]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/xfs/linux-2.6/xfs_sync.c
xfs: use generic inode iterator in xfs_qm_dqrele_all_inodes
[net-next-2.6.git] / fs / xfs / linux-2.6 / xfs_sync.c
CommitLineData
fe4fa4b8
DC
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
21#include "xfs_bit.h"
22#include "xfs_log.h"
23#include "xfs_inum.h"
24#include "xfs_trans.h"
25#include "xfs_sb.h"
26#include "xfs_ag.h"
27#include "xfs_dir2.h"
28#include "xfs_dmapi.h"
29#include "xfs_mount.h"
30#include "xfs_bmap_btree.h"
31#include "xfs_alloc_btree.h"
32#include "xfs_ialloc_btree.h"
33#include "xfs_btree.h"
34#include "xfs_dir2_sf.h"
35#include "xfs_attr_sf.h"
36#include "xfs_inode.h"
37#include "xfs_dinode.h"
38#include "xfs_error.h"
39#include "xfs_mru_cache.h"
40#include "xfs_filestream.h"
41#include "xfs_vnodeops.h"
42#include "xfs_utils.h"
43#include "xfs_buf_item.h"
44#include "xfs_inode_item.h"
45#include "xfs_rw.h"
7d095257 46#include "xfs_quota.h"
fe4fa4b8 47
a167b17e
DC
48#include <linux/kthread.h>
49#include <linux/freezer.h>
50
5a34d5cd 51
75f3cb13
DC
52STATIC xfs_inode_t *
53xfs_inode_ag_lookup(
54 struct xfs_mount *mp,
55 struct xfs_perag *pag,
56 uint32_t *first_index,
57 int tag)
58{
59 int nr_found;
60 struct xfs_inode *ip;
61
62 /*
63 * use a gang lookup to find the next inode in the tree
64 * as the tree is sparse and a gang lookup walks to find
65 * the number of objects requested.
66 */
67 read_lock(&pag->pag_ici_lock);
68 if (tag == XFS_ICI_NO_TAG) {
69 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
70 (void **)&ip, *first_index, 1);
71 } else {
72 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
73 (void **)&ip, *first_index, 1, tag);
74 }
75 if (!nr_found)
76 goto unlock;
77
78 /*
79 * Update the index for the next lookup. Catch overflows
80 * into the next AG range which can occur if we have inodes
81 * in the last block of the AG and we are currently
82 * pointing to the last inode.
83 */
84 *first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
85 if (*first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
86 goto unlock;
87
88 return ip;
89
90unlock:
91 read_unlock(&pag->pag_ici_lock);
92 return NULL;
93}
94
95STATIC int
96xfs_inode_ag_walk(
97 struct xfs_mount *mp,
98 xfs_agnumber_t ag,
99 int (*execute)(struct xfs_inode *ip,
100 struct xfs_perag *pag, int flags),
101 int flags,
102 int tag)
103{
104 struct xfs_perag *pag = &mp->m_perag[ag];
105 uint32_t first_index;
106 int last_error = 0;
107 int skipped;
108
109restart:
110 skipped = 0;
111 first_index = 0;
112 do {
113 int error = 0;
114 xfs_inode_t *ip;
115
116 ip = xfs_inode_ag_lookup(mp, pag, &first_index, tag);
117 if (!ip)
118 break;
119
120 error = execute(ip, pag, flags);
121 if (error == EAGAIN) {
122 skipped++;
123 continue;
124 }
125 if (error)
126 last_error = error;
127 /*
128 * bail out if the filesystem is corrupted.
129 */
130 if (error == EFSCORRUPTED)
131 break;
132
133 } while (1);
134
135 if (skipped) {
136 delay(1);
137 goto restart;
138 }
139
140 xfs_put_perag(mp, pag);
141 return last_error;
142}
143
fe588ed3 144int
75f3cb13
DC
145xfs_inode_ag_iterator(
146 struct xfs_mount *mp,
147 int (*execute)(struct xfs_inode *ip,
148 struct xfs_perag *pag, int flags),
149 int flags,
150 int tag)
151{
152 int error = 0;
153 int last_error = 0;
154 xfs_agnumber_t ag;
155
156 for (ag = 0; ag < mp->m_sb.sb_agcount; ag++) {
157 if (!mp->m_perag[ag].pag_ici_init)
158 continue;
159 error = xfs_inode_ag_walk(mp, ag, execute, flags, tag);
160 if (error) {
161 last_error = error;
162 if (error == EFSCORRUPTED)
163 break;
164 }
165 }
166 return XFS_ERROR(last_error);
167}
168
1da8eeca 169/* must be called with pag_ici_lock held and releases it */
fe588ed3 170int
1da8eeca
DC
171xfs_sync_inode_valid(
172 struct xfs_inode *ip,
173 struct xfs_perag *pag)
174{
175 struct inode *inode = VFS_I(ip);
176
177 /* nothing to sync during shutdown */
178 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
179 read_unlock(&pag->pag_ici_lock);
180 return EFSCORRUPTED;
181 }
182
183 /*
184 * If we can't get a reference on the inode, it must be in reclaim.
185 * Leave it for the reclaim code to flush. Also avoid inodes that
186 * haven't been fully initialised.
187 */
188 if (!igrab(inode)) {
189 read_unlock(&pag->pag_ici_lock);
190 return ENOENT;
191 }
192 read_unlock(&pag->pag_ici_lock);
193
194 if (is_bad_inode(inode) || xfs_iflags_test(ip, XFS_INEW)) {
195 IRELE(ip);
196 return ENOENT;
197 }
198
199 return 0;
200}
201
5a34d5cd
DC
202STATIC int
203xfs_sync_inode_data(
204 struct xfs_inode *ip,
75f3cb13 205 struct xfs_perag *pag,
5a34d5cd
DC
206 int flags)
207{
208 struct inode *inode = VFS_I(ip);
209 struct address_space *mapping = inode->i_mapping;
210 int error = 0;
211
75f3cb13
DC
212 error = xfs_sync_inode_valid(ip, pag);
213 if (error)
214 return error;
215
5a34d5cd
DC
216 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
217 goto out_wait;
218
219 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
220 if (flags & SYNC_TRYLOCK)
221 goto out_wait;
222 xfs_ilock(ip, XFS_IOLOCK_SHARED);
223 }
224
225 error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
226 0 : XFS_B_ASYNC, FI_NONE);
227 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
228
229 out_wait:
230 if (flags & SYNC_IOWAIT)
231 xfs_ioend_wait(ip);
75f3cb13 232 IRELE(ip);
5a34d5cd
DC
233 return error;
234}
235
845b6d0c
CH
236STATIC int
237xfs_sync_inode_attr(
238 struct xfs_inode *ip,
75f3cb13 239 struct xfs_perag *pag,
845b6d0c
CH
240 int flags)
241{
242 int error = 0;
243
75f3cb13
DC
244 error = xfs_sync_inode_valid(ip, pag);
245 if (error)
246 return error;
247
845b6d0c
CH
248 xfs_ilock(ip, XFS_ILOCK_SHARED);
249 if (xfs_inode_clean(ip))
250 goto out_unlock;
251 if (!xfs_iflock_nowait(ip)) {
252 if (!(flags & SYNC_WAIT))
253 goto out_unlock;
254 xfs_iflock(ip);
255 }
256
257 if (xfs_inode_clean(ip)) {
258 xfs_ifunlock(ip);
259 goto out_unlock;
260 }
261
262 error = xfs_iflush(ip, (flags & SYNC_WAIT) ?
263 XFS_IFLUSH_SYNC : XFS_IFLUSH_DELWRI);
264
265 out_unlock:
266 xfs_iunlock(ip, XFS_ILOCK_SHARED);
75f3cb13 267 IRELE(ip);
845b6d0c
CH
268 return error;
269}
270
683a8970
DC
271int
272xfs_sync_inodes(
273 xfs_mount_t *mp,
2030b5ab 274 int flags)
683a8970 275{
75f3cb13 276 int error = 0;
e9f1c6ee 277 int lflags = XFS_LOG_FORCE;
fe4fa4b8 278
683a8970
DC
279 if (mp->m_flags & XFS_MOUNT_RDONLY)
280 return 0;
fe4fa4b8 281
e9f1c6ee
DC
282 if (flags & SYNC_WAIT)
283 lflags |= XFS_LOG_SYNC;
284
e9f1c6ee 285 if (flags & SYNC_DELWRI)
75f3cb13 286 error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags, XFS_ICI_NO_TAG);
e9f1c6ee 287
75f3cb13
DC
288 if (flags & SYNC_ATTR)
289 error = xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags, XFS_ICI_NO_TAG);
290
291 if (!error && (flags & SYNC_DELWRI))
292 xfs_log_force(mp, 0, lflags);
293 return XFS_ERROR(error);
fe4fa4b8
DC
294}
295
2af75df7
CH
296STATIC int
297xfs_commit_dummy_trans(
298 struct xfs_mount *mp,
299 uint log_flags)
300{
301 struct xfs_inode *ip = mp->m_rootip;
302 struct xfs_trans *tp;
303 int error;
304
305 /*
306 * Put a dummy transaction in the log to tell recovery
307 * that all others are OK.
308 */
309 tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
310 error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0);
311 if (error) {
312 xfs_trans_cancel(tp, 0);
313 return error;
314 }
315
316 xfs_ilock(ip, XFS_ILOCK_EXCL);
317
318 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
319 xfs_trans_ihold(tp, ip);
320 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
321 /* XXX(hch): ignoring the error here.. */
322 error = xfs_trans_commit(tp, 0);
323
324 xfs_iunlock(ip, XFS_ILOCK_EXCL);
325
326 xfs_log_force(mp, 0, log_flags);
327 return 0;
328}
329
e9f1c6ee 330int
2af75df7
CH
331xfs_sync_fsdata(
332 struct xfs_mount *mp,
333 int flags)
334{
335 struct xfs_buf *bp;
336 struct xfs_buf_log_item *bip;
337 int error = 0;
338
339 /*
340 * If this is xfssyncd() then only sync the superblock if we can
341 * lock it without sleeping and it is not pinned.
342 */
343 if (flags & SYNC_BDFLUSH) {
344 ASSERT(!(flags & SYNC_WAIT));
345
346 bp = xfs_getsb(mp, XFS_BUF_TRYLOCK);
347 if (!bp)
348 goto out;
349
350 bip = XFS_BUF_FSPRIVATE(bp, struct xfs_buf_log_item *);
351 if (!bip || !xfs_buf_item_dirty(bip) || XFS_BUF_ISPINNED(bp))
352 goto out_brelse;
353 } else {
354 bp = xfs_getsb(mp, 0);
355
356 /*
357 * If the buffer is pinned then push on the log so we won't
358 * get stuck waiting in the write for someone, maybe
359 * ourselves, to flush the log.
360 *
361 * Even though we just pushed the log above, we did not have
362 * the superblock buffer locked at that point so it can
363 * become pinned in between there and here.
364 */
365 if (XFS_BUF_ISPINNED(bp))
366 xfs_log_force(mp, 0, XFS_LOG_FORCE);
367 }
368
369
370 if (flags & SYNC_WAIT)
371 XFS_BUF_UNASYNC(bp);
372 else
373 XFS_BUF_ASYNC(bp);
374
375 return xfs_bwrite(mp, bp);
376
377 out_brelse:
378 xfs_buf_relse(bp);
379 out:
380 return error;
e9f1c6ee
DC
381}
382
383/*
a4e4c4f4
DC
384 * When remounting a filesystem read-only or freezing the filesystem, we have
385 * two phases to execute. This first phase is syncing the data before we
386 * quiesce the filesystem, and the second is flushing all the inodes out after
387 * we've waited for all the transactions created by the first phase to
388 * complete. The second phase ensures that the inodes are written to their
389 * location on disk rather than just existing in transactions in the log. This
390 * means after a quiesce there is no log replay required to write the inodes to
391 * disk (this is the main difference between a sync and a quiesce).
392 */
393/*
394 * First stage of freeze - no writers will make progress now we are here,
e9f1c6ee
DC
395 * so we flush delwri and delalloc buffers here, then wait for all I/O to
396 * complete. Data is frozen at that point. Metadata is not frozen,
a4e4c4f4
DC
397 * transactions can still occur here so don't bother flushing the buftarg
398 * because it'll just get dirty again.
e9f1c6ee
DC
399 */
400int
401xfs_quiesce_data(
402 struct xfs_mount *mp)
403{
404 int error;
405
406 /* push non-blocking */
407 xfs_sync_inodes(mp, SYNC_DELWRI|SYNC_BDFLUSH);
7d095257 408 xfs_qm_sync(mp, SYNC_BDFLUSH);
e9f1c6ee
DC
409 xfs_filestream_flush(mp);
410
411 /* push and block */
412 xfs_sync_inodes(mp, SYNC_DELWRI|SYNC_WAIT|SYNC_IOWAIT);
7d095257 413 xfs_qm_sync(mp, SYNC_WAIT);
e9f1c6ee 414
a4e4c4f4 415 /* write superblock and hoover up shutdown errors */
e9f1c6ee
DC
416 error = xfs_sync_fsdata(mp, 0);
417
a4e4c4f4 418 /* flush data-only devices */
e9f1c6ee
DC
419 if (mp->m_rtdev_targp)
420 XFS_bflush(mp->m_rtdev_targp);
421
422 return error;
2af75df7
CH
423}
424
76bf105c
DC
425STATIC void
426xfs_quiesce_fs(
427 struct xfs_mount *mp)
428{
429 int count = 0, pincount;
430
431 xfs_flush_buftarg(mp->m_ddev_targp, 0);
abc10647 432 xfs_reclaim_inodes(mp, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
76bf105c
DC
433
434 /*
435 * This loop must run at least twice. The first instance of the loop
436 * will flush most meta data but that will generate more meta data
437 * (typically directory updates). Which then must be flushed and
438 * logged before we can write the unmount record.
439 */
440 do {
441 xfs_sync_inodes(mp, SYNC_ATTR|SYNC_WAIT);
442 pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
443 if (!pincount) {
444 delay(50);
445 count++;
446 }
447 } while (count < 2);
448}
449
450/*
451 * Second stage of a quiesce. The data is already synced, now we have to take
452 * care of the metadata. New transactions are already blocked, so we need to
453 * wait for any remaining transactions to drain out before proceding.
454 */
455void
456xfs_quiesce_attr(
457 struct xfs_mount *mp)
458{
459 int error = 0;
460
461 /* wait for all modifications to complete */
462 while (atomic_read(&mp->m_active_trans) > 0)
463 delay(100);
464
465 /* flush inodes and push all remaining buffers out to disk */
466 xfs_quiesce_fs(mp);
467
5e106572
FB
468 /*
469 * Just warn here till VFS can correctly support
470 * read-only remount without racing.
471 */
472 WARN_ON(atomic_read(&mp->m_active_trans) != 0);
76bf105c
DC
473
474 /* Push the superblock and write an unmount record */
475 error = xfs_log_sbcount(mp, 1);
476 if (error)
477 xfs_fs_cmn_err(CE_WARN, mp,
478 "xfs_attr_quiesce: failed to log sb changes. "
479 "Frozen image may not be consistent.");
480 xfs_log_unmount_write(mp);
481 xfs_unmountfs_writesb(mp);
482}
483
a167b17e
DC
484/*
485 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
486 * Doing this has two advantages:
487 * - It saves on stack space, which is tight in certain situations
488 * - It can be used (with care) as a mechanism to avoid deadlocks.
489 * Flushing while allocating in a full filesystem requires both.
490 */
491STATIC void
492xfs_syncd_queue_work(
493 struct xfs_mount *mp,
494 void *data,
e43afd72
DC
495 void (*syncer)(struct xfs_mount *, void *),
496 struct completion *completion)
a167b17e 497{
a8d770d9 498 struct xfs_sync_work *work;
a167b17e 499
a8d770d9 500 work = kmem_alloc(sizeof(struct xfs_sync_work), KM_SLEEP);
a167b17e
DC
501 INIT_LIST_HEAD(&work->w_list);
502 work->w_syncer = syncer;
503 work->w_data = data;
504 work->w_mount = mp;
e43afd72 505 work->w_completion = completion;
a167b17e
DC
506 spin_lock(&mp->m_sync_lock);
507 list_add_tail(&work->w_list, &mp->m_sync_list);
508 spin_unlock(&mp->m_sync_lock);
509 wake_up_process(mp->m_sync_task);
510}
511
512/*
513 * Flush delayed allocate data, attempting to free up reserved space
514 * from existing allocations. At this point a new allocation attempt
515 * has failed with ENOSPC and we are in the process of scratching our
516 * heads, looking about for more room...
517 */
518STATIC void
a8d770d9 519xfs_flush_inodes_work(
a167b17e
DC
520 struct xfs_mount *mp,
521 void *arg)
522{
523 struct inode *inode = arg;
a8d770d9
DC
524 xfs_sync_inodes(mp, SYNC_DELWRI | SYNC_TRYLOCK);
525 xfs_sync_inodes(mp, SYNC_DELWRI | SYNC_TRYLOCK | SYNC_IOWAIT);
a167b17e
DC
526 iput(inode);
527}
528
529void
a8d770d9 530xfs_flush_inodes(
a167b17e
DC
531 xfs_inode_t *ip)
532{
533 struct inode *inode = VFS_I(ip);
e43afd72 534 DECLARE_COMPLETION_ONSTACK(completion);
a167b17e
DC
535
536 igrab(inode);
e43afd72
DC
537 xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inodes_work, &completion);
538 wait_for_completion(&completion);
a167b17e
DC
539 xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
540}
541
aacaa880
DC
542/*
543 * Every sync period we need to unpin all items, reclaim inodes, sync
544 * quota and write out the superblock. We might need to cover the log
545 * to indicate it is idle.
546 */
a167b17e
DC
547STATIC void
548xfs_sync_worker(
549 struct xfs_mount *mp,
550 void *unused)
551{
552 int error;
553
aacaa880
DC
554 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
555 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
abc10647 556 xfs_reclaim_inodes(mp, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
aacaa880 557 /* dgc: errors ignored here */
7d095257 558 error = xfs_qm_sync(mp, SYNC_BDFLUSH);
aacaa880
DC
559 error = xfs_sync_fsdata(mp, SYNC_BDFLUSH);
560 if (xfs_log_need_covered(mp))
561 error = xfs_commit_dummy_trans(mp, XFS_LOG_FORCE);
562 }
a167b17e
DC
563 mp->m_sync_seq++;
564 wake_up(&mp->m_wait_single_sync_task);
565}
566
567STATIC int
568xfssyncd(
569 void *arg)
570{
571 struct xfs_mount *mp = arg;
572 long timeleft;
a8d770d9 573 xfs_sync_work_t *work, *n;
a167b17e
DC
574 LIST_HEAD (tmp);
575
576 set_freezable();
577 timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
578 for (;;) {
579 timeleft = schedule_timeout_interruptible(timeleft);
580 /* swsusp */
581 try_to_freeze();
582 if (kthread_should_stop() && list_empty(&mp->m_sync_list))
583 break;
584
585 spin_lock(&mp->m_sync_lock);
586 /*
587 * We can get woken by laptop mode, to do a sync -
588 * that's the (only!) case where the list would be
589 * empty with time remaining.
590 */
591 if (!timeleft || list_empty(&mp->m_sync_list)) {
592 if (!timeleft)
593 timeleft = xfs_syncd_centisecs *
594 msecs_to_jiffies(10);
595 INIT_LIST_HEAD(&mp->m_sync_work.w_list);
596 list_add_tail(&mp->m_sync_work.w_list,
597 &mp->m_sync_list);
598 }
599 list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list)
600 list_move(&work->w_list, &tmp);
601 spin_unlock(&mp->m_sync_lock);
602
603 list_for_each_entry_safe(work, n, &tmp, w_list) {
604 (*work->w_syncer)(mp, work->w_data);
605 list_del(&work->w_list);
606 if (work == &mp->m_sync_work)
607 continue;
e43afd72
DC
608 if (work->w_completion)
609 complete(work->w_completion);
a167b17e
DC
610 kmem_free(work);
611 }
612 }
613
614 return 0;
615}
616
617int
618xfs_syncd_init(
619 struct xfs_mount *mp)
620{
621 mp->m_sync_work.w_syncer = xfs_sync_worker;
622 mp->m_sync_work.w_mount = mp;
e43afd72 623 mp->m_sync_work.w_completion = NULL;
a167b17e
DC
624 mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd");
625 if (IS_ERR(mp->m_sync_task))
626 return -PTR_ERR(mp->m_sync_task);
627 return 0;
628}
629
630void
631xfs_syncd_stop(
632 struct xfs_mount *mp)
633{
634 kthread_stop(mp->m_sync_task);
635}
636
fce08f2f 637int
1dc3318a 638xfs_reclaim_inode(
fce08f2f
DC
639 xfs_inode_t *ip,
640 int locked,
641 int sync_mode)
642{
643 xfs_perag_t *pag = xfs_get_perag(ip->i_mount, ip->i_ino);
644
645 /* The hash lock here protects a thread in xfs_iget_core from
646 * racing with us on linking the inode back with a vnode.
647 * Once we have the XFS_IRECLAIM flag set it will not touch
648 * us.
649 */
650 write_lock(&pag->pag_ici_lock);
651 spin_lock(&ip->i_flags_lock);
652 if (__xfs_iflags_test(ip, XFS_IRECLAIM) ||
653 !__xfs_iflags_test(ip, XFS_IRECLAIMABLE)) {
654 spin_unlock(&ip->i_flags_lock);
655 write_unlock(&pag->pag_ici_lock);
656 if (locked) {
657 xfs_ifunlock(ip);
658 xfs_iunlock(ip, XFS_ILOCK_EXCL);
659 }
75f3cb13 660 return -EAGAIN;
fce08f2f
DC
661 }
662 __xfs_iflags_set(ip, XFS_IRECLAIM);
663 spin_unlock(&ip->i_flags_lock);
664 write_unlock(&pag->pag_ici_lock);
665 xfs_put_perag(ip->i_mount, pag);
666
667 /*
668 * If the inode is still dirty, then flush it out. If the inode
669 * is not in the AIL, then it will be OK to flush it delwri as
670 * long as xfs_iflush() does not keep any references to the inode.
671 * We leave that decision up to xfs_iflush() since it has the
672 * knowledge of whether it's OK to simply do a delwri flush of
673 * the inode or whether we need to wait until the inode is
674 * pulled from the AIL.
675 * We get the flush lock regardless, though, just to make sure
676 * we don't free it while it is being flushed.
677 */
678 if (!locked) {
679 xfs_ilock(ip, XFS_ILOCK_EXCL);
680 xfs_iflock(ip);
681 }
682
683 /*
684 * In the case of a forced shutdown we rely on xfs_iflush() to
685 * wait for the inode to be unpinned before returning an error.
686 */
687 if (!is_bad_inode(VFS_I(ip)) && xfs_iflush(ip, sync_mode) == 0) {
688 /* synchronize with xfs_iflush_done */
689 xfs_iflock(ip);
690 xfs_ifunlock(ip);
691 }
692
693 xfs_iunlock(ip, XFS_ILOCK_EXCL);
694 xfs_ireclaim(ip);
695 return 0;
696}
697
11654513
DC
698/*
699 * We set the inode flag atomically with the radix tree tag.
700 * Once we get tag lookups on the radix tree, this inode flag
701 * can go away.
702 */
396beb85
DC
703void
704xfs_inode_set_reclaim_tag(
705 xfs_inode_t *ip)
706{
707 xfs_mount_t *mp = ip->i_mount;
708 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
709
710 read_lock(&pag->pag_ici_lock);
711 spin_lock(&ip->i_flags_lock);
712 radix_tree_tag_set(&pag->pag_ici_root,
713 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
11654513 714 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
396beb85
DC
715 spin_unlock(&ip->i_flags_lock);
716 read_unlock(&pag->pag_ici_lock);
717 xfs_put_perag(mp, pag);
718}
719
720void
721__xfs_inode_clear_reclaim_tag(
722 xfs_mount_t *mp,
723 xfs_perag_t *pag,
724 xfs_inode_t *ip)
725{
726 radix_tree_tag_clear(&pag->pag_ici_root,
727 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
728}
729
730void
731xfs_inode_clear_reclaim_tag(
732 xfs_inode_t *ip)
733{
734 xfs_mount_t *mp = ip->i_mount;
735 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
736
737 read_lock(&pag->pag_ici_lock);
738 spin_lock(&ip->i_flags_lock);
739 __xfs_inode_clear_reclaim_tag(mp, pag, ip);
740 spin_unlock(&ip->i_flags_lock);
741 read_unlock(&pag->pag_ici_lock);
742 xfs_put_perag(mp, pag);
743}
744
75f3cb13
DC
745STATIC int
746xfs_reclaim_inode_now(
747 struct xfs_inode *ip,
748 struct xfs_perag *pag,
749 int flags)
fce08f2f 750{
75f3cb13
DC
751 /* ignore if already under reclaim */
752 if (xfs_iflags_test(ip, XFS_IRECLAIM)) {
7a3be02b 753 read_unlock(&pag->pag_ici_lock);
75f3cb13 754 return 0;
fce08f2f 755 }
75f3cb13 756 read_unlock(&pag->pag_ici_lock);
7a3be02b 757
75f3cb13 758 return xfs_reclaim_inode(ip, 0, flags);
7a3be02b
DC
759}
760
761int
762xfs_reclaim_inodes(
763 xfs_mount_t *mp,
7a3be02b
DC
764 int mode)
765{
75f3cb13
DC
766 return xfs_inode_ag_iterator(mp, xfs_reclaim_inode_now, mode,
767 XFS_ICI_RECLAIM_TAG);
fce08f2f 768}