]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/xfs/xfs_log_recover.c
[XFS] Add an XFS callout to security_inode_init_security; SE Linux is not
[net-next-2.6.git] / fs / xfs / xfs_log_recover.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4 24#include "xfs_trans.h"
a844f451
NS
25#include "xfs_sb.h"
26#include "xfs_ag.h"
1da177e4
LT
27#include "xfs_dir.h"
28#include "xfs_dir2.h"
29#include "xfs_dmapi.h"
30#include "xfs_mount.h"
31#include "xfs_error.h"
32#include "xfs_bmap_btree.h"
a844f451
NS
33#include "xfs_alloc_btree.h"
34#include "xfs_ialloc_btree.h"
1da177e4
LT
35#include "xfs_dir_sf.h"
36#include "xfs_dir2_sf.h"
a844f451 37#include "xfs_attr_sf.h"
1da177e4 38#include "xfs_dinode.h"
1da177e4 39#include "xfs_inode.h"
a844f451
NS
40#include "xfs_inode_item.h"
41#include "xfs_imap.h"
42#include "xfs_alloc.h"
1da177e4
LT
43#include "xfs_ialloc.h"
44#include "xfs_log_priv.h"
45#include "xfs_buf_item.h"
1da177e4
LT
46#include "xfs_log_recover.h"
47#include "xfs_extfree_item.h"
48#include "xfs_trans_priv.h"
1da177e4
LT
49#include "xfs_quota.h"
50#include "xfs_rw.h"
51
52STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
53STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
54STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q,
55 xlog_recover_item_t *item);
56#if defined(DEBUG)
57STATIC void xlog_recover_check_summary(xlog_t *);
58STATIC void xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int);
59#else
60#define xlog_recover_check_summary(log)
61#define xlog_recover_check_ail(mp, lip, gen)
62#endif
63
64
65/*
66 * Sector aligned buffer routines for buffer create/read/write/access
67 */
68
69#define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
70 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
71 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
72#define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
73
74xfs_buf_t *
75xlog_get_bp(
76 xlog_t *log,
77 int num_bblks)
78{
79 ASSERT(num_bblks > 0);
80
81 if (log->l_sectbb_log) {
82 if (num_bblks > 1)
83 num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
84 num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
85 }
86 return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
87}
88
89void
90xlog_put_bp(
91 xfs_buf_t *bp)
92{
93 xfs_buf_free(bp);
94}
95
96
97/*
98 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
99 */
100int
101xlog_bread(
102 xlog_t *log,
103 xfs_daddr_t blk_no,
104 int nbblks,
105 xfs_buf_t *bp)
106{
107 int error;
108
109 if (log->l_sectbb_log) {
110 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
111 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
112 }
113
114 ASSERT(nbblks > 0);
115 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
116 ASSERT(bp);
117
118 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
119 XFS_BUF_READ(bp);
120 XFS_BUF_BUSY(bp);
121 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
122 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
123
124 xfsbdstrat(log->l_mp, bp);
125 if ((error = xfs_iowait(bp)))
126 xfs_ioerror_alert("xlog_bread", log->l_mp,
127 bp, XFS_BUF_ADDR(bp));
128 return error;
129}
130
131/*
132 * Write out the buffer at the given block for the given number of blocks.
133 * The buffer is kept locked across the write and is returned locked.
134 * This can only be used for synchronous log writes.
135 */
ba0f32d4 136STATIC int
1da177e4
LT
137xlog_bwrite(
138 xlog_t *log,
139 xfs_daddr_t blk_no,
140 int nbblks,
141 xfs_buf_t *bp)
142{
143 int error;
144
145 if (log->l_sectbb_log) {
146 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
147 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
148 }
149
150 ASSERT(nbblks > 0);
151 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
152
153 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
154 XFS_BUF_ZEROFLAGS(bp);
155 XFS_BUF_BUSY(bp);
156 XFS_BUF_HOLD(bp);
157 XFS_BUF_PSEMA(bp, PRIBIO);
158 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
159 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
160
161 if ((error = xfs_bwrite(log->l_mp, bp)))
162 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
163 bp, XFS_BUF_ADDR(bp));
164 return error;
165}
166
ba0f32d4 167STATIC xfs_caddr_t
1da177e4
LT
168xlog_align(
169 xlog_t *log,
170 xfs_daddr_t blk_no,
171 int nbblks,
172 xfs_buf_t *bp)
173{
174 xfs_caddr_t ptr;
175
176 if (!log->l_sectbb_log)
177 return XFS_BUF_PTR(bp);
178
179 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
180 ASSERT(XFS_BUF_SIZE(bp) >=
181 BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
182 return ptr;
183}
184
185#ifdef DEBUG
186/*
187 * dump debug superblock and log record information
188 */
189STATIC void
190xlog_header_check_dump(
191 xfs_mount_t *mp,
192 xlog_rec_header_t *head)
193{
194 int b;
195
196 printk("%s: SB : uuid = ", __FUNCTION__);
197 for (b = 0; b < 16; b++)
198 printk("%02x",((unsigned char *)&mp->m_sb.sb_uuid)[b]);
199 printk(", fmt = %d\n", XLOG_FMT);
200 printk(" log : uuid = ");
201 for (b = 0; b < 16; b++)
202 printk("%02x",((unsigned char *)&head->h_fs_uuid)[b]);
203 printk(", fmt = %d\n", INT_GET(head->h_fmt, ARCH_CONVERT));
204}
205#else
206#define xlog_header_check_dump(mp, head)
207#endif
208
209/*
210 * check log record header for recovery
211 */
212STATIC int
213xlog_header_check_recover(
214 xfs_mount_t *mp,
215 xlog_rec_header_t *head)
216{
217 ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
218
219 /*
220 * IRIX doesn't write the h_fmt field and leaves it zeroed
221 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
222 * a dirty log created in IRIX.
223 */
224 if (unlikely(INT_GET(head->h_fmt, ARCH_CONVERT) != XLOG_FMT)) {
225 xlog_warn(
226 "XFS: dirty log written in incompatible format - can't recover");
227 xlog_header_check_dump(mp, head);
228 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
229 XFS_ERRLEVEL_HIGH, mp);
230 return XFS_ERROR(EFSCORRUPTED);
231 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
232 xlog_warn(
233 "XFS: dirty log entry has mismatched uuid - can't recover");
234 xlog_header_check_dump(mp, head);
235 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
236 XFS_ERRLEVEL_HIGH, mp);
237 return XFS_ERROR(EFSCORRUPTED);
238 }
239 return 0;
240}
241
242/*
243 * read the head block of the log and check the header
244 */
245STATIC int
246xlog_header_check_mount(
247 xfs_mount_t *mp,
248 xlog_rec_header_t *head)
249{
250 ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
251
252 if (uuid_is_nil(&head->h_fs_uuid)) {
253 /*
254 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
255 * h_fs_uuid is nil, we assume this log was last mounted
256 * by IRIX and continue.
257 */
258 xlog_warn("XFS: nil uuid in log - IRIX style log");
259 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
260 xlog_warn("XFS: log has mismatched uuid - can't recover");
261 xlog_header_check_dump(mp, head);
262 XFS_ERROR_REPORT("xlog_header_check_mount",
263 XFS_ERRLEVEL_HIGH, mp);
264 return XFS_ERROR(EFSCORRUPTED);
265 }
266 return 0;
267}
268
269STATIC void
270xlog_recover_iodone(
271 struct xfs_buf *bp)
272{
273 xfs_mount_t *mp;
274
275 ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
276
277 if (XFS_BUF_GETERROR(bp)) {
278 /*
279 * We're not going to bother about retrying
280 * this during recovery. One strike!
281 */
282 mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
283 xfs_ioerror_alert("xlog_recover_iodone",
284 mp, bp, XFS_BUF_ADDR(bp));
285 xfs_force_shutdown(mp, XFS_METADATA_IO_ERROR);
286 }
287 XFS_BUF_SET_FSPRIVATE(bp, NULL);
288 XFS_BUF_CLR_IODONE_FUNC(bp);
289 xfs_biodone(bp);
290}
291
292/*
293 * This routine finds (to an approximation) the first block in the physical
294 * log which contains the given cycle. It uses a binary search algorithm.
295 * Note that the algorithm can not be perfect because the disk will not
296 * necessarily be perfect.
297 */
298int
299xlog_find_cycle_start(
300 xlog_t *log,
301 xfs_buf_t *bp,
302 xfs_daddr_t first_blk,
303 xfs_daddr_t *last_blk,
304 uint cycle)
305{
306 xfs_caddr_t offset;
307 xfs_daddr_t mid_blk;
308 uint mid_cycle;
309 int error;
310
311 mid_blk = BLK_AVG(first_blk, *last_blk);
312 while (mid_blk != first_blk && mid_blk != *last_blk) {
313 if ((error = xlog_bread(log, mid_blk, 1, bp)))
314 return error;
315 offset = xlog_align(log, mid_blk, 1, bp);
316 mid_cycle = GET_CYCLE(offset, ARCH_CONVERT);
317 if (mid_cycle == cycle) {
318 *last_blk = mid_blk;
319 /* last_half_cycle == mid_cycle */
320 } else {
321 first_blk = mid_blk;
322 /* first_half_cycle == mid_cycle */
323 }
324 mid_blk = BLK_AVG(first_blk, *last_blk);
325 }
326 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
327 (mid_blk == *last_blk && mid_blk-1 == first_blk));
328
329 return 0;
330}
331
332/*
333 * Check that the range of blocks does not contain the cycle number
334 * given. The scan needs to occur from front to back and the ptr into the
335 * region must be updated since a later routine will need to perform another
336 * test. If the region is completely good, we end up returning the same
337 * last block number.
338 *
339 * Set blkno to -1 if we encounter no errors. This is an invalid block number
340 * since we don't ever expect logs to get this large.
341 */
342STATIC int
343xlog_find_verify_cycle(
344 xlog_t *log,
345 xfs_daddr_t start_blk,
346 int nbblks,
347 uint stop_on_cycle_no,
348 xfs_daddr_t *new_blk)
349{
350 xfs_daddr_t i, j;
351 uint cycle;
352 xfs_buf_t *bp;
353 xfs_daddr_t bufblks;
354 xfs_caddr_t buf = NULL;
355 int error = 0;
356
357 bufblks = 1 << ffs(nbblks);
358
359 while (!(bp = xlog_get_bp(log, bufblks))) {
360 /* can't get enough memory to do everything in one big buffer */
361 bufblks >>= 1;
362 if (bufblks <= log->l_sectbb_log)
363 return ENOMEM;
364 }
365
366 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
367 int bcount;
368
369 bcount = min(bufblks, (start_blk + nbblks - i));
370
371 if ((error = xlog_bread(log, i, bcount, bp)))
372 goto out;
373
374 buf = xlog_align(log, i, bcount, bp);
375 for (j = 0; j < bcount; j++) {
376 cycle = GET_CYCLE(buf, ARCH_CONVERT);
377 if (cycle == stop_on_cycle_no) {
378 *new_blk = i+j;
379 goto out;
380 }
381
382 buf += BBSIZE;
383 }
384 }
385
386 *new_blk = -1;
387
388out:
389 xlog_put_bp(bp);
390 return error;
391}
392
393/*
394 * Potentially backup over partial log record write.
395 *
396 * In the typical case, last_blk is the number of the block directly after
397 * a good log record. Therefore, we subtract one to get the block number
398 * of the last block in the given buffer. extra_bblks contains the number
399 * of blocks we would have read on a previous read. This happens when the
400 * last log record is split over the end of the physical log.
401 *
402 * extra_bblks is the number of blocks potentially verified on a previous
403 * call to this routine.
404 */
405STATIC int
406xlog_find_verify_log_record(
407 xlog_t *log,
408 xfs_daddr_t start_blk,
409 xfs_daddr_t *last_blk,
410 int extra_bblks)
411{
412 xfs_daddr_t i;
413 xfs_buf_t *bp;
414 xfs_caddr_t offset = NULL;
415 xlog_rec_header_t *head = NULL;
416 int error = 0;
417 int smallmem = 0;
418 int num_blks = *last_blk - start_blk;
419 int xhdrs;
420
421 ASSERT(start_blk != 0 || *last_blk != start_blk);
422
423 if (!(bp = xlog_get_bp(log, num_blks))) {
424 if (!(bp = xlog_get_bp(log, 1)))
425 return ENOMEM;
426 smallmem = 1;
427 } else {
428 if ((error = xlog_bread(log, start_blk, num_blks, bp)))
429 goto out;
430 offset = xlog_align(log, start_blk, num_blks, bp);
431 offset += ((num_blks - 1) << BBSHIFT);
432 }
433
434 for (i = (*last_blk) - 1; i >= 0; i--) {
435 if (i < start_blk) {
436 /* valid log record not found */
437 xlog_warn(
438 "XFS: Log inconsistent (didn't find previous header)");
439 ASSERT(0);
440 error = XFS_ERROR(EIO);
441 goto out;
442 }
443
444 if (smallmem) {
445 if ((error = xlog_bread(log, i, 1, bp)))
446 goto out;
447 offset = xlog_align(log, i, 1, bp);
448 }
449
450 head = (xlog_rec_header_t *)offset;
451
452 if (XLOG_HEADER_MAGIC_NUM ==
453 INT_GET(head->h_magicno, ARCH_CONVERT))
454 break;
455
456 if (!smallmem)
457 offset -= BBSIZE;
458 }
459
460 /*
461 * We hit the beginning of the physical log & still no header. Return
462 * to caller. If caller can handle a return of -1, then this routine
463 * will be called again for the end of the physical log.
464 */
465 if (i == -1) {
466 error = -1;
467 goto out;
468 }
469
470 /*
471 * We have the final block of the good log (the first block
472 * of the log record _before_ the head. So we check the uuid.
473 */
474 if ((error = xlog_header_check_mount(log->l_mp, head)))
475 goto out;
476
477 /*
478 * We may have found a log record header before we expected one.
479 * last_blk will be the 1st block # with a given cycle #. We may end
480 * up reading an entire log record. In this case, we don't want to
481 * reset last_blk. Only when last_blk points in the middle of a log
482 * record do we update last_blk.
483 */
484 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
485 uint h_size = INT_GET(head->h_size, ARCH_CONVERT);
486
487 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
488 if (h_size % XLOG_HEADER_CYCLE_SIZE)
489 xhdrs++;
490 } else {
491 xhdrs = 1;
492 }
493
494 if (*last_blk - i + extra_bblks
495 != BTOBB(INT_GET(head->h_len, ARCH_CONVERT)) + xhdrs)
496 *last_blk = i;
497
498out:
499 xlog_put_bp(bp);
500 return error;
501}
502
503/*
504 * Head is defined to be the point of the log where the next log write
505 * write could go. This means that incomplete LR writes at the end are
506 * eliminated when calculating the head. We aren't guaranteed that previous
507 * LR have complete transactions. We only know that a cycle number of
508 * current cycle number -1 won't be present in the log if we start writing
509 * from our current block number.
510 *
511 * last_blk contains the block number of the first block with a given
512 * cycle number.
513 *
514 * Return: zero if normal, non-zero if error.
515 */
ba0f32d4 516STATIC int
1da177e4
LT
517xlog_find_head(
518 xlog_t *log,
519 xfs_daddr_t *return_head_blk)
520{
521 xfs_buf_t *bp;
522 xfs_caddr_t offset;
523 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
524 int num_scan_bblks;
525 uint first_half_cycle, last_half_cycle;
526 uint stop_on_cycle;
527 int error, log_bbnum = log->l_logBBsize;
528
529 /* Is the end of the log device zeroed? */
530 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
531 *return_head_blk = first_blk;
532
533 /* Is the whole lot zeroed? */
534 if (!first_blk) {
535 /* Linux XFS shouldn't generate totally zeroed logs -
536 * mkfs etc write a dummy unmount record to a fresh
537 * log so we can store the uuid in there
538 */
539 xlog_warn("XFS: totally zeroed log");
540 }
541
542 return 0;
543 } else if (error) {
544 xlog_warn("XFS: empty log check failed");
545 return error;
546 }
547
548 first_blk = 0; /* get cycle # of 1st block */
549 bp = xlog_get_bp(log, 1);
550 if (!bp)
551 return ENOMEM;
552 if ((error = xlog_bread(log, 0, 1, bp)))
553 goto bp_err;
554 offset = xlog_align(log, 0, 1, bp);
555 first_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
556
557 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
558 if ((error = xlog_bread(log, last_blk, 1, bp)))
559 goto bp_err;
560 offset = xlog_align(log, last_blk, 1, bp);
561 last_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
562 ASSERT(last_half_cycle != 0);
563
564 /*
565 * If the 1st half cycle number is equal to the last half cycle number,
566 * then the entire log is stamped with the same cycle number. In this
567 * case, head_blk can't be set to zero (which makes sense). The below
568 * math doesn't work out properly with head_blk equal to zero. Instead,
569 * we set it to log_bbnum which is an invalid block number, but this
570 * value makes the math correct. If head_blk doesn't changed through
571 * all the tests below, *head_blk is set to zero at the very end rather
572 * than log_bbnum. In a sense, log_bbnum and zero are the same block
573 * in a circular file.
574 */
575 if (first_half_cycle == last_half_cycle) {
576 /*
577 * In this case we believe that the entire log should have
578 * cycle number last_half_cycle. We need to scan backwards
579 * from the end verifying that there are no holes still
580 * containing last_half_cycle - 1. If we find such a hole,
581 * then the start of that hole will be the new head. The
582 * simple case looks like
583 * x | x ... | x - 1 | x
584 * Another case that fits this picture would be
585 * x | x + 1 | x ... | x
586 * In this case the head really is somwhere at the end of the
587 * log, as one of the latest writes at the beginning was
588 * incomplete.
589 * One more case is
590 * x | x + 1 | x ... | x - 1 | x
591 * This is really the combination of the above two cases, and
592 * the head has to end up at the start of the x-1 hole at the
593 * end of the log.
594 *
595 * In the 256k log case, we will read from the beginning to the
596 * end of the log and search for cycle numbers equal to x-1.
597 * We don't worry about the x+1 blocks that we encounter,
598 * because we know that they cannot be the head since the log
599 * started with x.
600 */
601 head_blk = log_bbnum;
602 stop_on_cycle = last_half_cycle - 1;
603 } else {
604 /*
605 * In this case we want to find the first block with cycle
606 * number matching last_half_cycle. We expect the log to be
607 * some variation on
608 * x + 1 ... | x ...
609 * The first block with cycle number x (last_half_cycle) will
610 * be where the new head belongs. First we do a binary search
611 * for the first occurrence of last_half_cycle. The binary
612 * search may not be totally accurate, so then we scan back
613 * from there looking for occurrences of last_half_cycle before
614 * us. If that backwards scan wraps around the beginning of
615 * the log, then we look for occurrences of last_half_cycle - 1
616 * at the end of the log. The cases we're looking for look
617 * like
618 * x + 1 ... | x | x + 1 | x ...
619 * ^ binary search stopped here
620 * or
621 * x + 1 ... | x ... | x - 1 | x
622 * <---------> less than scan distance
623 */
624 stop_on_cycle = last_half_cycle;
625 if ((error = xlog_find_cycle_start(log, bp, first_blk,
626 &head_blk, last_half_cycle)))
627 goto bp_err;
628 }
629
630 /*
631 * Now validate the answer. Scan back some number of maximum possible
632 * blocks and make sure each one has the expected cycle number. The
633 * maximum is determined by the total possible amount of buffering
634 * in the in-core log. The following number can be made tighter if
635 * we actually look at the block size of the filesystem.
636 */
637 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
638 if (head_blk >= num_scan_bblks) {
639 /*
640 * We are guaranteed that the entire check can be performed
641 * in one buffer.
642 */
643 start_blk = head_blk - num_scan_bblks;
644 if ((error = xlog_find_verify_cycle(log,
645 start_blk, num_scan_bblks,
646 stop_on_cycle, &new_blk)))
647 goto bp_err;
648 if (new_blk != -1)
649 head_blk = new_blk;
650 } else { /* need to read 2 parts of log */
651 /*
652 * We are going to scan backwards in the log in two parts.
653 * First we scan the physical end of the log. In this part
654 * of the log, we are looking for blocks with cycle number
655 * last_half_cycle - 1.
656 * If we find one, then we know that the log starts there, as
657 * we've found a hole that didn't get written in going around
658 * the end of the physical log. The simple case for this is
659 * x + 1 ... | x ... | x - 1 | x
660 * <---------> less than scan distance
661 * If all of the blocks at the end of the log have cycle number
662 * last_half_cycle, then we check the blocks at the start of
663 * the log looking for occurrences of last_half_cycle. If we
664 * find one, then our current estimate for the location of the
665 * first occurrence of last_half_cycle is wrong and we move
666 * back to the hole we've found. This case looks like
667 * x + 1 ... | x | x + 1 | x ...
668 * ^ binary search stopped here
669 * Another case we need to handle that only occurs in 256k
670 * logs is
671 * x + 1 ... | x ... | x+1 | x ...
672 * ^ binary search stops here
673 * In a 256k log, the scan at the end of the log will see the
674 * x + 1 blocks. We need to skip past those since that is
675 * certainly not the head of the log. By searching for
676 * last_half_cycle-1 we accomplish that.
677 */
678 start_blk = log_bbnum - num_scan_bblks + head_blk;
679 ASSERT(head_blk <= INT_MAX &&
680 (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
681 if ((error = xlog_find_verify_cycle(log, start_blk,
682 num_scan_bblks - (int)head_blk,
683 (stop_on_cycle - 1), &new_blk)))
684 goto bp_err;
685 if (new_blk != -1) {
686 head_blk = new_blk;
687 goto bad_blk;
688 }
689
690 /*
691 * Scan beginning of log now. The last part of the physical
692 * log is good. This scan needs to verify that it doesn't find
693 * the last_half_cycle.
694 */
695 start_blk = 0;
696 ASSERT(head_blk <= INT_MAX);
697 if ((error = xlog_find_verify_cycle(log,
698 start_blk, (int)head_blk,
699 stop_on_cycle, &new_blk)))
700 goto bp_err;
701 if (new_blk != -1)
702 head_blk = new_blk;
703 }
704
705 bad_blk:
706 /*
707 * Now we need to make sure head_blk is not pointing to a block in
708 * the middle of a log record.
709 */
710 num_scan_bblks = XLOG_REC_SHIFT(log);
711 if (head_blk >= num_scan_bblks) {
712 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
713
714 /* start ptr at last block ptr before head_blk */
715 if ((error = xlog_find_verify_log_record(log, start_blk,
716 &head_blk, 0)) == -1) {
717 error = XFS_ERROR(EIO);
718 goto bp_err;
719 } else if (error)
720 goto bp_err;
721 } else {
722 start_blk = 0;
723 ASSERT(head_blk <= INT_MAX);
724 if ((error = xlog_find_verify_log_record(log, start_blk,
725 &head_blk, 0)) == -1) {
726 /* We hit the beginning of the log during our search */
727 start_blk = log_bbnum - num_scan_bblks + head_blk;
728 new_blk = log_bbnum;
729 ASSERT(start_blk <= INT_MAX &&
730 (xfs_daddr_t) log_bbnum-start_blk >= 0);
731 ASSERT(head_blk <= INT_MAX);
732 if ((error = xlog_find_verify_log_record(log,
733 start_blk, &new_blk,
734 (int)head_blk)) == -1) {
735 error = XFS_ERROR(EIO);
736 goto bp_err;
737 } else if (error)
738 goto bp_err;
739 if (new_blk != log_bbnum)
740 head_blk = new_blk;
741 } else if (error)
742 goto bp_err;
743 }
744
745 xlog_put_bp(bp);
746 if (head_blk == log_bbnum)
747 *return_head_blk = 0;
748 else
749 *return_head_blk = head_blk;
750 /*
751 * When returning here, we have a good block number. Bad block
752 * means that during a previous crash, we didn't have a clean break
753 * from cycle number N to cycle number N-1. In this case, we need
754 * to find the first block with cycle number N-1.
755 */
756 return 0;
757
758 bp_err:
759 xlog_put_bp(bp);
760
761 if (error)
762 xlog_warn("XFS: failed to find log head");
763 return error;
764}
765
766/*
767 * Find the sync block number or the tail of the log.
768 *
769 * This will be the block number of the last record to have its
770 * associated buffers synced to disk. Every log record header has
771 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
772 * to get a sync block number. The only concern is to figure out which
773 * log record header to believe.
774 *
775 * The following algorithm uses the log record header with the largest
776 * lsn. The entire log record does not need to be valid. We only care
777 * that the header is valid.
778 *
779 * We could speed up search by using current head_blk buffer, but it is not
780 * available.
781 */
782int
783xlog_find_tail(
784 xlog_t *log,
785 xfs_daddr_t *head_blk,
65be6054 786 xfs_daddr_t *tail_blk)
1da177e4
LT
787{
788 xlog_rec_header_t *rhead;
789 xlog_op_header_t *op_head;
790 xfs_caddr_t offset = NULL;
791 xfs_buf_t *bp;
792 int error, i, found;
793 xfs_daddr_t umount_data_blk;
794 xfs_daddr_t after_umount_blk;
795 xfs_lsn_t tail_lsn;
796 int hblks;
797
798 found = 0;
799
800 /*
801 * Find previous log record
802 */
803 if ((error = xlog_find_head(log, head_blk)))
804 return error;
805
806 bp = xlog_get_bp(log, 1);
807 if (!bp)
808 return ENOMEM;
809 if (*head_blk == 0) { /* special case */
810 if ((error = xlog_bread(log, 0, 1, bp)))
811 goto bread_err;
812 offset = xlog_align(log, 0, 1, bp);
813 if (GET_CYCLE(offset, ARCH_CONVERT) == 0) {
814 *tail_blk = 0;
815 /* leave all other log inited values alone */
816 goto exit;
817 }
818 }
819
820 /*
821 * Search backwards looking for log record header block
822 */
823 ASSERT(*head_blk < INT_MAX);
824 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
825 if ((error = xlog_bread(log, i, 1, bp)))
826 goto bread_err;
827 offset = xlog_align(log, i, 1, bp);
828 if (XLOG_HEADER_MAGIC_NUM ==
829 INT_GET(*(uint *)offset, ARCH_CONVERT)) {
830 found = 1;
831 break;
832 }
833 }
834 /*
835 * If we haven't found the log record header block, start looking
836 * again from the end of the physical log. XXXmiken: There should be
837 * a check here to make sure we didn't search more than N blocks in
838 * the previous code.
839 */
840 if (!found) {
841 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
842 if ((error = xlog_bread(log, i, 1, bp)))
843 goto bread_err;
844 offset = xlog_align(log, i, 1, bp);
845 if (XLOG_HEADER_MAGIC_NUM ==
846 INT_GET(*(uint*)offset, ARCH_CONVERT)) {
847 found = 2;
848 break;
849 }
850 }
851 }
852 if (!found) {
853 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
854 ASSERT(0);
855 return XFS_ERROR(EIO);
856 }
857
858 /* find blk_no of tail of log */
859 rhead = (xlog_rec_header_t *)offset;
860 *tail_blk = BLOCK_LSN(INT_GET(rhead->h_tail_lsn, ARCH_CONVERT));
861
862 /*
863 * Reset log values according to the state of the log when we
864 * crashed. In the case where head_blk == 0, we bump curr_cycle
865 * one because the next write starts a new cycle rather than
866 * continuing the cycle of the last good log record. At this
867 * point we have guaranteed that all partial log records have been
868 * accounted for. Therefore, we know that the last good log record
869 * written was complete and ended exactly on the end boundary
870 * of the physical log.
871 */
872 log->l_prev_block = i;
873 log->l_curr_block = (int)*head_blk;
874 log->l_curr_cycle = INT_GET(rhead->h_cycle, ARCH_CONVERT);
875 if (found == 2)
876 log->l_curr_cycle++;
877 log->l_tail_lsn = INT_GET(rhead->h_tail_lsn, ARCH_CONVERT);
878 log->l_last_sync_lsn = INT_GET(rhead->h_lsn, ARCH_CONVERT);
879 log->l_grant_reserve_cycle = log->l_curr_cycle;
880 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
881 log->l_grant_write_cycle = log->l_curr_cycle;
882 log->l_grant_write_bytes = BBTOB(log->l_curr_block);
883
884 /*
885 * Look for unmount record. If we find it, then we know there
886 * was a clean unmount. Since 'i' could be the last block in
887 * the physical log, we convert to a log block before comparing
888 * to the head_blk.
889 *
890 * Save the current tail lsn to use to pass to
891 * xlog_clear_stale_blocks() below. We won't want to clear the
892 * unmount record if there is one, so we pass the lsn of the
893 * unmount record rather than the block after it.
894 */
895 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
896 int h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
897 int h_version = INT_GET(rhead->h_version, ARCH_CONVERT);
898
899 if ((h_version & XLOG_VERSION_2) &&
900 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
901 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
902 if (h_size % XLOG_HEADER_CYCLE_SIZE)
903 hblks++;
904 } else {
905 hblks = 1;
906 }
907 } else {
908 hblks = 1;
909 }
910 after_umount_blk = (i + hblks + (int)
911 BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT))) % log->l_logBBsize;
912 tail_lsn = log->l_tail_lsn;
913 if (*head_blk == after_umount_blk &&
914 INT_GET(rhead->h_num_logops, ARCH_CONVERT) == 1) {
915 umount_data_blk = (i + hblks) % log->l_logBBsize;
916 if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
917 goto bread_err;
918 }
919 offset = xlog_align(log, umount_data_blk, 1, bp);
920 op_head = (xlog_op_header_t *)offset;
921 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
922 /*
923 * Set tail and last sync so that newly written
924 * log records will point recovery to after the
925 * current unmount record.
926 */
927 ASSIGN_ANY_LSN_HOST(log->l_tail_lsn, log->l_curr_cycle,
928 after_umount_blk);
929 ASSIGN_ANY_LSN_HOST(log->l_last_sync_lsn, log->l_curr_cycle,
930 after_umount_blk);
931 *tail_blk = after_umount_blk;
932 }
933 }
934
935 /*
936 * Make sure that there are no blocks in front of the head
937 * with the same cycle number as the head. This can happen
938 * because we allow multiple outstanding log writes concurrently,
939 * and the later writes might make it out before earlier ones.
940 *
941 * We use the lsn from before modifying it so that we'll never
942 * overwrite the unmount record after a clean unmount.
943 *
944 * Do this only if we are going to recover the filesystem
945 *
946 * NOTE: This used to say "if (!readonly)"
947 * However on Linux, we can & do recover a read-only filesystem.
948 * We only skip recovery if NORECOVERY is specified on mount,
949 * in which case we would not be here.
950 *
951 * But... if the -device- itself is readonly, just skip this.
952 * We can't recover this device anyway, so it won't matter.
953 */
954 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
955 error = xlog_clear_stale_blocks(log, tail_lsn);
956 }
957
958bread_err:
959exit:
960 xlog_put_bp(bp);
961
962 if (error)
963 xlog_warn("XFS: failed to locate log tail");
964 return error;
965}
966
967/*
968 * Is the log zeroed at all?
969 *
970 * The last binary search should be changed to perform an X block read
971 * once X becomes small enough. You can then search linearly through
972 * the X blocks. This will cut down on the number of reads we need to do.
973 *
974 * If the log is partially zeroed, this routine will pass back the blkno
975 * of the first block with cycle number 0. It won't have a complete LR
976 * preceding it.
977 *
978 * Return:
979 * 0 => the log is completely written to
980 * -1 => use *blk_no as the first block of the log
981 * >0 => error has occurred
982 */
983int
984xlog_find_zeroed(
985 xlog_t *log,
986 xfs_daddr_t *blk_no)
987{
988 xfs_buf_t *bp;
989 xfs_caddr_t offset;
990 uint first_cycle, last_cycle;
991 xfs_daddr_t new_blk, last_blk, start_blk;
992 xfs_daddr_t num_scan_bblks;
993 int error, log_bbnum = log->l_logBBsize;
994
995 /* check totally zeroed log */
996 bp = xlog_get_bp(log, 1);
997 if (!bp)
998 return ENOMEM;
999 if ((error = xlog_bread(log, 0, 1, bp)))
1000 goto bp_err;
1001 offset = xlog_align(log, 0, 1, bp);
1002 first_cycle = GET_CYCLE(offset, ARCH_CONVERT);
1003 if (first_cycle == 0) { /* completely zeroed log */
1004 *blk_no = 0;
1005 xlog_put_bp(bp);
1006 return -1;
1007 }
1008
1009 /* check partially zeroed log */
1010 if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
1011 goto bp_err;
1012 offset = xlog_align(log, log_bbnum-1, 1, bp);
1013 last_cycle = GET_CYCLE(offset, ARCH_CONVERT);
1014 if (last_cycle != 0) { /* log completely written to */
1015 xlog_put_bp(bp);
1016 return 0;
1017 } else if (first_cycle != 1) {
1018 /*
1019 * If the cycle of the last block is zero, the cycle of
1020 * the first block must be 1. If it's not, maybe we're
1021 * not looking at a log... Bail out.
1022 */
1023 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1024 return XFS_ERROR(EINVAL);
1025 }
1026
1027 /* we have a partially zeroed log */
1028 last_blk = log_bbnum-1;
1029 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1030 goto bp_err;
1031
1032 /*
1033 * Validate the answer. Because there is no way to guarantee that
1034 * the entire log is made up of log records which are the same size,
1035 * we scan over the defined maximum blocks. At this point, the maximum
1036 * is not chosen to mean anything special. XXXmiken
1037 */
1038 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1039 ASSERT(num_scan_bblks <= INT_MAX);
1040
1041 if (last_blk < num_scan_bblks)
1042 num_scan_bblks = last_blk;
1043 start_blk = last_blk - num_scan_bblks;
1044
1045 /*
1046 * We search for any instances of cycle number 0 that occur before
1047 * our current estimate of the head. What we're trying to detect is
1048 * 1 ... | 0 | 1 | 0...
1049 * ^ binary search ends here
1050 */
1051 if ((error = xlog_find_verify_cycle(log, start_blk,
1052 (int)num_scan_bblks, 0, &new_blk)))
1053 goto bp_err;
1054 if (new_blk != -1)
1055 last_blk = new_blk;
1056
1057 /*
1058 * Potentially backup over partial log record write. We don't need
1059 * to search the end of the log because we know it is zero.
1060 */
1061 if ((error = xlog_find_verify_log_record(log, start_blk,
1062 &last_blk, 0)) == -1) {
1063 error = XFS_ERROR(EIO);
1064 goto bp_err;
1065 } else if (error)
1066 goto bp_err;
1067
1068 *blk_no = last_blk;
1069bp_err:
1070 xlog_put_bp(bp);
1071 if (error)
1072 return error;
1073 return -1;
1074}
1075
1076/*
1077 * These are simple subroutines used by xlog_clear_stale_blocks() below
1078 * to initialize a buffer full of empty log record headers and write
1079 * them into the log.
1080 */
1081STATIC void
1082xlog_add_record(
1083 xlog_t *log,
1084 xfs_caddr_t buf,
1085 int cycle,
1086 int block,
1087 int tail_cycle,
1088 int tail_block)
1089{
1090 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1091
1092 memset(buf, 0, BBSIZE);
1093 INT_SET(recp->h_magicno, ARCH_CONVERT, XLOG_HEADER_MAGIC_NUM);
1094 INT_SET(recp->h_cycle, ARCH_CONVERT, cycle);
1095 INT_SET(recp->h_version, ARCH_CONVERT,
1096 XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) ? 2 : 1);
1097 ASSIGN_ANY_LSN_DISK(recp->h_lsn, cycle, block);
1098 ASSIGN_ANY_LSN_DISK(recp->h_tail_lsn, tail_cycle, tail_block);
1099 INT_SET(recp->h_fmt, ARCH_CONVERT, XLOG_FMT);
1100 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1101}
1102
1103STATIC int
1104xlog_write_log_records(
1105 xlog_t *log,
1106 int cycle,
1107 int start_block,
1108 int blocks,
1109 int tail_cycle,
1110 int tail_block)
1111{
1112 xfs_caddr_t offset;
1113 xfs_buf_t *bp;
1114 int balign, ealign;
1115 int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1116 int end_block = start_block + blocks;
1117 int bufblks;
1118 int error = 0;
1119 int i, j = 0;
1120
1121 bufblks = 1 << ffs(blocks);
1122 while (!(bp = xlog_get_bp(log, bufblks))) {
1123 bufblks >>= 1;
1124 if (bufblks <= log->l_sectbb_log)
1125 return ENOMEM;
1126 }
1127
1128 /* We may need to do a read at the start to fill in part of
1129 * the buffer in the starting sector not covered by the first
1130 * write below.
1131 */
1132 balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1133 if (balign != start_block) {
1134 if ((error = xlog_bread(log, start_block, 1, bp))) {
1135 xlog_put_bp(bp);
1136 return error;
1137 }
1138 j = start_block - balign;
1139 }
1140
1141 for (i = start_block; i < end_block; i += bufblks) {
1142 int bcount, endcount;
1143
1144 bcount = min(bufblks, end_block - start_block);
1145 endcount = bcount - j;
1146
1147 /* We may need to do a read at the end to fill in part of
1148 * the buffer in the final sector not covered by the write.
1149 * If this is the same sector as the above read, skip it.
1150 */
1151 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1152 if (j == 0 && (start_block + endcount > ealign)) {
1153 offset = XFS_BUF_PTR(bp);
1154 balign = BBTOB(ealign - start_block);
1155 XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb));
1156 if ((error = xlog_bread(log, ealign, sectbb, bp)))
1157 break;
1158 XFS_BUF_SET_PTR(bp, offset, bufblks);
1159 }
1160
1161 offset = xlog_align(log, start_block, endcount, bp);
1162 for (; j < endcount; j++) {
1163 xlog_add_record(log, offset, cycle, i+j,
1164 tail_cycle, tail_block);
1165 offset += BBSIZE;
1166 }
1167 error = xlog_bwrite(log, start_block, endcount, bp);
1168 if (error)
1169 break;
1170 start_block += endcount;
1171 j = 0;
1172 }
1173 xlog_put_bp(bp);
1174 return error;
1175}
1176
1177/*
1178 * This routine is called to blow away any incomplete log writes out
1179 * in front of the log head. We do this so that we won't become confused
1180 * if we come up, write only a little bit more, and then crash again.
1181 * If we leave the partial log records out there, this situation could
1182 * cause us to think those partial writes are valid blocks since they
1183 * have the current cycle number. We get rid of them by overwriting them
1184 * with empty log records with the old cycle number rather than the
1185 * current one.
1186 *
1187 * The tail lsn is passed in rather than taken from
1188 * the log so that we will not write over the unmount record after a
1189 * clean unmount in a 512 block log. Doing so would leave the log without
1190 * any valid log records in it until a new one was written. If we crashed
1191 * during that time we would not be able to recover.
1192 */
1193STATIC int
1194xlog_clear_stale_blocks(
1195 xlog_t *log,
1196 xfs_lsn_t tail_lsn)
1197{
1198 int tail_cycle, head_cycle;
1199 int tail_block, head_block;
1200 int tail_distance, max_distance;
1201 int distance;
1202 int error;
1203
1204 tail_cycle = CYCLE_LSN(tail_lsn);
1205 tail_block = BLOCK_LSN(tail_lsn);
1206 head_cycle = log->l_curr_cycle;
1207 head_block = log->l_curr_block;
1208
1209 /*
1210 * Figure out the distance between the new head of the log
1211 * and the tail. We want to write over any blocks beyond the
1212 * head that we may have written just before the crash, but
1213 * we don't want to overwrite the tail of the log.
1214 */
1215 if (head_cycle == tail_cycle) {
1216 /*
1217 * The tail is behind the head in the physical log,
1218 * so the distance from the head to the tail is the
1219 * distance from the head to the end of the log plus
1220 * the distance from the beginning of the log to the
1221 * tail.
1222 */
1223 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1224 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1225 XFS_ERRLEVEL_LOW, log->l_mp);
1226 return XFS_ERROR(EFSCORRUPTED);
1227 }
1228 tail_distance = tail_block + (log->l_logBBsize - head_block);
1229 } else {
1230 /*
1231 * The head is behind the tail in the physical log,
1232 * so the distance from the head to the tail is just
1233 * the tail block minus the head block.
1234 */
1235 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1236 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1237 XFS_ERRLEVEL_LOW, log->l_mp);
1238 return XFS_ERROR(EFSCORRUPTED);
1239 }
1240 tail_distance = tail_block - head_block;
1241 }
1242
1243 /*
1244 * If the head is right up against the tail, we can't clear
1245 * anything.
1246 */
1247 if (tail_distance <= 0) {
1248 ASSERT(tail_distance == 0);
1249 return 0;
1250 }
1251
1252 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1253 /*
1254 * Take the smaller of the maximum amount of outstanding I/O
1255 * we could have and the distance to the tail to clear out.
1256 * We take the smaller so that we don't overwrite the tail and
1257 * we don't waste all day writing from the head to the tail
1258 * for no reason.
1259 */
1260 max_distance = MIN(max_distance, tail_distance);
1261
1262 if ((head_block + max_distance) <= log->l_logBBsize) {
1263 /*
1264 * We can stomp all the blocks we need to without
1265 * wrapping around the end of the log. Just do it
1266 * in a single write. Use the cycle number of the
1267 * current cycle minus one so that the log will look like:
1268 * n ... | n - 1 ...
1269 */
1270 error = xlog_write_log_records(log, (head_cycle - 1),
1271 head_block, max_distance, tail_cycle,
1272 tail_block);
1273 if (error)
1274 return error;
1275 } else {
1276 /*
1277 * We need to wrap around the end of the physical log in
1278 * order to clear all the blocks. Do it in two separate
1279 * I/Os. The first write should be from the head to the
1280 * end of the physical log, and it should use the current
1281 * cycle number minus one just like above.
1282 */
1283 distance = log->l_logBBsize - head_block;
1284 error = xlog_write_log_records(log, (head_cycle - 1),
1285 head_block, distance, tail_cycle,
1286 tail_block);
1287
1288 if (error)
1289 return error;
1290
1291 /*
1292 * Now write the blocks at the start of the physical log.
1293 * This writes the remainder of the blocks we want to clear.
1294 * It uses the current cycle number since we're now on the
1295 * same cycle as the head so that we get:
1296 * n ... n ... | n - 1 ...
1297 * ^^^^^ blocks we're writing
1298 */
1299 distance = max_distance - (log->l_logBBsize - head_block);
1300 error = xlog_write_log_records(log, head_cycle, 0, distance,
1301 tail_cycle, tail_block);
1302 if (error)
1303 return error;
1304 }
1305
1306 return 0;
1307}
1308
1309/******************************************************************************
1310 *
1311 * Log recover routines
1312 *
1313 ******************************************************************************
1314 */
1315
1316STATIC xlog_recover_t *
1317xlog_recover_find_tid(
1318 xlog_recover_t *q,
1319 xlog_tid_t tid)
1320{
1321 xlog_recover_t *p = q;
1322
1323 while (p != NULL) {
1324 if (p->r_log_tid == tid)
1325 break;
1326 p = p->r_next;
1327 }
1328 return p;
1329}
1330
1331STATIC void
1332xlog_recover_put_hashq(
1333 xlog_recover_t **q,
1334 xlog_recover_t *trans)
1335{
1336 trans->r_next = *q;
1337 *q = trans;
1338}
1339
1340STATIC void
1341xlog_recover_add_item(
1342 xlog_recover_item_t **itemq)
1343{
1344 xlog_recover_item_t *item;
1345
1346 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1347 xlog_recover_insert_item_backq(itemq, item);
1348}
1349
1350STATIC int
1351xlog_recover_add_to_cont_trans(
1352 xlog_recover_t *trans,
1353 xfs_caddr_t dp,
1354 int len)
1355{
1356 xlog_recover_item_t *item;
1357 xfs_caddr_t ptr, old_ptr;
1358 int old_len;
1359
1360 item = trans->r_itemq;
1361 if (item == 0) {
1362 /* finish copying rest of trans header */
1363 xlog_recover_add_item(&trans->r_itemq);
1364 ptr = (xfs_caddr_t) &trans->r_theader +
1365 sizeof(xfs_trans_header_t) - len;
1366 memcpy(ptr, dp, len); /* d, s, l */
1367 return 0;
1368 }
1369 item = item->ri_prev;
1370
1371 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1372 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1373
760dea67 1374 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1da177e4
LT
1375 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1376 item->ri_buf[item->ri_cnt-1].i_len += len;
1377 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1378 return 0;
1379}
1380
1381/*
1382 * The next region to add is the start of a new region. It could be
1383 * a whole region or it could be the first part of a new region. Because
1384 * of this, the assumption here is that the type and size fields of all
1385 * format structures fit into the first 32 bits of the structure.
1386 *
1387 * This works because all regions must be 32 bit aligned. Therefore, we
1388 * either have both fields or we have neither field. In the case we have
1389 * neither field, the data part of the region is zero length. We only have
1390 * a log_op_header and can throw away the header since a new one will appear
1391 * later. If we have at least 4 bytes, then we can determine how many regions
1392 * will appear in the current log item.
1393 */
1394STATIC int
1395xlog_recover_add_to_trans(
1396 xlog_recover_t *trans,
1397 xfs_caddr_t dp,
1398 int len)
1399{
1400 xfs_inode_log_format_t *in_f; /* any will do */
1401 xlog_recover_item_t *item;
1402 xfs_caddr_t ptr;
1403
1404 if (!len)
1405 return 0;
1406 item = trans->r_itemq;
1407 if (item == 0) {
1408 ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC);
1409 if (len == sizeof(xfs_trans_header_t))
1410 xlog_recover_add_item(&trans->r_itemq);
1411 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1412 return 0;
1413 }
1414
1415 ptr = kmem_alloc(len, KM_SLEEP);
1416 memcpy(ptr, dp, len);
1417 in_f = (xfs_inode_log_format_t *)ptr;
1418
1419 if (item->ri_prev->ri_total != 0 &&
1420 item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1421 xlog_recover_add_item(&trans->r_itemq);
1422 }
1423 item = trans->r_itemq;
1424 item = item->ri_prev;
1425
1426 if (item->ri_total == 0) { /* first region to be added */
1427 item->ri_total = in_f->ilf_size;
1428 ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
1429 item->ri_buf = kmem_zalloc((item->ri_total *
1430 sizeof(xfs_log_iovec_t)), KM_SLEEP);
1431 }
1432 ASSERT(item->ri_total > item->ri_cnt);
1433 /* Description region is ri_buf[0] */
1434 item->ri_buf[item->ri_cnt].i_addr = ptr;
1435 item->ri_buf[item->ri_cnt].i_len = len;
1436 item->ri_cnt++;
1437 return 0;
1438}
1439
1440STATIC void
1441xlog_recover_new_tid(
1442 xlog_recover_t **q,
1443 xlog_tid_t tid,
1444 xfs_lsn_t lsn)
1445{
1446 xlog_recover_t *trans;
1447
1448 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1449 trans->r_log_tid = tid;
1450 trans->r_lsn = lsn;
1451 xlog_recover_put_hashq(q, trans);
1452}
1453
1454STATIC int
1455xlog_recover_unlink_tid(
1456 xlog_recover_t **q,
1457 xlog_recover_t *trans)
1458{
1459 xlog_recover_t *tp;
1460 int found = 0;
1461
1462 ASSERT(trans != 0);
1463 if (trans == *q) {
1464 *q = (*q)->r_next;
1465 } else {
1466 tp = *q;
1467 while (tp != 0) {
1468 if (tp->r_next == trans) {
1469 found = 1;
1470 break;
1471 }
1472 tp = tp->r_next;
1473 }
1474 if (!found) {
1475 xlog_warn(
1476 "XFS: xlog_recover_unlink_tid: trans not found");
1477 ASSERT(0);
1478 return XFS_ERROR(EIO);
1479 }
1480 tp->r_next = tp->r_next->r_next;
1481 }
1482 return 0;
1483}
1484
1485STATIC void
1486xlog_recover_insert_item_backq(
1487 xlog_recover_item_t **q,
1488 xlog_recover_item_t *item)
1489{
1490 if (*q == 0) {
1491 item->ri_prev = item->ri_next = item;
1492 *q = item;
1493 } else {
1494 item->ri_next = *q;
1495 item->ri_prev = (*q)->ri_prev;
1496 (*q)->ri_prev = item;
1497 item->ri_prev->ri_next = item;
1498 }
1499}
1500
1501STATIC void
1502xlog_recover_insert_item_frontq(
1503 xlog_recover_item_t **q,
1504 xlog_recover_item_t *item)
1505{
1506 xlog_recover_insert_item_backq(q, item);
1507 *q = item;
1508}
1509
1510STATIC int
1511xlog_recover_reorder_trans(
1512 xlog_t *log,
1513 xlog_recover_t *trans)
1514{
1515 xlog_recover_item_t *first_item, *itemq, *itemq_next;
1516 xfs_buf_log_format_t *buf_f;
1517 xfs_buf_log_format_v1_t *obuf_f;
1518 ushort flags = 0;
1519
1520 first_item = itemq = trans->r_itemq;
1521 trans->r_itemq = NULL;
1522 do {
1523 itemq_next = itemq->ri_next;
1524 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
1525 switch (ITEM_TYPE(itemq)) {
1526 case XFS_LI_BUF:
1527 flags = buf_f->blf_flags;
1528 break;
1529 case XFS_LI_6_1_BUF:
1530 case XFS_LI_5_3_BUF:
1531 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1532 flags = obuf_f->blf_flags;
1533 break;
1534 }
1535
1536 switch (ITEM_TYPE(itemq)) {
1537 case XFS_LI_BUF:
1538 case XFS_LI_6_1_BUF:
1539 case XFS_LI_5_3_BUF:
1540 if (!(flags & XFS_BLI_CANCEL)) {
1541 xlog_recover_insert_item_frontq(&trans->r_itemq,
1542 itemq);
1543 break;
1544 }
1545 case XFS_LI_INODE:
1546 case XFS_LI_6_1_INODE:
1547 case XFS_LI_5_3_INODE:
1548 case XFS_LI_DQUOT:
1549 case XFS_LI_QUOTAOFF:
1550 case XFS_LI_EFD:
1551 case XFS_LI_EFI:
1552 xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1553 break;
1554 default:
1555 xlog_warn(
1556 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1557 ASSERT(0);
1558 return XFS_ERROR(EIO);
1559 }
1560 itemq = itemq_next;
1561 } while (first_item != itemq);
1562 return 0;
1563}
1564
1565/*
1566 * Build up the table of buf cancel records so that we don't replay
1567 * cancelled data in the second pass. For buffer records that are
1568 * not cancel records, there is nothing to do here so we just return.
1569 *
1570 * If we get a cancel record which is already in the table, this indicates
1571 * that the buffer was cancelled multiple times. In order to ensure
1572 * that during pass 2 we keep the record in the table until we reach its
1573 * last occurrence in the log, we keep a reference count in the cancel
1574 * record in the table to tell us how many times we expect to see this
1575 * record during the second pass.
1576 */
1577STATIC void
1578xlog_recover_do_buffer_pass1(
1579 xlog_t *log,
1580 xfs_buf_log_format_t *buf_f)
1581{
1582 xfs_buf_cancel_t *bcp;
1583 xfs_buf_cancel_t *nextp;
1584 xfs_buf_cancel_t *prevp;
1585 xfs_buf_cancel_t **bucket;
1586 xfs_buf_log_format_v1_t *obuf_f;
1587 xfs_daddr_t blkno = 0;
1588 uint len = 0;
1589 ushort flags = 0;
1590
1591 switch (buf_f->blf_type) {
1592 case XFS_LI_BUF:
1593 blkno = buf_f->blf_blkno;
1594 len = buf_f->blf_len;
1595 flags = buf_f->blf_flags;
1596 break;
1597 case XFS_LI_6_1_BUF:
1598 case XFS_LI_5_3_BUF:
1599 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1600 blkno = (xfs_daddr_t) obuf_f->blf_blkno;
1601 len = obuf_f->blf_len;
1602 flags = obuf_f->blf_flags;
1603 break;
1604 }
1605
1606 /*
1607 * If this isn't a cancel buffer item, then just return.
1608 */
1609 if (!(flags & XFS_BLI_CANCEL))
1610 return;
1611
1612 /*
1613 * Insert an xfs_buf_cancel record into the hash table of
1614 * them. If there is already an identical record, bump
1615 * its reference count.
1616 */
1617 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1618 XLOG_BC_TABLE_SIZE];
1619 /*
1620 * If the hash bucket is empty then just insert a new record into
1621 * the bucket.
1622 */
1623 if (*bucket == NULL) {
1624 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1625 KM_SLEEP);
1626 bcp->bc_blkno = blkno;
1627 bcp->bc_len = len;
1628 bcp->bc_refcount = 1;
1629 bcp->bc_next = NULL;
1630 *bucket = bcp;
1631 return;
1632 }
1633
1634 /*
1635 * The hash bucket is not empty, so search for duplicates of our
1636 * record. If we find one them just bump its refcount. If not
1637 * then add us at the end of the list.
1638 */
1639 prevp = NULL;
1640 nextp = *bucket;
1641 while (nextp != NULL) {
1642 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1643 nextp->bc_refcount++;
1644 return;
1645 }
1646 prevp = nextp;
1647 nextp = nextp->bc_next;
1648 }
1649 ASSERT(prevp != NULL);
1650 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1651 KM_SLEEP);
1652 bcp->bc_blkno = blkno;
1653 bcp->bc_len = len;
1654 bcp->bc_refcount = 1;
1655 bcp->bc_next = NULL;
1656 prevp->bc_next = bcp;
1657}
1658
1659/*
1660 * Check to see whether the buffer being recovered has a corresponding
1661 * entry in the buffer cancel record table. If it does then return 1
1662 * so that it will be cancelled, otherwise return 0. If the buffer is
1663 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1664 * the refcount on the entry in the table and remove it from the table
1665 * if this is the last reference.
1666 *
1667 * We remove the cancel record from the table when we encounter its
1668 * last occurrence in the log so that if the same buffer is re-used
1669 * again after its last cancellation we actually replay the changes
1670 * made at that point.
1671 */
1672STATIC int
1673xlog_check_buffer_cancelled(
1674 xlog_t *log,
1675 xfs_daddr_t blkno,
1676 uint len,
1677 ushort flags)
1678{
1679 xfs_buf_cancel_t *bcp;
1680 xfs_buf_cancel_t *prevp;
1681 xfs_buf_cancel_t **bucket;
1682
1683 if (log->l_buf_cancel_table == NULL) {
1684 /*
1685 * There is nothing in the table built in pass one,
1686 * so this buffer must not be cancelled.
1687 */
1688 ASSERT(!(flags & XFS_BLI_CANCEL));
1689 return 0;
1690 }
1691
1692 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1693 XLOG_BC_TABLE_SIZE];
1694 bcp = *bucket;
1695 if (bcp == NULL) {
1696 /*
1697 * There is no corresponding entry in the table built
1698 * in pass one, so this buffer has not been cancelled.
1699 */
1700 ASSERT(!(flags & XFS_BLI_CANCEL));
1701 return 0;
1702 }
1703
1704 /*
1705 * Search for an entry in the buffer cancel table that
1706 * matches our buffer.
1707 */
1708 prevp = NULL;
1709 while (bcp != NULL) {
1710 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1711 /*
1712 * We've go a match, so return 1 so that the
1713 * recovery of this buffer is cancelled.
1714 * If this buffer is actually a buffer cancel
1715 * log item, then decrement the refcount on the
1716 * one in the table and remove it if this is the
1717 * last reference.
1718 */
1719 if (flags & XFS_BLI_CANCEL) {
1720 bcp->bc_refcount--;
1721 if (bcp->bc_refcount == 0) {
1722 if (prevp == NULL) {
1723 *bucket = bcp->bc_next;
1724 } else {
1725 prevp->bc_next = bcp->bc_next;
1726 }
1727 kmem_free(bcp,
1728 sizeof(xfs_buf_cancel_t));
1729 }
1730 }
1731 return 1;
1732 }
1733 prevp = bcp;
1734 bcp = bcp->bc_next;
1735 }
1736 /*
1737 * We didn't find a corresponding entry in the table, so
1738 * return 0 so that the buffer is NOT cancelled.
1739 */
1740 ASSERT(!(flags & XFS_BLI_CANCEL));
1741 return 0;
1742}
1743
1744STATIC int
1745xlog_recover_do_buffer_pass2(
1746 xlog_t *log,
1747 xfs_buf_log_format_t *buf_f)
1748{
1749 xfs_buf_log_format_v1_t *obuf_f;
1750 xfs_daddr_t blkno = 0;
1751 ushort flags = 0;
1752 uint len = 0;
1753
1754 switch (buf_f->blf_type) {
1755 case XFS_LI_BUF:
1756 blkno = buf_f->blf_blkno;
1757 flags = buf_f->blf_flags;
1758 len = buf_f->blf_len;
1759 break;
1760 case XFS_LI_6_1_BUF:
1761 case XFS_LI_5_3_BUF:
1762 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1763 blkno = (xfs_daddr_t) obuf_f->blf_blkno;
1764 flags = obuf_f->blf_flags;
1765 len = (xfs_daddr_t) obuf_f->blf_len;
1766 break;
1767 }
1768
1769 return xlog_check_buffer_cancelled(log, blkno, len, flags);
1770}
1771
1772/*
1773 * Perform recovery for a buffer full of inodes. In these buffers,
1774 * the only data which should be recovered is that which corresponds
1775 * to the di_next_unlinked pointers in the on disk inode structures.
1776 * The rest of the data for the inodes is always logged through the
1777 * inodes themselves rather than the inode buffer and is recovered
1778 * in xlog_recover_do_inode_trans().
1779 *
1780 * The only time when buffers full of inodes are fully recovered is
1781 * when the buffer is full of newly allocated inodes. In this case
1782 * the buffer will not be marked as an inode buffer and so will be
1783 * sent to xlog_recover_do_reg_buffer() below during recovery.
1784 */
1785STATIC int
1786xlog_recover_do_inode_buffer(
1787 xfs_mount_t *mp,
1788 xlog_recover_item_t *item,
1789 xfs_buf_t *bp,
1790 xfs_buf_log_format_t *buf_f)
1791{
1792 int i;
1793 int item_index;
1794 int bit;
1795 int nbits;
1796 int reg_buf_offset;
1797 int reg_buf_bytes;
1798 int next_unlinked_offset;
1799 int inodes_per_buf;
1800 xfs_agino_t *logged_nextp;
1801 xfs_agino_t *buffer_nextp;
1802 xfs_buf_log_format_v1_t *obuf_f;
1803 unsigned int *data_map = NULL;
1804 unsigned int map_size = 0;
1805
1806 switch (buf_f->blf_type) {
1807 case XFS_LI_BUF:
1808 data_map = buf_f->blf_data_map;
1809 map_size = buf_f->blf_map_size;
1810 break;
1811 case XFS_LI_6_1_BUF:
1812 case XFS_LI_5_3_BUF:
1813 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1814 data_map = obuf_f->blf_data_map;
1815 map_size = obuf_f->blf_map_size;
1816 break;
1817 }
1818 /*
1819 * Set the variables corresponding to the current region to
1820 * 0 so that we'll initialize them on the first pass through
1821 * the loop.
1822 */
1823 reg_buf_offset = 0;
1824 reg_buf_bytes = 0;
1825 bit = 0;
1826 nbits = 0;
1827 item_index = 0;
1828 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1829 for (i = 0; i < inodes_per_buf; i++) {
1830 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1831 offsetof(xfs_dinode_t, di_next_unlinked);
1832
1833 while (next_unlinked_offset >=
1834 (reg_buf_offset + reg_buf_bytes)) {
1835 /*
1836 * The next di_next_unlinked field is beyond
1837 * the current logged region. Find the next
1838 * logged region that contains or is beyond
1839 * the current di_next_unlinked field.
1840 */
1841 bit += nbits;
1842 bit = xfs_next_bit(data_map, map_size, bit);
1843
1844 /*
1845 * If there are no more logged regions in the
1846 * buffer, then we're done.
1847 */
1848 if (bit == -1) {
1849 return 0;
1850 }
1851
1852 nbits = xfs_contig_bits(data_map, map_size,
1853 bit);
1854 ASSERT(nbits > 0);
1855 reg_buf_offset = bit << XFS_BLI_SHIFT;
1856 reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1857 item_index++;
1858 }
1859
1860 /*
1861 * If the current logged region starts after the current
1862 * di_next_unlinked field, then move on to the next
1863 * di_next_unlinked field.
1864 */
1865 if (next_unlinked_offset < reg_buf_offset) {
1866 continue;
1867 }
1868
1869 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1870 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1871 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1872
1873 /*
1874 * The current logged region contains a copy of the
1875 * current di_next_unlinked field. Extract its value
1876 * and copy it to the buffer copy.
1877 */
1878 logged_nextp = (xfs_agino_t *)
1879 ((char *)(item->ri_buf[item_index].i_addr) +
1880 (next_unlinked_offset - reg_buf_offset));
1881 if (unlikely(*logged_nextp == 0)) {
1882 xfs_fs_cmn_err(CE_ALERT, mp,
1883 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1884 item, bp);
1885 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1886 XFS_ERRLEVEL_LOW, mp);
1887 return XFS_ERROR(EFSCORRUPTED);
1888 }
1889
1890 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1891 next_unlinked_offset);
1892 INT_SET(*buffer_nextp, ARCH_CONVERT, *logged_nextp);
1893 }
1894
1895 return 0;
1896}
1897
1898/*
1899 * Perform a 'normal' buffer recovery. Each logged region of the
1900 * buffer should be copied over the corresponding region in the
1901 * given buffer. The bitmap in the buf log format structure indicates
1902 * where to place the logged data.
1903 */
1904/*ARGSUSED*/
1905STATIC void
1906xlog_recover_do_reg_buffer(
1907 xfs_mount_t *mp,
1908 xlog_recover_item_t *item,
1909 xfs_buf_t *bp,
1910 xfs_buf_log_format_t *buf_f)
1911{
1912 int i;
1913 int bit;
1914 int nbits;
1915 xfs_buf_log_format_v1_t *obuf_f;
1916 unsigned int *data_map = NULL;
1917 unsigned int map_size = 0;
1918 int error;
1919
1920 switch (buf_f->blf_type) {
1921 case XFS_LI_BUF:
1922 data_map = buf_f->blf_data_map;
1923 map_size = buf_f->blf_map_size;
1924 break;
1925 case XFS_LI_6_1_BUF:
1926 case XFS_LI_5_3_BUF:
1927 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1928 data_map = obuf_f->blf_data_map;
1929 map_size = obuf_f->blf_map_size;
1930 break;
1931 }
1932 bit = 0;
1933 i = 1; /* 0 is the buf format structure */
1934 while (1) {
1935 bit = xfs_next_bit(data_map, map_size, bit);
1936 if (bit == -1)
1937 break;
1938 nbits = xfs_contig_bits(data_map, map_size, bit);
1939 ASSERT(nbits > 0);
1940 ASSERT(item->ri_buf[i].i_addr != 0);
1941 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1942 ASSERT(XFS_BUF_COUNT(bp) >=
1943 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1944
1945 /*
1946 * Do a sanity check if this is a dquot buffer. Just checking
1947 * the first dquot in the buffer should do. XXXThis is
1948 * probably a good thing to do for other buf types also.
1949 */
1950 error = 0;
c8ad20ff
NS
1951 if (buf_f->blf_flags &
1952 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1da177e4
LT
1953 error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1954 item->ri_buf[i].i_addr,
1955 -1, 0, XFS_QMOPT_DOWARN,
1956 "dquot_buf_recover");
1957 }
1958 if (!error)
1959 memcpy(xfs_buf_offset(bp,
1960 (uint)bit << XFS_BLI_SHIFT), /* dest */
1961 item->ri_buf[i].i_addr, /* source */
1962 nbits<<XFS_BLI_SHIFT); /* length */
1963 i++;
1964 bit += nbits;
1965 }
1966
1967 /* Shouldn't be any more regions */
1968 ASSERT(i == item->ri_total);
1969}
1970
1971/*
1972 * Do some primitive error checking on ondisk dquot data structures.
1973 */
1974int
1975xfs_qm_dqcheck(
1976 xfs_disk_dquot_t *ddq,
1977 xfs_dqid_t id,
1978 uint type, /* used only when IO_dorepair is true */
1979 uint flags,
1980 char *str)
1981{
1982 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1983 int errs = 0;
1984
1985 /*
1986 * We can encounter an uninitialized dquot buffer for 2 reasons:
1987 * 1. If we crash while deleting the quotainode(s), and those blks got
1988 * used for user data. This is because we take the path of regular
1989 * file deletion; however, the size field of quotainodes is never
1990 * updated, so all the tricks that we play in itruncate_finish
1991 * don't quite matter.
1992 *
1993 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1994 * But the allocation will be replayed so we'll end up with an
1995 * uninitialized quota block.
1996 *
1997 * This is all fine; things are still consistent, and we haven't lost
1998 * any quota information. Just don't complain about bad dquot blks.
1999 */
1149d96a 2000 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1da177e4
LT
2001 if (flags & XFS_QMOPT_DOWARN)
2002 cmn_err(CE_ALERT,
2003 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1149d96a 2004 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1da177e4
LT
2005 errs++;
2006 }
1149d96a 2007 if (ddq->d_version != XFS_DQUOT_VERSION) {
1da177e4
LT
2008 if (flags & XFS_QMOPT_DOWARN)
2009 cmn_err(CE_ALERT,
2010 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1149d96a 2011 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1da177e4
LT
2012 errs++;
2013 }
2014
1149d96a
CH
2015 if (ddq->d_flags != XFS_DQ_USER &&
2016 ddq->d_flags != XFS_DQ_PROJ &&
2017 ddq->d_flags != XFS_DQ_GROUP) {
1da177e4
LT
2018 if (flags & XFS_QMOPT_DOWARN)
2019 cmn_err(CE_ALERT,
2020 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1149d96a 2021 str, id, ddq->d_flags);
1da177e4
LT
2022 errs++;
2023 }
2024
1149d96a 2025 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1da177e4
LT
2026 if (flags & XFS_QMOPT_DOWARN)
2027 cmn_err(CE_ALERT,
2028 "%s : ondisk-dquot 0x%p, ID mismatch: "
2029 "0x%x expected, found id 0x%x",
1149d96a 2030 str, ddq, id, be32_to_cpu(ddq->d_id));
1da177e4
LT
2031 errs++;
2032 }
2033
2034 if (!errs && ddq->d_id) {
1149d96a
CH
2035 if (ddq->d_blk_softlimit &&
2036 be64_to_cpu(ddq->d_bcount) >=
2037 be64_to_cpu(ddq->d_blk_softlimit)) {
1da177e4
LT
2038 if (!ddq->d_btimer) {
2039 if (flags & XFS_QMOPT_DOWARN)
2040 cmn_err(CE_ALERT,
2041 "%s : Dquot ID 0x%x (0x%p) "
2042 "BLK TIMER NOT STARTED",
1149d96a 2043 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2044 errs++;
2045 }
2046 }
1149d96a
CH
2047 if (ddq->d_ino_softlimit &&
2048 be64_to_cpu(ddq->d_icount) >=
2049 be64_to_cpu(ddq->d_ino_softlimit)) {
1da177e4
LT
2050 if (!ddq->d_itimer) {
2051 if (flags & XFS_QMOPT_DOWARN)
2052 cmn_err(CE_ALERT,
2053 "%s : Dquot ID 0x%x (0x%p) "
2054 "INODE TIMER NOT STARTED",
1149d96a 2055 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2056 errs++;
2057 }
2058 }
1149d96a
CH
2059 if (ddq->d_rtb_softlimit &&
2060 be64_to_cpu(ddq->d_rtbcount) >=
2061 be64_to_cpu(ddq->d_rtb_softlimit)) {
1da177e4
LT
2062 if (!ddq->d_rtbtimer) {
2063 if (flags & XFS_QMOPT_DOWARN)
2064 cmn_err(CE_ALERT,
2065 "%s : Dquot ID 0x%x (0x%p) "
2066 "RTBLK TIMER NOT STARTED",
1149d96a 2067 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2068 errs++;
2069 }
2070 }
2071 }
2072
2073 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2074 return errs;
2075
2076 if (flags & XFS_QMOPT_DOWARN)
2077 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2078
2079 /*
2080 * Typically, a repair is only requested by quotacheck.
2081 */
2082 ASSERT(id != -1);
2083 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2084 memset(d, 0, sizeof(xfs_dqblk_t));
1149d96a
CH
2085
2086 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2087 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2088 d->dd_diskdq.d_flags = type;
2089 d->dd_diskdq.d_id = cpu_to_be32(id);
1da177e4
LT
2090
2091 return errs;
2092}
2093
2094/*
2095 * Perform a dquot buffer recovery.
2096 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2097 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2098 * Else, treat it as a regular buffer and do recovery.
2099 */
2100STATIC void
2101xlog_recover_do_dquot_buffer(
2102 xfs_mount_t *mp,
2103 xlog_t *log,
2104 xlog_recover_item_t *item,
2105 xfs_buf_t *bp,
2106 xfs_buf_log_format_t *buf_f)
2107{
2108 uint type;
2109
2110 /*
2111 * Filesystems are required to send in quota flags at mount time.
2112 */
2113 if (mp->m_qflags == 0) {
2114 return;
2115 }
2116
2117 type = 0;
2118 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2119 type |= XFS_DQ_USER;
c8ad20ff
NS
2120 if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2121 type |= XFS_DQ_PROJ;
1da177e4
LT
2122 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2123 type |= XFS_DQ_GROUP;
2124 /*
2125 * This type of quotas was turned off, so ignore this buffer
2126 */
2127 if (log->l_quotaoffs_flag & type)
2128 return;
2129
2130 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2131}
2132
2133/*
2134 * This routine replays a modification made to a buffer at runtime.
2135 * There are actually two types of buffer, regular and inode, which
2136 * are handled differently. Inode buffers are handled differently
2137 * in that we only recover a specific set of data from them, namely
2138 * the inode di_next_unlinked fields. This is because all other inode
2139 * data is actually logged via inode records and any data we replay
2140 * here which overlaps that may be stale.
2141 *
2142 * When meta-data buffers are freed at run time we log a buffer item
2143 * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2144 * of the buffer in the log should not be replayed at recovery time.
2145 * This is so that if the blocks covered by the buffer are reused for
2146 * file data before we crash we don't end up replaying old, freed
2147 * meta-data into a user's file.
2148 *
2149 * To handle the cancellation of buffer log items, we make two passes
2150 * over the log during recovery. During the first we build a table of
2151 * those buffers which have been cancelled, and during the second we
2152 * only replay those buffers which do not have corresponding cancel
2153 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2154 * for more details on the implementation of the table of cancel records.
2155 */
2156STATIC int
2157xlog_recover_do_buffer_trans(
2158 xlog_t *log,
2159 xlog_recover_item_t *item,
2160 int pass)
2161{
2162 xfs_buf_log_format_t *buf_f;
2163 xfs_buf_log_format_v1_t *obuf_f;
2164 xfs_mount_t *mp;
2165 xfs_buf_t *bp;
2166 int error;
2167 int cancel;
2168 xfs_daddr_t blkno;
2169 int len;
2170 ushort flags;
2171
2172 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2173
2174 if (pass == XLOG_RECOVER_PASS1) {
2175 /*
2176 * In this pass we're only looking for buf items
2177 * with the XFS_BLI_CANCEL bit set.
2178 */
2179 xlog_recover_do_buffer_pass1(log, buf_f);
2180 return 0;
2181 } else {
2182 /*
2183 * In this pass we want to recover all the buffers
2184 * which have not been cancelled and are not
2185 * cancellation buffers themselves. The routine
2186 * we call here will tell us whether or not to
2187 * continue with the replay of this buffer.
2188 */
2189 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2190 if (cancel) {
2191 return 0;
2192 }
2193 }
2194 switch (buf_f->blf_type) {
2195 case XFS_LI_BUF:
2196 blkno = buf_f->blf_blkno;
2197 len = buf_f->blf_len;
2198 flags = buf_f->blf_flags;
2199 break;
2200 case XFS_LI_6_1_BUF:
2201 case XFS_LI_5_3_BUF:
2202 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
2203 blkno = obuf_f->blf_blkno;
2204 len = obuf_f->blf_len;
2205 flags = obuf_f->blf_flags;
2206 break;
2207 default:
2208 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
fc1f8c1c
NS
2209 "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2210 buf_f->blf_type, log->l_mp->m_logname ?
2211 log->l_mp->m_logname : "internal");
1da177e4
LT
2212 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2213 XFS_ERRLEVEL_LOW, log->l_mp);
2214 return XFS_ERROR(EFSCORRUPTED);
2215 }
2216
2217 mp = log->l_mp;
2218 if (flags & XFS_BLI_INODE_BUF) {
2219 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
2220 XFS_BUF_LOCK);
2221 } else {
2222 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
2223 }
2224 if (XFS_BUF_ISERROR(bp)) {
2225 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2226 bp, blkno);
2227 error = XFS_BUF_GETERROR(bp);
2228 xfs_buf_relse(bp);
2229 return error;
2230 }
2231
2232 error = 0;
2233 if (flags & XFS_BLI_INODE_BUF) {
2234 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
c8ad20ff
NS
2235 } else if (flags &
2236 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1da177e4
LT
2237 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2238 } else {
2239 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2240 }
2241 if (error)
2242 return XFS_ERROR(error);
2243
2244 /*
2245 * Perform delayed write on the buffer. Asynchronous writes will be
2246 * slower when taking into account all the buffers to be flushed.
2247 *
2248 * Also make sure that only inode buffers with good sizes stay in
2249 * the buffer cache. The kernel moves inodes in buffers of 1 block
2250 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2251 * buffers in the log can be a different size if the log was generated
2252 * by an older kernel using unclustered inode buffers or a newer kernel
2253 * running with a different inode cluster size. Regardless, if the
2254 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2255 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2256 * the buffer out of the buffer cache so that the buffer won't
2257 * overlap with future reads of those inodes.
2258 */
2259 if (XFS_DINODE_MAGIC ==
2260 INT_GET(*((__uint16_t *)(xfs_buf_offset(bp, 0))), ARCH_CONVERT) &&
2261 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2262 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2263 XFS_BUF_STALE(bp);
2264 error = xfs_bwrite(mp, bp);
2265 } else {
2266 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2267 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2268 XFS_BUF_SET_FSPRIVATE(bp, mp);
2269 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2270 xfs_bdwrite(mp, bp);
2271 }
2272
2273 return (error);
2274}
2275
2276STATIC int
2277xlog_recover_do_inode_trans(
2278 xlog_t *log,
2279 xlog_recover_item_t *item,
2280 int pass)
2281{
2282 xfs_inode_log_format_t *in_f;
2283 xfs_mount_t *mp;
2284 xfs_buf_t *bp;
2285 xfs_imap_t imap;
2286 xfs_dinode_t *dip;
2287 xfs_ino_t ino;
2288 int len;
2289 xfs_caddr_t src;
2290 xfs_caddr_t dest;
2291 int error;
2292 int attr_index;
2293 uint fields;
2294 xfs_dinode_core_t *dicp;
2295
2296 if (pass == XLOG_RECOVER_PASS1) {
2297 return 0;
2298 }
2299
2300 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2301 ino = in_f->ilf_ino;
2302 mp = log->l_mp;
2303 if (ITEM_TYPE(item) == XFS_LI_INODE) {
2304 imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
2305 imap.im_len = in_f->ilf_len;
2306 imap.im_boffset = in_f->ilf_boffset;
2307 } else {
2308 /*
2309 * It's an old inode format record. We don't know where
2310 * its cluster is located on disk, and we can't allow
2311 * xfs_imap() to figure it out because the inode btrees
2312 * are not ready to be used. Therefore do not pass the
2313 * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give
2314 * us only the single block in which the inode lives
2315 * rather than its cluster, so we must make sure to
2316 * invalidate the buffer when we write it out below.
2317 */
2318 imap.im_blkno = 0;
2319 xfs_imap(log->l_mp, NULL, ino, &imap, 0);
2320 }
2321
2322 /*
2323 * Inode buffers can be freed, look out for it,
2324 * and do not replay the inode.
2325 */
2326 if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0))
2327 return 0;
2328
2329 bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
2330 XFS_BUF_LOCK);
2331 if (XFS_BUF_ISERROR(bp)) {
2332 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2333 bp, imap.im_blkno);
2334 error = XFS_BUF_GETERROR(bp);
2335 xfs_buf_relse(bp);
2336 return error;
2337 }
2338 error = 0;
2339 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2340 dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
2341
2342 /*
2343 * Make sure the place we're flushing out to really looks
2344 * like an inode!
2345 */
2346 if (unlikely(INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC)) {
2347 xfs_buf_relse(bp);
2348 xfs_fs_cmn_err(CE_ALERT, mp,
2349 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2350 dip, bp, ino);
2351 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2352 XFS_ERRLEVEL_LOW, mp);
2353 return XFS_ERROR(EFSCORRUPTED);
2354 }
2355 dicp = (xfs_dinode_core_t*)(item->ri_buf[1].i_addr);
2356 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2357 xfs_buf_relse(bp);
2358 xfs_fs_cmn_err(CE_ALERT, mp,
2359 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2360 item, ino);
2361 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2362 XFS_ERRLEVEL_LOW, mp);
2363 return XFS_ERROR(EFSCORRUPTED);
2364 }
2365
2366 /* Skip replay when the on disk inode is newer than the log one */
2367 if (dicp->di_flushiter <
2368 INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)) {
2369 /*
2370 * Deal with the wrap case, DI_MAX_FLUSH is less
2371 * than smaller numbers
2372 */
2373 if ((INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)
2374 == DI_MAX_FLUSH) &&
2375 (dicp->di_flushiter < (DI_MAX_FLUSH>>1))) {
2376 /* do nothing */
2377 } else {
2378 xfs_buf_relse(bp);
2379 return 0;
2380 }
2381 }
2382 /* Take the opportunity to reset the flush iteration count */
2383 dicp->di_flushiter = 0;
2384
2385 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2386 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2387 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2388 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2389 XFS_ERRLEVEL_LOW, mp, dicp);
2390 xfs_buf_relse(bp);
2391 xfs_fs_cmn_err(CE_ALERT, mp,
2392 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2393 item, dip, bp, ino);
2394 return XFS_ERROR(EFSCORRUPTED);
2395 }
2396 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2397 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2398 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2399 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2400 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2401 XFS_ERRLEVEL_LOW, mp, dicp);
2402 xfs_buf_relse(bp);
2403 xfs_fs_cmn_err(CE_ALERT, mp,
2404 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2405 item, dip, bp, ino);
2406 return XFS_ERROR(EFSCORRUPTED);
2407 }
2408 }
2409 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2410 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2411 XFS_ERRLEVEL_LOW, mp, dicp);
2412 xfs_buf_relse(bp);
2413 xfs_fs_cmn_err(CE_ALERT, mp,
2414 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2415 item, dip, bp, ino,
2416 dicp->di_nextents + dicp->di_anextents,
2417 dicp->di_nblocks);
2418 return XFS_ERROR(EFSCORRUPTED);
2419 }
2420 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2421 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2422 XFS_ERRLEVEL_LOW, mp, dicp);
2423 xfs_buf_relse(bp);
2424 xfs_fs_cmn_err(CE_ALERT, mp,
2425 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2426 item, dip, bp, ino, dicp->di_forkoff);
2427 return XFS_ERROR(EFSCORRUPTED);
2428 }
2429 if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
2430 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2431 XFS_ERRLEVEL_LOW, mp, dicp);
2432 xfs_buf_relse(bp);
2433 xfs_fs_cmn_err(CE_ALERT, mp,
2434 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2435 item->ri_buf[1].i_len, item);
2436 return XFS_ERROR(EFSCORRUPTED);
2437 }
2438
2439 /* The core is in in-core format */
2440 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
2441 (xfs_dinode_core_t*)item->ri_buf[1].i_addr, -1);
2442
2443 /* the rest is in on-disk format */
2444 if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
2445 memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
2446 item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
2447 item->ri_buf[1].i_len - sizeof(xfs_dinode_core_t));
2448 }
2449
2450 fields = in_f->ilf_fields;
2451 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2452 case XFS_ILOG_DEV:
2453 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, in_f->ilf_u.ilfu_rdev);
2454
2455 break;
2456 case XFS_ILOG_UUID:
2457 dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
2458 break;
2459 }
2460
2461 if (in_f->ilf_size == 2)
2462 goto write_inode_buffer;
2463 len = item->ri_buf[2].i_len;
2464 src = item->ri_buf[2].i_addr;
2465 ASSERT(in_f->ilf_size <= 4);
2466 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2467 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2468 (len == in_f->ilf_dsize));
2469
2470 switch (fields & XFS_ILOG_DFORK) {
2471 case XFS_ILOG_DDATA:
2472 case XFS_ILOG_DEXT:
2473 memcpy(&dip->di_u, src, len);
2474 break;
2475
2476 case XFS_ILOG_DBROOT:
2477 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2478 &(dip->di_u.di_bmbt),
2479 XFS_DFORK_DSIZE(dip, mp));
2480 break;
2481
2482 default:
2483 /*
2484 * There are no data fork flags set.
2485 */
2486 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2487 break;
2488 }
2489
2490 /*
2491 * If we logged any attribute data, recover it. There may or
2492 * may not have been any other non-core data logged in this
2493 * transaction.
2494 */
2495 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2496 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2497 attr_index = 3;
2498 } else {
2499 attr_index = 2;
2500 }
2501 len = item->ri_buf[attr_index].i_len;
2502 src = item->ri_buf[attr_index].i_addr;
2503 ASSERT(len == in_f->ilf_asize);
2504
2505 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2506 case XFS_ILOG_ADATA:
2507 case XFS_ILOG_AEXT:
2508 dest = XFS_DFORK_APTR(dip);
2509 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2510 memcpy(dest, src, len);
2511 break;
2512
2513 case XFS_ILOG_ABROOT:
2514 dest = XFS_DFORK_APTR(dip);
2515 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2516 (xfs_bmdr_block_t*)dest,
2517 XFS_DFORK_ASIZE(dip, mp));
2518 break;
2519
2520 default:
2521 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2522 ASSERT(0);
2523 xfs_buf_relse(bp);
2524 return XFS_ERROR(EIO);
2525 }
2526 }
2527
2528write_inode_buffer:
2529 if (ITEM_TYPE(item) == XFS_LI_INODE) {
2530 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2531 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2532 XFS_BUF_SET_FSPRIVATE(bp, mp);
2533 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2534 xfs_bdwrite(mp, bp);
2535 } else {
2536 XFS_BUF_STALE(bp);
2537 error = xfs_bwrite(mp, bp);
2538 }
2539
2540 return (error);
2541}
2542
2543/*
2544 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2545 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2546 * of that type.
2547 */
2548STATIC int
2549xlog_recover_do_quotaoff_trans(
2550 xlog_t *log,
2551 xlog_recover_item_t *item,
2552 int pass)
2553{
2554 xfs_qoff_logformat_t *qoff_f;
2555
2556 if (pass == XLOG_RECOVER_PASS2) {
2557 return (0);
2558 }
2559
2560 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2561 ASSERT(qoff_f);
2562
2563 /*
2564 * The logitem format's flag tells us if this was user quotaoff,
2565 * group quotaoff or both.
2566 */
2567 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2568 log->l_quotaoffs_flag |= XFS_DQ_USER;
2569 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2570 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2571
2572 return (0);
2573}
2574
2575/*
2576 * Recover a dquot record
2577 */
2578STATIC int
2579xlog_recover_do_dquot_trans(
2580 xlog_t *log,
2581 xlog_recover_item_t *item,
2582 int pass)
2583{
2584 xfs_mount_t *mp;
2585 xfs_buf_t *bp;
2586 struct xfs_disk_dquot *ddq, *recddq;
2587 int error;
2588 xfs_dq_logformat_t *dq_f;
2589 uint type;
2590
2591 if (pass == XLOG_RECOVER_PASS1) {
2592 return 0;
2593 }
2594 mp = log->l_mp;
2595
2596 /*
2597 * Filesystems are required to send in quota flags at mount time.
2598 */
2599 if (mp->m_qflags == 0)
2600 return (0);
2601
2602 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2603 ASSERT(recddq);
2604 /*
2605 * This type of quotas was turned off, so ignore this record.
2606 */
2607 type = INT_GET(recddq->d_flags, ARCH_CONVERT) &
c8ad20ff 2608 (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
2609 ASSERT(type);
2610 if (log->l_quotaoffs_flag & type)
2611 return (0);
2612
2613 /*
2614 * At this point we know that quota was _not_ turned off.
2615 * Since the mount flags are not indicating to us otherwise, this
2616 * must mean that quota is on, and the dquot needs to be replayed.
2617 * Remember that we may not have fully recovered the superblock yet,
2618 * so we can't do the usual trick of looking at the SB quota bits.
2619 *
2620 * The other possibility, of course, is that the quota subsystem was
2621 * removed since the last mount - ENOSYS.
2622 */
2623 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2624 ASSERT(dq_f);
2625 if ((error = xfs_qm_dqcheck(recddq,
2626 dq_f->qlf_id,
2627 0, XFS_QMOPT_DOWARN,
2628 "xlog_recover_do_dquot_trans (log copy)"))) {
2629 return XFS_ERROR(EIO);
2630 }
2631 ASSERT(dq_f->qlf_len == 1);
2632
2633 error = xfs_read_buf(mp, mp->m_ddev_targp,
2634 dq_f->qlf_blkno,
2635 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2636 0, &bp);
2637 if (error) {
2638 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2639 bp, dq_f->qlf_blkno);
2640 return error;
2641 }
2642 ASSERT(bp);
2643 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2644
2645 /*
2646 * At least the magic num portion should be on disk because this
2647 * was among a chunk of dquots created earlier, and we did some
2648 * minimal initialization then.
2649 */
2650 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2651 "xlog_recover_do_dquot_trans")) {
2652 xfs_buf_relse(bp);
2653 return XFS_ERROR(EIO);
2654 }
2655
2656 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2657
2658 ASSERT(dq_f->qlf_size == 2);
2659 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2660 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2661 XFS_BUF_SET_FSPRIVATE(bp, mp);
2662 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2663 xfs_bdwrite(mp, bp);
2664
2665 return (0);
2666}
2667
2668/*
2669 * This routine is called to create an in-core extent free intent
2670 * item from the efi format structure which was logged on disk.
2671 * It allocates an in-core efi, copies the extents from the format
2672 * structure into it, and adds the efi to the AIL with the given
2673 * LSN.
2674 */
2675STATIC void
2676xlog_recover_do_efi_trans(
2677 xlog_t *log,
2678 xlog_recover_item_t *item,
2679 xfs_lsn_t lsn,
2680 int pass)
2681{
2682 xfs_mount_t *mp;
2683 xfs_efi_log_item_t *efip;
2684 xfs_efi_log_format_t *efi_formatp;
2685 SPLDECL(s);
2686
2687 if (pass == XLOG_RECOVER_PASS1) {
2688 return;
2689 }
2690
2691 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2692 ASSERT(item->ri_buf[0].i_len ==
2693 (sizeof(xfs_efi_log_format_t) +
2694 ((efi_formatp->efi_nextents - 1) * sizeof(xfs_extent_t))));
2695
2696 mp = log->l_mp;
2697 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2698 memcpy((char *)&(efip->efi_format), (char *)efi_formatp,
2699 sizeof(xfs_efi_log_format_t) +
2700 ((efi_formatp->efi_nextents - 1) * sizeof(xfs_extent_t)));
2701 efip->efi_next_extent = efi_formatp->efi_nextents;
2702 efip->efi_flags |= XFS_EFI_COMMITTED;
2703
2704 AIL_LOCK(mp,s);
2705 /*
2706 * xfs_trans_update_ail() drops the AIL lock.
2707 */
2708 xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn, s);
2709}
2710
2711
2712/*
2713 * This routine is called when an efd format structure is found in
2714 * a committed transaction in the log. It's purpose is to cancel
2715 * the corresponding efi if it was still in the log. To do this
2716 * it searches the AIL for the efi with an id equal to that in the
2717 * efd format structure. If we find it, we remove the efi from the
2718 * AIL and free it.
2719 */
2720STATIC void
2721xlog_recover_do_efd_trans(
2722 xlog_t *log,
2723 xlog_recover_item_t *item,
2724 int pass)
2725{
2726 xfs_mount_t *mp;
2727 xfs_efd_log_format_t *efd_formatp;
2728 xfs_efi_log_item_t *efip = NULL;
2729 xfs_log_item_t *lip;
2730 int gen;
1da177e4
LT
2731 __uint64_t efi_id;
2732 SPLDECL(s);
2733
2734 if (pass == XLOG_RECOVER_PASS1) {
2735 return;
2736 }
2737
2738 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2739 ASSERT(item->ri_buf[0].i_len ==
2740 (sizeof(xfs_efd_log_format_t) +
2741 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_t))));
2742 efi_id = efd_formatp->efd_efi_id;
2743
2744 /*
2745 * Search for the efi with the id in the efd format structure
2746 * in the AIL.
2747 */
2748 mp = log->l_mp;
2749 AIL_LOCK(mp,s);
2750 lip = xfs_trans_first_ail(mp, &gen);
2751 while (lip != NULL) {
2752 if (lip->li_type == XFS_LI_EFI) {
2753 efip = (xfs_efi_log_item_t *)lip;
2754 if (efip->efi_format.efi_id == efi_id) {
2755 /*
2756 * xfs_trans_delete_ail() drops the
2757 * AIL lock.
2758 */
2759 xfs_trans_delete_ail(mp, lip, s);
2760 break;
2761 }
2762 }
2763 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
2764 }
1da177e4
LT
2765
2766 /*
2767 * If we found it, then free it up. If it wasn't there, it
2768 * must have been overwritten in the log. Oh well.
2769 */
2770 if (lip != NULL) {
7d795ca3
CH
2771 xfs_efi_item_free(efip);
2772 } else {
2773 AIL_UNLOCK(mp, s);
1da177e4
LT
2774 }
2775}
2776
2777/*
2778 * Perform the transaction
2779 *
2780 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2781 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2782 */
2783STATIC int
2784xlog_recover_do_trans(
2785 xlog_t *log,
2786 xlog_recover_t *trans,
2787 int pass)
2788{
2789 int error = 0;
2790 xlog_recover_item_t *item, *first_item;
2791
2792 if ((error = xlog_recover_reorder_trans(log, trans)))
2793 return error;
2794 first_item = item = trans->r_itemq;
2795 do {
2796 /*
2797 * we don't need to worry about the block number being
2798 * truncated in > 1 TB buffers because in user-land,
2799 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
2800 * the blkno's will get through the user-mode buffer
2801 * cache properly. The only bad case is o32 kernels
2802 * where xfs_daddr_t is 32-bits but mount will warn us
2803 * off a > 1 TB filesystem before we get here.
2804 */
2805 if ((ITEM_TYPE(item) == XFS_LI_BUF) ||
2806 (ITEM_TYPE(item) == XFS_LI_6_1_BUF) ||
2807 (ITEM_TYPE(item) == XFS_LI_5_3_BUF)) {
2808 if ((error = xlog_recover_do_buffer_trans(log, item,
2809 pass)))
2810 break;
2811 } else if ((ITEM_TYPE(item) == XFS_LI_INODE) ||
2812 (ITEM_TYPE(item) == XFS_LI_6_1_INODE) ||
2813 (ITEM_TYPE(item) == XFS_LI_5_3_INODE)) {
2814 if ((error = xlog_recover_do_inode_trans(log, item,
2815 pass)))
2816 break;
2817 } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
2818 xlog_recover_do_efi_trans(log, item, trans->r_lsn,
2819 pass);
2820 } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
2821 xlog_recover_do_efd_trans(log, item, pass);
2822 } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
2823 if ((error = xlog_recover_do_dquot_trans(log, item,
2824 pass)))
2825 break;
2826 } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
2827 if ((error = xlog_recover_do_quotaoff_trans(log, item,
2828 pass)))
2829 break;
2830 } else {
2831 xlog_warn("XFS: xlog_recover_do_trans");
2832 ASSERT(0);
2833 error = XFS_ERROR(EIO);
2834 break;
2835 }
2836 item = item->ri_next;
2837 } while (first_item != item);
2838
2839 return error;
2840}
2841
2842/*
2843 * Free up any resources allocated by the transaction
2844 *
2845 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2846 */
2847STATIC void
2848xlog_recover_free_trans(
2849 xlog_recover_t *trans)
2850{
2851 xlog_recover_item_t *first_item, *item, *free_item;
2852 int i;
2853
2854 item = first_item = trans->r_itemq;
2855 do {
2856 free_item = item;
2857 item = item->ri_next;
2858 /* Free the regions in the item. */
2859 for (i = 0; i < free_item->ri_cnt; i++) {
2860 kmem_free(free_item->ri_buf[i].i_addr,
2861 free_item->ri_buf[i].i_len);
2862 }
2863 /* Free the item itself */
2864 kmem_free(free_item->ri_buf,
2865 (free_item->ri_total * sizeof(xfs_log_iovec_t)));
2866 kmem_free(free_item, sizeof(xlog_recover_item_t));
2867 } while (first_item != item);
2868 /* Free the transaction recover structure */
2869 kmem_free(trans, sizeof(xlog_recover_t));
2870}
2871
2872STATIC int
2873xlog_recover_commit_trans(
2874 xlog_t *log,
2875 xlog_recover_t **q,
2876 xlog_recover_t *trans,
2877 int pass)
2878{
2879 int error;
2880
2881 if ((error = xlog_recover_unlink_tid(q, trans)))
2882 return error;
2883 if ((error = xlog_recover_do_trans(log, trans, pass)))
2884 return error;
2885 xlog_recover_free_trans(trans); /* no error */
2886 return 0;
2887}
2888
2889STATIC int
2890xlog_recover_unmount_trans(
2891 xlog_recover_t *trans)
2892{
2893 /* Do nothing now */
2894 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2895 return 0;
2896}
2897
2898/*
2899 * There are two valid states of the r_state field. 0 indicates that the
2900 * transaction structure is in a normal state. We have either seen the
2901 * start of the transaction or the last operation we added was not a partial
2902 * operation. If the last operation we added to the transaction was a
2903 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2904 *
2905 * NOTE: skip LRs with 0 data length.
2906 */
2907STATIC int
2908xlog_recover_process_data(
2909 xlog_t *log,
2910 xlog_recover_t *rhash[],
2911 xlog_rec_header_t *rhead,
2912 xfs_caddr_t dp,
2913 int pass)
2914{
2915 xfs_caddr_t lp;
2916 int num_logops;
2917 xlog_op_header_t *ohead;
2918 xlog_recover_t *trans;
2919 xlog_tid_t tid;
2920 int error;
2921 unsigned long hash;
2922 uint flags;
2923
2924 lp = dp + INT_GET(rhead->h_len, ARCH_CONVERT);
2925 num_logops = INT_GET(rhead->h_num_logops, ARCH_CONVERT);
2926
2927 /* check the log format matches our own - else we can't recover */
2928 if (xlog_header_check_recover(log->l_mp, rhead))
2929 return (XFS_ERROR(EIO));
2930
2931 while ((dp < lp) && num_logops) {
2932 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2933 ohead = (xlog_op_header_t *)dp;
2934 dp += sizeof(xlog_op_header_t);
2935 if (ohead->oh_clientid != XFS_TRANSACTION &&
2936 ohead->oh_clientid != XFS_LOG) {
2937 xlog_warn(
2938 "XFS: xlog_recover_process_data: bad clientid");
2939 ASSERT(0);
2940 return (XFS_ERROR(EIO));
2941 }
2942 tid = INT_GET(ohead->oh_tid, ARCH_CONVERT);
2943 hash = XLOG_RHASH(tid);
2944 trans = xlog_recover_find_tid(rhash[hash], tid);
2945 if (trans == NULL) { /* not found; add new tid */
2946 if (ohead->oh_flags & XLOG_START_TRANS)
2947 xlog_recover_new_tid(&rhash[hash], tid,
2948 INT_GET(rhead->h_lsn, ARCH_CONVERT));
2949 } else {
2950 ASSERT(dp+INT_GET(ohead->oh_len, ARCH_CONVERT) <= lp);
2951 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2952 if (flags & XLOG_WAS_CONT_TRANS)
2953 flags &= ~XLOG_CONTINUE_TRANS;
2954 switch (flags) {
2955 case XLOG_COMMIT_TRANS:
2956 error = xlog_recover_commit_trans(log,
2957 &rhash[hash], trans, pass);
2958 break;
2959 case XLOG_UNMOUNT_TRANS:
2960 error = xlog_recover_unmount_trans(trans);
2961 break;
2962 case XLOG_WAS_CONT_TRANS:
2963 error = xlog_recover_add_to_cont_trans(trans,
2964 dp, INT_GET(ohead->oh_len,
2965 ARCH_CONVERT));
2966 break;
2967 case XLOG_START_TRANS:
2968 xlog_warn(
2969 "XFS: xlog_recover_process_data: bad transaction");
2970 ASSERT(0);
2971 error = XFS_ERROR(EIO);
2972 break;
2973 case 0:
2974 case XLOG_CONTINUE_TRANS:
2975 error = xlog_recover_add_to_trans(trans,
2976 dp, INT_GET(ohead->oh_len,
2977 ARCH_CONVERT));
2978 break;
2979 default:
2980 xlog_warn(
2981 "XFS: xlog_recover_process_data: bad flag");
2982 ASSERT(0);
2983 error = XFS_ERROR(EIO);
2984 break;
2985 }
2986 if (error)
2987 return error;
2988 }
2989 dp += INT_GET(ohead->oh_len, ARCH_CONVERT);
2990 num_logops--;
2991 }
2992 return 0;
2993}
2994
2995/*
2996 * Process an extent free intent item that was recovered from
2997 * the log. We need to free the extents that it describes.
2998 */
2999STATIC void
3000xlog_recover_process_efi(
3001 xfs_mount_t *mp,
3002 xfs_efi_log_item_t *efip)
3003{
3004 xfs_efd_log_item_t *efdp;
3005 xfs_trans_t *tp;
3006 int i;
3007 xfs_extent_t *extp;
3008 xfs_fsblock_t startblock_fsb;
3009
3010 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
3011
3012 /*
3013 * First check the validity of the extents described by the
3014 * EFI. If any are bad, then assume that all are bad and
3015 * just toss the EFI.
3016 */
3017 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3018 extp = &(efip->efi_format.efi_extents[i]);
3019 startblock_fsb = XFS_BB_TO_FSB(mp,
3020 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3021 if ((startblock_fsb == 0) ||
3022 (extp->ext_len == 0) ||
3023 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3024 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3025 /*
3026 * This will pull the EFI from the AIL and
3027 * free the memory associated with it.
3028 */
3029 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3030 return;
3031 }
3032 }
3033
3034 tp = xfs_trans_alloc(mp, 0);
3035 xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3036 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3037
3038 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3039 extp = &(efip->efi_format.efi_extents[i]);
3040 xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3041 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3042 extp->ext_len);
3043 }
3044
3045 efip->efi_flags |= XFS_EFI_RECOVERED;
3046 xfs_trans_commit(tp, 0, NULL);
3047}
3048
3049/*
3050 * Verify that once we've encountered something other than an EFI
3051 * in the AIL that there are no more EFIs in the AIL.
3052 */
3053#if defined(DEBUG)
3054STATIC void
3055xlog_recover_check_ail(
3056 xfs_mount_t *mp,
3057 xfs_log_item_t *lip,
3058 int gen)
3059{
3060 int orig_gen = gen;
3061
3062 do {
3063 ASSERT(lip->li_type != XFS_LI_EFI);
3064 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3065 /*
3066 * The check will be bogus if we restart from the
3067 * beginning of the AIL, so ASSERT that we don't.
3068 * We never should since we're holding the AIL lock
3069 * the entire time.
3070 */
3071 ASSERT(gen == orig_gen);
3072 } while (lip != NULL);
3073}
3074#endif /* DEBUG */
3075
3076/*
3077 * When this is called, all of the EFIs which did not have
3078 * corresponding EFDs should be in the AIL. What we do now
3079 * is free the extents associated with each one.
3080 *
3081 * Since we process the EFIs in normal transactions, they
3082 * will be removed at some point after the commit. This prevents
3083 * us from just walking down the list processing each one.
3084 * We'll use a flag in the EFI to skip those that we've already
3085 * processed and use the AIL iteration mechanism's generation
3086 * count to try to speed this up at least a bit.
3087 *
3088 * When we start, we know that the EFIs are the only things in
3089 * the AIL. As we process them, however, other items are added
3090 * to the AIL. Since everything added to the AIL must come after
3091 * everything already in the AIL, we stop processing as soon as
3092 * we see something other than an EFI in the AIL.
3093 */
3094STATIC void
3095xlog_recover_process_efis(
3096 xlog_t *log)
3097{
3098 xfs_log_item_t *lip;
3099 xfs_efi_log_item_t *efip;
3100 int gen;
3101 xfs_mount_t *mp;
3102 SPLDECL(s);
3103
3104 mp = log->l_mp;
3105 AIL_LOCK(mp,s);
3106
3107 lip = xfs_trans_first_ail(mp, &gen);
3108 while (lip != NULL) {
3109 /*
3110 * We're done when we see something other than an EFI.
3111 */
3112 if (lip->li_type != XFS_LI_EFI) {
3113 xlog_recover_check_ail(mp, lip, gen);
3114 break;
3115 }
3116
3117 /*
3118 * Skip EFIs that we've already processed.
3119 */
3120 efip = (xfs_efi_log_item_t *)lip;
3121 if (efip->efi_flags & XFS_EFI_RECOVERED) {
3122 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3123 continue;
3124 }
3125
3126 AIL_UNLOCK(mp, s);
3127 xlog_recover_process_efi(mp, efip);
3128 AIL_LOCK(mp,s);
3129 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3130 }
3131 AIL_UNLOCK(mp, s);
3132}
3133
3134/*
3135 * This routine performs a transaction to null out a bad inode pointer
3136 * in an agi unlinked inode hash bucket.
3137 */
3138STATIC void
3139xlog_recover_clear_agi_bucket(
3140 xfs_mount_t *mp,
3141 xfs_agnumber_t agno,
3142 int bucket)
3143{
3144 xfs_trans_t *tp;
3145 xfs_agi_t *agi;
3146 xfs_buf_t *agibp;
3147 int offset;
3148 int error;
3149
3150 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3151 xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
3152
3153 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3154 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3155 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
3156 if (error) {
3157 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3158 return;
3159 }
3160
3161 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3162 if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC) {
1da177e4
LT
3163 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3164 return;
3165 }
1da177e4 3166
16259e7d 3167 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
3168 offset = offsetof(xfs_agi_t, agi_unlinked) +
3169 (sizeof(xfs_agino_t) * bucket);
3170 xfs_trans_log_buf(tp, agibp, offset,
3171 (offset + sizeof(xfs_agino_t) - 1));
3172
3173 (void) xfs_trans_commit(tp, 0, NULL);
3174}
3175
3176/*
3177 * xlog_iunlink_recover
3178 *
3179 * This is called during recovery to process any inodes which
3180 * we unlinked but not freed when the system crashed. These
3181 * inodes will be on the lists in the AGI blocks. What we do
3182 * here is scan all the AGIs and fully truncate and free any
3183 * inodes found on the lists. Each inode is removed from the
3184 * lists when it has been fully truncated and is freed. The
3185 * freeing of the inode and its removal from the list must be
3186 * atomic.
3187 */
3188void
3189xlog_recover_process_iunlinks(
3190 xlog_t *log)
3191{
3192 xfs_mount_t *mp;
3193 xfs_agnumber_t agno;
3194 xfs_agi_t *agi;
3195 xfs_buf_t *agibp;
3196 xfs_buf_t *ibp;
3197 xfs_dinode_t *dip;
3198 xfs_inode_t *ip;
3199 xfs_agino_t agino;
3200 xfs_ino_t ino;
3201 int bucket;
3202 int error;
3203 uint mp_dmevmask;
3204
3205 mp = log->l_mp;
3206
3207 /*
3208 * Prevent any DMAPI event from being sent while in this function.
3209 */
3210 mp_dmevmask = mp->m_dmevmask;
3211 mp->m_dmevmask = 0;
3212
3213 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3214 /*
3215 * Find the agi for this ag.
3216 */
3217 agibp = xfs_buf_read(mp->m_ddev_targp,
3218 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3219 XFS_FSS_TO_BB(mp, 1), 0);
3220 if (XFS_BUF_ISERROR(agibp)) {
3221 xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
3222 log->l_mp, agibp,
3223 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
3224 }
3225 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3226 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum));
1da177e4
LT
3227
3228 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3229
16259e7d 3230 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4
LT
3231 while (agino != NULLAGINO) {
3232
3233 /*
3234 * Release the agi buffer so that it can
3235 * be acquired in the normal course of the
3236 * transaction to truncate and free the inode.
3237 */
3238 xfs_buf_relse(agibp);
3239
3240 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3241 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3242 ASSERT(error || (ip != NULL));
3243
3244 if (!error) {
3245 /*
3246 * Get the on disk inode to find the
3247 * next inode in the bucket.
3248 */
3249 error = xfs_itobp(mp, NULL, ip, &dip,
3250 &ibp, 0);
3251 ASSERT(error || (dip != NULL));
3252 }
3253
3254 if (!error) {
3255 ASSERT(ip->i_d.di_nlink == 0);
3256
3257 /* setup for the next pass */
3258 agino = INT_GET(dip->di_next_unlinked,
3259 ARCH_CONVERT);
3260 xfs_buf_relse(ibp);
3261 /*
3262 * Prevent any DMAPI event from
3263 * being sent when the
3264 * reference on the inode is
3265 * dropped.
3266 */
3267 ip->i_d.di_dmevmask = 0;
3268
3269 /*
3270 * If this is a new inode, handle
3271 * it specially. Otherwise,
3272 * just drop our reference to the
3273 * inode. If there are no
3274 * other references, this will
3275 * send the inode to
3276 * xfs_inactive() which will
3277 * truncate the file and free
3278 * the inode.
3279 */
3280 if (ip->i_d.di_mode == 0)
3281 xfs_iput_new(ip, 0);
3282 else
3283 VN_RELE(XFS_ITOV(ip));
3284 } else {
3285 /*
3286 * We can't read in the inode
3287 * this bucket points to, or
3288 * this inode is messed up. Just
3289 * ditch this bucket of inodes. We
3290 * will lose some inodes and space,
3291 * but at least we won't hang. Call
3292 * xlog_recover_clear_agi_bucket()
3293 * to perform a transaction to clear
3294 * the inode pointer in the bucket.
3295 */
3296 xlog_recover_clear_agi_bucket(mp, agno,
3297 bucket);
3298
3299 agino = NULLAGINO;
3300 }
3301
3302 /*
3303 * Reacquire the agibuffer and continue around
3304 * the loop.
3305 */
3306 agibp = xfs_buf_read(mp->m_ddev_targp,
3307 XFS_AG_DADDR(mp, agno,
3308 XFS_AGI_DADDR(mp)),
3309 XFS_FSS_TO_BB(mp, 1), 0);
3310 if (XFS_BUF_ISERROR(agibp)) {
3311 xfs_ioerror_alert(
3312 "xlog_recover_process_iunlinks(#2)",
3313 log->l_mp, agibp,
3314 XFS_AG_DADDR(mp, agno,
3315 XFS_AGI_DADDR(mp)));
3316 }
3317 agi = XFS_BUF_TO_AGI(agibp);
16259e7d
CH
3318 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(
3319 agi->agi_magicnum));
1da177e4
LT
3320 }
3321 }
3322
3323 /*
3324 * Release the buffer for the current agi so we can
3325 * go on to the next one.
3326 */
3327 xfs_buf_relse(agibp);
3328 }
3329
3330 mp->m_dmevmask = mp_dmevmask;
3331}
3332
3333
3334#ifdef DEBUG
3335STATIC void
3336xlog_pack_data_checksum(
3337 xlog_t *log,
3338 xlog_in_core_t *iclog,
3339 int size)
3340{
3341 int i;
3342 uint *up;
3343 uint chksum = 0;
3344
3345 up = (uint *)iclog->ic_datap;
3346 /* divide length by 4 to get # words */
3347 for (i = 0; i < (size >> 2); i++) {
3348 chksum ^= INT_GET(*up, ARCH_CONVERT);
3349 up++;
3350 }
3351 INT_SET(iclog->ic_header.h_chksum, ARCH_CONVERT, chksum);
3352}
3353#else
3354#define xlog_pack_data_checksum(log, iclog, size)
3355#endif
3356
3357/*
3358 * Stamp cycle number in every block
3359 */
3360void
3361xlog_pack_data(
3362 xlog_t *log,
3363 xlog_in_core_t *iclog,
3364 int roundoff)
3365{
3366 int i, j, k;
3367 int size = iclog->ic_offset + roundoff;
3368 uint cycle_lsn;
3369 xfs_caddr_t dp;
3370 xlog_in_core_2_t *xhdr;
3371
3372 xlog_pack_data_checksum(log, iclog, size);
3373
3374 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3375
3376 dp = iclog->ic_datap;
3377 for (i = 0; i < BTOBB(size) &&
3378 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3379 iclog->ic_header.h_cycle_data[i] = *(uint *)dp;
3380 *(uint *)dp = cycle_lsn;
3381 dp += BBSIZE;
3382 }
3383
3384 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3385 xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
3386 for ( ; i < BTOBB(size); i++) {
3387 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3388 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3389 xhdr[j].hic_xheader.xh_cycle_data[k] = *(uint *)dp;
3390 *(uint *)dp = cycle_lsn;
3391 dp += BBSIZE;
3392 }
3393
3394 for (i = 1; i < log->l_iclog_heads; i++) {
3395 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3396 }
3397 }
3398}
3399
3400#if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3401STATIC void
3402xlog_unpack_data_checksum(
3403 xlog_rec_header_t *rhead,
3404 xfs_caddr_t dp,
3405 xlog_t *log)
3406{
3407 uint *up = (uint *)dp;
3408 uint chksum = 0;
3409 int i;
3410
3411 /* divide length by 4 to get # words */
3412 for (i=0; i < INT_GET(rhead->h_len, ARCH_CONVERT) >> 2; i++) {
3413 chksum ^= INT_GET(*up, ARCH_CONVERT);
3414 up++;
3415 }
3416 if (chksum != INT_GET(rhead->h_chksum, ARCH_CONVERT)) {
3417 if (rhead->h_chksum ||
3418 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3419 cmn_err(CE_DEBUG,
3420 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)",
3421 INT_GET(rhead->h_chksum, ARCH_CONVERT), chksum);
3422 cmn_err(CE_DEBUG,
3423"XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3424 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3425 cmn_err(CE_DEBUG,
3426 "XFS: LogR this is a LogV2 filesystem");
3427 }
3428 log->l_flags |= XLOG_CHKSUM_MISMATCH;
3429 }
3430 }
3431}
3432#else
3433#define xlog_unpack_data_checksum(rhead, dp, log)
3434#endif
3435
3436STATIC void
3437xlog_unpack_data(
3438 xlog_rec_header_t *rhead,
3439 xfs_caddr_t dp,
3440 xlog_t *log)
3441{
3442 int i, j, k;
3443 xlog_in_core_2_t *xhdr;
3444
3445 for (i = 0; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)) &&
3446 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3447 *(uint *)dp = *(uint *)&rhead->h_cycle_data[i];
3448 dp += BBSIZE;
3449 }
3450
3451 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3452 xhdr = (xlog_in_core_2_t *)rhead;
3453 for ( ; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); i++) {
3454 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3455 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3456 *(uint *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3457 dp += BBSIZE;
3458 }
3459 }
3460
3461 xlog_unpack_data_checksum(rhead, dp, log);
3462}
3463
3464STATIC int
3465xlog_valid_rec_header(
3466 xlog_t *log,
3467 xlog_rec_header_t *rhead,
3468 xfs_daddr_t blkno)
3469{
3470 int hlen;
3471
3472 if (unlikely(
3473 (INT_GET(rhead->h_magicno, ARCH_CONVERT) !=
3474 XLOG_HEADER_MAGIC_NUM))) {
3475 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3476 XFS_ERRLEVEL_LOW, log->l_mp);
3477 return XFS_ERROR(EFSCORRUPTED);
3478 }
3479 if (unlikely(
3480 (!rhead->h_version ||
3481 (INT_GET(rhead->h_version, ARCH_CONVERT) &
3482 (~XLOG_VERSION_OKBITS)) != 0))) {
3483 xlog_warn("XFS: %s: unrecognised log version (%d).",
3484 __FUNCTION__, INT_GET(rhead->h_version, ARCH_CONVERT));
3485 return XFS_ERROR(EIO);
3486 }
3487
3488 /* LR body must have data or it wouldn't have been written */
3489 hlen = INT_GET(rhead->h_len, ARCH_CONVERT);
3490 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3491 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3492 XFS_ERRLEVEL_LOW, log->l_mp);
3493 return XFS_ERROR(EFSCORRUPTED);
3494 }
3495 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3496 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3497 XFS_ERRLEVEL_LOW, log->l_mp);
3498 return XFS_ERROR(EFSCORRUPTED);
3499 }
3500 return 0;
3501}
3502
3503/*
3504 * Read the log from tail to head and process the log records found.
3505 * Handle the two cases where the tail and head are in the same cycle
3506 * and where the active portion of the log wraps around the end of
3507 * the physical log separately. The pass parameter is passed through
3508 * to the routines called to process the data and is not looked at
3509 * here.
3510 */
3511STATIC int
3512xlog_do_recovery_pass(
3513 xlog_t *log,
3514 xfs_daddr_t head_blk,
3515 xfs_daddr_t tail_blk,
3516 int pass)
3517{
3518 xlog_rec_header_t *rhead;
3519 xfs_daddr_t blk_no;
3520 xfs_caddr_t bufaddr, offset;
3521 xfs_buf_t *hbp, *dbp;
3522 int error = 0, h_size;
3523 int bblks, split_bblks;
3524 int hblks, split_hblks, wrapped_hblks;
3525 xlog_recover_t *rhash[XLOG_RHASH_SIZE];
3526
3527 ASSERT(head_blk != tail_blk);
3528
3529 /*
3530 * Read the header of the tail block and get the iclog buffer size from
3531 * h_size. Use this to tell how many sectors make up the log header.
3532 */
3533 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3534 /*
3535 * When using variable length iclogs, read first sector of
3536 * iclog header and extract the header size from it. Get a
3537 * new hbp that is the correct size.
3538 */
3539 hbp = xlog_get_bp(log, 1);
3540 if (!hbp)
3541 return ENOMEM;
3542 if ((error = xlog_bread(log, tail_blk, 1, hbp)))
3543 goto bread_err1;
3544 offset = xlog_align(log, tail_blk, 1, hbp);
3545 rhead = (xlog_rec_header_t *)offset;
3546 error = xlog_valid_rec_header(log, rhead, tail_blk);
3547 if (error)
3548 goto bread_err1;
3549 h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
3550 if ((INT_GET(rhead->h_version, ARCH_CONVERT)
3551 & XLOG_VERSION_2) &&
3552 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3553 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3554 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3555 hblks++;
3556 xlog_put_bp(hbp);
3557 hbp = xlog_get_bp(log, hblks);
3558 } else {
3559 hblks = 1;
3560 }
3561 } else {
3562 ASSERT(log->l_sectbb_log == 0);
3563 hblks = 1;
3564 hbp = xlog_get_bp(log, 1);
3565 h_size = XLOG_BIG_RECORD_BSIZE;
3566 }
3567
3568 if (!hbp)
3569 return ENOMEM;
3570 dbp = xlog_get_bp(log, BTOBB(h_size));
3571 if (!dbp) {
3572 xlog_put_bp(hbp);
3573 return ENOMEM;
3574 }
3575
3576 memset(rhash, 0, sizeof(rhash));
3577 if (tail_blk <= head_blk) {
3578 for (blk_no = tail_blk; blk_no < head_blk; ) {
3579 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3580 goto bread_err2;
3581 offset = xlog_align(log, blk_no, hblks, hbp);
3582 rhead = (xlog_rec_header_t *)offset;
3583 error = xlog_valid_rec_header(log, rhead, blk_no);
3584 if (error)
3585 goto bread_err2;
3586
3587 /* blocks in data section */
3588 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3589 error = xlog_bread(log, blk_no + hblks, bblks, dbp);
3590 if (error)
3591 goto bread_err2;
3592 offset = xlog_align(log, blk_no + hblks, bblks, dbp);
3593 xlog_unpack_data(rhead, offset, log);
3594 if ((error = xlog_recover_process_data(log,
3595 rhash, rhead, offset, pass)))
3596 goto bread_err2;
3597 blk_no += bblks + hblks;
3598 }
3599 } else {
3600 /*
3601 * Perform recovery around the end of the physical log.
3602 * When the head is not on the same cycle number as the tail,
3603 * we can't do a sequential recovery as above.
3604 */
3605 blk_no = tail_blk;
3606 while (blk_no < log->l_logBBsize) {
3607 /*
3608 * Check for header wrapping around physical end-of-log
3609 */
3610 offset = NULL;
3611 split_hblks = 0;
3612 wrapped_hblks = 0;
3613 if (blk_no + hblks <= log->l_logBBsize) {
3614 /* Read header in one read */
3615 error = xlog_bread(log, blk_no, hblks, hbp);
3616 if (error)
3617 goto bread_err2;
3618 offset = xlog_align(log, blk_no, hblks, hbp);
3619 } else {
3620 /* This LR is split across physical log end */
3621 if (blk_no != log->l_logBBsize) {
3622 /* some data before physical log end */
3623 ASSERT(blk_no <= INT_MAX);
3624 split_hblks = log->l_logBBsize - (int)blk_no;
3625 ASSERT(split_hblks > 0);
3626 if ((error = xlog_bread(log, blk_no,
3627 split_hblks, hbp)))
3628 goto bread_err2;
3629 offset = xlog_align(log, blk_no,
3630 split_hblks, hbp);
3631 }
3632 /*
3633 * Note: this black magic still works with
3634 * large sector sizes (non-512) only because:
3635 * - we increased the buffer size originally
3636 * by 1 sector giving us enough extra space
3637 * for the second read;
3638 * - the log start is guaranteed to be sector
3639 * aligned;
3640 * - we read the log end (LR header start)
3641 * _first_, then the log start (LR header end)
3642 * - order is important.
3643 */
3644 bufaddr = XFS_BUF_PTR(hbp);
3645 XFS_BUF_SET_PTR(hbp,
3646 bufaddr + BBTOB(split_hblks),
3647 BBTOB(hblks - split_hblks));
3648 wrapped_hblks = hblks - split_hblks;
3649 error = xlog_bread(log, 0, wrapped_hblks, hbp);
3650 if (error)
3651 goto bread_err2;
3652 XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks));
3653 if (!offset)
3654 offset = xlog_align(log, 0,
3655 wrapped_hblks, hbp);
3656 }
3657 rhead = (xlog_rec_header_t *)offset;
3658 error = xlog_valid_rec_header(log, rhead,
3659 split_hblks ? blk_no : 0);
3660 if (error)
3661 goto bread_err2;
3662
3663 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3664 blk_no += hblks;
3665
3666 /* Read in data for log record */
3667 if (blk_no + bblks <= log->l_logBBsize) {
3668 error = xlog_bread(log, blk_no, bblks, dbp);
3669 if (error)
3670 goto bread_err2;
3671 offset = xlog_align(log, blk_no, bblks, dbp);
3672 } else {
3673 /* This log record is split across the
3674 * physical end of log */
3675 offset = NULL;
3676 split_bblks = 0;
3677 if (blk_no != log->l_logBBsize) {
3678 /* some data is before the physical
3679 * end of log */
3680 ASSERT(!wrapped_hblks);
3681 ASSERT(blk_no <= INT_MAX);
3682 split_bblks =
3683 log->l_logBBsize - (int)blk_no;
3684 ASSERT(split_bblks > 0);
3685 if ((error = xlog_bread(log, blk_no,
3686 split_bblks, dbp)))
3687 goto bread_err2;
3688 offset = xlog_align(log, blk_no,
3689 split_bblks, dbp);
3690 }
3691 /*
3692 * Note: this black magic still works with
3693 * large sector sizes (non-512) only because:
3694 * - we increased the buffer size originally
3695 * by 1 sector giving us enough extra space
3696 * for the second read;
3697 * - the log start is guaranteed to be sector
3698 * aligned;
3699 * - we read the log end (LR header start)
3700 * _first_, then the log start (LR header end)
3701 * - order is important.
3702 */
3703 bufaddr = XFS_BUF_PTR(dbp);
3704 XFS_BUF_SET_PTR(dbp,
3705 bufaddr + BBTOB(split_bblks),
3706 BBTOB(bblks - split_bblks));
3707 if ((error = xlog_bread(log, wrapped_hblks,
3708 bblks - split_bblks, dbp)))
3709 goto bread_err2;
3710 XFS_BUF_SET_PTR(dbp, bufaddr, h_size);
3711 if (!offset)
3712 offset = xlog_align(log, wrapped_hblks,
3713 bblks - split_bblks, dbp);
3714 }
3715 xlog_unpack_data(rhead, offset, log);
3716 if ((error = xlog_recover_process_data(log, rhash,
3717 rhead, offset, pass)))
3718 goto bread_err2;
3719 blk_no += bblks;
3720 }
3721
3722 ASSERT(blk_no >= log->l_logBBsize);
3723 blk_no -= log->l_logBBsize;
3724
3725 /* read first part of physical log */
3726 while (blk_no < head_blk) {
3727 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3728 goto bread_err2;
3729 offset = xlog_align(log, blk_no, hblks, hbp);
3730 rhead = (xlog_rec_header_t *)offset;
3731 error = xlog_valid_rec_header(log, rhead, blk_no);
3732 if (error)
3733 goto bread_err2;
3734 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3735 if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
3736 goto bread_err2;
3737 offset = xlog_align(log, blk_no+hblks, bblks, dbp);
3738 xlog_unpack_data(rhead, offset, log);
3739 if ((error = xlog_recover_process_data(log, rhash,
3740 rhead, offset, pass)))
3741 goto bread_err2;
3742 blk_no += bblks + hblks;
3743 }
3744 }
3745
3746 bread_err2:
3747 xlog_put_bp(dbp);
3748 bread_err1:
3749 xlog_put_bp(hbp);
3750 return error;
3751}
3752
3753/*
3754 * Do the recovery of the log. We actually do this in two phases.
3755 * The two passes are necessary in order to implement the function
3756 * of cancelling a record written into the log. The first pass
3757 * determines those things which have been cancelled, and the
3758 * second pass replays log items normally except for those which
3759 * have been cancelled. The handling of the replay and cancellations
3760 * takes place in the log item type specific routines.
3761 *
3762 * The table of items which have cancel records in the log is allocated
3763 * and freed at this level, since only here do we know when all of
3764 * the log recovery has been completed.
3765 */
3766STATIC int
3767xlog_do_log_recovery(
3768 xlog_t *log,
3769 xfs_daddr_t head_blk,
3770 xfs_daddr_t tail_blk)
3771{
3772 int error;
3773
3774 ASSERT(head_blk != tail_blk);
3775
3776 /*
3777 * First do a pass to find all of the cancelled buf log items.
3778 * Store them in the buf_cancel_table for use in the second pass.
3779 */
3780 log->l_buf_cancel_table =
3781 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3782 sizeof(xfs_buf_cancel_t*),
3783 KM_SLEEP);
3784 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3785 XLOG_RECOVER_PASS1);
3786 if (error != 0) {
3787 kmem_free(log->l_buf_cancel_table,
3788 XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3789 log->l_buf_cancel_table = NULL;
3790 return error;
3791 }
3792 /*
3793 * Then do a second pass to actually recover the items in the log.
3794 * When it is complete free the table of buf cancel items.
3795 */
3796 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3797 XLOG_RECOVER_PASS2);
3798#ifdef DEBUG
3799 {
3800 int i;
3801
3802 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3803 ASSERT(log->l_buf_cancel_table[i] == NULL);
3804 }
3805#endif /* DEBUG */
3806
3807 kmem_free(log->l_buf_cancel_table,
3808 XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3809 log->l_buf_cancel_table = NULL;
3810
3811 return error;
3812}
3813
3814/*
3815 * Do the actual recovery
3816 */
3817STATIC int
3818xlog_do_recover(
3819 xlog_t *log,
3820 xfs_daddr_t head_blk,
3821 xfs_daddr_t tail_blk)
3822{
3823 int error;
3824 xfs_buf_t *bp;
3825 xfs_sb_t *sbp;
3826
3827 /*
3828 * First replay the images in the log.
3829 */
3830 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3831 if (error) {
3832 return error;
3833 }
3834
3835 XFS_bflush(log->l_mp->m_ddev_targp);
3836
3837 /*
3838 * If IO errors happened during recovery, bail out.
3839 */
3840 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3841 return (EIO);
3842 }
3843
3844 /*
3845 * We now update the tail_lsn since much of the recovery has completed
3846 * and there may be space available to use. If there were no extent
3847 * or iunlinks, we can free up the entire log and set the tail_lsn to
3848 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3849 * lsn of the last known good LR on disk. If there are extent frees
3850 * or iunlinks they will have some entries in the AIL; so we look at
3851 * the AIL to determine how to set the tail_lsn.
3852 */
3853 xlog_assign_tail_lsn(log->l_mp);
3854
3855 /*
3856 * Now that we've finished replaying all buffer and inode
3857 * updates, re-read in the superblock.
3858 */
3859 bp = xfs_getsb(log->l_mp, 0);
3860 XFS_BUF_UNDONE(bp);
3861 XFS_BUF_READ(bp);
3862 xfsbdstrat(log->l_mp, bp);
3863 if ((error = xfs_iowait(bp))) {
3864 xfs_ioerror_alert("xlog_do_recover",
3865 log->l_mp, bp, XFS_BUF_ADDR(bp));
3866 ASSERT(0);
3867 xfs_buf_relse(bp);
3868 return error;
3869 }
3870
3871 /* Convert superblock from on-disk format */
3872 sbp = &log->l_mp->m_sb;
3873 xfs_xlatesb(XFS_BUF_TO_SBP(bp), sbp, 1, XFS_SB_ALL_BITS);
3874 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3875 ASSERT(XFS_SB_GOOD_VERSION(sbp));
3876 xfs_buf_relse(bp);
3877
3878 xlog_recover_check_summary(log);
3879
3880 /* Normal transactions can now occur */
3881 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3882 return 0;
3883}
3884
3885/*
3886 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3887 *
3888 * Return error or zero.
3889 */
3890int
3891xlog_recover(
65be6054 3892 xlog_t *log)
1da177e4
LT
3893{
3894 xfs_daddr_t head_blk, tail_blk;
3895 int error;
3896
3897 /* find the tail of the log */
65be6054 3898 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
1da177e4
LT
3899 return error;
3900
3901 if (tail_blk != head_blk) {
3902 /* There used to be a comment here:
3903 *
3904 * disallow recovery on read-only mounts. note -- mount
3905 * checks for ENOSPC and turns it into an intelligent
3906 * error message.
3907 * ...but this is no longer true. Now, unless you specify
3908 * NORECOVERY (in which case this function would never be
3909 * called), we just go ahead and recover. We do this all
3910 * under the vfs layer, so we can get away with it unless
3911 * the device itself is read-only, in which case we fail.
3912 */
3913 if ((error = xfs_dev_is_read_only(log->l_mp,
3914 "recovery required"))) {
3915 return error;
3916 }
3917
3918 cmn_err(CE_NOTE,
fc1f8c1c
NS
3919 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3920 log->l_mp->m_fsname, log->l_mp->m_logname ?
3921 log->l_mp->m_logname : "internal");
1da177e4
LT
3922
3923 error = xlog_do_recover(log, head_blk, tail_blk);
3924 log->l_flags |= XLOG_RECOVERY_NEEDED;
3925 }
3926 return error;
3927}
3928
3929/*
3930 * In the first part of recovery we replay inodes and buffers and build
3931 * up the list of extent free items which need to be processed. Here
3932 * we process the extent free items and clean up the on disk unlinked
3933 * inode lists. This is separated from the first part of recovery so
3934 * that the root and real-time bitmap inodes can be read in from disk in
3935 * between the two stages. This is necessary so that we can free space
3936 * in the real-time portion of the file system.
3937 */
3938int
3939xlog_recover_finish(
3940 xlog_t *log,
3941 int mfsi_flags)
3942{
3943 /*
3944 * Now we're ready to do the transactions needed for the
3945 * rest of recovery. Start with completing all the extent
3946 * free intent records and then process the unlinked inode
3947 * lists. At this point, we essentially run in normal mode
3948 * except that we're still performing recovery actions
3949 * rather than accepting new requests.
3950 */
3951 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3952 xlog_recover_process_efis(log);
3953 /*
3954 * Sync the log to get all the EFIs out of the AIL.
3955 * This isn't absolutely necessary, but it helps in
3956 * case the unlink transactions would have problems
3957 * pushing the EFIs out of the way.
3958 */
3959 xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3960 (XFS_LOG_FORCE | XFS_LOG_SYNC));
3961
3962 if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) {
3963 xlog_recover_process_iunlinks(log);
3964 }
3965
3966 xlog_recover_check_summary(log);
3967
3968 cmn_err(CE_NOTE,
fc1f8c1c
NS
3969 "Ending XFS recovery on filesystem: %s (logdev: %s)",
3970 log->l_mp->m_fsname, log->l_mp->m_logname ?
3971 log->l_mp->m_logname : "internal");
1da177e4
LT
3972 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3973 } else {
3974 cmn_err(CE_DEBUG,
3975 "!Ending clean XFS mount for filesystem: %s",
3976 log->l_mp->m_fsname);
3977 }
3978 return 0;
3979}
3980
3981
3982#if defined(DEBUG)
3983/*
3984 * Read all of the agf and agi counters and check that they
3985 * are consistent with the superblock counters.
3986 */
3987void
3988xlog_recover_check_summary(
3989 xlog_t *log)
3990{
3991 xfs_mount_t *mp;
3992 xfs_agf_t *agfp;
3993 xfs_agi_t *agip;
3994 xfs_buf_t *agfbp;
3995 xfs_buf_t *agibp;
3996 xfs_daddr_t agfdaddr;
3997 xfs_daddr_t agidaddr;
3998 xfs_buf_t *sbbp;
3999#ifdef XFS_LOUD_RECOVERY
4000 xfs_sb_t *sbp;
4001#endif
4002 xfs_agnumber_t agno;
4003 __uint64_t freeblks;
4004 __uint64_t itotal;
4005 __uint64_t ifree;
4006
4007 mp = log->l_mp;
4008
4009 freeblks = 0LL;
4010 itotal = 0LL;
4011 ifree = 0LL;
4012 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4013 agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
4014 agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
4015 XFS_FSS_TO_BB(mp, 1), 0);
4016 if (XFS_BUF_ISERROR(agfbp)) {
4017 xfs_ioerror_alert("xlog_recover_check_summary(agf)",
4018 mp, agfbp, agfdaddr);
4019 }
4020 agfp = XFS_BUF_TO_AGF(agfbp);
16259e7d
CH
4021 ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum));
4022 ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum)));
4023 ASSERT(be32_to_cpu(agfp->agf_seqno) == agno);
4024
4025 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4026 be32_to_cpu(agfp->agf_flcount);
1da177e4
LT
4027 xfs_buf_relse(agfbp);
4028
4029 agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
4030 agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
4031 XFS_FSS_TO_BB(mp, 1), 0);
4032 if (XFS_BUF_ISERROR(agibp)) {
4033 xfs_ioerror_alert("xlog_recover_check_summary(agi)",
4034 mp, agibp, agidaddr);
4035 }
4036 agip = XFS_BUF_TO_AGI(agibp);
16259e7d
CH
4037 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum));
4038 ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum)));
4039 ASSERT(be32_to_cpu(agip->agi_seqno) == agno);
4040
4041 itotal += be32_to_cpu(agip->agi_count);
4042 ifree += be32_to_cpu(agip->agi_freecount);
1da177e4
LT
4043 xfs_buf_relse(agibp);
4044 }
4045
4046 sbbp = xfs_getsb(mp, 0);
4047#ifdef XFS_LOUD_RECOVERY
4048 sbp = &mp->m_sb;
4049 xfs_xlatesb(XFS_BUF_TO_SBP(sbbp), sbp, 1, XFS_SB_ALL_BITS);
4050 cmn_err(CE_NOTE,
4051 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4052 sbp->sb_icount, itotal);
4053 cmn_err(CE_NOTE,
4054 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4055 sbp->sb_ifree, ifree);
4056 cmn_err(CE_NOTE,
4057 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4058 sbp->sb_fdblocks, freeblks);
4059#if 0
4060 /*
4061 * This is turned off until I account for the allocation
4062 * btree blocks which live in free space.
4063 */
4064 ASSERT(sbp->sb_icount == itotal);
4065 ASSERT(sbp->sb_ifree == ifree);
4066 ASSERT(sbp->sb_fdblocks == freeblks);
4067#endif
4068#endif
4069 xfs_buf_relse(sbbp);
4070}
4071#endif /* DEBUG */