]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/xfs/xfs_extfree_item.c
[XFS] kill move.[ch]
[net-next-2.6.git] / fs / xfs / xfs_extfree_item.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
1da177e4 21#include "xfs_log.h"
a844f451 22#include "xfs_inum.h"
1da177e4
LT
23#include "xfs_trans.h"
24#include "xfs_buf_item.h"
25#include "xfs_sb.h"
1da177e4
LT
26#include "xfs_dmapi.h"
27#include "xfs_mount.h"
28#include "xfs_trans_priv.h"
29#include "xfs_extfree_item.h"
30
31
32kmem_zone_t *xfs_efi_zone;
33kmem_zone_t *xfs_efd_zone;
34
35STATIC void xfs_efi_item_unlock(xfs_efi_log_item_t *);
1da177e4 36
7d795ca3
CH
37void
38xfs_efi_item_free(xfs_efi_log_item_t *efip)
39{
40 int nexts = efip->efi_format.efi_nextents;
41
42 if (nexts > XFS_EFI_MAX_FAST_EXTENTS) {
43 kmem_free(efip, sizeof(xfs_efi_log_item_t) +
44 (nexts - 1) * sizeof(xfs_extent_t));
45 } else {
46 kmem_zone_free(xfs_efi_zone, efip);
47 }
48}
1da177e4
LT
49
50/*
51 * This returns the number of iovecs needed to log the given efi item.
52 * We only need 1 iovec for an efi item. It just logs the efi_log_format
53 * structure.
54 */
55/*ARGSUSED*/
56STATIC uint
57xfs_efi_item_size(xfs_efi_log_item_t *efip)
58{
59 return 1;
60}
61
62/*
63 * This is called to fill in the vector of log iovecs for the
64 * given efi log item. We use only 1 iovec, and we point that
65 * at the efi_log_format structure embedded in the efi item.
66 * It is at this point that we assert that all of the extent
67 * slots in the efi item have been filled.
68 */
69STATIC void
70xfs_efi_item_format(xfs_efi_log_item_t *efip,
71 xfs_log_iovec_t *log_vector)
72{
73 uint size;
74
75 ASSERT(efip->efi_next_extent == efip->efi_format.efi_nextents);
76
77 efip->efi_format.efi_type = XFS_LI_EFI;
78
79 size = sizeof(xfs_efi_log_format_t);
80 size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
81 efip->efi_format.efi_size = 1;
82
83 log_vector->i_addr = (xfs_caddr_t)&(efip->efi_format);
84 log_vector->i_len = size;
7e9c6396 85 XLOG_VEC_SET_TYPE(log_vector, XLOG_REG_TYPE_EFI_FORMAT);
1da177e4
LT
86 ASSERT(size >= sizeof(xfs_efi_log_format_t));
87}
88
89
90/*
91 * Pinning has no meaning for an efi item, so just return.
92 */
93/*ARGSUSED*/
94STATIC void
95xfs_efi_item_pin(xfs_efi_log_item_t *efip)
96{
97 return;
98}
99
100
101/*
102 * While EFIs cannot really be pinned, the unpin operation is the
103 * last place at which the EFI is manipulated during a transaction.
104 * Here we coordinate with xfs_efi_cancel() to determine who gets to
105 * free the EFI.
106 */
107/*ARGSUSED*/
108STATIC void
109xfs_efi_item_unpin(xfs_efi_log_item_t *efip, int stale)
110{
1da177e4
LT
111 xfs_mount_t *mp;
112 SPLDECL(s);
113
114 mp = efip->efi_item.li_mountp;
115 AIL_LOCK(mp, s);
116 if (efip->efi_flags & XFS_EFI_CANCELED) {
117 /*
118 * xfs_trans_delete_ail() drops the AIL lock.
119 */
120 xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s);
7d795ca3 121 xfs_efi_item_free(efip);
1da177e4
LT
122 } else {
123 efip->efi_flags |= XFS_EFI_COMMITTED;
124 AIL_UNLOCK(mp, s);
125 }
1da177e4
LT
126}
127
128/*
129 * like unpin only we have to also clear the xaction descriptor
130 * pointing the log item if we free the item. This routine duplicates
131 * unpin because efi_flags is protected by the AIL lock. Freeing
132 * the descriptor and then calling unpin would force us to drop the AIL
133 * lock which would open up a race condition.
134 */
135STATIC void
136xfs_efi_item_unpin_remove(xfs_efi_log_item_t *efip, xfs_trans_t *tp)
137{
1da177e4
LT
138 xfs_mount_t *mp;
139 xfs_log_item_desc_t *lidp;
140 SPLDECL(s);
141
142 mp = efip->efi_item.li_mountp;
143 AIL_LOCK(mp, s);
144 if (efip->efi_flags & XFS_EFI_CANCELED) {
145 /*
146 * free the xaction descriptor pointing to this item
147 */
148 lidp = xfs_trans_find_item(tp, (xfs_log_item_t *) efip);
149 xfs_trans_free_item(tp, lidp);
150 /*
151 * pull the item off the AIL.
152 * xfs_trans_delete_ail() drops the AIL lock.
153 */
154 xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s);
7d795ca3 155 xfs_efi_item_free(efip);
1da177e4
LT
156 } else {
157 efip->efi_flags |= XFS_EFI_COMMITTED;
158 AIL_UNLOCK(mp, s);
159 }
1da177e4
LT
160}
161
162/*
163 * Efi items have no locking or pushing. However, since EFIs are
164 * pulled from the AIL when their corresponding EFDs are committed
165 * to disk, their situation is very similar to being pinned. Return
166 * XFS_ITEM_PINNED so that the caller will eventually flush the log.
167 * This should help in getting the EFI out of the AIL.
168 */
169/*ARGSUSED*/
170STATIC uint
171xfs_efi_item_trylock(xfs_efi_log_item_t *efip)
172{
173 return XFS_ITEM_PINNED;
174}
175
176/*
177 * Efi items have no locking, so just return.
178 */
179/*ARGSUSED*/
180STATIC void
181xfs_efi_item_unlock(xfs_efi_log_item_t *efip)
182{
183 if (efip->efi_item.li_flags & XFS_LI_ABORTED)
065d312e 184 xfs_efi_item_free(efip);
1da177e4
LT
185 return;
186}
187
188/*
189 * The EFI is logged only once and cannot be moved in the log, so
190 * simply return the lsn at which it's been logged. The canceled
191 * flag is not paid any attention here. Checking for that is delayed
192 * until the EFI is unpinned.
193 */
194/*ARGSUSED*/
195STATIC xfs_lsn_t
196xfs_efi_item_committed(xfs_efi_log_item_t *efip, xfs_lsn_t lsn)
197{
198 return lsn;
199}
200
1da177e4
LT
201/*
202 * There isn't much you can do to push on an efi item. It is simply
203 * stuck waiting for all of its corresponding efd items to be
204 * committed to disk.
205 */
206/*ARGSUSED*/
207STATIC void
208xfs_efi_item_push(xfs_efi_log_item_t *efip)
209{
210 return;
211}
212
213/*
214 * The EFI dependency tracking op doesn't do squat. It can't because
215 * it doesn't know where the free extent is coming from. The dependency
216 * tracking has to be handled by the "enclosing" metadata object. For
217 * example, for inodes, the inode is locked throughout the extent freeing
218 * so the dependency should be recorded there.
219 */
220/*ARGSUSED*/
221STATIC void
222xfs_efi_item_committing(xfs_efi_log_item_t *efip, xfs_lsn_t lsn)
223{
224 return;
225}
226
227/*
228 * This is the ops vector shared by all efi log items.
229 */
7989cb8e 230static struct xfs_item_ops xfs_efi_item_ops = {
1da177e4
LT
231 .iop_size = (uint(*)(xfs_log_item_t*))xfs_efi_item_size,
232 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
233 xfs_efi_item_format,
234 .iop_pin = (void(*)(xfs_log_item_t*))xfs_efi_item_pin,
235 .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_efi_item_unpin,
236 .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t *))
237 xfs_efi_item_unpin_remove,
238 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_efi_item_trylock,
239 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_efi_item_unlock,
240 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
241 xfs_efi_item_committed,
242 .iop_push = (void(*)(xfs_log_item_t*))xfs_efi_item_push,
1da177e4
LT
243 .iop_pushbuf = NULL,
244 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
245 xfs_efi_item_committing
246};
247
248
249/*
250 * Allocate and initialize an efi item with the given number of extents.
251 */
252xfs_efi_log_item_t *
253xfs_efi_init(xfs_mount_t *mp,
254 uint nextents)
255
256{
257 xfs_efi_log_item_t *efip;
258 uint size;
259
260 ASSERT(nextents > 0);
261 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
262 size = (uint)(sizeof(xfs_efi_log_item_t) +
263 ((nextents - 1) * sizeof(xfs_extent_t)));
264 efip = (xfs_efi_log_item_t*)kmem_zalloc(size, KM_SLEEP);
265 } else {
266 efip = (xfs_efi_log_item_t*)kmem_zone_zalloc(xfs_efi_zone,
267 KM_SLEEP);
268 }
269
270 efip->efi_item.li_type = XFS_LI_EFI;
271 efip->efi_item.li_ops = &xfs_efi_item_ops;
272 efip->efi_item.li_mountp = mp;
273 efip->efi_format.efi_nextents = nextents;
274 efip->efi_format.efi_id = (__psint_t)(void*)efip;
275
276 return (efip);
277}
278
6d192a9b
TS
279/*
280 * Copy an EFI format buffer from the given buf, and into the destination
281 * EFI format structure.
282 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
283 * one of which will be the native format for this kernel.
284 * It will handle the conversion of formats if necessary.
285 */
286int
287xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
288{
289 xfs_efi_log_format_t *src_efi_fmt = (xfs_efi_log_format_t *)buf->i_addr;
290 uint i;
291 uint len = sizeof(xfs_efi_log_format_t) +
292 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
293 uint len32 = sizeof(xfs_efi_log_format_32_t) +
294 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
295 uint len64 = sizeof(xfs_efi_log_format_64_t) +
296 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
297
298 if (buf->i_len == len) {
299 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
300 return 0;
301 } else if (buf->i_len == len32) {
302 xfs_efi_log_format_32_t *src_efi_fmt_32 =
303 (xfs_efi_log_format_32_t *)buf->i_addr;
304
305 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
306 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
307 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
308 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
309 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
310 dst_efi_fmt->efi_extents[i].ext_start =
311 src_efi_fmt_32->efi_extents[i].ext_start;
312 dst_efi_fmt->efi_extents[i].ext_len =
313 src_efi_fmt_32->efi_extents[i].ext_len;
314 }
315 return 0;
316 } else if (buf->i_len == len64) {
317 xfs_efi_log_format_64_t *src_efi_fmt_64 =
318 (xfs_efi_log_format_64_t *)buf->i_addr;
319
320 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
321 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
322 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
323 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
324 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
325 dst_efi_fmt->efi_extents[i].ext_start =
326 src_efi_fmt_64->efi_extents[i].ext_start;
327 dst_efi_fmt->efi_extents[i].ext_len =
328 src_efi_fmt_64->efi_extents[i].ext_len;
329 }
330 return 0;
331 }
332 return EFSCORRUPTED;
333}
334
1da177e4
LT
335/*
336 * This is called by the efd item code below to release references to
337 * the given efi item. Each efd calls this with the number of
338 * extents that it has logged, and when the sum of these reaches
339 * the total number of extents logged by this efi item we can free
340 * the efi item.
341 *
342 * Freeing the efi item requires that we remove it from the AIL.
343 * We'll use the AIL lock to protect our counters as well as
344 * the removal from the AIL.
345 */
346void
347xfs_efi_release(xfs_efi_log_item_t *efip,
348 uint nextents)
349{
350 xfs_mount_t *mp;
351 int extents_left;
1da177e4
LT
352 SPLDECL(s);
353
354 mp = efip->efi_item.li_mountp;
355 ASSERT(efip->efi_next_extent > 0);
356 ASSERT(efip->efi_flags & XFS_EFI_COMMITTED);
357
358 AIL_LOCK(mp, s);
359 ASSERT(efip->efi_next_extent >= nextents);
360 efip->efi_next_extent -= nextents;
361 extents_left = efip->efi_next_extent;
362 if (extents_left == 0) {
363 /*
364 * xfs_trans_delete_ail() drops the AIL lock.
365 */
366 xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s);
7d795ca3 367 xfs_efi_item_free(efip);
1da177e4
LT
368 } else {
369 AIL_UNLOCK(mp, s);
370 }
1da177e4
LT
371}
372
7d795ca3
CH
373STATIC void
374xfs_efd_item_free(xfs_efd_log_item_t *efdp)
375{
376 int nexts = efdp->efd_format.efd_nextents;
1da177e4 377
7d795ca3
CH
378 if (nexts > XFS_EFD_MAX_FAST_EXTENTS) {
379 kmem_free(efdp, sizeof(xfs_efd_log_item_t) +
380 (nexts - 1) * sizeof(xfs_extent_t));
381 } else {
382 kmem_zone_free(xfs_efd_zone, efdp);
383 }
384}
1da177e4
LT
385
386/*
387 * This returns the number of iovecs needed to log the given efd item.
388 * We only need 1 iovec for an efd item. It just logs the efd_log_format
389 * structure.
390 */
391/*ARGSUSED*/
392STATIC uint
393xfs_efd_item_size(xfs_efd_log_item_t *efdp)
394{
395 return 1;
396}
397
398/*
399 * This is called to fill in the vector of log iovecs for the
400 * given efd log item. We use only 1 iovec, and we point that
401 * at the efd_log_format structure embedded in the efd item.
402 * It is at this point that we assert that all of the extent
403 * slots in the efd item have been filled.
404 */
405STATIC void
406xfs_efd_item_format(xfs_efd_log_item_t *efdp,
407 xfs_log_iovec_t *log_vector)
408{
409 uint size;
410
411 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
412
413 efdp->efd_format.efd_type = XFS_LI_EFD;
414
415 size = sizeof(xfs_efd_log_format_t);
416 size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
417 efdp->efd_format.efd_size = 1;
418
419 log_vector->i_addr = (xfs_caddr_t)&(efdp->efd_format);
420 log_vector->i_len = size;
7e9c6396 421 XLOG_VEC_SET_TYPE(log_vector, XLOG_REG_TYPE_EFD_FORMAT);
1da177e4
LT
422 ASSERT(size >= sizeof(xfs_efd_log_format_t));
423}
424
425
426/*
427 * Pinning has no meaning for an efd item, so just return.
428 */
429/*ARGSUSED*/
430STATIC void
431xfs_efd_item_pin(xfs_efd_log_item_t *efdp)
432{
433 return;
434}
435
436
437/*
438 * Since pinning has no meaning for an efd item, unpinning does
439 * not either.
440 */
441/*ARGSUSED*/
442STATIC void
443xfs_efd_item_unpin(xfs_efd_log_item_t *efdp, int stale)
444{
445 return;
446}
447
448/*ARGSUSED*/
449STATIC void
450xfs_efd_item_unpin_remove(xfs_efd_log_item_t *efdp, xfs_trans_t *tp)
451{
452 return;
453}
454
455/*
456 * Efd items have no locking, so just return success.
457 */
458/*ARGSUSED*/
459STATIC uint
460xfs_efd_item_trylock(xfs_efd_log_item_t *efdp)
461{
462 return XFS_ITEM_LOCKED;
463}
464
465/*
466 * Efd items have no locking or pushing, so return failure
467 * so that the caller doesn't bother with us.
468 */
469/*ARGSUSED*/
470STATIC void
471xfs_efd_item_unlock(xfs_efd_log_item_t *efdp)
472{
473 if (efdp->efd_item.li_flags & XFS_LI_ABORTED)
065d312e 474 xfs_efd_item_free(efdp);
1da177e4
LT
475 return;
476}
477
478/*
479 * When the efd item is committed to disk, all we need to do
480 * is delete our reference to our partner efi item and then
481 * free ourselves. Since we're freeing ourselves we must
482 * return -1 to keep the transaction code from further referencing
483 * this item.
484 */
485/*ARGSUSED*/
486STATIC xfs_lsn_t
487xfs_efd_item_committed(xfs_efd_log_item_t *efdp, xfs_lsn_t lsn)
488{
1da177e4
LT
489 /*
490 * If we got a log I/O error, it's always the case that the LR with the
491 * EFI got unpinned and freed before the EFD got aborted.
492 */
493 if ((efdp->efd_item.li_flags & XFS_LI_ABORTED) == 0)
494 xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents);
495
7d795ca3 496 xfs_efd_item_free(efdp);
1da177e4
LT
497 return (xfs_lsn_t)-1;
498}
499
1da177e4
LT
500/*
501 * There isn't much you can do to push on an efd item. It is simply
502 * stuck waiting for the log to be flushed to disk.
503 */
504/*ARGSUSED*/
505STATIC void
506xfs_efd_item_push(xfs_efd_log_item_t *efdp)
507{
508 return;
509}
510
511/*
512 * The EFD dependency tracking op doesn't do squat. It can't because
513 * it doesn't know where the free extent is coming from. The dependency
514 * tracking has to be handled by the "enclosing" metadata object. For
515 * example, for inodes, the inode is locked throughout the extent freeing
516 * so the dependency should be recorded there.
517 */
518/*ARGSUSED*/
519STATIC void
520xfs_efd_item_committing(xfs_efd_log_item_t *efip, xfs_lsn_t lsn)
521{
522 return;
523}
524
525/*
526 * This is the ops vector shared by all efd log items.
527 */
7989cb8e 528static struct xfs_item_ops xfs_efd_item_ops = {
1da177e4
LT
529 .iop_size = (uint(*)(xfs_log_item_t*))xfs_efd_item_size,
530 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
531 xfs_efd_item_format,
532 .iop_pin = (void(*)(xfs_log_item_t*))xfs_efd_item_pin,
533 .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_efd_item_unpin,
534 .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*))
535 xfs_efd_item_unpin_remove,
536 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_efd_item_trylock,
537 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_efd_item_unlock,
538 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
539 xfs_efd_item_committed,
540 .iop_push = (void(*)(xfs_log_item_t*))xfs_efd_item_push,
1da177e4
LT
541 .iop_pushbuf = NULL,
542 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
543 xfs_efd_item_committing
544};
545
546
547/*
548 * Allocate and initialize an efd item with the given number of extents.
549 */
550xfs_efd_log_item_t *
551xfs_efd_init(xfs_mount_t *mp,
552 xfs_efi_log_item_t *efip,
553 uint nextents)
554
555{
556 xfs_efd_log_item_t *efdp;
557 uint size;
558
559 ASSERT(nextents > 0);
560 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
561 size = (uint)(sizeof(xfs_efd_log_item_t) +
562 ((nextents - 1) * sizeof(xfs_extent_t)));
563 efdp = (xfs_efd_log_item_t*)kmem_zalloc(size, KM_SLEEP);
564 } else {
565 efdp = (xfs_efd_log_item_t*)kmem_zone_zalloc(xfs_efd_zone,
566 KM_SLEEP);
567 }
568
569 efdp->efd_item.li_type = XFS_LI_EFD;
570 efdp->efd_item.li_ops = &xfs_efd_item_ops;
571 efdp->efd_item.li_mountp = mp;
572 efdp->efd_efip = efip;
573 efdp->efd_format.efd_nextents = nextents;
574 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
575
576 return (efdp);
577}