]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/xfs/xfs_log_cil.c
net: fix kernel-doc for sk_filter_rcu_release
[net-next-2.6.git] / fs / xfs / xfs_log_cil.c
CommitLineData
71e330b5
DC
1/*
2 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it would be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write the Free Software Foundation,
15 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
16 */
17
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
21#include "xfs_bit.h"
22#include "xfs_log.h"
23#include "xfs_inum.h"
24#include "xfs_trans.h"
25#include "xfs_trans_priv.h"
26#include "xfs_log_priv.h"
27#include "xfs_sb.h"
28#include "xfs_ag.h"
71e330b5
DC
29#include "xfs_mount.h"
30#include "xfs_error.h"
31#include "xfs_alloc.h"
32
33/*
34 * Perform initial CIL structure initialisation. If the CIL is not
35 * enabled in this filesystem, ensure the log->l_cilp is null so
36 * we can check this conditional to determine if we are doing delayed
37 * logging or not.
38 */
39int
40xlog_cil_init(
41 struct log *log)
42{
43 struct xfs_cil *cil;
44 struct xfs_cil_ctx *ctx;
45
46 log->l_cilp = NULL;
47 if (!(log->l_mp->m_flags & XFS_MOUNT_DELAYLOG))
48 return 0;
49
50 cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL);
51 if (!cil)
52 return ENOMEM;
53
54 ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL);
55 if (!ctx) {
56 kmem_free(cil);
57 return ENOMEM;
58 }
59
60 INIT_LIST_HEAD(&cil->xc_cil);
61 INIT_LIST_HEAD(&cil->xc_committing);
62 spin_lock_init(&cil->xc_cil_lock);
63 init_rwsem(&cil->xc_ctx_lock);
64 sv_init(&cil->xc_commit_wait, SV_DEFAULT, "cilwait");
65
66 INIT_LIST_HEAD(&ctx->committing);
67 INIT_LIST_HEAD(&ctx->busy_extents);
68 ctx->sequence = 1;
69 ctx->cil = cil;
70 cil->xc_ctx = ctx;
a44f13ed 71 cil->xc_current_sequence = ctx->sequence;
71e330b5
DC
72
73 cil->xc_log = log;
74 log->l_cilp = cil;
75 return 0;
76}
77
78void
79xlog_cil_destroy(
80 struct log *log)
81{
82 if (!log->l_cilp)
83 return;
84
85 if (log->l_cilp->xc_ctx) {
86 if (log->l_cilp->xc_ctx->ticket)
87 xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
88 kmem_free(log->l_cilp->xc_ctx);
89 }
90
91 ASSERT(list_empty(&log->l_cilp->xc_cil));
92 kmem_free(log->l_cilp);
93}
94
95/*
96 * Allocate a new ticket. Failing to get a new ticket makes it really hard to
97 * recover, so we don't allow failure here. Also, we allocate in a context that
98 * we don't want to be issuing transactions from, so we need to tell the
99 * allocation code this as well.
100 *
101 * We don't reserve any space for the ticket - we are going to steal whatever
102 * space we require from transactions as they commit. To ensure we reserve all
103 * the space required, we need to set the current reservation of the ticket to
104 * zero so that we know to steal the initial transaction overhead from the
105 * first transaction commit.
106 */
107static struct xlog_ticket *
108xlog_cil_ticket_alloc(
109 struct log *log)
110{
111 struct xlog_ticket *tic;
112
113 tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
114 KM_SLEEP|KM_NOFS);
115 tic->t_trans_type = XFS_TRANS_CHECKPOINT;
116
117 /*
118 * set the current reservation to zero so we know to steal the basic
119 * transaction overhead reservation from the first transaction commit.
120 */
121 tic->t_curr_res = 0;
122 return tic;
123}
124
125/*
126 * After the first stage of log recovery is done, we know where the head and
127 * tail of the log are. We need this log initialisation done before we can
128 * initialise the first CIL checkpoint context.
129 *
130 * Here we allocate a log ticket to track space usage during a CIL push. This
131 * ticket is passed to xlog_write() directly so that we don't slowly leak log
132 * space by failing to account for space used by log headers and additional
133 * region headers for split regions.
134 */
135void
136xlog_cil_init_post_recovery(
137 struct log *log)
138{
139 if (!log->l_cilp)
140 return;
141
142 log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
143 log->l_cilp->xc_ctx->sequence = 1;
144 log->l_cilp->xc_ctx->commit_lsn = xlog_assign_lsn(log->l_curr_cycle,
145 log->l_curr_block);
146}
147
71e330b5
DC
148/*
149 * Format log item into a flat buffers
150 *
151 * For delayed logging, we need to hold a formatted buffer containing all the
152 * changes on the log item. This enables us to relog the item in memory and
153 * write it out asynchronously without needing to relock the object that was
154 * modified at the time it gets written into the iclog.
155 *
156 * This function builds a vector for the changes in each log item in the
157 * transaction. It then works out the length of the buffer needed for each log
158 * item, allocates them and formats the vector for the item into the buffer.
159 * The buffer is then attached to the log item are then inserted into the
160 * Committed Item List for tracking until the next checkpoint is written out.
161 *
162 * We don't set up region headers during this process; we simply copy the
163 * regions into the flat buffer. We can do this because we still have to do a
164 * formatting step to write the regions into the iclog buffer. Writing the
165 * ophdrs during the iclog write means that we can support splitting large
166 * regions across iclog boundares without needing a change in the format of the
167 * item/region encapsulation.
168 *
169 * Hence what we need to do now is change the rewrite the vector array to point
170 * to the copied region inside the buffer we just allocated. This allows us to
171 * format the regions into the iclog as though they are being formatted
172 * directly out of the objects themselves.
173 */
174static void
175xlog_cil_format_items(
176 struct log *log,
3b93c7aa 177 struct xfs_log_vec *log_vector)
71e330b5
DC
178{
179 struct xfs_log_vec *lv;
180
71e330b5
DC
181 ASSERT(log_vector);
182 for (lv = log_vector; lv; lv = lv->lv_next) {
183 void *ptr;
184 int index;
185 int len = 0;
186
187 /* build the vector array and calculate it's length */
188 IOP_FORMAT(lv->lv_item, lv->lv_iovecp);
189 for (index = 0; index < lv->lv_niovecs; index++)
190 len += lv->lv_iovecp[index].i_len;
191
192 lv->lv_buf_len = len;
d1583a38 193 lv->lv_buf = kmem_alloc(lv->lv_buf_len, KM_SLEEP|KM_NOFS);
71e330b5
DC
194 ptr = lv->lv_buf;
195
196 for (index = 0; index < lv->lv_niovecs; index++) {
197 struct xfs_log_iovec *vec = &lv->lv_iovecp[index];
198
199 memcpy(ptr, vec->i_addr, vec->i_len);
200 vec->i_addr = ptr;
201 ptr += vec->i_len;
202 }
203 ASSERT(ptr == lv->lv_buf + lv->lv_buf_len);
3b93c7aa
DC
204 }
205}
71e330b5 206
d1583a38
DC
207/*
208 * Prepare the log item for insertion into the CIL. Calculate the difference in
209 * log space and vectors it will consume, and if it is a new item pin it as
210 * well.
211 */
212STATIC void
213xfs_cil_prepare_item(
214 struct log *log,
215 struct xfs_log_vec *lv,
216 int *len,
217 int *diff_iovecs)
218{
219 struct xfs_log_vec *old = lv->lv_item->li_lv;
220
221 if (old) {
222 /* existing lv on log item, space used is a delta */
223 ASSERT(!list_empty(&lv->lv_item->li_cil));
224 ASSERT(old->lv_buf && old->lv_buf_len && old->lv_niovecs);
225
226 *len += lv->lv_buf_len - old->lv_buf_len;
227 *diff_iovecs += lv->lv_niovecs - old->lv_niovecs;
228 kmem_free(old->lv_buf);
229 kmem_free(old);
230 } else {
231 /* new lv, must pin the log item */
232 ASSERT(!lv->lv_item->li_lv);
233 ASSERT(list_empty(&lv->lv_item->li_cil));
234
235 *len += lv->lv_buf_len;
236 *diff_iovecs += lv->lv_niovecs;
237 IOP_PIN(lv->lv_item);
238
239 }
240
241 /* attach new log vector to log item */
242 lv->lv_item->li_lv = lv;
243
244 /*
245 * If this is the first time the item is being committed to the
246 * CIL, store the sequence number on the log item so we can
247 * tell in future commits whether this is the first checkpoint
248 * the item is being committed into.
249 */
250 if (!lv->lv_item->li_seq)
251 lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
252}
253
254/*
255 * Insert the log items into the CIL and calculate the difference in space
256 * consumed by the item. Add the space to the checkpoint ticket and calculate
257 * if the change requires additional log metadata. If it does, take that space
258 * as well. Remove the amount of space we addded to the checkpoint ticket from
259 * the current transaction ticket so that the accounting works out correctly.
260 */
3b93c7aa
DC
261static void
262xlog_cil_insert_items(
263 struct log *log,
264 struct xfs_log_vec *log_vector,
d1583a38 265 struct xlog_ticket *ticket)
3b93c7aa 266{
d1583a38
DC
267 struct xfs_cil *cil = log->l_cilp;
268 struct xfs_cil_ctx *ctx = cil->xc_ctx;
269 struct xfs_log_vec *lv;
270 int len = 0;
271 int diff_iovecs = 0;
272 int iclog_space;
3b93c7aa
DC
273
274 ASSERT(log_vector);
d1583a38
DC
275
276 /*
277 * Do all the accounting aggregation and switching of log vectors
278 * around in a separate loop to the insertion of items into the CIL.
279 * Then we can do a separate loop to update the CIL within a single
280 * lock/unlock pair. This reduces the number of round trips on the CIL
281 * lock from O(nr_logvectors) to O(1) and greatly reduces the overall
282 * hold time for the transaction commit.
283 *
284 * If this is the first time the item is being placed into the CIL in
285 * this context, pin it so it can't be written to disk until the CIL is
286 * flushed to the iclog and the iclog written to disk.
287 *
288 * We can do this safely because the context can't checkpoint until we
289 * are done so it doesn't matter exactly how we update the CIL.
290 */
291 for (lv = log_vector; lv; lv = lv->lv_next)
292 xfs_cil_prepare_item(log, lv, &len, &diff_iovecs);
293
294 /* account for space used by new iovec headers */
295 len += diff_iovecs * sizeof(xlog_op_header_t);
296
297 spin_lock(&cil->xc_cil_lock);
298
299 /* move the items to the tail of the CIL */
3b93c7aa 300 for (lv = log_vector; lv; lv = lv->lv_next)
d1583a38
DC
301 list_move_tail(&lv->lv_item->li_cil, &cil->xc_cil);
302
303 ctx->nvecs += diff_iovecs;
304
305 /*
306 * Now transfer enough transaction reservation to the context ticket
307 * for the checkpoint. The context ticket is special - the unit
308 * reservation has to grow as well as the current reservation as we
309 * steal from tickets so we can correctly determine the space used
310 * during the transaction commit.
311 */
312 if (ctx->ticket->t_curr_res == 0) {
313 /* first commit in checkpoint, steal the header reservation */
314 ASSERT(ticket->t_curr_res >= ctx->ticket->t_unit_res + len);
315 ctx->ticket->t_curr_res = ctx->ticket->t_unit_res;
316 ticket->t_curr_res -= ctx->ticket->t_unit_res;
317 }
318
319 /* do we need space for more log record headers? */
320 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
321 if (len > 0 && (ctx->space_used / iclog_space !=
322 (ctx->space_used + len) / iclog_space)) {
323 int hdrs;
324
325 hdrs = (len + iclog_space - 1) / iclog_space;
326 /* need to take into account split region headers, too */
327 hdrs *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
328 ctx->ticket->t_unit_res += hdrs;
329 ctx->ticket->t_curr_res += hdrs;
330 ticket->t_curr_res -= hdrs;
331 ASSERT(ticket->t_curr_res >= len);
332 }
333 ticket->t_curr_res -= len;
334 ctx->space_used += len;
335
336 spin_unlock(&cil->xc_cil_lock);
71e330b5
DC
337}
338
339static void
340xlog_cil_free_logvec(
341 struct xfs_log_vec *log_vector)
342{
343 struct xfs_log_vec *lv;
344
345 for (lv = log_vector; lv; ) {
346 struct xfs_log_vec *next = lv->lv_next;
347 kmem_free(lv->lv_buf);
348 kmem_free(lv);
349 lv = next;
350 }
351}
352
71e330b5
DC
353/*
354 * Mark all items committed and clear busy extents. We free the log vector
355 * chains in a separate pass so that we unpin the log items as quickly as
356 * possible.
357 */
358static void
359xlog_cil_committed(
360 void *args,
361 int abort)
362{
363 struct xfs_cil_ctx *ctx = args;
364 struct xfs_log_vec *lv;
365 int abortflag = abort ? XFS_LI_ABORTED : 0;
366 struct xfs_busy_extent *busyp, *n;
367
368 /* unpin all the log items */
369 for (lv = ctx->lv_chain; lv; lv = lv->lv_next ) {
370 xfs_trans_item_committed(lv->lv_item, ctx->start_lsn,
371 abortflag);
372 }
373
374 list_for_each_entry_safe(busyp, n, &ctx->busy_extents, list)
375 xfs_alloc_busy_clear(ctx->cil->xc_log->l_mp, busyp);
376
377 spin_lock(&ctx->cil->xc_cil_lock);
378 list_del(&ctx->committing);
379 spin_unlock(&ctx->cil->xc_cil_lock);
380
381 xlog_cil_free_logvec(ctx->lv_chain);
382 kmem_free(ctx);
383}
384
385/*
a44f13ed
DC
386 * Push the Committed Item List to the log. If @push_seq flag is zero, then it
387 * is a background flush and so we can chose to ignore it. Otherwise, if the
388 * current sequence is the same as @push_seq we need to do a flush. If
389 * @push_seq is less than the current sequence, then it has already been
390 * flushed and we don't need to do anything - the caller will wait for it to
391 * complete if necessary.
392 *
393 * @push_seq is a value rather than a flag because that allows us to do an
394 * unlocked check of the sequence number for a match. Hence we can allows log
395 * forces to run racily and not issue pushes for the same sequence twice. If we
396 * get a race between multiple pushes for the same sequence they will block on
397 * the first one and then abort, hence avoiding needless pushes.
71e330b5 398 */
a44f13ed 399STATIC int
71e330b5
DC
400xlog_cil_push(
401 struct log *log,
a44f13ed 402 xfs_lsn_t push_seq)
71e330b5
DC
403{
404 struct xfs_cil *cil = log->l_cilp;
405 struct xfs_log_vec *lv;
406 struct xfs_cil_ctx *ctx;
407 struct xfs_cil_ctx *new_ctx;
408 struct xlog_in_core *commit_iclog;
409 struct xlog_ticket *tic;
410 int num_lv;
411 int num_iovecs;
412 int len;
413 int error = 0;
414 struct xfs_trans_header thdr;
415 struct xfs_log_iovec lhdr;
416 struct xfs_log_vec lvhdr = { NULL };
417 xfs_lsn_t commit_lsn;
418
419 if (!cil)
420 return 0;
421
a44f13ed
DC
422 ASSERT(!push_seq || push_seq <= cil->xc_ctx->sequence);
423
71e330b5
DC
424 new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS);
425 new_ctx->ticket = xlog_cil_ticket_alloc(log);
426
80168676
DC
427 /*
428 * Lock out transaction commit, but don't block for background pushes
429 * unless we are well over the CIL space limit. See the definition of
430 * XLOG_CIL_HARD_SPACE_LIMIT() for the full explanation of the logic
431 * used here.
432 */
df806158 433 if (!down_write_trylock(&cil->xc_ctx_lock)) {
80168676
DC
434 if (!push_seq &&
435 cil->xc_ctx->space_used < XLOG_CIL_HARD_SPACE_LIMIT(log))
df806158
DC
436 goto out_free_ticket;
437 down_write(&cil->xc_ctx_lock);
438 }
71e330b5
DC
439 ctx = cil->xc_ctx;
440
441 /* check if we've anything to push */
442 if (list_empty(&cil->xc_cil))
443 goto out_skip;
444
df806158 445 /* check for spurious background flush */
a44f13ed
DC
446 if (!push_seq && cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
447 goto out_skip;
448
449 /* check for a previously pushed seqeunce */
80168676 450 if (push_seq && push_seq < cil->xc_ctx->sequence)
df806158
DC
451 goto out_skip;
452
71e330b5
DC
453 /*
454 * pull all the log vectors off the items in the CIL, and
455 * remove the items from the CIL. We don't need the CIL lock
456 * here because it's only needed on the transaction commit
457 * side which is currently locked out by the flush lock.
458 */
459 lv = NULL;
460 num_lv = 0;
461 num_iovecs = 0;
462 len = 0;
463 while (!list_empty(&cil->xc_cil)) {
464 struct xfs_log_item *item;
465 int i;
466
467 item = list_first_entry(&cil->xc_cil,
468 struct xfs_log_item, li_cil);
469 list_del_init(&item->li_cil);
470 if (!ctx->lv_chain)
471 ctx->lv_chain = item->li_lv;
472 else
473 lv->lv_next = item->li_lv;
474 lv = item->li_lv;
475 item->li_lv = NULL;
476
477 num_lv++;
478 num_iovecs += lv->lv_niovecs;
479 for (i = 0; i < lv->lv_niovecs; i++)
480 len += lv->lv_iovecp[i].i_len;
481 }
482
483 /*
484 * initialise the new context and attach it to the CIL. Then attach
485 * the current context to the CIL committing lsit so it can be found
486 * during log forces to extract the commit lsn of the sequence that
487 * needs to be forced.
488 */
489 INIT_LIST_HEAD(&new_ctx->committing);
490 INIT_LIST_HEAD(&new_ctx->busy_extents);
491 new_ctx->sequence = ctx->sequence + 1;
492 new_ctx->cil = cil;
493 cil->xc_ctx = new_ctx;
494
a44f13ed
DC
495 /*
496 * mirror the new sequence into the cil structure so that we can do
497 * unlocked checks against the current sequence in log forces without
498 * risking deferencing a freed context pointer.
499 */
500 cil->xc_current_sequence = new_ctx->sequence;
501
71e330b5
DC
502 /*
503 * The switch is now done, so we can drop the context lock and move out
504 * of a shared context. We can't just go straight to the commit record,
505 * though - we need to synchronise with previous and future commits so
506 * that the commit records are correctly ordered in the log to ensure
507 * that we process items during log IO completion in the correct order.
508 *
509 * For example, if we get an EFI in one checkpoint and the EFD in the
510 * next (e.g. due to log forces), we do not want the checkpoint with
511 * the EFD to be committed before the checkpoint with the EFI. Hence
512 * we must strictly order the commit records of the checkpoints so
513 * that: a) the checkpoint callbacks are attached to the iclogs in the
514 * correct order; and b) the checkpoints are replayed in correct order
515 * in log recovery.
516 *
517 * Hence we need to add this context to the committing context list so
518 * that higher sequences will wait for us to write out a commit record
519 * before they do.
520 */
521 spin_lock(&cil->xc_cil_lock);
522 list_add(&ctx->committing, &cil->xc_committing);
523 spin_unlock(&cil->xc_cil_lock);
524 up_write(&cil->xc_ctx_lock);
525
526 /*
527 * Build a checkpoint transaction header and write it to the log to
528 * begin the transaction. We need to account for the space used by the
529 * transaction header here as it is not accounted for in xlog_write().
530 *
531 * The LSN we need to pass to the log items on transaction commit is
532 * the LSN reported by the first log vector write. If we use the commit
533 * record lsn then we can move the tail beyond the grant write head.
534 */
535 tic = ctx->ticket;
536 thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
537 thdr.th_type = XFS_TRANS_CHECKPOINT;
538 thdr.th_tid = tic->t_tid;
539 thdr.th_num_items = num_iovecs;
4e0d5f92 540 lhdr.i_addr = &thdr;
71e330b5
DC
541 lhdr.i_len = sizeof(xfs_trans_header_t);
542 lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
543 tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
544
545 lvhdr.lv_niovecs = 1;
546 lvhdr.lv_iovecp = &lhdr;
547 lvhdr.lv_next = ctx->lv_chain;
548
549 error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
550 if (error)
551 goto out_abort;
552
553 /*
554 * now that we've written the checkpoint into the log, strictly
555 * order the commit records so replay will get them in the right order.
556 */
557restart:
558 spin_lock(&cil->xc_cil_lock);
559 list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
560 /*
561 * Higher sequences will wait for this one so skip them.
562 * Don't wait for own own sequence, either.
563 */
564 if (new_ctx->sequence >= ctx->sequence)
565 continue;
566 if (!new_ctx->commit_lsn) {
567 /*
568 * It is still being pushed! Wait for the push to
569 * complete, then start again from the beginning.
570 */
571 sv_wait(&cil->xc_commit_wait, 0, &cil->xc_cil_lock, 0);
572 goto restart;
573 }
574 }
575 spin_unlock(&cil->xc_cil_lock);
576
577 commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, 0);
578 if (error || commit_lsn == -1)
579 goto out_abort;
580
581 /* attach all the transactions w/ busy extents to iclog */
582 ctx->log_cb.cb_func = xlog_cil_committed;
583 ctx->log_cb.cb_arg = ctx;
584 error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb);
585 if (error)
586 goto out_abort;
587
588 /*
589 * now the checkpoint commit is complete and we've attached the
590 * callbacks to the iclog we can assign the commit LSN to the context
591 * and wake up anyone who is waiting for the commit to complete.
592 */
593 spin_lock(&cil->xc_cil_lock);
594 ctx->commit_lsn = commit_lsn;
595 sv_broadcast(&cil->xc_commit_wait);
596 spin_unlock(&cil->xc_cil_lock);
597
598 /* release the hounds! */
599 return xfs_log_release_iclog(log->l_mp, commit_iclog);
600
601out_skip:
602 up_write(&cil->xc_ctx_lock);
df806158 603out_free_ticket:
71e330b5
DC
604 xfs_log_ticket_put(new_ctx->ticket);
605 kmem_free(new_ctx);
606 return 0;
607
608out_abort:
609 xlog_cil_committed(ctx, XFS_LI_ABORTED);
610 return XFS_ERROR(EIO);
611}
612
a44f13ed
DC
613/*
614 * Commit a transaction with the given vector to the Committed Item List.
615 *
616 * To do this, we need to format the item, pin it in memory if required and
617 * account for the space used by the transaction. Once we have done that we
618 * need to release the unused reservation for the transaction, attach the
619 * transaction to the checkpoint context so we carry the busy extents through
620 * to checkpoint completion, and then unlock all the items in the transaction.
621 *
622 * For more specific information about the order of operations in
623 * xfs_log_commit_cil() please refer to the comments in
624 * xfs_trans_commit_iclog().
625 *
626 * Called with the context lock already held in read mode to lock out
627 * background commit, returns without it held once background commits are
628 * allowed again.
629 */
630int
631xfs_log_commit_cil(
632 struct xfs_mount *mp,
633 struct xfs_trans *tp,
634 struct xfs_log_vec *log_vector,
635 xfs_lsn_t *commit_lsn,
636 int flags)
637{
638 struct log *log = mp->m_log;
639 int log_flags = 0;
640 int push = 0;
641
642 if (flags & XFS_TRANS_RELEASE_LOG_RES)
643 log_flags = XFS_LOG_REL_PERM_RESERV;
644
645 if (XLOG_FORCED_SHUTDOWN(log)) {
646 xlog_cil_free_logvec(log_vector);
647 return XFS_ERROR(EIO);
648 }
649
3b93c7aa
DC
650 /*
651 * do all the hard work of formatting items (including memory
652 * allocation) outside the CIL context lock. This prevents stalling CIL
653 * pushes when we are low on memory and a transaction commit spends a
654 * lot of time in memory reclaim.
655 */
656 xlog_cil_format_items(log, log_vector);
657
a44f13ed
DC
658 /* lock out background commit */
659 down_read(&log->l_cilp->xc_ctx_lock);
d1583a38
DC
660 if (commit_lsn)
661 *commit_lsn = log->l_cilp->xc_ctx->sequence;
662
663 xlog_cil_insert_items(log, log_vector, tp->t_ticket);
a44f13ed
DC
664
665 /* check we didn't blow the reservation */
666 if (tp->t_ticket->t_curr_res < 0)
667 xlog_print_tic_res(log->l_mp, tp->t_ticket);
668
669 /* attach the transaction to the CIL if it has any busy extents */
670 if (!list_empty(&tp->t_busy)) {
671 spin_lock(&log->l_cilp->xc_cil_lock);
672 list_splice_init(&tp->t_busy,
673 &log->l_cilp->xc_ctx->busy_extents);
674 spin_unlock(&log->l_cilp->xc_cil_lock);
675 }
676
677 tp->t_commit_lsn = *commit_lsn;
678 xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
679 xfs_trans_unreserve_and_mod_sb(tp);
680
681 /*
682 * Once all the items of the transaction have been copied to the CIL,
683 * the items can be unlocked and freed.
684 *
685 * This needs to be done before we drop the CIL context lock because we
686 * have to update state in the log items and unlock them before they go
687 * to disk. If we don't, then the CIL checkpoint can race with us and
688 * we can run checkpoint completion before we've updated and unlocked
689 * the log items. This affects (at least) processing of stale buffers,
690 * inodes and EFIs.
691 */
692 xfs_trans_free_items(tp, *commit_lsn, 0);
693
694 /* check for background commit before unlock */
695 if (log->l_cilp->xc_ctx->space_used > XLOG_CIL_SPACE_LIMIT(log))
696 push = 1;
697
698 up_read(&log->l_cilp->xc_ctx_lock);
699
700 /*
701 * We need to push CIL every so often so we don't cache more than we
702 * can fit in the log. The limit really is that a checkpoint can't be
703 * more than half the log (the current checkpoint is not allowed to
704 * overwrite the previous checkpoint), but commit latency and memory
705 * usage limit this to a smaller size in most cases.
706 */
707 if (push)
708 xlog_cil_push(log, 0);
709 return 0;
710}
711
71e330b5
DC
712/*
713 * Conditionally push the CIL based on the sequence passed in.
714 *
715 * We only need to push if we haven't already pushed the sequence
716 * number given. Hence the only time we will trigger a push here is
717 * if the push sequence is the same as the current context.
718 *
719 * We return the current commit lsn to allow the callers to determine if a
720 * iclog flush is necessary following this call.
721 *
722 * XXX: Initially, just push the CIL unconditionally and return whatever
723 * commit lsn is there. It'll be empty, so this is broken for now.
724 */
725xfs_lsn_t
a44f13ed 726xlog_cil_force_lsn(
71e330b5 727 struct log *log,
a44f13ed 728 xfs_lsn_t sequence)
71e330b5
DC
729{
730 struct xfs_cil *cil = log->l_cilp;
731 struct xfs_cil_ctx *ctx;
732 xfs_lsn_t commit_lsn = NULLCOMMITLSN;
733
a44f13ed
DC
734 ASSERT(sequence <= cil->xc_current_sequence);
735
736 /*
737 * check to see if we need to force out the current context.
738 * xlog_cil_push() handles racing pushes for the same sequence,
739 * so no need to deal with it here.
740 */
741 if (sequence == cil->xc_current_sequence)
742 xlog_cil_push(log, sequence);
71e330b5
DC
743
744 /*
745 * See if we can find a previous sequence still committing.
71e330b5
DC
746 * We need to wait for all previous sequence commits to complete
747 * before allowing the force of push_seq to go ahead. Hence block
748 * on commits for those as well.
749 */
a44f13ed 750restart:
71e330b5 751 spin_lock(&cil->xc_cil_lock);
71e330b5 752 list_for_each_entry(ctx, &cil->xc_committing, committing) {
a44f13ed 753 if (ctx->sequence > sequence)
71e330b5
DC
754 continue;
755 if (!ctx->commit_lsn) {
756 /*
757 * It is still being pushed! Wait for the push to
758 * complete, then start again from the beginning.
759 */
760 sv_wait(&cil->xc_commit_wait, 0, &cil->xc_cil_lock, 0);
761 goto restart;
762 }
a44f13ed 763 if (ctx->sequence != sequence)
71e330b5
DC
764 continue;
765 /* found it! */
766 commit_lsn = ctx->commit_lsn;
767 }
768 spin_unlock(&cil->xc_cil_lock);
769 return commit_lsn;
770}
ccf7c23f
DC
771
772/*
773 * Check if the current log item was first committed in this sequence.
774 * We can't rely on just the log item being in the CIL, we have to check
775 * the recorded commit sequence number.
776 *
777 * Note: for this to be used in a non-racy manner, it has to be called with
778 * CIL flushing locked out. As a result, it should only be used during the
779 * transaction commit process when deciding what to format into the item.
780 */
781bool
782xfs_log_item_in_current_chkpt(
783 struct xfs_log_item *lip)
784{
785 struct xfs_cil_ctx *ctx;
786
787 if (!(lip->li_mountp->m_flags & XFS_MOUNT_DELAYLOG))
788 return false;
789 if (list_empty(&lip->li_cil))
790 return false;
791
792 ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
793
794 /*
795 * li_seq is written on the first commit of a log item to record the
796 * first checkpoint it is written to. Hence if it is different to the
797 * current sequence, we're in a new checkpoint.
798 */
799 if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
800 return false;
801 return true;
802}