 *q = item;
1518}
1519
1520STATIC int
1521xlog_recover_reorder_trans(
1da177e4
LT
1522 xlog_recover_t *trans)
1523{
1524 xlog_recover_item_t *first_item, *itemq, *itemq_next;
1525 xfs_buf_log_format_t *buf_f;
1da177e4
LT
1526 ushort flags = 0;
1527
1528 first_item = itemq = trans->r_itemq;
1529 trans->r_itemq = NULL;
1530 do {
1531 itemq_next = itemq->ri_next;
1532 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
1da177e4
LT
1533
1534 switch (ITEM_TYPE(itemq)) {
1535 case XFS_LI_BUF:
804195b6 1536 flags = buf_f->blf_flags;
1da177e4
LT
1537 if (!(flags & XFS_BLI_CANCEL)) {
1538 xlog_recover_insert_item_frontq(&trans->r_itemq,
1539 itemq);
1540 break;
1541 }
1542 case XFS_LI_INODE:
1da177e4
LT
1543 case XFS_LI_DQUOT:
1544 case XFS_LI_QUOTAOFF:
1545 case XFS_LI_EFD:
1546 case XFS_LI_EFI:
1547 xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1548 break;
1549 default:
1550 xlog_warn(
1551 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1552 ASSERT(0);
1553 return XFS_ERROR(EIO);
1554 }
1555 itemq = itemq_next;
1556 } while (first_item != itemq);
1557 return 0;
1558}
1559
1560/*
1561 * Build up the table of buf cancel records so that we don't replay
1562 * cancelled data in the second pass. For buffer records that are
1563 * not cancel records, there is nothing to do here so we just return.
1564 *
1565 * If we get a cancel record which is already in the table, this indicates
1566 * that the buffer was cancelled multiple times. In order to ensure
1567 * that during pass 2 we keep the record in the table until we reach its
1568 * last occurrence in the log, we keep a reference count in the cancel
1569 * record in the table to tell us how many times we expect to see this
1570 * record during the second pass.
1571 */
1572STATIC void
1573xlog_recover_do_buffer_pass1(
1574 xlog_t *log,
1575 xfs_buf_log_format_t *buf_f)
1576{
1577 xfs_buf_cancel_t *bcp;
1578 xfs_buf_cancel_t *nextp;
1579 xfs_buf_cancel_t *prevp;
1580 xfs_buf_cancel_t **bucket;
1da177e4
LT
1581 xfs_daddr_t blkno = 0;
1582 uint len = 0;
1583 ushort flags = 0;
1584
1585 switch (buf_f->blf_type) {
1586 case XFS_LI_BUF:
1587 blkno = buf_f->blf_blkno;
1588 len = buf_f->blf_len;
1589 flags = buf_f->blf_flags;
1590 break;
1da177e4
LT
1591 }
1592
1593 /*
1594 * If this isn't a cancel buffer item, then just return.
1595 */
1596 if (!(flags & XFS_BLI_CANCEL))
1597 return;
1598
1599 /*
1600 * Insert an xfs_buf_cancel record into the hash table of
1601 * them. If there is already an identical record, bump
1602 * its reference count.
1603 */
1604 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1605 XLOG_BC_TABLE_SIZE];
1606 /*
1607 * If the hash bucket is empty then just insert a new record into
1608 * the bucket.
1609 */
1610 if (*bucket == NULL) {
1611 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1612 KM_SLEEP);
1613 bcp->bc_blkno = blkno;
1614 bcp->bc_len = len;
1615 bcp->bc_refcount = 1;
1616 bcp->bc_next = NULL;
1617 *bucket = bcp;
1618 return;
1619 }
1620
1621 /*
1622 * The hash bucket is not empty, so search for duplicates of our
1623 * record. If we find one them just bump its refcount. If not
1624 * then add us at the end of the list.
1625 */
1626 prevp = NULL;
1627 nextp = *bucket;
1628 while (nextp != NULL) {
1629 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1630 nextp->bc_refcount++;
1631 return;
1632 }
1633 prevp = nextp;
1634 nextp = nextp->bc_next;
1635 }
1636 ASSERT(prevp != NULL);
1637 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1638 KM_SLEEP);
1639 bcp->bc_blkno = blkno;
1640 bcp->bc_len = len;
1641 bcp->bc_refcount = 1;
1642 bcp->bc_next = NULL;
1643 prevp->bc_next = bcp;
1644}
1645
1646/*
1647 * Check to see whether the buffer being recovered has a corresponding
1648 * entry in the buffer cancel record table. If it does then return 1
1649 * so that it will be cancelled, otherwise return 0. If the buffer is
1650 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1651 * the refcount on the entry in the table and remove it from the table
1652 * if this is the last reference.
1653 *
1654 * We remove the cancel record from the table when we encounter its
1655 * last occurrence in the log so that if the same buffer is re-used
1656 * again after its last cancellation we actually replay the changes
1657 * made at that point.
1658 */
1659STATIC int
1660xlog_check_buffer_cancelled(
1661 xlog_t *log,
1662 xfs_daddr_t blkno,
1663 uint len,
1664 ushort flags)
1665{
1666 xfs_buf_cancel_t *bcp;
1667 xfs_buf_cancel_t *prevp;
1668 xfs_buf_cancel_t **bucket;
1669
1670 if (log->l_buf_cancel_table == NULL) {
1671 /*
1672 * There is nothing in the table built in pass one,
1673 * so this buffer must not be cancelled.
1674 */
1675 ASSERT(!(flags & XFS_BLI_CANCEL));
1676 return 0;
1677 }
1678
1679 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1680 XLOG_BC_TABLE_SIZE];
1681 bcp = *bucket;
1682 if (bcp == NULL) {
1683 /*
1684 * There is no corresponding entry in the table built
1685 * in pass one, so this buffer has not been cancelled.
1686 */
1687 ASSERT(!(flags & XFS_BLI_CANCEL));
1688 return 0;
1689 }
1690
1691 /*
1692 * Search for an entry in the buffer cancel table that
1693 * matches our buffer.
1694 */
1695 prevp = NULL;
1696 while (bcp != NULL) {
1697 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1698 /*
1699 * We've go a match, so return 1 so that the
1700 * recovery of this buffer is cancelled.
1701 * If this buffer is actually a buffer cancel
1702 * log item, then decrement the refcount on the
1703 * one in the table and remove it if this is the
1704 * last reference.
1705 */
1706 if (flags & XFS_BLI_CANCEL) {
1707 bcp->bc_refcount--;
1708 if (bcp->bc_refcount == 0) {
1709 if (prevp == NULL) {
1710 *bucket = bcp->bc_next;
1711 } else {
1712 prevp->bc_next = bcp->bc_next;
1713 }
1714 kmem_free(bcp,
1715 sizeof(xfs_buf_cancel_t));
1716 }
1717 }
1718 return 1;
1719 }
1720 prevp = bcp;
1721 bcp = bcp->bc_next;
1722 }
1723 /*
1724 * We didn't find a corresponding entry in the table, so
1725 * return 0 so that the buffer is NOT cancelled.
1726 */
1727 ASSERT(!(flags & XFS_BLI_CANCEL));
1728 return 0;
1729}
1730
1731STATIC int
1732xlog_recover_do_buffer_pass2(
1733 xlog_t *log,
1734 xfs_buf_log_format_t *buf_f)
1735{
1da177e4
LT
1736 xfs_daddr_t blkno = 0;
1737 ushort flags = 0;
1738 uint len = 0;
1739
1740 switch (buf_f->blf_type) {
1741 case XFS_LI_BUF:
1742 blkno = buf_f->blf_blkno;
1743 flags = buf_f->blf_flags;
1744 len = buf_f->blf_len;
1745 break;
1da177e4
LT
1746 }
1747
1748 return xlog_check_buffer_cancelled(log, blkno, len, flags);
1749}
1750
1751/*
1752 * Perform recovery for a buffer full of inodes. In these buffers,
1753 * the only data which should be recovered is that which corresponds
1754 * to the di_next_unlinked pointers in the on disk inode structures.
1755 * The rest of the data for the inodes is always logged through the
1756 * inodes themselves rather than the inode buffer and is recovered
1757 * in xlog_recover_do_inode_trans().
1758 *
1759 * The only time when buffers full of inodes are fully recovered is
1760 * when the buffer is full of newly allocated inodes. In this case
1761 * the buffer will not be marked as an inode buffer and so will be
1762 * sent to xlog_recover_do_reg_buffer() below during recovery.
1763 */
1764STATIC int
1765xlog_recover_do_inode_buffer(
1766 xfs_mount_t *mp,
1767 xlog_recover_item_t *item,
1768 xfs_buf_t *bp,
1769 xfs_buf_log_format_t *buf_f)
1770{
1771 int i;
1772 int item_index;
1773 int bit;
1774 int nbits;
1775 int reg_buf_offset;
1776 int reg_buf_bytes;
1777 int next_unlinked_offset;
1778 int inodes_per_buf;
1779 xfs_agino_t *logged_nextp;
1780 xfs_agino_t *buffer_nextp;
1da177e4
LT
1781 unsigned int *data_map = NULL;
1782 unsigned int map_size = 0;
1783
1784 switch (buf_f->blf_type) {
1785 case XFS_LI_BUF:
1786 data_map = buf_f->blf_data_map;
1787 map_size = buf_f->blf_map_size;
1788 break;
1da177e4
LT
1789 }
1790 /*
1791 * Set the variables corresponding to the current region to
1792 * 0 so that we'll initialize them on the first pass through
1793 * the loop.
1794 */
1795 reg_buf_offset = 0;
1796 reg_buf_bytes = 0;
1797 bit = 0;
1798 nbits = 0;
1799 item_index = 0;
1800 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1801 for (i = 0; i < inodes_per_buf; i++) {
1802 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1803 offsetof(xfs_dinode_t, di_next_unlinked);
1804
1805 while (next_unlinked_offset >=
1806 (reg_buf_offset + reg_buf_bytes)) {
1807 /*
1808 * The next di_next_unlinked field is beyond
1809 * the current logged region. Find the next
1810 * logged region that contains or is beyond
1811 * the current di_next_unlinked field.
1812 */
1813 bit += nbits;
1814 bit = xfs_next_bit(data_map, map_size, bit);
1815
1816 /*
1817 * If there are no more logged regions in the
1818 * buffer, then we're done.
1819 */
1820 if (bit == -1) {
1821 return 0;
1822 }
1823
1824 nbits = xfs_contig_bits(data_map, map_size,
1825 bit);
1826 ASSERT(nbits > 0);
1827 reg_buf_offset = bit << XFS_BLI_SHIFT;
1828 reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1829 item_index++;
1830 }
1831
1832 /*
1833 * If the current logged region starts after the current
1834 * di_next_unlinked field, then move on to the next
1835 * di_next_unlinked field.
1836 */
1837 if (next_unlinked_offset < reg_buf_offset) {
1838 continue;
1839 }
1840
1841 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1842 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1843 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1844
1845 /*
1846 * The current logged region contains a copy of the
1847 * current di_next_unlinked field. Extract its value
1848 * and copy it to the buffer copy.
1849 */
1850 logged_nextp = (xfs_agino_t *)
1851 ((char *)(item->ri_buf[item_index].i_addr) +
1852 (next_unlinked_offset - reg_buf_offset));
1853 if (unlikely(*logged_nextp == 0)) {
1854 xfs_fs_cmn_err(CE_ALERT, mp,
1855 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1856 item, bp);
1857 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1858 XFS_ERRLEVEL_LOW, mp);
1859 return XFS_ERROR(EFSCORRUPTED);
1860 }
1861
1862 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1863 next_unlinked_offset);
87c199c2 1864 *buffer_nextp = *logged_nextp;
1da177e4
LT
1865 }
1866
1867 return 0;
1868}
1869
1870/*
1871 * Perform a 'normal' buffer recovery. Each logged region of the
1872 * buffer should be copied over the corresponding region in the
1873 * given buffer. The bitmap in the buf log format structure indicates
1874 * where to place the logged data.
1875 */
1876/*ARGSUSED*/
1877STATIC void
1878xlog_recover_do_reg_buffer(
1da177e4
LT
1879 xlog_recover_item_t *item,
1880 xfs_buf_t *bp,
1881 xfs_buf_log_format_t *buf_f)
1882{
1883 int i;
1884 int bit;
1885 int nbits;
1da177e4
LT
1886 unsigned int *data_map = NULL;
1887 unsigned int map_size = 0;
1888 int error;
1889
1890 switch (buf_f->blf_type) {
1891 case XFS_LI_BUF:
1892 data_map = buf_f->blf_data_map;
1893 map_size = buf_f->blf_map_size;
1894 break;
1da177e4
LT
1895 }
1896 bit = 0;
1897 i = 1; /* 0 is the buf format structure */
1898 while (1) {
1899 bit = xfs_next_bit(data_map, map_size, bit);
1900 if (bit == -1)
1901 break;
1902 nbits = xfs_contig_bits(data_map, map_size, bit);
1903 ASSERT(nbits > 0);
4b80916b 1904 ASSERT(item->ri_buf[i].i_addr != NULL);
1da177e4
LT
1905 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1906 ASSERT(XFS_BUF_COUNT(bp) >=
1907 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1908
1909 /*
1910 * Do a sanity check if this is a dquot buffer. Just checking
1911 * the first dquot in the buffer should do. XXXThis is
1912 * probably a good thing to do for other buf types also.
1913 */
1914 error = 0;
c8ad20ff
NS
1915 if (buf_f->blf_flags &
1916 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1da177e4
LT
1917 error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1918 item->ri_buf[i].i_addr,
1919 -1, 0, XFS_QMOPT_DOWARN,
1920 "dquot_buf_recover");
1921 }
053c59a0 1922 if (!error)
1da177e4
LT
1923 memcpy(xfs_buf_offset(bp,
1924 (uint)bit << XFS_BLI_SHIFT), /* dest */
1925 item->ri_buf[i].i_addr, /* source */
1926 nbits<<XFS_BLI_SHIFT); /* length */
1927 i++;
1928 bit += nbits;
1929 }
1930
1931 /* Shouldn't be any more regions */
1932 ASSERT(i == item->ri_total);
1933}
1934
1935/*
1936 * Do some primitive error checking on ondisk dquot data structures.
1937 */
1938int
1939xfs_qm_dqcheck(
1940 xfs_disk_dquot_t *ddq,
1941 xfs_dqid_t id,
1942 uint type, /* used only when IO_dorepair is true */
1943 uint flags,
1944 char *str)
1945{
1946 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1947 int errs = 0;
1948
1949 /*
1950 * We can encounter an uninitialized dquot buffer for 2 reasons:
1951 * 1. If we crash while deleting the quotainode(s), and those blks got
1952 * used for user data. This is because we take the path of regular
1953 * file deletion; however, the size field of quotainodes is never
1954 * updated, so all the tricks that we play in itruncate_finish
1955 * don't quite matter.
1956 *
1957 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1958 * But the allocation will be replayed so we'll end up with an
1959 * uninitialized quota block.
1960 *
1961 * This is all fine; things are still consistent, and we haven't lost
1962 * any quota information. Just don't complain about bad dquot blks.
1963 */
1149d96a 1964 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1da177e4
LT
1965 if (flags & XFS_QMOPT_DOWARN)
1966 cmn_err(CE_ALERT,
1967 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1149d96a 1968 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1da177e4
LT
1969 errs++;
1970 }
1149d96a 1971 if (ddq->d_version != XFS_DQUOT_VERSION) {
1da177e4
LT
1972 if (flags & XFS_QMOPT_DOWARN)
1973 cmn_err(CE_ALERT,
1974 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1149d96a 1975 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1da177e4
LT
1976 errs++;
1977 }
1978
1149d96a
CH
1979 if (ddq->d_flags != XFS_DQ_USER &&
1980 ddq->d_flags != XFS_DQ_PROJ &&
1981 ddq->d_flags != XFS_DQ_GROUP) {
1da177e4
LT
1982 if (flags & XFS_QMOPT_DOWARN)
1983 cmn_err(CE_ALERT,
1984 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1149d96a 1985 str, id, ddq->d_flags);
1da177e4
LT
1986 errs++;
1987 }
1988
1149d96a 1989 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1da177e4
LT
1990 if (flags & XFS_QMOPT_DOWARN)
1991 cmn_err(CE_ALERT,
1992 "%s : ondisk-dquot 0x%p, ID mismatch: "
1993 "0x%x expected, found id 0x%x",
1149d96a 1994 str, ddq, id, be32_to_cpu(ddq->d_id));
1da177e4
LT
1995 errs++;
1996 }
1997
1998 if (!errs && ddq->d_id) {
1149d96a
CH
1999 if (ddq->d_blk_softlimit &&
2000 be64_to_cpu(ddq->d_bcount) >=
2001 be64_to_cpu(ddq->d_blk_softlimit)) {
1da177e4
LT
2002 if (!ddq->d_btimer) {
2003 if (flags & XFS_QMOPT_DOWARN)
2004 cmn_err(CE_ALERT,
2005 "%s : Dquot ID 0x%x (0x%p) "
2006 "BLK TIMER NOT STARTED",
1149d96a 2007 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2008 errs++;
2009 }
2010 }
1149d96a
CH
2011 if (ddq->d_ino_softlimit &&
2012 be64_to_cpu(ddq->d_icount) >=
2013 be64_to_cpu(ddq->d_ino_softlimit)) {
1da177e4
LT
2014 if (!ddq->d_itimer) {
2015 if (flags & XFS_QMOPT_DOWARN)
2016 cmn_err(CE_ALERT,
2017 "%s : Dquot ID 0x%x (0x%p) "
2018 "INODE TIMER NOT STARTED",
1149d96a 2019 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2020 errs++;
2021 }
2022 }
1149d96a
CH
2023 if (ddq->d_rtb_softlimit &&
2024 be64_to_cpu(ddq->d_rtbcount) >=
2025 be64_to_cpu(ddq->d_rtb_softlimit)) {
1da177e4
LT
2026 if (!ddq->d_rtbtimer) {
2027 if (flags & XFS_QMOPT_DOWARN)
2028 cmn_err(CE_ALERT,
2029 "%s : Dquot ID 0x%x (0x%p) "
2030 "RTBLK TIMER NOT STARTED",
1149d96a 2031 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2032 errs++;
2033 }
2034 }
2035 }
2036
2037 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2038 return errs;
2039
2040 if (flags & XFS_QMOPT_DOWARN)
2041 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2042
2043 /*
2044 * Typically, a repair is only requested by quotacheck.
2045 */
2046 ASSERT(id != -1);
2047 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2048 memset(d, 0, sizeof(xfs_dqblk_t));
1149d96a
CH
2049
2050 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2051 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2052 d->dd_diskdq.d_flags = type;
2053 d->dd_diskdq.d_id = cpu_to_be32(id);
1da177e4
LT
2054
2055 return errs;
2056}
2057
2058/*
2059 * Perform a dquot buffer recovery.
2060 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2061 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2062 * Else, treat it as a regular buffer and do recovery.
2063 */
2064STATIC void
2065xlog_recover_do_dquot_buffer(
2066 xfs_mount_t *mp,
2067 xlog_t *log,
2068 xlog_recover_item_t *item,
2069 xfs_buf_t *bp,
2070 xfs_buf_log_format_t *buf_f)
2071{
2072 uint type;
2073
2074 /*
2075 * Filesystems are required to send in quota flags at mount time.
2076 */
2077 if (mp->m_qflags == 0) {
2078 return;
2079 }
2080
2081 type = 0;
2082 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2083 type |= XFS_DQ_USER;
c8ad20ff
NS
2084 if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2085 type |= XFS_DQ_PROJ;
1da177e4
LT
2086 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2087 type |= XFS_DQ_GROUP;
2088 /*
2089 * This type of quotas was turned off, so ignore this buffer
2090 */
2091 if (log->l_quotaoffs_flag & type)
2092 return;
2093
053c59a0 2094 xlog_recover_do_reg_buffer(item, bp, buf_f);
1da177e4
LT
2095}
2096
2097/*
2098 * This routine replays a modification made to a buffer at runtime.
2099 * There are actually two types of buffer, regular and inode, which
2100 * are handled differently. Inode buffers are handled differently
2101 * in that we only recover a specific set of data from them, namely
2102 * the inode di_next_unlinked fields. This is because all other inode
2103 * data is actually logged via inode records and any data we replay
2104 * here which overlaps that may be stale.
2105 *
2106 * When meta-data buffers are freed at run time we log a buffer item
2107 * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2108 * of the buffer in the log should not be replayed at recovery time.
2109 * This is so that if the blocks covered by the buffer are reused for
2110 * file data before we crash we don't end up replaying old, freed
2111 * meta-data into a user's file.
2112 *
2113 * To handle the cancellation of buffer log items, we make two passes
2114 * over the log during recovery. During the first we build a table of
2115 * those buffers which have been cancelled, and during the second we
2116 * only replay those buffers which do not have corresponding cancel
2117 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2118 * for more details on the implementation of the table of cancel records.
2119 */
2120STATIC int
2121xlog_recover_do_buffer_trans(
2122 xlog_t *log,
2123 xlog_recover_item_t *item,
2124 int pass)
2125{
2126 xfs_buf_log_format_t *buf_f;
1da177e4
LT
2127 xfs_mount_t *mp;
2128 xfs_buf_t *bp;
2129 int error;
2130 int cancel;
2131 xfs_daddr_t blkno;
2132 int len;
2133 ushort flags;
2134
2135 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2136
2137 if (pass == XLOG_RECOVER_PASS1) {
2138 /*
2139 * In this pass we're only looking for buf items
2140 * with the XFS_BLI_CANCEL bit set.
2141 */
2142 xlog_recover_do_buffer_pass1(log, buf_f);
2143 return 0;
2144 } else {
2145 /*
2146 * In this pass we want to recover all the buffers
2147 * which have not been cancelled and are not
2148 * cancellation buffers themselves. The routine
2149 * we call here will tell us whether or not to
2150 * continue with the replay of this buffer.
2151 */
2152 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2153 if (cancel) {
2154 return 0;
2155 }
2156 }
2157 switch (buf_f->blf_type) {
2158 case XFS_LI_BUF:
2159 blkno = buf_f->blf_blkno;
2160 len = buf_f->blf_len;
2161 flags = buf_f->blf_flags;
2162 break;
1da177e4
LT
2163 default:
2164 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
fc1f8c1c
NS
2165 "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2166 buf_f->blf_type, log->l_mp->m_logname ?
2167 log->l_mp->m_logname : "internal");
1da177e4
LT
2168 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2169 XFS_ERRLEVEL_LOW, log->l_mp);
2170 return XFS_ERROR(EFSCORRUPTED);
2171 }
2172
2173 mp = log->l_mp;
2174 if (flags & XFS_BLI_INODE_BUF) {
2175 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
2176 XFS_BUF_LOCK);
2177 } else {
2178 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
2179 }
2180 if (XFS_BUF_ISERROR(bp)) {
2181 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2182 bp, blkno);
2183 error = XFS_BUF_GETERROR(bp);
2184 xfs_buf_relse(bp);
2185 return error;
2186 }
2187
2188 error = 0;
2189 if (flags & XFS_BLI_INODE_BUF) {
2190 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
c8ad20ff
NS
2191 } else if (flags &
2192 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1da177e4
LT
2193 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2194 } else {
053c59a0 2195 xlog_recover_do_reg_buffer(item, bp, buf_f);
1da177e4
LT
2196 }
2197 if (error)
2198 return XFS_ERROR(error);
2199
2200 /*
2201 * Perform delayed write on the buffer. Asynchronous writes will be
2202 * slower when taking into account all the buffers to be flushed.
2203 *
2204 * Also make sure that only inode buffers with good sizes stay in
2205 * the buffer cache. The kernel moves inodes in buffers of 1 block
2206 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2207 * buffers in the log can be a different size if the log was generated
2208 * by an older kernel using unclustered inode buffers or a newer kernel
2209 * running with a different inode cluster size. Regardless, if the
2210 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2211 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2212 * the buffer out of the buffer cache so that the buffer won't
2213 * overlap with future reads of those inodes.
2214 */
2215 if (XFS_DINODE_MAGIC ==
b53e675d 2216 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
1da177e4
LT
2217 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2218 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2219 XFS_BUF_STALE(bp);
2220 error = xfs_bwrite(mp, bp);
2221 } else {
2222 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2223 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2224 XFS_BUF_SET_FSPRIVATE(bp, mp);
2225 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2226 xfs_bdwrite(mp, bp);
2227 }
2228
2229 return (error);
2230}
2231
2232STATIC int
2233xlog_recover_do_inode_trans(
2234 xlog_t *log,
2235 xlog_recover_item_t *item,
2236 int pass)
2237{
2238 xfs_inode_log_format_t *in_f;
2239 xfs_mount_t *mp;
2240 xfs_buf_t *bp;
2241 xfs_imap_t imap;
2242 xfs_dinode_t *dip;
2243 xfs_ino_t ino;
2244 int len;
2245 xfs_caddr_t src;
2246 xfs_caddr_t dest;
2247 int error;
2248 int attr_index;
2249 uint fields;
347d1c01 2250 xfs_icdinode_t *dicp;
6d192a9b 2251 int need_free = 0;
1da177e4
LT
2252
2253 if (pass == XLOG_RECOVER_PASS1) {
2254 return 0;
2255 }
2256
6d192a9b
TS
2257 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2258 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2259 } else {
2260 in_f = (xfs_inode_log_format_t *)kmem_alloc(
2261 sizeof(xfs_inode_log_format_t), KM_SLEEP);
2262 need_free = 1;
2263 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2264 if (error)
2265 goto error;
2266 }
1da177e4
LT
2267 ino = in_f->ilf_ino;
2268 mp = log->l_mp;
2269 if (ITEM_TYPE(item) == XFS_LI_INODE) {
2270 imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
2271 imap.im_len = in_f->ilf_len;
2272 imap.im_boffset = in_f->ilf_boffset;
2273 } else {
2274 /*
2275 * It's an old inode format record. We don't know where
2276 * its cluster is located on disk, and we can't allow
2277 * xfs_imap() to figure it out because the inode btrees
2278 * are not ready to be used. Therefore do not pass the
2279 * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give
2280 * us only the single block in which the inode lives
2281 * rather than its cluster, so we must make sure to
2282 * invalidate the buffer when we write it out below.
2283 */
2284 imap.im_blkno = 0;
64bfe1bf
DC
2285 error = xfs_imap(log->l_mp, NULL, ino, &imap, 0);
2286 if (error)
2287 goto error;
1da177e4
LT
2288 }
2289
2290 /*
2291 * Inode buffers can be freed, look out for it,
2292 * and do not replay the inode.
2293 */
6d192a9b
TS
2294 if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) {
2295 error = 0;
2296 goto error;
2297 }
1da177e4
LT
2298
2299 bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
2300 XFS_BUF_LOCK);
2301 if (XFS_BUF_ISERROR(bp)) {
2302 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2303 bp, imap.im_blkno);
2304 error = XFS_BUF_GETERROR(bp);
2305 xfs_buf_relse(bp);
6d192a9b 2306 goto error;
1da177e4
LT
2307 }
2308 error = 0;
2309 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2310 dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
2311
2312 /*
2313 * Make sure the place we're flushing out to really looks
2314 * like an inode!
2315 */
347d1c01 2316 if (unlikely(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC)) {
1da177e4
LT
2317 xfs_buf_relse(bp);
2318 xfs_fs_cmn_err(CE_ALERT, mp,
2319 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2320 dip, bp, ino);
2321 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2322 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2323 error = EFSCORRUPTED;
2324 goto error;
1da177e4 2325 }
347d1c01 2326 dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
1da177e4
LT
2327 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2328 xfs_buf_relse(bp);
2329 xfs_fs_cmn_err(CE_ALERT, mp,
2330 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2331 item, ino);
2332 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2333 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2334 error = EFSCORRUPTED;
2335 goto error;
1da177e4
LT
2336 }
2337
2338 /* Skip replay when the on disk inode is newer than the log one */
347d1c01 2339 if (dicp->di_flushiter < be16_to_cpu(dip->di_core.di_flushiter)) {
1da177e4
LT
2340 /*
2341 * Deal with the wrap case, DI_MAX_FLUSH is less
2342 * than smaller numbers
2343 */
347d1c01
CH
2344 if (be16_to_cpu(dip->di_core.di_flushiter) == DI_MAX_FLUSH &&
2345 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
1da177e4
LT
2346 /* do nothing */
2347 } else {
2348 xfs_buf_relse(bp);
6d192a9b
TS
2349 error = 0;
2350 goto error;
1da177e4
LT
2351 }
2352 }
2353 /* Take the opportunity to reset the flush iteration count */
2354 dicp->di_flushiter = 0;
2355
2356 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2357 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2358 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2359 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2360 XFS_ERRLEVEL_LOW, mp, dicp);
2361 xfs_buf_relse(bp);
2362 xfs_fs_cmn_err(CE_ALERT, mp,
2363 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2364 item, dip, bp, ino);
6d192a9b
TS
2365 error = EFSCORRUPTED;
2366 goto error;
1da177e4
LT
2367 }
2368 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2369 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2370 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2371 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2372 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2373 XFS_ERRLEVEL_LOW, mp, dicp);
2374 xfs_buf_relse(bp);
2375 xfs_fs_cmn_err(CE_ALERT, mp,
2376 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2377 item, dip, bp, ino);
6d192a9b
TS
2378 error = EFSCORRUPTED;
2379 goto error;
1da177e4
LT
2380 }
2381 }
2382 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2383 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2384 XFS_ERRLEVEL_LOW, mp, dicp);
2385 xfs_buf_relse(bp);
2386 xfs_fs_cmn_err(CE_ALERT, mp,
2387 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2388 item, dip, bp, ino,
2389 dicp->di_nextents + dicp->di_anextents,
2390 dicp->di_nblocks);
6d192a9b
TS
2391 error = EFSCORRUPTED;
2392 goto error;
1da177e4
LT
2393 }
2394 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2395 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2396 XFS_ERRLEVEL_LOW, mp, dicp);
2397 xfs_buf_relse(bp);
2398 xfs_fs_cmn_err(CE_ALERT, mp,
2399 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2400 item, dip, bp, ino, dicp->di_forkoff);
6d192a9b
TS
2401 error = EFSCORRUPTED;
2402 goto error;
1da177e4
LT
2403 }
2404 if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
2405 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2406 XFS_ERRLEVEL_LOW, mp, dicp);
2407 xfs_buf_relse(bp);
2408 xfs_fs_cmn_err(CE_ALERT, mp,
2409 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2410 item->ri_buf[1].i_len, item);
6d192a9b
TS
2411 error = EFSCORRUPTED;
2412 goto error;
1da177e4
LT
2413 }
2414
2415 /* The core is in in-core format */
347d1c01
CH
2416 xfs_dinode_to_disk(&dip->di_core,
2417 (xfs_icdinode_t *)item->ri_buf[1].i_addr);
1da177e4
LT
2418
2419 /* the rest is in on-disk format */
2420 if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
2421 memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
2422 item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
2423 item->ri_buf[1].i_len - sizeof(xfs_dinode_core_t));
2424 }
2425
2426 fields = in_f->ilf_fields;
2427 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2428 case XFS_ILOG_DEV:
347d1c01 2429 dip->di_u.di_dev = cpu_to_be32(in_f->ilf_u.ilfu_rdev);
1da177e4
LT
2430 break;
2431 case XFS_ILOG_UUID:
2432 dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
2433 break;
2434 }
2435
2436 if (in_f->ilf_size == 2)
2437 goto write_inode_buffer;
2438 len = item->ri_buf[2].i_len;
2439 src = item->ri_buf[2].i_addr;
2440 ASSERT(in_f->ilf_size <= 4);
2441 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2442 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2443 (len == in_f->ilf_dsize));
2444
2445 switch (fields & XFS_ILOG_DFORK) {
2446 case XFS_ILOG_DDATA:
2447 case XFS_ILOG_DEXT:
2448 memcpy(&dip->di_u, src, len);
2449 break;
2450
2451 case XFS_ILOG_DBROOT:
2452 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2453 &(dip->di_u.di_bmbt),
2454 XFS_DFORK_DSIZE(dip, mp));
2455 break;
2456
2457 default:
2458 /*
2459 * There are no data fork flags set.
2460 */
2461 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2462 break;
2463 }
2464
2465 /*
2466 * If we logged any attribute data, recover it. There may or
2467 * may not have been any other non-core data logged in this
2468 * transaction.
2469 */
2470 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2471 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2472 attr_index = 3;
2473 } else {
2474 attr_index = 2;
2475 }
2476 len = item->ri_buf[attr_index].i_len;
2477 src = item->ri_buf[attr_index].i_addr;
2478 ASSERT(len == in_f->ilf_asize);
2479
2480 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2481 case XFS_ILOG_ADATA:
2482 case XFS_ILOG_AEXT:
2483 dest = XFS_DFORK_APTR(dip);
2484 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2485 memcpy(dest, src, len);
2486 break;
2487
2488 case XFS_ILOG_ABROOT:
2489 dest = XFS_DFORK_APTR(dip);
2490 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2491 (xfs_bmdr_block_t*)dest,
2492 XFS_DFORK_ASIZE(dip, mp));
2493 break;
2494
2495 default:
2496 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2497 ASSERT(0);
2498 xfs_buf_relse(bp);
6d192a9b
TS
2499 error = EIO;
2500 goto error;
1da177e4
LT
2501 }
2502 }
2503
2504write_inode_buffer:
2505 if (ITEM_TYPE(item) == XFS_LI_INODE) {
2506 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2507 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2508 XFS_BUF_SET_FSPRIVATE(bp, mp);
2509 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2510 xfs_bdwrite(mp, bp);
2511 } else {
2512 XFS_BUF_STALE(bp);
2513 error = xfs_bwrite(mp, bp);
2514 }
2515
6d192a9b
TS
2516error:
2517 if (need_free)
2518 kmem_free(in_f, sizeof(*in_f));
2519 return XFS_ERROR(error);
1da177e4
LT
2520}
2521
2522/*
2523 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2524 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2525 * of that type.
2526 */
2527STATIC int
2528xlog_recover_do_quotaoff_trans(
2529 xlog_t *log,
2530 xlog_recover_item_t *item,
2531 int pass)
2532{
2533 xfs_qoff_logformat_t *qoff_f;
2534
2535 if (pass == XLOG_RECOVER_PASS2) {
2536 return (0);
2537 }
2538
2539 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2540 ASSERT(qoff_f);
2541
2542 /*
2543 * The logitem format's flag tells us if this was user quotaoff,
77a7cce4 2544 * group/project quotaoff or both.
1da177e4
LT
2545 */
2546 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2547 log->l_quotaoffs_flag |= XFS_DQ_USER;
77a7cce4
NS
2548 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2549 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
1da177e4
LT
2550 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2551 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2552
2553 return (0);
2554}
2555
2556/*
2557 * Recover a dquot record
2558 */
2559STATIC int
2560xlog_recover_do_dquot_trans(
2561 xlog_t *log,
2562 xlog_recover_item_t *item,
2563 int pass)
2564{
2565 xfs_mount_t *mp;
2566 xfs_buf_t *bp;
2567 struct xfs_disk_dquot *ddq, *recddq;
2568 int error;
2569 xfs_dq_logformat_t *dq_f;
2570 uint type;
2571
2572 if (pass == XLOG_RECOVER_PASS1) {
2573 return 0;
2574 }
2575 mp = log->l_mp;
2576
2577 /*
2578 * Filesystems are required to send in quota flags at mount time.
2579 */
2580 if (mp->m_qflags == 0)
2581 return (0);
2582
2583 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2584 ASSERT(recddq);
2585 /*
2586 * This type of quotas was turned off, so ignore this record.
2587 */
b53e675d 2588 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
2589 ASSERT(type);
2590 if (log->l_quotaoffs_flag & type)
2591 return (0);
2592
2593 /*
2594 * At this point we know that quota was _not_ turned off.
2595 * Since the mount flags are not indicating to us otherwise, this
2596 * must mean that quota is on, and the dquot needs to be replayed.
2597 * Remember that we may not have fully recovered the superblock yet,
2598 * so we can't do the usual trick of looking at the SB quota bits.
2599 *
2600 * The other possibility, of course, is that the quota subsystem was
2601 * removed since the last mount - ENOSYS.
2602 */
2603 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2604 ASSERT(dq_f);
2605 if ((error = xfs_qm_dqcheck(recddq,
2606 dq_f->qlf_id,
2607 0, XFS_QMOPT_DOWARN,
2608 "xlog_recover_do_dquot_trans (log copy)"))) {
2609 return XFS_ERROR(EIO);
2610 }
2611 ASSERT(dq_f->qlf_len == 1);
2612
2613 error = xfs_read_buf(mp, mp->m_ddev_targp,
2614 dq_f->qlf_blkno,
2615 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2616 0, &bp);
2617 if (error) {
2618 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2619 bp, dq_f->qlf_blkno);
2620 return error;
2621 }
2622 ASSERT(bp);
2623 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2624
2625 /*
2626 * At least the magic num portion should be on disk because this
2627 * was among a chunk of dquots created earlier, and we did some
2628 * minimal initialization then.
2629 */
2630 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2631 "xlog_recover_do_dquot_trans")) {
2632 xfs_buf_relse(bp);
2633 return XFS_ERROR(EIO);
2634 }
2635
2636 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2637
2638 ASSERT(dq_f->qlf_size == 2);
2639 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2640 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2641 XFS_BUF_SET_FSPRIVATE(bp, mp);
2642 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2643 xfs_bdwrite(mp, bp);
2644
2645 return (0);
2646}
2647
2648/*
2649 * This routine is called to create an in-core extent free intent
2650 * item from the efi format structure which was logged on disk.
2651 * It allocates an in-core efi, copies the extents from the format
2652 * structure into it, and adds the efi to the AIL with the given
2653 * LSN.
2654 */
6d192a9b 2655STATIC int
1da177e4
LT
2656xlog_recover_do_efi_trans(
2657 xlog_t *log,
2658 xlog_recover_item_t *item,
2659 xfs_lsn_t lsn,
2660 int pass)
2661{
6d192a9b 2662 int error;
1da177e4
LT
2663 xfs_mount_t *mp;
2664 xfs_efi_log_item_t *efip;
2665 xfs_efi_log_format_t *efi_formatp;
1da177e4
LT
2666
2667 if (pass == XLOG_RECOVER_PASS1) {
6d192a9b 2668 return 0;
1da177e4
LT
2669 }
2670
2671 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
1da177e4
LT
2672
2673 mp = log->l_mp;
2674 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
6d192a9b
TS
2675 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2676 &(efip->efi_format)))) {
2677 xfs_efi_item_free(efip);
2678 return error;
2679 }
1da177e4
LT
2680 efip->efi_next_extent = efi_formatp->efi_nextents;
2681 efip->efi_flags |= XFS_EFI_COMMITTED;
2682
287f3dad 2683 spin_lock(&mp->m_ail_lock);
1da177e4
LT
2684 /*
2685 * xfs_trans_update_ail() drops the AIL lock.
2686 */
287f3dad 2687 xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn);
6d192a9b 2688 return 0;
1da177e4
LT
2689}
2690
2691
2692/*
2693 * This routine is called when an efd format structure is found in
2694 * a committed transaction in the log. It's purpose is to cancel
2695 * the corresponding efi if it was still in the log. To do this
2696 * it searches the AIL for the efi with an id equal to that in the
2697 * efd format structure. If we find it, we remove the efi from the
2698 * AIL and free it.
2699 */
2700STATIC void
2701xlog_recover_do_efd_trans(
2702 xlog_t *log,
2703 xlog_recover_item_t *item,
2704 int pass)
2705{
2706 xfs_mount_t *mp;
2707 xfs_efd_log_format_t *efd_formatp;
2708 xfs_efi_log_item_t *efip = NULL;
2709 xfs_log_item_t *lip;
2710 int gen;
1da177e4 2711 __uint64_t efi_id;
1da177e4
LT
2712
2713 if (pass == XLOG_RECOVER_PASS1) {
2714 return;
2715 }
2716
2717 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
6d192a9b
TS
2718 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2719 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2720 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2721 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
1da177e4
LT
2722 efi_id = efd_formatp->efd_efi_id;
2723
2724 /*
2725 * Search for the efi with the id in the efd format structure
2726 * in the AIL.
2727 */
2728 mp = log->l_mp;
287f3dad 2729 spin_lock(&mp->m_ail_lock);
1da177e4
LT
2730 lip = xfs_trans_first_ail(mp, &gen);
2731 while (lip != NULL) {
2732 if (lip->li_type == XFS_LI_EFI) {
2733 efip = (xfs_efi_log_item_t *)lip;
2734 if (efip->efi_format.efi_id == efi_id) {
2735 /*
2736 * xfs_trans_delete_ail() drops the
2737 * AIL lock.
2738 */
287f3dad 2739 xfs_trans_delete_ail(mp, lip);
8ae2c0f6
DC
2740 xfs_efi_item_free(efip);
2741 return;
1da177e4
LT
2742 }
2743 }
2744 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
2745 }
8ae2c0f6 2746 spin_unlock(&mp->m_ail_lock);
1da177e4
LT
2747}
2748
2749/*
2750 * Perform the transaction
2751 *
2752 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2753 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2754 */
2755STATIC int
2756xlog_recover_do_trans(
2757 xlog_t *log,
2758 xlog_recover_t *trans,
2759 int pass)
2760{
2761 int error = 0;
2762 xlog_recover_item_t *item, *first_item;
2763
e9ed9d22 2764 if ((error = xlog_recover_reorder_trans(trans)))
1da177e4
LT
2765 return error;
2766 first_item = item = trans->r_itemq;
2767 do {
2768 /*
2769 * we don't need to worry about the block number being
2770 * truncated in > 1 TB buffers because in user-land,
2771 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
c41564b5 2772 * the blknos will get through the user-mode buffer
1da177e4
LT
2773 * cache properly. The only bad case is o32 kernels
2774 * where xfs_daddr_t is 32-bits but mount will warn us
2775 * off a > 1 TB filesystem before we get here.
2776 */
804195b6 2777 if ((ITEM_TYPE(item) == XFS_LI_BUF)) {
1da177e4
LT
2778 if ((error = xlog_recover_do_buffer_trans(log, item,
2779 pass)))
2780 break;
6d192a9b 2781 } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
1da177e4
LT
2782 if ((error = xlog_recover_do_inode_trans(log, item,
2783 pass)))
2784 break;
2785 } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
6d192a9b
TS
2786 if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
2787 pass)))
2788 break;
1da177e4
LT
2789 } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
2790 xlog_recover_do_efd_trans(log, item, pass);
2791 } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
2792 if ((error = xlog_recover_do_dquot_trans(log, item,
2793 pass)))
2794 break;
2795 } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
2796 if ((error = xlog_recover_do_quotaoff_trans(log, item,
2797 pass)))
2798 break;
2799 } else {
2800 xlog_warn("XFS: xlog_recover_do_trans");
2801 ASSERT(0);
2802 error = XFS_ERROR(EIO);
2803 break;
2804 }
2805 item = item->ri_next;
2806 } while (first_item != item);
2807
2808 return error;
2809}
2810
2811/*
2812 * Free up any resources allocated by the transaction
2813 *
2814 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2815 */
2816STATIC void
2817xlog_recover_free_trans(
2818 xlog_recover_t *trans)
2819{
2820 xlog_recover_item_t *first_item, *item, *free_item;
2821 int i;
2822
2823 item = first_item = trans->r_itemq;
2824 do {
2825 free_item = item;
2826 item = item->ri_next;
2827 /* Free the regions in the item. */
2828 for (i = 0; i < free_item->ri_cnt; i++) {
2829 kmem_free(free_item->ri_buf[i].i_addr,
2830 free_item->ri_buf[i].i_len);
2831 }
2832 /* Free the item itself */
2833 kmem_free(free_item->ri_buf,
2834 (free_item->ri_total * sizeof(xfs_log_iovec_t)));
2835 kmem_free(free_item, sizeof(xlog_recover_item_t));
2836 } while (first_item != item);
2837 /* Free the transaction recover structure */
2838 kmem_free(trans, sizeof(xlog_recover_t));
2839}
2840
2841STATIC int
2842xlog_recover_commit_trans(
2843 xlog_t *log,
2844 xlog_recover_t **q,
2845 xlog_recover_t *trans,
2846 int pass)
2847{
2848 int error;
2849
2850 if ((error = xlog_recover_unlink_tid(q, trans)))
2851 return error;
2852 if ((error = xlog_recover_do_trans(log, trans, pass)))
2853 return error;
2854 xlog_recover_free_trans(trans); /* no error */
2855 return 0;
2856}
2857
2858STATIC int
2859xlog_recover_unmount_trans(
2860 xlog_recover_t *trans)
2861{
2862 /* Do nothing now */
2863 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2864 return 0;
2865}
2866
2867/*
2868 * There are two valid states of the r_state field. 0 indicates that the
2869 * transaction structure is in a normal state. We have either seen the
2870 * start of the transaction or the last operation we added was not a partial
2871 * operation. If the last operation we added to the transaction was a
2872 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2873 *
2874 * NOTE: skip LRs with 0 data length.
2875 */
2876STATIC int
2877xlog_recover_process_data(
2878 xlog_t *log,
2879 xlog_recover_t *rhash[],
2880 xlog_rec_header_t *rhead,
2881 xfs_caddr_t dp,
2882 int pass)
2883{
2884 xfs_caddr_t lp;
2885 int num_logops;
2886 xlog_op_header_t *ohead;
2887 xlog_recover_t *trans;
2888 xlog_tid_t tid;
2889 int error;
2890 unsigned long hash;
2891 uint flags;
2892
b53e675d
CH
2893 lp = dp + be32_to_cpu(rhead->h_len);
2894 num_logops = be32_to_cpu(rhead->h_num_logops);
1da177e4
LT
2895
2896 /* check the log format matches our own - else we can't recover */
2897 if (xlog_header_check_recover(log->l_mp, rhead))
2898 return (XFS_ERROR(EIO));
2899
2900 while ((dp < lp) && num_logops) {
2901 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2902 ohead = (xlog_op_header_t *)dp;
2903 dp += sizeof(xlog_op_header_t);
2904 if (ohead->oh_clientid != XFS_TRANSACTION &&
2905 ohead->oh_clientid != XFS_LOG) {
2906 xlog_warn(
2907 "XFS: xlog_recover_process_data: bad clientid");
2908 ASSERT(0);
2909 return (XFS_ERROR(EIO));
2910 }
67fcb7bf 2911 tid = be32_to_cpu(ohead->oh_tid);
1da177e4
LT
2912 hash = XLOG_RHASH(tid);
2913 trans = xlog_recover_find_tid(rhash[hash], tid);
2914 if (trans == NULL) { /* not found; add new tid */
2915 if (ohead->oh_flags & XLOG_START_TRANS)
2916 xlog_recover_new_tid(&rhash[hash], tid,
b53e675d 2917 be64_to_cpu(rhead->h_lsn));
1da177e4 2918 } else {
9742bb93
LM
2919 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2920 xlog_warn(
2921 "XFS: xlog_recover_process_data: bad length");
2922 WARN_ON(1);
2923 return (XFS_ERROR(EIO));
2924 }
1da177e4
LT
2925 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2926 if (flags & XLOG_WAS_CONT_TRANS)
2927 flags &= ~XLOG_CONTINUE_TRANS;
2928 switch (flags) {
2929 case XLOG_COMMIT_TRANS:
2930 error = xlog_recover_commit_trans(log,
2931 &rhash[hash], trans, pass);
2932 break;
2933 case XLOG_UNMOUNT_TRANS:
2934 error = xlog_recover_unmount_trans(trans);
2935 break;
2936 case XLOG_WAS_CONT_TRANS:
2937 error = xlog_recover_add_to_cont_trans(trans,
67fcb7bf 2938 dp, be32_to_cpu(ohead->oh_len));
1da177e4
LT
2939 break;
2940 case XLOG_START_TRANS:
2941 xlog_warn(
2942 "XFS: xlog_recover_process_data: bad transaction");
2943 ASSERT(0);
2944 error = XFS_ERROR(EIO);
2945 break;
2946 case 0:
2947 case XLOG_CONTINUE_TRANS:
2948 error = xlog_recover_add_to_trans(trans,
67fcb7bf 2949 dp, be32_to_cpu(ohead->oh_len));
1da177e4
LT
2950 break;
2951 default:
2952 xlog_warn(
2953 "XFS: xlog_recover_process_data: bad flag");
2954 ASSERT(0);
2955 error = XFS_ERROR(EIO);
2956 break;
2957 }
2958 if (error)
2959 return error;
2960 }
67fcb7bf 2961 dp += be32_to_cpu(ohead->oh_len);
1da177e4
LT
2962 num_logops--;
2963 }
2964 return 0;
2965}
2966
2967/*
2968 * Process an extent free intent item that was recovered from
2969 * the log. We need to free the extents that it describes.
2970 */
3c1e2bbe 2971STATIC int
1da177e4
LT
2972xlog_recover_process_efi(
2973 xfs_mount_t *mp,
2974 xfs_efi_log_item_t *efip)
2975{
2976 xfs_efd_log_item_t *efdp;
2977 xfs_trans_t *tp;
2978 int i;
3c1e2bbe 2979 int error = 0;
1da177e4
LT
2980 xfs_extent_t *extp;
2981 xfs_fsblock_t startblock_fsb;
2982
2983 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
2984
2985 /*
2986 * First check the validity of the extents described by the
2987 * EFI. If any are bad, then assume that all are bad and
2988 * just toss the EFI.
2989 */
2990 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2991 extp = &(efip->efi_format.efi_extents[i]);
2992 startblock_fsb = XFS_BB_TO_FSB(mp,
2993 XFS_FSB_TO_DADDR(mp, extp->ext_start));
2994 if ((startblock_fsb == 0) ||
2995 (extp->ext_len == 0) ||
2996 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2997 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2998 /*
2999 * This will pull the EFI from the AIL and
3000 * free the memory associated with it.
3001 */
3002 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3c1e2bbe 3003 return XFS_ERROR(EIO);
1da177e4
LT
3004 }
3005 }
3006
3007 tp = xfs_trans_alloc(mp, 0);
3c1e2bbe 3008 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
fc6149d8
DC
3009 if (error)
3010 goto abort_error;
1da177e4
LT
3011 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3012
3013 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3014 extp = &(efip->efi_format.efi_extents[i]);
fc6149d8
DC
3015 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3016 if (error)
3017 goto abort_error;
1da177e4
LT
3018 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3019 extp->ext_len);
3020 }
3021
3022 efip->efi_flags |= XFS_EFI_RECOVERED;
e5720eec 3023 error = xfs_trans_commit(tp, 0);
3c1e2bbe 3024 return error;
fc6149d8
DC
3025
3026abort_error:
3027 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3028 return error;
1da177e4
LT
3029}
3030
3031/*
3032 * Verify that once we've encountered something other than an EFI
3033 * in the AIL that there are no more EFIs in the AIL.
3034 */
3035#if defined(DEBUG)
3036STATIC void
3037xlog_recover_check_ail(
3038 xfs_mount_t *mp,
3039 xfs_log_item_t *lip,
3040 int gen)
3041{
3042 int orig_gen = gen;
3043
3044 do {
3045 ASSERT(lip->li_type != XFS_LI_EFI);
3046 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3047 /*
3048 * The check will be bogus if we restart from the
3049 * beginning of the AIL, so ASSERT that we don't.
3050 * We never should since we're holding the AIL lock
3051 * the entire time.
3052 */
3053 ASSERT(gen == orig_gen);
3054 } while (lip != NULL);
3055}
3056#endif /* DEBUG */
3057
3058/*
3059 * When this is called, all of the EFIs which did not have
3060 * corresponding EFDs should be in the AIL. What we do now
3061 * is free the extents associated with each one.
3062 *
3063 * Since we process the EFIs in normal transactions, they
3064 * will be removed at some point after the commit. This prevents
3065 * us from just walking down the list processing each one.
3066 * We'll use a flag in the EFI to skip those that we've already
3067 * processed and use the AIL iteration mechanism's generation
3068 * count to try to speed this up at least a bit.
3069 *
3070 * When we start, we know that the EFIs are the only things in
3071 * the AIL. As we process them, however, other items are added
3072 * to the AIL. Since everything added to the AIL must come after
3073 * everything already in the AIL, we stop processing as soon as
3074 * we see something other than an EFI in the AIL.
3075 */
3c1e2bbe 3076STATIC int
1da177e4
LT
3077xlog_recover_process_efis(
3078 xlog_t *log)
3079{
3080 xfs_log_item_t *lip;
3081 xfs_efi_log_item_t *efip;
3082 int gen;
3083 xfs_mount_t *mp;
3c1e2bbe 3084 int error = 0;
1da177e4
LT
3085
3086 mp = log->l_mp;
287f3dad 3087 spin_lock(&mp->m_ail_lock);
1da177e4
LT
3088
3089 lip = xfs_trans_first_ail(mp, &gen);
3090 while (lip != NULL) {
3091 /*
3092 * We're done when we see something other than an EFI.
3093 */
3094 if (lip->li_type != XFS_LI_EFI) {
3095 xlog_recover_check_ail(mp, lip, gen);
3096 break;
3097 }
3098
3099 /*
3100 * Skip EFIs that we've already processed.
3101 */
3102 efip = (xfs_efi_log_item_t *)lip;
3103 if (efip->efi_flags & XFS_EFI_RECOVERED) {
3104 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3105 continue;
3106 }
3107
287f3dad 3108 spin_unlock(&mp->m_ail_lock);
3c1e2bbe
DC
3109 error = xlog_recover_process_efi(mp, efip);
3110 if (error)
3111 return error;
287f3dad 3112 spin_lock(&mp->m_ail_lock);
1da177e4
LT
3113 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3114 }
287f3dad 3115 spin_unlock(&mp->m_ail_lock);
3c1e2bbe 3116 return error;
1da177e4
LT
3117}
3118
3119/*
3120 * This routine performs a transaction to null out a bad inode pointer
3121 * in an agi unlinked inode hash bucket.
3122 */
3123STATIC void
3124xlog_recover_clear_agi_bucket(
3125 xfs_mount_t *mp,
3126 xfs_agnumber_t agno,
3127 int bucket)
3128{
3129 xfs_trans_t *tp;
3130 xfs_agi_t *agi;
3131 xfs_buf_t *agibp;
3132 int offset;
3133 int error;
3134
3135 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3c1e2bbe
DC
3136 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
3137 if (!error)
3138 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
1da177e4
LT
3139 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3140 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
e5720eec
DC
3141 if (error)
3142 goto out_abort;
1da177e4 3143
e5720eec 3144 error = EINVAL;
1da177e4 3145 agi = XFS_BUF_TO_AGI(agibp);
e5720eec
DC
3146 if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC)
3147 goto out_abort;
1da177e4 3148
16259e7d 3149 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
3150 offset = offsetof(xfs_agi_t, agi_unlinked) +
3151 (sizeof(xfs_agino_t) * bucket);
3152 xfs_trans_log_buf(tp, agibp, offset,
3153 (offset + sizeof(xfs_agino_t) - 1));
3154
e5720eec
DC
3155 error = xfs_trans_commit(tp, 0);
3156 if (error)
3157 goto out_error;
3158 return;
3159
3160out_abort:
3161 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3162out_error:
3163 xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3164 "failed to clear agi %d. Continuing.", agno);
3165 return;
1da177e4
LT
3166}
3167
3168/*
3169 * xlog_iunlink_recover
3170 *
3171 * This is called during recovery to process any inodes which
3172 * we unlinked but not freed when the system crashed. These
3173 * inodes will be on the lists in the AGI blocks. What we do
3174 * here is scan all the AGIs and fully truncate and free any
3175 * inodes found on the lists. Each inode is removed from the
3176 * lists when it has been fully truncated and is freed. The
3177 * freeing of the inode and its removal from the list must be
3178 * atomic.
3179 */
3180void
3181xlog_recover_process_iunlinks(
3182 xlog_t *log)
3183{
3184 xfs_mount_t *mp;
3185 xfs_agnumber_t agno;
3186 xfs_agi_t *agi;
3187 xfs_buf_t *agibp;
3188 xfs_buf_t *ibp;
3189 xfs_dinode_t *dip;
3190 xfs_inode_t *ip;
3191 xfs_agino_t agino;
3192 xfs_ino_t ino;
3193 int bucket;
3194 int error;
3195 uint mp_dmevmask;
3196
3197 mp = log->l_mp;
3198
3199 /*
3200 * Prevent any DMAPI event from being sent while in this function.
3201 */
3202 mp_dmevmask = mp->m_dmevmask;
3203 mp->m_dmevmask = 0;
3204
3205 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3206 /*
3207 * Find the agi for this ag.
3208 */
3209 agibp = xfs_buf_read(mp->m_ddev_targp,
3210 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3211 XFS_FSS_TO_BB(mp, 1), 0);
3212 if (XFS_BUF_ISERROR(agibp)) {
3213 xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
3214 log->l_mp, agibp,
3215 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
3216 }
3217 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3218 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum));
1da177e4
LT
3219
3220 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3221
16259e7d 3222 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4
LT
3223 while (agino != NULLAGINO) {
3224
3225 /*
3226 * Release the agi buffer so that it can
3227 * be acquired in the normal course of the
3228 * transaction to truncate and free the inode.
3229 */
3230 xfs_buf_relse(agibp);
3231
3232 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3233 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3234 ASSERT(error || (ip != NULL));
3235
3236 if (!error) {
3237 /*
3238 * Get the on disk inode to find the
3239 * next inode in the bucket.
3240 */
3241 error = xfs_itobp(mp, NULL, ip, &dip,
a3f74ffb
DC
3242 &ibp, 0, 0,
3243 XFS_BUF_LOCK);
1da177e4
LT
3244 ASSERT(error || (dip != NULL));
3245 }
3246
3247 if (!error) {
3248 ASSERT(ip->i_d.di_nlink == 0);
3249
3250 /* setup for the next pass */
347d1c01
CH
3251 agino = be32_to_cpu(
3252 dip->di_next_unlinked);
1da177e4
LT
3253 xfs_buf_relse(ibp);
3254 /*
3255 * Prevent any DMAPI event from
3256 * being sent when the
3257 * reference on the inode is
3258 * dropped.
3259 */
3260 ip->i_d.di_dmevmask = 0;
3261
3262 /*
3263 * If this is a new inode, handle
3264 * it specially. Otherwise,
3265 * just drop our reference to the
3266 * inode. If there are no
3267 * other references, this will
3268 * send the inode to
3269 * xfs_inactive() which will
3270 * truncate the file and free
3271 * the inode.
3272 */
3273 if (ip->i_d.di_mode == 0)
3274 xfs_iput_new(ip, 0);
3275 else
43355099 3276 IRELE(ip);
1da177e4
LT
3277 } else {
3278 /*
3279 * We can't read in the inode
3280 * this bucket points to, or
3281 * this inode is messed up. Just
3282 * ditch this bucket of inodes. We
3283 * will lose some inodes and space,
3284 * but at least we won't hang. Call
3285 * xlog_recover_clear_agi_bucket()
3286 * to perform a transaction to clear
3287 * the inode pointer in the bucket.
3288 */
3289 xlog_recover_clear_agi_bucket(mp, agno,
3290 bucket);
3291
3292 agino = NULLAGINO;
3293 }
3294
3295 /*
3296 * Reacquire the agibuffer and continue around
3297 * the loop.
3298 */
3299 agibp = xfs_buf_read(mp->m_ddev_targp,
3300 XFS_AG_DADDR(mp, agno,
3301 XFS_AGI_DADDR(mp)),
3302 XFS_FSS_TO_BB(mp, 1), 0);
3303 if (XFS_BUF_ISERROR(agibp)) {
3304 xfs_ioerror_alert(
3305 "xlog_recover_process_iunlinks(#2)",
3306 log->l_mp, agibp,
3307 XFS_AG_DADDR(mp, agno,
3308 XFS_AGI_DADDR(mp)));
3309 }
3310 agi = XFS_BUF_TO_AGI(agibp);
16259e7d
CH
3311 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(
3312 agi->agi_magicnum));
1da177e4
LT
3313 }
3314 }
3315
3316 /*
3317 * Release the buffer for the current agi so we can
3318 * go on to the next one.
3319 */
3320 xfs_buf_relse(agibp);
3321 }
3322
3323 mp->m_dmevmask = mp_dmevmask;
3324}
3325
3326
3327#ifdef DEBUG
3328STATIC void
3329xlog_pack_data_checksum(
3330 xlog_t *log,
3331 xlog_in_core_t *iclog,
3332 int size)
3333{
3334 int i;
b53e675d 3335 __be32 *up;
1da177e4
LT
3336 uint chksum = 0;
3337
b53e675d 3338 up = (__be32 *)iclog->ic_datap;
1da177e4
LT
3339 /* divide length by 4 to get # words */
3340 for (i = 0; i < (size >> 2); i++) {
b53e675d 3341 chksum ^= be32_to_cpu(*up);
1da177e4
LT
3342 up++;
3343 }
b53e675d 3344 iclog->ic_header.h_chksum = cpu_to_be32(chksum);
1da177e4
LT
3345}
3346#else
3347#define xlog_pack_data_checksum(log, iclog, size)
3348#endif
3349
3350/*
3351 * Stamp cycle number in every block
3352 */
3353void
3354xlog_pack_data(
3355 xlog_t *log,
3356 xlog_in_core_t *iclog,
3357 int roundoff)
3358{
3359 int i, j, k;
3360 int size = iclog->ic_offset + roundoff;
b53e675d 3361 __be32 cycle_lsn;
1da177e4
LT
3362 xfs_caddr_t dp;
3363 xlog_in_core_2_t *xhdr;
3364
3365 xlog_pack_data_checksum(log, iclog, size);
3366
3367 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3368
3369 dp = iclog->ic_datap;
3370 for (i = 0; i < BTOBB(size) &&
3371 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d
CH
3372 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3373 *(__be32 *)dp = cycle_lsn;
1da177e4
LT
3374 dp += BBSIZE;
3375 }
3376
62118709 3377 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
3378 xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
3379 for ( ; i < BTOBB(size); i++) {
3380 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3381 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d
CH
3382 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3383 *(__be32 *)dp = cycle_lsn;
1da177e4
LT
3384 dp += BBSIZE;
3385 }
3386
3387 for (i = 1; i < log->l_iclog_heads; i++) {
3388 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3389 }
3390 }
3391}
3392
3393#if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3394STATIC void
3395xlog_unpack_data_checksum(
3396 xlog_rec_header_t *rhead,
3397 xfs_caddr_t dp,
3398 xlog_t *log)
3399{
b53e675d 3400 __be32 *up = (__be32 *)dp;
1da177e4
LT
3401 uint chksum = 0;
3402 int i;
3403
3404 /* divide length by 4 to get # words */
b53e675d
CH
3405 for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
3406 chksum ^= be32_to_cpu(*up);
1da177e4
LT
3407 up++;
3408 }
b53e675d 3409 if (chksum != be32_to_cpu(rhead->h_chksum)) {
1da177e4
LT
3410 if (rhead->h_chksum ||
3411 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3412 cmn_err(CE_DEBUG,
b6574520 3413 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
b53e675d 3414 be32_to_cpu(rhead->h_chksum), chksum);
1da177e4
LT
3415 cmn_err(CE_DEBUG,
3416"XFS: Disregard message if filesystem was created with non-DEBUG kernel");
62118709 3417 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4 3418 cmn_err(CE_DEBUG,
b6574520 3419 "XFS: LogR this is a LogV2 filesystem\n");
1da177e4
LT
3420 }
3421 log->l_flags |= XLOG_CHKSUM_MISMATCH;
3422 }
3423 }
3424}
3425#else
3426#define xlog_unpack_data_checksum(rhead, dp, log)
3427#endif
3428
3429STATIC void
3430xlog_unpack_data(
3431 xlog_rec_header_t *rhead,
3432 xfs_caddr_t dp,
3433 xlog_t *log)
3434{
3435 int i, j, k;
3436 xlog_in_core_2_t *xhdr;
3437
b53e675d 3438 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
1da177e4 3439 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d 3440 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
1da177e4
LT
3441 dp += BBSIZE;
3442 }
3443
62118709 3444 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4 3445 xhdr = (xlog_in_core_2_t *)rhead;
b53e675d 3446 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
1da177e4
LT
3447 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3448 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 3449 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
1da177e4
LT
3450 dp += BBSIZE;
3451 }
3452 }
3453
3454 xlog_unpack_data_checksum(rhead, dp, log);
3455}
3456
3457STATIC int
3458xlog_valid_rec_header(
3459 xlog_t *log,
3460 xlog_rec_header_t *rhead,
3461 xfs_daddr_t blkno)
3462{
3463 int hlen;
3464
b53e675d 3465 if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
3466 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3467 XFS_ERRLEVEL_LOW, log->l_mp);
3468 return XFS_ERROR(EFSCORRUPTED);
3469 }
3470 if (unlikely(
3471 (!rhead->h_version ||
b53e675d 3472 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
1da177e4 3473 xlog_warn("XFS: %s: unrecognised log version (%d).",
34a622b2 3474 __func__, be32_to_cpu(rhead->h_version));
1da177e4
LT
3475 return XFS_ERROR(EIO);
3476 }
3477
3478 /* LR body must have data or it wouldn't have been written */
b53e675d 3479 hlen = be32_to_cpu(rhead->h_len);
1da177e4
LT
3480 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3481 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3482 XFS_ERRLEVEL_LOW, log->l_mp);
3483 return XFS_ERROR(EFSCORRUPTED);
3484 }
3485 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3486 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3487 XFS_ERRLEVEL_LOW, log->l_mp);
3488 return XFS_ERROR(EFSCORRUPTED);
3489 }
3490 return 0;
3491}
3492
3493/*
3494 * Read the log from tail to head and process the log records found.
3495 * Handle the two cases where the tail and head are in the same cycle
3496 * and where the active portion of the log wraps around the end of
3497 * the physical log separately. The pass parameter is passed through
3498 * to the routines called to process the data and is not looked at
3499 * here.
3500 */
3501STATIC int
3502xlog_do_recovery_pass(
3503 xlog_t *log,
3504 xfs_daddr_t head_blk,
3505 xfs_daddr_t tail_blk,
3506 int pass)
3507{
3508 xlog_rec_header_t *rhead;
3509 xfs_daddr_t blk_no;
3510 xfs_caddr_t bufaddr, offset;
3511 xfs_buf_t *hbp, *dbp;
3512 int error = 0, h_size;
3513 int bblks, split_bblks;
3514 int hblks, split_hblks, wrapped_hblks;
3515 xlog_recover_t *rhash[XLOG_RHASH_SIZE];
3516
3517 ASSERT(head_blk != tail_blk);
3518
3519 /*
3520 * Read the header of the tail block and get the iclog buffer size from
3521 * h_size. Use this to tell how many sectors make up the log header.
3522 */
62118709 3523 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
3524 /*
3525 * When using variable length iclogs, read first sector of
3526 * iclog header and extract the header size from it. Get a
3527 * new hbp that is the correct size.
3528 */
3529 hbp = xlog_get_bp(log, 1);
3530 if (!hbp)
3531 return ENOMEM;
3532 if ((error = xlog_bread(log, tail_blk, 1, hbp)))
3533 goto bread_err1;
3534 offset = xlog_align(log, tail_blk, 1, hbp);
3535 rhead = (xlog_rec_header_t *)offset;
3536 error = xlog_valid_rec_header(log, rhead, tail_blk);
3537 if (error)
3538 goto bread_err1;
b53e675d
CH
3539 h_size = be32_to_cpu(rhead->h_size);
3540 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
1da177e4
LT
3541 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3542 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3543 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3544 hblks++;
3545 xlog_put_bp(hbp);
3546 hbp = xlog_get_bp(log, hblks);
3547 } else {
3548 hblks = 1;
3549 }
3550 } else {
3551 ASSERT(log->l_sectbb_log == 0);
3552 hblks = 1;
3553 hbp = xlog_get_bp(log, 1);
3554 h_size = XLOG_BIG_RECORD_BSIZE;
3555 }
3556
3557 if (!hbp)
3558 return ENOMEM;
3559 dbp = xlog_get_bp(log, BTOBB(h_size));
3560 if (!dbp) {
3561 xlog_put_bp(hbp);
3562 return ENOMEM;
3563 }
3564
3565 memset(rhash, 0, sizeof(rhash));
3566 if (tail_blk <= head_blk) {
3567 for (blk_no = tail_blk; blk_no < head_blk; ) {
3568 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3569 goto bread_err2;
3570 offset = xlog_align(log, blk_no, hblks, hbp);
3571 rhead = (xlog_rec_header_t *)offset;
3572 error = xlog_valid_rec_header(log, rhead, blk_no);
3573 if (error)
3574 goto bread_err2;
3575
3576 /* blocks in data section */
b53e675d 3577 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
3578 error = xlog_bread(log, blk_no + hblks, bblks, dbp);
3579 if (error)
3580 goto bread_err2;
3581 offset = xlog_align(log, blk_no + hblks, bblks, dbp);
3582 xlog_unpack_data(rhead, offset, log);
3583 if ((error = xlog_recover_process_data(log,
3584 rhash, rhead, offset, pass)))
3585 goto bread_err2;
3586 blk_no += bblks + hblks;
3587 }
3588 } else {
3589 /*
3590 * Perform recovery around the end of the physical log.
3591 * When the head is not on the same cycle number as the tail,
3592 * we can't do a sequential recovery as above.
3593 */
3594 blk_no = tail_blk;
3595 while (blk_no < log->l_logBBsize) {
3596 /*
3597 * Check for header wrapping around physical end-of-log
3598 */
3599 offset = NULL;
3600 split_hblks = 0;
3601 wrapped_hblks = 0;
3602 if (blk_no + hblks <= log->l_logBBsize) {
3603 /* Read header in one read */
3604 error = xlog_bread(log, blk_no, hblks, hbp);
3605 if (error)
3606 goto bread_err2;
3607 offset = xlog_align(log, blk_no, hblks, hbp);
3608 } else {
3609 /* This LR is split across physical log end */
3610 if (blk_no != log->l_logBBsize) {
3611 /* some data before physical log end */
3612 ASSERT(blk_no <= INT_MAX);
3613 split_hblks = log->l_logBBsize - (int)blk_no;
3614 ASSERT(split_hblks > 0);
3615 if ((error = xlog_bread(log, blk_no,
3616 split_hblks, hbp)))
3617 goto bread_err2;
3618 offset = xlog_align(log, blk_no,
3619 split_hblks, hbp);
3620 }
3621 /*
3622 * Note: this black magic still works with
3623 * large sector sizes (non-512) only because:
3624 * - we increased the buffer size originally
3625 * by 1 sector giving us enough extra space
3626 * for the second read;
3627 * - the log start is guaranteed to be sector
3628 * aligned;
3629 * - we read the log end (LR header start)
3630 * _first_, then the log start (LR header end)
3631 * - order is important.
3632 */
3633 bufaddr = XFS_BUF_PTR(hbp);
3634 XFS_BUF_SET_PTR(hbp,
3635 bufaddr + BBTOB(split_hblks),
3636 BBTOB(hblks - split_hblks));
3637 wrapped_hblks = hblks - split_hblks;
3638 error = xlog_bread(log, 0, wrapped_hblks, hbp);
3639 if (error)
3640 goto bread_err2;
3641 XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks));
3642 if (!offset)
3643 offset = xlog_align(log, 0,
3644 wrapped_hblks, hbp);
3645 }
3646 rhead = (xlog_rec_header_t *)offset;
3647 error = xlog_valid_rec_header(log, rhead,
3648 split_hblks ? blk_no : 0);
3649 if (error)
3650 goto bread_err2;
3651
b53e675d 3652 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
3653 blk_no += hblks;
3654
3655 /* Read in data for log record */
3656 if (blk_no + bblks <= log->l_logBBsize) {
3657 error = xlog_bread(log, blk_no, bblks, dbp);
3658 if (error)
3659 goto bread_err2;
3660 offset = xlog_align(log, blk_no, bblks, dbp);
3661 } else {
3662 /* This log record is split across the
3663 * physical end of log */
3664 offset = NULL;
3665 split_bblks = 0;
3666 if (blk_no != log->l_logBBsize) {
3667 /* some data is before the physical
3668 * end of log */
3669 ASSERT(!wrapped_hblks);
3670 ASSERT(blk_no <= INT_MAX);
3671 split_bblks =
3672 log->l_logBBsize - (int)blk_no;
3673 ASSERT(split_bblks > 0);
3674 if ((error = xlog_bread(log, blk_no,
3675 split_bblks, dbp)))
3676 goto bread_err2;
3677 offset = xlog_align(log, blk_no,
3678 split_bblks, dbp);
3679 }
3680 /*
3681 * Note: this black magic still works with
3682 * large sector sizes (non-512) only because:
3683 * - we increased the buffer size originally
3684 * by 1 sector giving us enough extra space
3685 * for the second read;
3686 * - the log start is guaranteed to be sector
3687 * aligned;
3688 * - we read the log end (LR header start)
3689 * _first_, then the log start (LR header end)
3690 * - order is important.
3691 */
3692 bufaddr = XFS_BUF_PTR(dbp);
3693 XFS_BUF_SET_PTR(dbp,
3694 bufaddr + BBTOB(split_bblks),
3695 BBTOB(bblks - split_bblks));
3696 if ((error = xlog_bread(log, wrapped_hblks,
3697 bblks - split_bblks, dbp)))
3698 goto bread_err2;
3699 XFS_BUF_SET_PTR(dbp, bufaddr, h_size);
3700 if (!offset)
3701 offset = xlog_align(log, wrapped_hblks,
3702 bblks - split_bblks, dbp);
3703 }
3704 xlog_unpack_data(rhead, offset, log);
3705 if ((error = xlog_recover_process_data(log, rhash,
3706 rhead, offset, pass)))
3707 goto bread_err2;
3708 blk_no += bblks;
3709 }
3710
3711 ASSERT(blk_no >= log->l_logBBsize);
3712 blk_no -= log->l_logBBsize;
3713
3714 /* read first part of physical log */
3715 while (blk_no < head_blk) {
3716 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3717 goto bread_err2;
3718 offset = xlog_align(log, blk_no, hblks, hbp);
3719 rhead = (xlog_rec_header_t *)offset;
3720 error = xlog_valid_rec_header(log, rhead, blk_no);
3721 if (error)
3722 goto bread_err2;
b53e675d 3723 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
3724 if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
3725 goto bread_err2;
3726 offset = xlog_align(log, blk_no+hblks, bblks, dbp);
3727 xlog_unpack_data(rhead, offset, log);
3728 if ((error = xlog_recover_process_data(log, rhash,
3729 rhead, offset, pass)))
3730 goto bread_err2;
3731 blk_no += bblks + hblks;
3732 }
3733 }
3734
3735 bread_err2:
3736 xlog_put_bp(dbp);
3737 bread_err1:
3738 xlog_put_bp(hbp);
3739 return error;
3740}
3741
3742/*
3743 * Do the recovery of the log. We actually do this in two phases.
3744 * The two passes are necessary in order to implement the function
3745 * of cancelling a record written into the log. The first pass
3746 * determines those things which have been cancelled, and the
3747 * second pass replays log items normally except for those which
3748 * have been cancelled. The handling of the replay and cancellations
3749 * takes place in the log item type specific routines.
3750 *
3751 * The table of items which have cancel records in the log is allocated
3752 * and freed at this level, since only here do we know when all of
3753 * the log recovery has been completed.
3754 */
3755STATIC int
3756xlog_do_log_recovery(
3757 xlog_t *log,
3758 xfs_daddr_t head_blk,
3759 xfs_daddr_t tail_blk)
3760{
3761 int error;
3762
3763 ASSERT(head_blk != tail_blk);
3764
3765 /*
3766 * First do a pass to find all of the cancelled buf log items.
3767 * Store them in the buf_cancel_table for use in the second pass.
3768 */
3769 log->l_buf_cancel_table =
3770 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3771 sizeof(xfs_buf_cancel_t*),
3772 KM_SLEEP);
3773 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3774 XLOG_RECOVER_PASS1);
3775 if (error != 0) {
3776 kmem_free(log->l_buf_cancel_table,
3777 XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3778 log->l_buf_cancel_table = NULL;
3779 return error;
3780 }
3781 /*
3782 * Then do a second pass to actually recover the items in the log.
3783 * When it is complete free the table of buf cancel items.
3784 */
3785 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3786 XLOG_RECOVER_PASS2);
3787#ifdef DEBUG
6d192a9b 3788 if (!error) {
1da177e4
LT
3789 int i;
3790
3791 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3792 ASSERT(log->l_buf_cancel_table[i] == NULL);
3793 }
3794#endif /* DEBUG */
3795
3796 kmem_free(log->l_buf_cancel_table,
3797 XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3798 log->l_buf_cancel_table = NULL;
3799
3800 return error;
3801}
3802
3803/*
3804 * Do the actual recovery
3805 */
3806STATIC int
3807xlog_do_recover(
3808 xlog_t *log,
3809 xfs_daddr_t head_blk,
3810 xfs_daddr_t tail_blk)
3811{
3812 int error;
3813 xfs_buf_t *bp;
3814 xfs_sb_t *sbp;
3815
3816 /*
3817 * First replay the images in the log.
3818 */
3819 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3820 if (error) {
3821 return error;
3822 }
3823
3824 XFS_bflush(log->l_mp->m_ddev_targp);
3825
3826 /*
3827 * If IO errors happened during recovery, bail out.
3828 */
3829 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3830 return (EIO);
3831 }
3832
3833 /*
3834 * We now update the tail_lsn since much of the recovery has completed
3835 * and there may be space available to use. If there were no extent
3836 * or iunlinks, we can free up the entire log and set the tail_lsn to
3837 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3838 * lsn of the last known good LR on disk. If there are extent frees
3839 * or iunlinks they will have some entries in the AIL; so we look at
3840 * the AIL to determine how to set the tail_lsn.
3841 */
3842 xlog_assign_tail_lsn(log->l_mp);
3843
3844 /*
3845 * Now that we've finished replaying all buffer and inode
3846 * updates, re-read in the superblock.
3847 */
3848 bp = xfs_getsb(log->l_mp, 0);
3849 XFS_BUF_UNDONE(bp);
bebf963f
LM
3850 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3851 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
1da177e4 3852 XFS_BUF_READ(bp);
bebf963f 3853 XFS_BUF_UNASYNC(bp);
1da177e4 3854 xfsbdstrat(log->l_mp, bp);
d64e31a2
DC
3855 error = xfs_iowait(bp);
3856 if (error) {
1da177e4
LT
3857 xfs_ioerror_alert("xlog_do_recover",
3858 log->l_mp, bp, XFS_BUF_ADDR(bp));
3859 ASSERT(0);
3860 xfs_buf_relse(bp);
3861 return error;
3862 }
3863
3864 /* Convert superblock from on-disk format */
3865 sbp = &log->l_mp->m_sb;
2bdf7cd0 3866 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
1da177e4 3867 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
62118709 3868 ASSERT(xfs_sb_good_version(sbp));
1da177e4
LT
3869 xfs_buf_relse(bp);
3870
5478eead
LM
3871 /* We've re-read the superblock so re-initialize per-cpu counters */
3872 xfs_icsb_reinit_counters(log->l_mp);
3873
1da177e4
LT
3874 xlog_recover_check_summary(log);
3875
3876 /* Normal transactions can now occur */
3877 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3878 return 0;
3879}
3880
3881/*
3882 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3883 *
3884 * Return error or zero.
3885 */
3886int
3887xlog_recover(
65be6054 3888 xlog_t *log)
1da177e4
LT
3889{
3890 xfs_daddr_t head_blk, tail_blk;
3891 int error;
3892
3893 /* find the tail of the log */
65be6054 3894 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
1da177e4
LT
3895 return error;
3896
3897 if (tail_blk != head_blk) {
3898 /* There used to be a comment here:
3899 *
3900 * disallow recovery on read-only mounts. note -- mount
3901 * checks for ENOSPC and turns it into an intelligent
3902 * error message.
3903 * ...but this is no longer true. Now, unless you specify
3904 * NORECOVERY (in which case this function would never be
3905 * called), we just go ahead and recover. We do this all
3906 * under the vfs layer, so we can get away with it unless
3907 * the device itself is read-only, in which case we fail.
3908 */
3a02ee18 3909 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
1da177e4
LT
3910 return error;
3911 }
3912
3913 cmn_err(CE_NOTE,
fc1f8c1c
NS
3914 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3915 log->l_mp->m_fsname, log->l_mp->m_logname ?
3916 log->l_mp->m_logname : "internal");
1da177e4
LT
3917
3918 error = xlog_do_recover(log, head_blk, tail_blk);
3919 log->l_flags |= XLOG_RECOVERY_NEEDED;
3920 }
3921 return error;
3922}
3923
3924/*
3925 * In the first part of recovery we replay inodes and buffers and build
3926 * up the list of extent free items which need to be processed. Here
3927 * we process the extent free items and clean up the on disk unlinked
3928 * inode lists. This is separated from the first part of recovery so
3929 * that the root and real-time bitmap inodes can be read in from disk in
3930 * between the two stages. This is necessary so that we can free space
3931 * in the real-time portion of the file system.
3932 */
3933int
3934xlog_recover_finish(
3935 xlog_t *log,
3936 int mfsi_flags)
3937{
3938 /*
3939 * Now we're ready to do the transactions needed for the
3940 * rest of recovery. Start with completing all the extent
3941 * free intent records and then process the unlinked inode
3942 * lists. At this point, we essentially run in normal mode
3943 * except that we're still performing recovery actions
3944 * rather than accepting new requests.
3945 */
3946 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3c1e2bbe
DC
3947 int error;
3948 error = xlog_recover_process_efis(log);
3949 if (error) {
3950 cmn_err(CE_ALERT,
3951 "Failed to recover EFIs on filesystem: %s",
3952 log->l_mp->m_fsname);
3953 return error;
3954 }
1da177e4
LT
3955 /*
3956 * Sync the log to get all the EFIs out of the AIL.
3957 * This isn't absolutely necessary, but it helps in
3958 * case the unlink transactions would have problems
3959 * pushing the EFIs out of the way.
3960 */
3961 xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3962 (XFS_LOG_FORCE | XFS_LOG_SYNC));
3963
3964 if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) {
3965 xlog_recover_process_iunlinks(log);
3966 }
3967
3968 xlog_recover_check_summary(log);
3969
3970 cmn_err(CE_NOTE,
fc1f8c1c
NS
3971 "Ending XFS recovery on filesystem: %s (logdev: %s)",
3972 log->l_mp->m_fsname, log->l_mp->m_logname ?
3973 log->l_mp->m_logname : "internal");
1da177e4
LT
3974 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3975 } else {
3976 cmn_err(CE_DEBUG,
b6574520 3977 "!Ending clean XFS mount for filesystem: %s\n",
1da177e4
LT
3978 log->l_mp->m_fsname);
3979 }
3980 return 0;
3981}
3982
3983
3984#if defined(DEBUG)
3985/*
3986 * Read all of the agf and agi counters and check that they
3987 * are consistent with the superblock counters.
3988 */
3989void
3990xlog_recover_check_summary(
3991 xlog_t *log)
3992{
3993 xfs_mount_t *mp;
3994 xfs_agf_t *agfp;
3995 xfs_agi_t *agip;
3996 xfs_buf_t *agfbp;
3997 xfs_buf_t *agibp;
3998 xfs_daddr_t agfdaddr;
3999 xfs_daddr_t agidaddr;
4000 xfs_buf_t *sbbp;
4001#ifdef XFS_LOUD_RECOVERY
4002 xfs_sb_t *sbp;
4003#endif
4004 xfs_agnumber_t agno;
4005 __uint64_t freeblks;
4006 __uint64_t itotal;
4007 __uint64_t ifree;
4008
4009 mp = log->l_mp;
4010
4011 freeblks = 0LL;
4012 itotal = 0LL;
4013 ifree = 0LL;
4014 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4015 agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
4016 agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
4017 XFS_FSS_TO_BB(mp, 1), 0);
4018 if (XFS_BUF_ISERROR(agfbp)) {
4019 xfs_ioerror_alert("xlog_recover_check_summary(agf)",
4020 mp, agfbp, agfdaddr);
4021 }
4022 agfp = XFS_BUF_TO_AGF(agfbp);
16259e7d
CH
4023 ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum));
4024 ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum)));
4025 ASSERT(be32_to_cpu(agfp->agf_seqno) == agno);
4026
4027 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4028 be32_to_cpu(agfp->agf_flcount);
1da177e4
LT
4029 xfs_buf_relse(agfbp);
4030
4031 agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
4032 agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
4033 XFS_FSS_TO_BB(mp, 1), 0);
4034 if (XFS_BUF_ISERROR(agibp)) {
4035 xfs_ioerror_alert("xlog_recover_check_summary(agi)",
4036 mp, agibp, agidaddr);
4037 }
4038 agip = XFS_BUF_TO_AGI(agibp);
16259e7d
CH
4039 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum));
4040 ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum)));
4041 ASSERT(be32_to_cpu(agip->agi_seqno) == agno);
4042
4043 itotal += be32_to_cpu(agip->agi_count);
4044 ifree += be32_to_cpu(agip->agi_freecount);
1da177e4
LT
4045 xfs_buf_relse(agibp);
4046 }
4047
4048 sbbp = xfs_getsb(mp, 0);
4049#ifdef XFS_LOUD_RECOVERY
4050 sbp = &mp->m_sb;
2bdf7cd0 4051 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
1da177e4
LT
4052 cmn_err(CE_NOTE,
4053 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4054 sbp->sb_icount, itotal);
4055 cmn_err(CE_NOTE,
4056 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4057 sbp->sb_ifree, ifree);
4058 cmn_err(CE_NOTE,
4059 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4060 sbp->sb_fdblocks, freeblks);
4061#if 0
4062 /*
4063 * This is turned off until I account for the allocation
4064 * btree blocks which live in free space.
4065 */
4066 ASSERT(sbp->sb_icount == itotal);
4067 ASSERT(sbp->sb_ifree == ifree);
4068 ASSERT(sbp->sb_fdblocks == freeblks);
4069#endif
4070#endif
4071 xfs_buf_relse(sbbp);
4072}
4073#endif /* DEBUG */