]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/xfs/linux-2.6/xfs_sync.c
xfs: Don't wake xfsbufd when idle
[net-next-2.6.git] / fs / xfs / linux-2.6 / xfs_sync.c
CommitLineData
fe4fa4b8
DC
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
21#include "xfs_bit.h"
22#include "xfs_log.h"
23#include "xfs_inum.h"
24#include "xfs_trans.h"
25#include "xfs_sb.h"
26#include "xfs_ag.h"
27#include "xfs_dir2.h"
28#include "xfs_dmapi.h"
29#include "xfs_mount.h"
30#include "xfs_bmap_btree.h"
31#include "xfs_alloc_btree.h"
32#include "xfs_ialloc_btree.h"
33#include "xfs_btree.h"
34#include "xfs_dir2_sf.h"
35#include "xfs_attr_sf.h"
36#include "xfs_inode.h"
37#include "xfs_dinode.h"
38#include "xfs_error.h"
39#include "xfs_mru_cache.h"
40#include "xfs_filestream.h"
41#include "xfs_vnodeops.h"
42#include "xfs_utils.h"
43#include "xfs_buf_item.h"
44#include "xfs_inode_item.h"
45#include "xfs_rw.h"
7d095257 46#include "xfs_quota.h"
0b1b213f 47#include "xfs_trace.h"
fe4fa4b8 48
a167b17e
DC
49#include <linux/kthread.h>
50#include <linux/freezer.h>
51
5a34d5cd 52
75f3cb13
DC
53STATIC xfs_inode_t *
54xfs_inode_ag_lookup(
55 struct xfs_mount *mp,
56 struct xfs_perag *pag,
57 uint32_t *first_index,
58 int tag)
59{
60 int nr_found;
61 struct xfs_inode *ip;
62
63 /*
64 * use a gang lookup to find the next inode in the tree
65 * as the tree is sparse and a gang lookup walks to find
66 * the number of objects requested.
67 */
75f3cb13
DC
68 if (tag == XFS_ICI_NO_TAG) {
69 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
70 (void **)&ip, *first_index, 1);
71 } else {
72 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
73 (void **)&ip, *first_index, 1, tag);
74 }
75 if (!nr_found)
c8e20be0 76 return NULL;
75f3cb13
DC
77
78 /*
79 * Update the index for the next lookup. Catch overflows
80 * into the next AG range which can occur if we have inodes
81 * in the last block of the AG and we are currently
82 * pointing to the last inode.
83 */
84 *first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
85 if (*first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
c8e20be0 86 return NULL;
75f3cb13 87 return ip;
75f3cb13
DC
88}
89
90STATIC int
91xfs_inode_ag_walk(
92 struct xfs_mount *mp,
93 xfs_agnumber_t ag,
94 int (*execute)(struct xfs_inode *ip,
95 struct xfs_perag *pag, int flags),
96 int flags,
c8e20be0
DC
97 int tag,
98 int exclusive)
75f3cb13
DC
99{
100 struct xfs_perag *pag = &mp->m_perag[ag];
101 uint32_t first_index;
102 int last_error = 0;
103 int skipped;
104
105restart:
106 skipped = 0;
107 first_index = 0;
108 do {
109 int error = 0;
110 xfs_inode_t *ip;
111
c8e20be0
DC
112 if (exclusive)
113 write_lock(&pag->pag_ici_lock);
114 else
115 read_lock(&pag->pag_ici_lock);
75f3cb13 116 ip = xfs_inode_ag_lookup(mp, pag, &first_index, tag);
c8e20be0
DC
117 if (!ip) {
118 if (exclusive)
119 write_unlock(&pag->pag_ici_lock);
120 else
121 read_unlock(&pag->pag_ici_lock);
75f3cb13 122 break;
c8e20be0 123 }
75f3cb13 124
c8e20be0 125 /* execute releases pag->pag_ici_lock */
75f3cb13
DC
126 error = execute(ip, pag, flags);
127 if (error == EAGAIN) {
128 skipped++;
129 continue;
130 }
131 if (error)
132 last_error = error;
c8e20be0
DC
133
134 /* bail out if the filesystem is corrupted. */
75f3cb13
DC
135 if (error == EFSCORRUPTED)
136 break;
137
138 } while (1);
139
140 if (skipped) {
141 delay(1);
142 goto restart;
143 }
144
145 xfs_put_perag(mp, pag);
146 return last_error;
147}
148
fe588ed3 149int
75f3cb13
DC
150xfs_inode_ag_iterator(
151 struct xfs_mount *mp,
152 int (*execute)(struct xfs_inode *ip,
153 struct xfs_perag *pag, int flags),
154 int flags,
c8e20be0
DC
155 int tag,
156 int exclusive)
75f3cb13
DC
157{
158 int error = 0;
159 int last_error = 0;
160 xfs_agnumber_t ag;
161
162 for (ag = 0; ag < mp->m_sb.sb_agcount; ag++) {
163 if (!mp->m_perag[ag].pag_ici_init)
164 continue;
c8e20be0
DC
165 error = xfs_inode_ag_walk(mp, ag, execute, flags, tag,
166 exclusive);
75f3cb13
DC
167 if (error) {
168 last_error = error;
169 if (error == EFSCORRUPTED)
170 break;
171 }
172 }
173 return XFS_ERROR(last_error);
174}
175
1da8eeca 176/* must be called with pag_ici_lock held and releases it */
fe588ed3 177int
1da8eeca
DC
178xfs_sync_inode_valid(
179 struct xfs_inode *ip,
180 struct xfs_perag *pag)
181{
182 struct inode *inode = VFS_I(ip);
018027be 183 int error = EFSCORRUPTED;
1da8eeca
DC
184
185 /* nothing to sync during shutdown */
018027be
DC
186 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
187 goto out_unlock;
1da8eeca 188
018027be
DC
189 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
190 error = ENOENT;
191 if (xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
192 goto out_unlock;
1da8eeca 193
018027be
DC
194 /* If we can't grab the inode, it must on it's way to reclaim. */
195 if (!igrab(inode))
196 goto out_unlock;
197
198 if (is_bad_inode(inode)) {
1da8eeca 199 IRELE(ip);
018027be 200 goto out_unlock;
1da8eeca
DC
201 }
202
018027be
DC
203 /* inode is valid */
204 error = 0;
205out_unlock:
206 read_unlock(&pag->pag_ici_lock);
207 return error;
1da8eeca
DC
208}
209
5a34d5cd
DC
210STATIC int
211xfs_sync_inode_data(
212 struct xfs_inode *ip,
75f3cb13 213 struct xfs_perag *pag,
5a34d5cd
DC
214 int flags)
215{
216 struct inode *inode = VFS_I(ip);
217 struct address_space *mapping = inode->i_mapping;
218 int error = 0;
219
75f3cb13
DC
220 error = xfs_sync_inode_valid(ip, pag);
221 if (error)
222 return error;
223
5a34d5cd
DC
224 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
225 goto out_wait;
226
227 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
228 if (flags & SYNC_TRYLOCK)
229 goto out_wait;
230 xfs_ilock(ip, XFS_IOLOCK_SHARED);
231 }
232
233 error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
234 0 : XFS_B_ASYNC, FI_NONE);
235 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
236
237 out_wait:
b0710ccc 238 if (flags & SYNC_WAIT)
5a34d5cd 239 xfs_ioend_wait(ip);
75f3cb13 240 IRELE(ip);
5a34d5cd
DC
241 return error;
242}
243
845b6d0c
CH
244STATIC int
245xfs_sync_inode_attr(
246 struct xfs_inode *ip,
75f3cb13 247 struct xfs_perag *pag,
845b6d0c
CH
248 int flags)
249{
250 int error = 0;
251
75f3cb13
DC
252 error = xfs_sync_inode_valid(ip, pag);
253 if (error)
254 return error;
255
845b6d0c
CH
256 xfs_ilock(ip, XFS_ILOCK_SHARED);
257 if (xfs_inode_clean(ip))
258 goto out_unlock;
259 if (!xfs_iflock_nowait(ip)) {
260 if (!(flags & SYNC_WAIT))
261 goto out_unlock;
262 xfs_iflock(ip);
263 }
264
265 if (xfs_inode_clean(ip)) {
266 xfs_ifunlock(ip);
267 goto out_unlock;
268 }
269
270 error = xfs_iflush(ip, (flags & SYNC_WAIT) ?
271 XFS_IFLUSH_SYNC : XFS_IFLUSH_DELWRI);
272
273 out_unlock:
274 xfs_iunlock(ip, XFS_ILOCK_SHARED);
75f3cb13 275 IRELE(ip);
845b6d0c
CH
276 return error;
277}
278
075fe102
CH
279/*
280 * Write out pagecache data for the whole filesystem.
281 */
683a8970 282int
075fe102
CH
283xfs_sync_data(
284 struct xfs_mount *mp,
285 int flags)
683a8970 286{
075fe102 287 int error;
fe4fa4b8 288
b0710ccc 289 ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
fe4fa4b8 290
075fe102 291 error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags,
c8e20be0 292 XFS_ICI_NO_TAG, 0);
075fe102
CH
293 if (error)
294 return XFS_ERROR(error);
e9f1c6ee 295
075fe102
CH
296 xfs_log_force(mp, 0,
297 (flags & SYNC_WAIT) ?
298 XFS_LOG_FORCE | XFS_LOG_SYNC :
299 XFS_LOG_FORCE);
300 return 0;
301}
e9f1c6ee 302
075fe102
CH
303/*
304 * Write out inode metadata (attributes) for the whole filesystem.
305 */
306int
307xfs_sync_attr(
308 struct xfs_mount *mp,
309 int flags)
310{
311 ASSERT((flags & ~SYNC_WAIT) == 0);
75f3cb13 312
075fe102 313 return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags,
c8e20be0 314 XFS_ICI_NO_TAG, 0);
fe4fa4b8
DC
315}
316
2af75df7
CH
317STATIC int
318xfs_commit_dummy_trans(
319 struct xfs_mount *mp,
dce5065a 320 uint flags)
2af75df7
CH
321{
322 struct xfs_inode *ip = mp->m_rootip;
323 struct xfs_trans *tp;
324 int error;
dce5065a
DC
325 int log_flags = XFS_LOG_FORCE;
326
327 if (flags & SYNC_WAIT)
328 log_flags |= XFS_LOG_SYNC;
2af75df7
CH
329
330 /*
331 * Put a dummy transaction in the log to tell recovery
332 * that all others are OK.
333 */
334 tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
335 error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0);
336 if (error) {
337 xfs_trans_cancel(tp, 0);
338 return error;
339 }
340
341 xfs_ilock(ip, XFS_ILOCK_EXCL);
342
343 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
344 xfs_trans_ihold(tp, ip);
345 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2af75df7 346 error = xfs_trans_commit(tp, 0);
2af75df7
CH
347 xfs_iunlock(ip, XFS_ILOCK_EXCL);
348
dce5065a 349 /* the log force ensures this transaction is pushed to disk */
2af75df7 350 xfs_log_force(mp, 0, log_flags);
dce5065a 351 return error;
2af75df7
CH
352}
353
5d77c0dc 354STATIC int
2af75df7
CH
355xfs_sync_fsdata(
356 struct xfs_mount *mp,
357 int flags)
358{
359 struct xfs_buf *bp;
360 struct xfs_buf_log_item *bip;
361 int error = 0;
362
363 /*
364 * If this is xfssyncd() then only sync the superblock if we can
365 * lock it without sleeping and it is not pinned.
366 */
8b5403a6 367 if (flags & SYNC_TRYLOCK) {
2af75df7
CH
368 ASSERT(!(flags & SYNC_WAIT));
369
370 bp = xfs_getsb(mp, XFS_BUF_TRYLOCK);
371 if (!bp)
372 goto out;
373
374 bip = XFS_BUF_FSPRIVATE(bp, struct xfs_buf_log_item *);
375 if (!bip || !xfs_buf_item_dirty(bip) || XFS_BUF_ISPINNED(bp))
376 goto out_brelse;
377 } else {
378 bp = xfs_getsb(mp, 0);
379
380 /*
381 * If the buffer is pinned then push on the log so we won't
382 * get stuck waiting in the write for someone, maybe
383 * ourselves, to flush the log.
384 *
385 * Even though we just pushed the log above, we did not have
386 * the superblock buffer locked at that point so it can
387 * become pinned in between there and here.
388 */
389 if (XFS_BUF_ISPINNED(bp))
390 xfs_log_force(mp, 0, XFS_LOG_FORCE);
391 }
392
393
394 if (flags & SYNC_WAIT)
395 XFS_BUF_UNASYNC(bp);
396 else
397 XFS_BUF_ASYNC(bp);
398
dce5065a
DC
399 error = xfs_bwrite(mp, bp);
400 if (error)
401 return error;
402
403 /*
404 * If this is a data integrity sync make sure all pending buffers
405 * are flushed out for the log coverage check below.
406 */
407 if (flags & SYNC_WAIT)
408 xfs_flush_buftarg(mp->m_ddev_targp, 1);
409
410 if (xfs_log_need_covered(mp))
411 error = xfs_commit_dummy_trans(mp, flags);
412 return error;
2af75df7
CH
413
414 out_brelse:
415 xfs_buf_relse(bp);
416 out:
417 return error;
e9f1c6ee
DC
418}
419
420/*
a4e4c4f4
DC
421 * When remounting a filesystem read-only or freezing the filesystem, we have
422 * two phases to execute. This first phase is syncing the data before we
423 * quiesce the filesystem, and the second is flushing all the inodes out after
424 * we've waited for all the transactions created by the first phase to
425 * complete. The second phase ensures that the inodes are written to their
426 * location on disk rather than just existing in transactions in the log. This
427 * means after a quiesce there is no log replay required to write the inodes to
428 * disk (this is the main difference between a sync and a quiesce).
429 */
430/*
431 * First stage of freeze - no writers will make progress now we are here,
e9f1c6ee
DC
432 * so we flush delwri and delalloc buffers here, then wait for all I/O to
433 * complete. Data is frozen at that point. Metadata is not frozen,
a4e4c4f4
DC
434 * transactions can still occur here so don't bother flushing the buftarg
435 * because it'll just get dirty again.
e9f1c6ee
DC
436 */
437int
438xfs_quiesce_data(
439 struct xfs_mount *mp)
440{
441 int error;
442
443 /* push non-blocking */
075fe102 444 xfs_sync_data(mp, 0);
8b5403a6 445 xfs_qm_sync(mp, SYNC_TRYLOCK);
e9f1c6ee 446
c90b07e8 447 /* push and block till complete */
b0710ccc 448 xfs_sync_data(mp, SYNC_WAIT);
7d095257 449 xfs_qm_sync(mp, SYNC_WAIT);
e9f1c6ee 450
c90b07e8
DC
451 /* drop inode references pinned by filestreams */
452 xfs_filestream_flush(mp);
453
a4e4c4f4 454 /* write superblock and hoover up shutdown errors */
c90b07e8 455 error = xfs_sync_fsdata(mp, SYNC_WAIT);
e9f1c6ee 456
a4e4c4f4 457 /* flush data-only devices */
e9f1c6ee
DC
458 if (mp->m_rtdev_targp)
459 XFS_bflush(mp->m_rtdev_targp);
460
461 return error;
2af75df7
CH
462}
463
76bf105c
DC
464STATIC void
465xfs_quiesce_fs(
466 struct xfs_mount *mp)
467{
468 int count = 0, pincount;
469
470 xfs_flush_buftarg(mp->m_ddev_targp, 0);
abc10647 471 xfs_reclaim_inodes(mp, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
76bf105c
DC
472
473 /*
474 * This loop must run at least twice. The first instance of the loop
475 * will flush most meta data but that will generate more meta data
476 * (typically directory updates). Which then must be flushed and
477 * logged before we can write the unmount record.
478 */
479 do {
075fe102 480 xfs_sync_attr(mp, SYNC_WAIT);
76bf105c
DC
481 pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
482 if (!pincount) {
483 delay(50);
484 count++;
485 }
486 } while (count < 2);
487}
488
489/*
490 * Second stage of a quiesce. The data is already synced, now we have to take
491 * care of the metadata. New transactions are already blocked, so we need to
492 * wait for any remaining transactions to drain out before proceding.
493 */
494void
495xfs_quiesce_attr(
496 struct xfs_mount *mp)
497{
498 int error = 0;
499
500 /* wait for all modifications to complete */
501 while (atomic_read(&mp->m_active_trans) > 0)
502 delay(100);
503
504 /* flush inodes and push all remaining buffers out to disk */
505 xfs_quiesce_fs(mp);
506
5e106572
FB
507 /*
508 * Just warn here till VFS can correctly support
509 * read-only remount without racing.
510 */
511 WARN_ON(atomic_read(&mp->m_active_trans) != 0);
76bf105c
DC
512
513 /* Push the superblock and write an unmount record */
514 error = xfs_log_sbcount(mp, 1);
515 if (error)
516 xfs_fs_cmn_err(CE_WARN, mp,
517 "xfs_attr_quiesce: failed to log sb changes. "
518 "Frozen image may not be consistent.");
519 xfs_log_unmount_write(mp);
520 xfs_unmountfs_writesb(mp);
521}
522
a167b17e
DC
523/*
524 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
525 * Doing this has two advantages:
526 * - It saves on stack space, which is tight in certain situations
527 * - It can be used (with care) as a mechanism to avoid deadlocks.
528 * Flushing while allocating in a full filesystem requires both.
529 */
530STATIC void
531xfs_syncd_queue_work(
532 struct xfs_mount *mp,
533 void *data,
e43afd72
DC
534 void (*syncer)(struct xfs_mount *, void *),
535 struct completion *completion)
a167b17e 536{
a8d770d9 537 struct xfs_sync_work *work;
a167b17e 538
a8d770d9 539 work = kmem_alloc(sizeof(struct xfs_sync_work), KM_SLEEP);
a167b17e
DC
540 INIT_LIST_HEAD(&work->w_list);
541 work->w_syncer = syncer;
542 work->w_data = data;
543 work->w_mount = mp;
e43afd72 544 work->w_completion = completion;
a167b17e
DC
545 spin_lock(&mp->m_sync_lock);
546 list_add_tail(&work->w_list, &mp->m_sync_list);
547 spin_unlock(&mp->m_sync_lock);
548 wake_up_process(mp->m_sync_task);
549}
550
551/*
552 * Flush delayed allocate data, attempting to free up reserved space
553 * from existing allocations. At this point a new allocation attempt
554 * has failed with ENOSPC and we are in the process of scratching our
555 * heads, looking about for more room...
556 */
557STATIC void
a8d770d9 558xfs_flush_inodes_work(
a167b17e
DC
559 struct xfs_mount *mp,
560 void *arg)
561{
562 struct inode *inode = arg;
075fe102 563 xfs_sync_data(mp, SYNC_TRYLOCK);
b0710ccc 564 xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
a167b17e
DC
565 iput(inode);
566}
567
568void
a8d770d9 569xfs_flush_inodes(
a167b17e
DC
570 xfs_inode_t *ip)
571{
572 struct inode *inode = VFS_I(ip);
e43afd72 573 DECLARE_COMPLETION_ONSTACK(completion);
a167b17e
DC
574
575 igrab(inode);
e43afd72
DC
576 xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inodes_work, &completion);
577 wait_for_completion(&completion);
a167b17e
DC
578 xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
579}
580
aacaa880
DC
581/*
582 * Every sync period we need to unpin all items, reclaim inodes, sync
583 * quota and write out the superblock. We might need to cover the log
584 * to indicate it is idle.
585 */
a167b17e
DC
586STATIC void
587xfs_sync_worker(
588 struct xfs_mount *mp,
589 void *unused)
590{
591 int error;
592
aacaa880
DC
593 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
594 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
abc10647 595 xfs_reclaim_inodes(mp, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
aacaa880 596 /* dgc: errors ignored here */
8b5403a6
CH
597 error = xfs_qm_sync(mp, SYNC_TRYLOCK);
598 error = xfs_sync_fsdata(mp, SYNC_TRYLOCK);
aacaa880 599 }
a167b17e
DC
600 mp->m_sync_seq++;
601 wake_up(&mp->m_wait_single_sync_task);
602}
603
604STATIC int
605xfssyncd(
606 void *arg)
607{
608 struct xfs_mount *mp = arg;
609 long timeleft;
a8d770d9 610 xfs_sync_work_t *work, *n;
a167b17e
DC
611 LIST_HEAD (tmp);
612
613 set_freezable();
614 timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
615 for (;;) {
616 timeleft = schedule_timeout_interruptible(timeleft);
617 /* swsusp */
618 try_to_freeze();
619 if (kthread_should_stop() && list_empty(&mp->m_sync_list))
620 break;
621
622 spin_lock(&mp->m_sync_lock);
623 /*
624 * We can get woken by laptop mode, to do a sync -
625 * that's the (only!) case where the list would be
626 * empty with time remaining.
627 */
628 if (!timeleft || list_empty(&mp->m_sync_list)) {
629 if (!timeleft)
630 timeleft = xfs_syncd_centisecs *
631 msecs_to_jiffies(10);
632 INIT_LIST_HEAD(&mp->m_sync_work.w_list);
633 list_add_tail(&mp->m_sync_work.w_list,
634 &mp->m_sync_list);
635 }
636 list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list)
637 list_move(&work->w_list, &tmp);
638 spin_unlock(&mp->m_sync_lock);
639
640 list_for_each_entry_safe(work, n, &tmp, w_list) {
641 (*work->w_syncer)(mp, work->w_data);
642 list_del(&work->w_list);
643 if (work == &mp->m_sync_work)
644 continue;
e43afd72
DC
645 if (work->w_completion)
646 complete(work->w_completion);
a167b17e
DC
647 kmem_free(work);
648 }
649 }
650
651 return 0;
652}
653
654int
655xfs_syncd_init(
656 struct xfs_mount *mp)
657{
658 mp->m_sync_work.w_syncer = xfs_sync_worker;
659 mp->m_sync_work.w_mount = mp;
e43afd72 660 mp->m_sync_work.w_completion = NULL;
a167b17e
DC
661 mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd");
662 if (IS_ERR(mp->m_sync_task))
663 return -PTR_ERR(mp->m_sync_task);
664 return 0;
665}
666
667void
668xfs_syncd_stop(
669 struct xfs_mount *mp)
670{
671 kthread_stop(mp->m_sync_task);
672}
673
bc990f5c
CH
674void
675__xfs_inode_set_reclaim_tag(
676 struct xfs_perag *pag,
677 struct xfs_inode *ip)
678{
679 radix_tree_tag_set(&pag->pag_ici_root,
680 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
681 XFS_ICI_RECLAIM_TAG);
682}
683
11654513
DC
684/*
685 * We set the inode flag atomically with the radix tree tag.
686 * Once we get tag lookups on the radix tree, this inode flag
687 * can go away.
688 */
396beb85
DC
689void
690xfs_inode_set_reclaim_tag(
691 xfs_inode_t *ip)
692{
693 xfs_mount_t *mp = ip->i_mount;
694 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
695
696 read_lock(&pag->pag_ici_lock);
697 spin_lock(&ip->i_flags_lock);
bc990f5c 698 __xfs_inode_set_reclaim_tag(pag, ip);
11654513 699 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
396beb85
DC
700 spin_unlock(&ip->i_flags_lock);
701 read_unlock(&pag->pag_ici_lock);
702 xfs_put_perag(mp, pag);
703}
704
705void
706__xfs_inode_clear_reclaim_tag(
707 xfs_mount_t *mp,
708 xfs_perag_t *pag,
709 xfs_inode_t *ip)
710{
711 radix_tree_tag_clear(&pag->pag_ici_root,
712 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
713}
714
75f3cb13 715STATIC int
c8e20be0 716xfs_reclaim_inode(
75f3cb13
DC
717 struct xfs_inode *ip,
718 struct xfs_perag *pag,
c8e20be0 719 int sync_mode)
fce08f2f 720{
c8e20be0
DC
721 /*
722 * The radix tree lock here protects a thread in xfs_iget from racing
723 * with us starting reclaim on the inode. Once we have the
724 * XFS_IRECLAIM flag set it will not touch us.
725 */
726 spin_lock(&ip->i_flags_lock);
727 ASSERT_ALWAYS(__xfs_iflags_test(ip, XFS_IRECLAIMABLE));
728 if (__xfs_iflags_test(ip, XFS_IRECLAIM)) {
729 /* ignore as it is already under reclaim */
730 spin_unlock(&ip->i_flags_lock);
731 write_unlock(&pag->pag_ici_lock);
75f3cb13 732 return 0;
fce08f2f 733 }
c8e20be0
DC
734 __xfs_iflags_set(ip, XFS_IRECLAIM);
735 spin_unlock(&ip->i_flags_lock);
736 write_unlock(&pag->pag_ici_lock);
737
738 /*
739 * If the inode is still dirty, then flush it out. If the inode
740 * is not in the AIL, then it will be OK to flush it delwri as
741 * long as xfs_iflush() does not keep any references to the inode.
742 * We leave that decision up to xfs_iflush() since it has the
743 * knowledge of whether it's OK to simply do a delwri flush of
744 * the inode or whether we need to wait until the inode is
745 * pulled from the AIL.
746 * We get the flush lock regardless, though, just to make sure
747 * we don't free it while it is being flushed.
748 */
749 xfs_ilock(ip, XFS_ILOCK_EXCL);
750 xfs_iflock(ip);
7a3be02b 751
c8e20be0
DC
752 /*
753 * In the case of a forced shutdown we rely on xfs_iflush() to
754 * wait for the inode to be unpinned before returning an error.
755 */
756 if (!is_bad_inode(VFS_I(ip)) && xfs_iflush(ip, sync_mode) == 0) {
757 /* synchronize with xfs_iflush_done */
758 xfs_iflock(ip);
759 xfs_ifunlock(ip);
760 }
761
762 xfs_iunlock(ip, XFS_ILOCK_EXCL);
763 xfs_ireclaim(ip);
764 return 0;
7a3be02b
DC
765}
766
767int
768xfs_reclaim_inodes(
769 xfs_mount_t *mp,
7a3be02b
DC
770 int mode)
771{
c8e20be0
DC
772 return xfs_inode_ag_iterator(mp, xfs_reclaim_inode, mode,
773 XFS_ICI_RECLAIM_TAG, 1);
fce08f2f 774}